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ABSTRACT

Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to
model fluids in astrophysical problems, thanks to its geometric flexibility and ability
to automatically adjust the spatial resolution to the clumping of matter. However, a
number of recent studies have emphasized inaccuracies of SPH in the treatment of
fluid instabilities. The origin of these numerical problems can be traced back to spuri-
ous surface effects across contact discontinuities, and to SPH’s inherent prevention of
mixing at the particle level. We here investigate a new fluid particle model where the
density estimate is carried out with the help of an auxiliary mesh constructed as the
Voronoi tessellation of the simulation particles instead of an adaptive smoothing ker-
nel. This Voronoi-based approach improves the ability of the scheme to represent sharp
contact discontinuities. We show that this eliminates spurious surface tension effects
present in SPH and that play a role in suppressing certain fluid instabilities. We find
that the new ‘Voronoi Particle Hydrodynamics’ described here produces better results
than SPH especially in shocks and turbulent regimes of pure hydrodynamical simula-
tions. We also discuss formulations of the artificial viscosity needed in this scheme and
how judiciously chosen correction forces can be derived in order to maintain a high
degree of particle order and hence a regular Voronoi mesh. This is especially help-
ful in simulating self-gravitating fluids with existing gravity solvers used for N-body
simulations.
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1 INTRODUCTION

Numerical simulations have become an important research
tool in many areas of astrophysics, in particular in cosmic
structure formation and galaxy formation. This is in part
because the physical conditions involved cannot be repro-
duced in laboratories on Earth, so that simulations serve as
a replacement for experiments. Perhaps more importantly,
simulations in principle allow a full modelling of all the in-
volved physics. However, a significant problem in practice is
that that the equations one wants to solve first have to be
numerically discretized in a suitable fashion. The accuracy
of simulations depends strongly on the properties of this dis-
cretization, and it hence remains an important task to find
improved numerical schemes for astrophysical applications.

In cosmic structure formation, matter is initially essen-
tially uniformly distributed, but clusters with time under
the action of self-gravity to enormous density contrasts, pro-
ducing galaxies of vastly different sizes. Given the variety of
involved geometries, densities and velocities, it is clear that
a Lagrangian method, where the mass of a resolution ele-
ment stays (roughly) constant, would be most convenient.
This is because a Lagrangian method automatically concen-
trates the resolution in regions where the galaxies form, and

hence focuses the numerical effort on the regions of interest.
On the other hand, traditional mesh-based approaches to
hydrodynamics, so-called Eulerian methods, discretize the
volume in a set of cells and do not follow the clustering of
matter, unless this is attempted with a suitable adaptive
mesh-refinement strategy.

The by far most widely used Lagrangian approach in
structure formation is smoothed particle hydrodynamics
(SPH) (Lucy 1977; Gingold & Monaghan 1977; Monaghan
1992). In this method the fluid is discretized in terms of par-
ticles of fixed mass, which are used to construct an approxi-
mation to the Euler equations based on the adaptive kernel
interpolation technique. SPH can be very easily coupled to
self-gravity, it is remarkably stable, and the introduction of
extra physics (e.g. feedback processes in the context of star
formation) is intuitive. All of these properties have made
it very popular for problems such as planet formation or
galaxy mergers (e.g. Mihos & Hernquist 1996; Mayer et al.
2002; Robertson et al. 2004; Dolag et al. 2005), i.e. systems
with a wide dynamic range in densities and velocities.

However, recent studies have highlighted a number of
differences in the results of SPH-based calculations com-
pared to more traditional grid-based methods for hydro-
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2 S. Heß & V. Springel

dynamics. For example, the two methods appear to dis-
agree about the entropy produced in the central region of
a forming galaxy cluster under non-radiative conditions, as
first seen in the ‘Santa Barbara cluster comparison project’
(Frenk et al. 1999). It has been suggested that this problem
may be caused by a suppression of the Raleigh-Taylor fluid
instability in SPH (Mitchell et al. 2009) and the lack of mix-
ing at the particle level (Tasker et al. 2008; Wadsley et al.
2008). Indeed, Agertz et al. (2007) have shown that SPH
tends to suppress Kelvin-Helmholtz fluid instabilities in
shear flows across interfaces with sizable density jumps. In
such a situation, SPH’s density estimate leads to spurious
forces at the interface which produce an artificial ‘gap’ in the
particle distribution and a surface tension effect that ulti-
mately produces errors in the hydrodynamical evolution. To
what extent these numerical artifacts negatively affect the
global accuracy of simulations in practice is unclear, and this
can in any case be expected to be problem dependent. How-
ever, an improvement of standard SPH that avoids these
errors is obviously desirable.

First proposals in this direction have recently been
made. Price (2008) suggests to introduce artificial heat con-
duction into SPH such that discontinuities in the tempera-
ture field are smoothed out, in analogy to the ordinary artifi-
cial viscosity that effectively smoothes out discontinuities in
the velocity field occurring at shocks. This heat conduction
produces a soft instead of an abrupt transition of the specific
entropy across a contact discontinuity, which in turn helps
to better represent the growth of Kelvin-Helmholtz insta-
bilities at such interfaces. More recently, Read et al. (2009)
have modified an idea by Ritchie & Thomas (2001) for a
modified SPH density estimate that assumes that the local
neighbours have similar pressures, and which is designed to
avoid the ‘pressure blip’ in the standard approach at con-
tact discontinuities. Together with a modified kernel shape
and a drastically enlarged number of neighbours (by a fac-
tor of ∼ 10, implying a similar increase in the computational
cost), Read et al. (2009) obtained better growth of Kelvin-
Helmholtz instabilities across density jumps.

In this work we follow a different approach that
eliminates the ordinary SPH kernel altogether. Instead,
we use the distribution of points with variable masses
to construct an auxiliary mesh, which is then used to
derive local density estimates. If the particle hydrody-
namics is derived from a Lagrangian, it turns out that
obtaining this density estimate is already sufficient to
uniquely determine the equations of motion. The use of
Delaunay tessellations to construct density fields from ar-
bitrary point sets has been discussed in the literature
(Schaap & van de Weygaert 2000; Icke & van de Weygaert
1987; van de Weygaert & Icke 1989; Pelupessy et al. 2003),
but as we show in this paper, its topological dual, the
Voronoi tessellation, is actually preferable for our hydro-
dynamical application. In the Voronoi tessellation, to ev-
ery particle a polyhedra is assigned which encompasses the
space closer to this particle than to any other. Based on
these volumes associated with each particle, local densities
and hydrodynamical forces can be estimated, leading to an
interesting alternative to SPH. In particular, it is immedi-
ately clear that unlike SPH this approach yields a consistent
discretization not only of the mass but also of the volume,
which should help to yield an improved representation of

contact discontinuities. We note that a conceptionally simi-
lar approach to Voronoi based particle hydrodynamics was
first discussed by Serrano & Español (2001) in the context
of a mesoscopic fluid particle model. We here extend this
idea to the treatment of the Euler equations in astrophysi-
cal systems.

We emphasize that the method we introduce in this
study is radically different from to the one implemented in
the new AREPO code (Springel 2009). Whereas the latter is
also based on a (moving) Voronoi tessellation, it employs a
finite volume scheme with a Riemann solver to compute hy-
drodynamical fluxes across mesh boundaries. This involves
an explicit second-order reconstruction of the fluid through-
out the volume, and allows for changes of the mass contained
in each cell even if the mesh is on average moving with the
flow. In contrast, we here derive a fluid particle model from
a discretized Lagrangian in which the masses of each ele-
ment stay strictly constant, and in which the motion of the
particles is governed by pairwise pressure force exchanged
between them. While AREPO is conceptually close to the
techniques used in Eulerian hydrodynamics, the method we
study here is conceptually close to SPH.

This paper is structured as follows. In Section 2, we
discuss how the equations of motion can be derived for the
Lagrangian particle approach to hydrodynamics discussed
here. We will also present suitable formulations of artificial
viscosity for our scheme. In Section 3, we discuss the role of
the regularity of Voronoi cells and means to improve it. We
briefly describe the implementation of our numerical scheme
in a modified version of the GADGET code in Section 4, and
then turn in Section 5 to a description of results for a suite of
test problems with our new ‘Voronoi Particle Hydrodynam-
ics’ (VPH) scheme. These tests range from simple shock-
tube problems, to fluid instabilities, and three-dimensional
stripping of gas in a supersonic flow. Finally, we summarize
our conclusions in Section 6. In two Appendices, we discuss
gradient operators for Voronoi meshes and give the deriva-
tion of correction forces that can be used to maintain very
regular mesh geometries, if desired.

2 PARTICLE BASED HYDRODYNAMICS

We begin by introducing our methodology for a particle-
based fluid dynamics based on Voronoi tessellations. This
method is close in spirit to SPH, but differs in important
aspects. Where appropriate, we discuss these differences in
detail.

2.1 A Lagrangian approach for particle based

fluid dynamics

We discretize the fluid in terms of N mass elements of mass
mi. The discretized fluid Lagrangian can then be adopted
as

L =
∑

i

[

1

2
mi v

2
i − mi ui(ρi, si)

]

. (1)

This is simply the difference of the kinetic and thermal en-
ergy of the particles. The thermal energy ui per unit mass
depends both on the density ρi and the specific entropy si
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of the particle. In this work, we aim to approximate invis-
cid ideal gases, hence the equation of state (EOS) is that
of a polytropic gas, where the pressure is Pi = siρ

γ , and
the entropic function si (or simply ‘entropy’ for short, since
it depends only on the thermodynamic entropy) labels the
adiabat on which this gas element resides.

When the specific entropy si and the mass mi remain
constant for a fluid element i, the internal energy ui changes
according to ∂u

∂ρ
= P

ρ2 . Using this result, we can readily write

down the Lagrangian equations of motion of (reversible)
fluid dynamics:

mir̈i = −
N
∑

j

mj
∂uj

∂ri

= −
N
∑

j

mj
∂uj

∂ρj

∂ρj

∂ri

= −
N
∑

j

mj
Pj

ρ2
j

∂ρj

∂Vj

∂Vj

∂ri
(2)

We see that the primary input required for a more explicit
form of the equations is a density estimate based on the par-
ticle coordinates, or alternatively, an estimate of the volume
associated with a given particle.

SPH addresses this task with a kernel estimation tech-
nique to obtain the density, where an adaptive spherically
symmetric smoothing kernel is employed to calculate the
density based on the spatial distribution of an approximately
fixed number of nearest neighbours. The Lagrangian then
uniquely determines the equations of motion that simulta-
neously conserve energy and entropy (Springel & Hernquist
2002). However, we note that SPH does not achieve a con-
sistent volume estimate, i.e. the sum of the effective volumes
of the particles, Vi = mi/ρi, is not guaranteed to be equal
to the total simulated volume. Furthermore, the inherent
smoothing operation in the density estimate is bound to be
inaccurate at contact discontinuities and phase interfaces,
where the density may discontinuously jump by a large fac-
tor. In the following, we therefore look for alternative ways to
construct density estimates which improve on these deficits.

2.2 Density estimates with tessellation techniques

One promising approach for more accurate density and spe-
cific volume estimates lies in the use of an auxiliary mesh
that is generated by the particle distribution. A mesh can
readily yield a partitioning of the volume such that the to-
tal volume is conserved, and also allows multiple ways to
‘spread out’ the particle masses mi in a conservative fashion
such that an estimate of the density field is obtained.

There are two basic geometric constructions that sug-
gest themselves as such mesh candidates. These are the
Delaunay (Dirichlet 1850) and the Voronoi tessellations
(Voronoj 1908), which are in fact mathematically closely re-
lated, as we discuss below. In the Voronoi tessellation, space
is subdivided into non-overlapping polyhedra which each
encompass the volume which is closer to its corresponding
point than to any other point. The surfaces of these poly-
hedra are therefore the bisectors to the nearest neighbours.
The Delaunay tessellation on the other hand decomposes

space into a set of tetrahedra (or triangles in 2D), with ver-
tices at the point coordinates. The defining property of the
Delaunay tessellation is that the circumcircles of the tetra-
hedra do not contain any of the points in their interior. This
property in fact makes this tessellation uniquely determined
for points in general position.

It turns out that these two tessellations are dual to
each other; to each edge of the Delaunay tessellation cor-
responds a face of the Voronoi tessellation, and the circum-
circle centres of the Delaunay tetrahedra are the vertices of
the Voronoi faces. One implication of this is that the Delau-
nay and Voronoi Tessellations can be easily transformed into
each other. In practice it is typically simpler to always con-
struct the Delaunay tessellation, even if one works with the
Voronoi, because the former has more efficient and simpler
algorithms for construction.

Both tessellations can in principle be used to derive den-
sity estimates. Pelupessy et al. (2003) introduced the De-
launay Tessellation Field Estimator (DTFE) technique and
showed that it offers superior resolution compared to SPH-
like density estimates for detecting cosmological large-scale
structure. In this approach, the total volume of the contigu-
ous set of Delaunay cells around a point is used to assign
particle densities, and a full density field can be constructed
by linearly interpolating the densities inside each Delaunay
tetrahedron. As a possible application of this density es-
timate, Pelupessy et al. (2003) also suggested its use in a
particle-based hydrodynamic scheme. However, we caution
that a rather serious short-coming of the Delaunay tessella-
tion in this context is that the tessellation may occasionally
change discontinuously as a function of the particle coordi-
nates. This happens whenever a particle moves over the cir-
cumcircle of one of the tetrahedra. An infinitesimal particle
motion can hence be sufficient to create finite changes in the
volume of its associated contiguous Delaunay cell (this is the
union of all Delaunay tetrahedra of which the given point
is one of the vertices) of a particle. As a result, the ther-
mal energy of the point set is not a continuous function of
the particle coordinates. This makes the DTFE technique ill
suited to be the basis of a hydrodynamical particle method.

On the other hand, the volumes of the Voronoi cells
always depend continuously on the particle coordinates, de-
spite the fact that topological changes of the tessellation
may occur as a result of particle motion. This is because
flips of edges in the Delaunay tessellation happen precisely
when the corresponding Voronoi faces have vanishing area.
Another advantage of the Voronoi tessellation is that it is
always uniquely defined for any distribution of the points,
whereas for certain degenerate point sets (those where more
than four points lie on a common circumsphere), more than
one valid Delaunay tessellation may exist, which can then
make Delaunay-derived density estimates non-unique. We
remark that the uniqueness of the Voronoi tessellation does
not hold in reverse, i.e. a given Voronoi tessellation can in
general be produced by a number of different point distri-
butions. This has important consequences for the stability
of the scheme, as we discuss later on in more detail.

Based on the above, the Voronoi tessellation is a promis-
ing construction for a particle fluid model, hence we adopt it
in the following. In particular, we shall associate the volume
Vi of a Voronoi cell with its corresponding point, yielding a
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4 S. Heß & V. Springel

Figure 1. Section of a Voronoi diagram for a set of points marked
with asterisks. All the triangles in the dual Delaunay tessellation
that are shared by the point in the centre are marked in blue.
The vectors cij and eij needed to calculate the derivative of the
volume are also marked.

consistent decomposition of the total simulated volume. The
simplest possible density estimate is then simply given by

ρi =
mi

Vi
(3)

which we shall use in this paper. More involved higher-order
density field reconstructions could be considered as well, an
idea we leave for future work.

Based on this density estimate, and given the specific
entropies of each particle, the local pressure and the ther-
mal pressure per unit mass can be computed. Also, one may
define a gradient operator for the Voronoi mesh (see our dis-
cussion in Appendix A1), which could be used to estimate
pressure gradients, and hence to yield discretizations of the
Euler equations. However, a better approach is to start from
the discretized Lagrangian, as this automatically gives equa-
tions of motion that satisfy the conservation laws. We shall
adopt this strategy in the following.

2.3 Equations of motion for Voronoi-based

particle hydrodynamics

Since the volumes of the Voronoi cells depend only on the
configuration of the points, we can readily obtain the equa-
tions of motion if we find the partial derivative of a cell
volume with respect to any of the particle coordinates. We
here adopt the result of Serrano & Español (2001), who
showed that the relevant derivative is given by (see also
De Fabritiis et al. 2006)

∂Vj

∂ri
= −Aij

(

cij

Rij
+

eij

2

)

for i 6= j, (4)

where ∂
∂ri

denotes the gradient operator with respect to ri.
Here Rij is the distance between two neighboring points,
eij = (rj − ri)/Rij denotes a unit vector from i to the
neighbour j, which is normal to the Voronoi face of area Aij

between cells i and j. Formally, we can define Aij for any

pair of different particles, but if i and j are not neighbours
in the Voronoi tessellation (i.e. do not share a face), we set
Aij = 0. Note that equation (4) holds only for j 6= i. But
one can readily derive an expression for ∂Vi/∂ri by invoking
volume conservation. This yields

∂Vi

∂ri
= −

∑

j 6=i

∂Vj

∂ri
. (5)

As sketched in Figure 1, the vector cij points from the mid-
point between i and j to the centroid of the face Aij , and
is orthogonal to eij . The term involving eij/2 can be easily
understood geometrically from the change of the volumes of
the pair of pyramids spanned by the face between i and j
and the two points. But if the center of the face is displaced
from the line connecting i and j, a second term involving cij

appears that stems from the turning of the face when the
points are moved.

We are now in a position to write down the resulting
equations of motion, based on equations (2), (4) and (5).
This first yields

∂ρj

∂ri
=

mj

V 2
j

[

(1 − δij)Aij

(

cij

Rij
+

eij

2

)

−δij

∑

k 6=j

Ajk

(

cjk

Rjk
+

ejk

2

)]

, (6)

which then gives rise to the equations of motion in the form

mir̈i =
∑

j 6=i

Aij(Pi − Pj)

(

cij

Rij
+

eij

2

)

. (7)

This is a rather intuitive result, as it shows that motions are
generated by the pressure differences that occur across faces
of the tessellation. If the pressures are all equal, the forces
vanish exactly, unlike in ordinary SPH.

In the form of equation (7), it is not obvious whether the
forces between a given pair of particles are antisymmetric.
However, noting the identity

∑

j 6=i
Aijeij = 0, which follows

from Gauss’ theorem, we can restore manifest antisymme-
try in the equations of motion, which is in general prefer-
able for numerical reasons. To this end, we simply subtract
Pi

∑

j 6=i
Aijeij = 0 from (7), yielding our final equations of

motion as

mir̈i = −
∑

j 6=i

Aij

[

(Pi + Pj)
eij

2
+ (Pj − Pi)

cij

Rij

]

, (8)

which is now pairwise antisymmetric. Note that whereas for-
mally the sums appearing in these equations are carried out
over all particles, only the direct neighbours actually con-
tribute, and these are known from the tessellation. In fact,
the list of interacting particle pairs is exactly given by the list
of edges of the underlying Delaunay tessellation, or equiva-
lently, by the list of faces of the Voronoi tessellation.

We further note that since the equations of motion have
been derived from the Lagrangian given in equation (1),
these equations conserve energy, momentum and entropy
exactly. In the present form they are hence a description
of the reversible, adiabatic parts of a flow, but they do not
yet contain any dissipation, which is however needed to treat
shocks. If no such dissipation is included, shocks will lead to
unphysical ringing and oscillations in the fluid.
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2.4 Artificial viscosity

We follow the standard SPH approach (e.g.
Gingold & Monaghan 1977; Balsara 1995) and invoke
an artificial dissipation in the form of an extra friction force
that reduces the kinetic energy and transforms it into heat.
There is great freedom in the form of this viscous force,
but ideally it should only become active where it is really
needed, i.e. in shocks, and should be negligible away from
shocks, such that inviscid behavior is ensured there. The
most widely used and tested formulation of the viscous
acceleration in SPH schemes is given by

(avisc)i = −
∑

j

mjΠij∇iW ij , (9)

Πij =
f̄ij

ρ̄ij

(

−α µij c̄ij + β µ2
ij

)

, (10)

µij =
h̄ij vij · rij

r2
ij + ǫ h̄2

ij

, (11)

f̄ij =
fi + fj

2
, fi =

|∇ · v|i
|∇ · v|i + |∇ × v|i + ǫ

, (12)

provided that vik ·rik < 0, i.e. the neighboring particles ap-
proach each other, otherwise the viscous force that is medi-
ated by the viscous tensor Πij is set to zero. In this notation,
qij represents the difference and q̄ij the average between the
quantities q associated with particles i and j. The parame-
ter ǫ is a tiny value introduced to guard against numerical
divergences. The parameters α and β set the strength of the
viscosity and are typically set to of order ∼ 1. The factors fi

measure the strength of the local velocity dispersion relative
to the local shear, and are introduced as so-called Balsara
switch to reduce the viscosity if the local flow is dominated
by shear (Balsara 1995).

The above formulation of a viscous force can be adopted
to the Voronoi scheme in a number of ways. We first define
the projected pairwise velocity as

wij =
vij · rij

|rij |
, (13)

and make the replacement µij → wij . This is effectively
yielding the ‘signal velocity’ form of the standard viscosity
(Monaghan 1997). For simplicity, we shall also adopt the
common choice β = 2α. We next recognize that in SPH the
viscous tensor is introduced into the equations of motion
as if it was an extra pressure of the form Pvisc = 1

2
ρ2

ijΠij

(Springel 2005). Using this analogy, and guiding ourselves
by the form of the Voronoi-based equations of motion (8),
we can readily write down a parameterization of the viscous
force acting on a particle as

mi(avisc)i = −
∑

j

Aijρ
2
ijΠij

eij

2
. (14)

Here we have only introduced a viscous force component
parallel to the line connecting the two particles, since we
assume that the ‘viscous extra pressure’ is the same for a
pair of interacting particles, i.e. (Pvisc)i = (Pvisc)j . A more
explicit form of the viscous acceleration is given by the fol-
lowing expression:

(avisc)i = α
∑

j

f̄ij

mi
ρ̄ijAij

(

wij c̄ij − 2w2
ij

) eij

2
. (15)

Note that the viscous force is pairwise antisymmetric, and
will only become active if two particles approach each other.
We also want to stress that artificial viscosity parameteriza-
tions different from that of equation (15) are of course pos-
sible. We here simply adopt this form as a first best guess,
based on the analogy with the widely tested SPH formula-
tion.

It is interesting to compare the artificial viscosity with
the viscosity terms of the Navier Stokes equation,

m
Dv

Dt
= −∇P + η ∆v + λ ∇(∇v). (16)

Neglecting the shear viscosity η and approximating the gra-
dient operator with its Voronoi discretized form (see Ap-
pendix A), this becomes

(λ ∇(∇v))i ≃ λ
1

Vi

∑

j

Aij
eij

2
(∇v)j . (17)

Additionally approximating

(∇v)j ≈ vij · rij

|rij |
= wij (18)

yields a term like the one linear in w in equation (15), adding
some further justification to this form of the viscous force,
which has the form of an artificial bulk viscosity.

In order to maintain energy conservation, heat must be
produced at a rate dE/dt that exactly balances the loss of
kinetic energy due to the extra friction from the artificial vis-
cosity. We inject this energy symmetrically into the specific
entropies of the two particles. Defining the pairwise viscous
forces as

(fvisc)ij = −Aijρ
2
ijΠij

eij

2
, (19)

the heating is given by

dui

dt
=

1

2

∑

j

(fvisc)ij · vij . (20)

With ui = siρ
γ−1
i /(γ − 1) this yields for the rate of entropy

production

dsi

dt
=

γ − 1

2 ργ−1
i

∑

j

(f visc)ij · vij . (21)

In this form, the equations still conserve total energy and
momentum, while the change of the total entropy is positive
definite.

The artificial viscosity is necessary to capture shocks
and to damp postshock oscillations in the vicinity of shocks,
but everywhere else in the fluid it can induce spurious dissi-
pation that distorts the physics of an inviscid gas. In order
to reduce the influence of the viscosity in regions away from
shocks, the prefactor α that sets the strength of the vis-
cosity can be chosen adaptively (Morris 1997; Dolag et al.
2005). The idea is that every particle gets an individual vis-
cosity strength α which is evolved in time according to the
differential equation

dα

dt
= −α − α∗

τ
+ S. (22)

Here α is decaying to a minimum α∗ on a timescale τ , and
is increased by the source term S. One possible choice for
this source term is

c© 0000 RAS, MNRAS 000, 000–000



6 S. Heß & V. Springel

S = f̄ij ζ ∇ · v, (23)

which we adopt in our implementation of a time-variable
artificial viscosity, using the discretized estimate of the di-
vergence described in Appendix A. Here both the response
coefficient ζ and the timescale τ have to be calibrated em-
pirically. When a shock arrives in an unperturbed area, α is
at its minimum and needs to jump very quickly to a higher
level in order to capture the shock and prevent post shock
oscillations, whereas behind the shock, the viscosity should
quickly return to a low value. However, a too large value for
ζ may trigger high viscosity due to the often noisy estimates
of the ∇ · v term, and if τ is too small, the viscosity may
decay too quickly to capture the shock properly. Finally, the
minimum viscosity α∗ can be set to a non-zero value to im-
prove particle order and thereby reduce noise, at the cost of
introducing some minimum viscosity.

2.5 Treatment of mixing

Hydrodynamic simulations are able to follow the advection
of fluids only down to the resolution scale. But especially
Lagrangian schemes do not include mixing processes of the
fluid on sub-resolution scales. In Eulerian codes, such mixing
is implicit whenever a new averaged thermodynamic state
for a cell is computed after fluxes of gas have entered or
left it. This mixing keeps the total energy fixed, but will in
general raise the entropy of the system. In the Lagrangian
particle approach of SPH and in the Voronoi approach de-
veloped here, such mixing effects are, however, entirely sup-
pressed. The specific entropies of neighbouring particles stay
constant, except when a shock is present. While this reliably
eliminates unwanted entropy production from advection er-
rors, it also prevents the proper subresolution production of
entropy when small-scale fluid instabilities should mix the
fluid on the resolution scale and produce homogeneous ther-
modynamic properties.

We have therefore tried to model this subgrid mix-
ing with a heuristic model which conjectures that small-
scale fluid instabilities, if present, equalize the local tem-
perature field by mixing. This will then smooth out sharp
contact discontinuities and also tend to equilibrate the
specific entropies of the cells. Similar ideas have recently
been discussed by Price (2008), Wadsley et al. (2008) and
Shen et al. (2009) in the context of SPH, but our approach
differs in detail. In particular, we restrict the averaging to
shearing layers, and motivate the timescale for mixing di-
rectly with the growth timescale of the Kelvin-Helmholtz
instability on the resolution scale.

The linear theory growth timescale of a perturbation
across a contact discontinuity with densities ρi and ρj that

exhibits a jump in the tangential velocity of size v
‖
ij (a shear

layer) is given by

tKH =
ρi + ρj

2 k v
‖
ij

√
ρiρj

. (24)

Here k = 2π/L is the wavenumber of the Kelvin-Helmholtz
mode. We shall assume that L is of order the cell dimen-
sion, which is in turn of order the particle separation, i.e. we
will set L = Rij when a particle pair of separation Rij is
considered. Similarly, the relevant velocity jump is simply

the velocity difference projected onto the face between two
particles, which is normal to their separation vector, hence

v
‖
ij = |vij − (vij · eij) eij |. (25)

We further assume that the fluid mixing on scales below the
particle cells can be approximately described as a diffusion
process, operating with diffusion constant D = χL2/tKH,
where χ is a dimensional efficiency that controls the strength
of the mixing (and which needs to be determined empir-
ically). We hence effectively model the mixing with heat
diffusion of the form ∂u/∂t = D∇2u.

Using the SPH discretization of thermal conduction as a
guide (Jubelgas et al. 2004), we can readily find a discretiza-
tion of the heat diffusion for the Voronoi particle discretiza-
tion. We obtain

mi
dui

dt
= 2πχ

∑

j

Aij(1 − f̄ij)|v‖
ij |

√
ρiρj(uj − ui). (26)

Here we introduced a further factor (1 − f̄ij) in a similar
manner as in (12). This Balsara-like factor is used to re-
strict the diffusion only to areas where the compression (as
measured by |∇ · v|) is clearly negligible compared to the
shear (as measured by |∇ × v|).

Note that this equation preserves the total thermal en-
ergy, and heat energy only flows from hotter to colder par-
ticles. The corresponding rates of entropy change for each
particle can be obtained by multiplying with (γ − 1)/ργ−1

i .
While the specific entropy of individual particles may go
down if they give up some of their heat energy, the total en-
tropy of the system increases due to this process, which can
be interpreted as providing the necessary mixing entropy.

One important difference of our parameterization of ‘ar-
tificial heat conduction’ to the model of Price (2008) is that
the mixing only occurs in shear flows, and that contact dis-
continuities without shear are hence not affected.

We note that due to the parabolic character of the dif-
fusion problem, it can be problematic to integrate equation
(26) with an explicit time integration scheme, since the von
Neumann criterion imposes relatively small timestep limits.

∆t 6
(∆x)2

D
≈ (∆x)

2πχ|v‖
ij |

, (27)

where we estimated min
(

ρi+ρj

2
√

ρiρj

)

= 1 and assumed ∆x ≈
L. The CFL criterion is more restrictive than this timestep
as long as

|v‖
ij | ≪

1

2πχ
csound, (28)

which is usually the case and hence not too restrictive. In-
deed, so far we have not encountered problems with the
explicit time integration scheme that is implemented for the
mixing at present. If needed, an implicit scheme with per-
fect stability could however be easily adopted, like the one
discussed in Petkova & Springel (2009).

3 ISSUES OF CELL REGULARITY

A common feature of particle hydrodynamic schemes is
their ability to automatically provide an adaptive resolu-
tion. As a result, dense regions are modelled with better
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Particle hydrodynamics with tessellation techniques 7

accuracy thanks to their smaller mean distance of parti-
cles. But besides the particle number density the regularity
of the Voronoi cells is an important factor in determining
the achieved precision, as shown in Appendix A3, where
we give quantitative results for the accuracy of our gradi-
ent estimates as a function of the shape distortions of cells.
Highly irregular, sliver-like Voronoi cells may also lead to
very small, computationally costly timesteps, because the
permissible timestep size is effectively proportional to the
distance to the nearest neighbour.

Connected to this problem is the issue of how to safely
prevent inter-particle penetrations, which is required for a
proper representation of the fluid with its single valued ve-
locity field. If two particle approach each other rapidly, it
is possible that the particles pass through each other unless
this is prevented with a sufficiently strong artificial viscos-
ity. If the Voronoi mesh is very irregular and features a large
number of close particle pairs, it becomes more difficult to
ensure this, simply because rather large viscous forces that
act over short timescales are required to prevent the small
particle separations from becoming still smaller. These prob-
lems are significantly alleviated if the tessellation is rela-
tively ‘regular’, i.e. if cells have a small aspect ratio, and
if their generating points lie close to the centroids of the
corresponding cells.

Figure 2 illustrates another important feature of
Voronoi meshes, which we may perhaps call ‘mesh degen-
eracy’. In this example, the mesh for two different point
distributions is shown, but in both cases an identical Carte-
sian Voronoi mesh results, hence the density and pressure
estimates are both equal. In fact, one can continue to move
the groups of four points around the mesh vertices in a mir-
rored fashion arbitrarily close towards the corners of the
mesh, without changing the situation. If one now imagines
adding some random velocity field to the points when they
are very close, it is clear that it will be much harder to pre-
vent an erroneous particle crossing in the case where the
points are far from the centres of their associated cells than
in the case where they sit right at these centres.

One might argue that situations as shown in Figure 2
are artificial and hence do not affect the simulation of flows
where Voronoi diagrams are seldom that regular. But situa-
tions occur where the volume is only slightly increased when
particles approach. Also considering a finite timestep these
particles’ resistance against a clumping or even interpene-
tration is then uncomfortably weak.

If possible, it would therefore be desirable to formulate
the dynamics such that the mesh automatically maintains a
certain degree of regularity. We note that this cannot be ex-
pected to happen by itself for the density estimation scheme
we implemented thus far. This is again made clear by the
example in Figure 2, where the pressure gradient vanishes
in both cases if the specific entropies and masses of all parti-
cles are the same. Below we therefore consider two possible
approaches to introduce small correction forces into the dy-
namics with the goal to rearrange the points to achieve a
more regular tessellation.

3.1 Viscous forces that help to improve order

Experience with our new VPH scheme shows that especially
in highly irregular, turbulent flows and in situations with

Figure 2. Two point distributions and their corresponding
Voronoi tessellations. The important point illustrated by this
example is that different point distributions may have identical

Voronoi tessellations.

strong gravitational forces some cells can become quite ir-
regular. In this context, we loosely define an irregular cell as
one whose generating point is substantially displaced from
the centroid of the cell and/or whose aspect ratio is quite
high, i.e. a cell with a comparatively large ratio of surface
area to volume. In this subsection we consider a scheme
where the artificial viscosity is modified such that it serves
a second purpose, namely to have the tendency to make cells
‘rounder’.

To this end we introduce the notion of a ‘partial pres-
sure’ for each of the pyramids that make up a Voronoi cell.
These pyramids are spanned by the Voronoi faces and the
defining point of the cell, which acts as their apex. We define
the ‘partial pressure’ of the pyramid of cell i facing cell j in
terms of its volume Vij = AijRij/6 (or Vij = AijRij/4 in
2D) and by assigning a share mij = miAij/

∑

k
Aik of the

cell’s mass to the pyramid, i.e. its mass fraction is taken to
be proportional to its contribution to the total surface area
of the cell. This yields

Pij = siρ
γ
ij = si

(

6mi

Rij

∑

k
Aik

)γ

. (29)

The idea is now to define an additional viscous force between
a pair of particles arising from the difference of this partial
pressure to the full pressure of the cell. This will lead to rear-
rangements of the points until the differences in the partial
pressures of each pyramid to that of the cell become small,
which happens when the point is approximately equidistant
to all the faces of its cell, implying a regular cell shape.

We hence make the ansatz

(f order)ij = −κAij(Pij − Pi + Pji − Pj)
eij

2
(30)

for ‘ordering forces’ between a pair of particles, with the
total force on particle i being given by

mi(aorder)i =
∑

j 6=i

(f order)ij . (31)

Here κ is a dimensionless parameter describing the strength
of the effect. These forces are antisymmetric, and in general
can be both of repulsive and attractive nature. In order to
maintain total energy conservation, the work of these forces
needs to be balanced in the evolution of the entropies of
the particles, similar to what is done for the ordinary arti-
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8 S. Heß & V. Springel

ficial viscosity. This yields an additional contribution to the
entropy change of the form

dsi

dt
=

(γ − 1)

ργ−1
i

1

2

∑

j

(f order)ij · vij . (32)

Note that a small local decrease of the entropy sum can
result in principle if order is restored in the particle distri-
bution, but this effect is small and has played no role in
all our tests. In refinements of the above scheme, it is also
possible to make κ spatially and temporarily variable. For
example, we have typically used this scheme in a combina-
tion with a switch that only sets κ > 0 if there is a strong
local compression, because that is where cell shapes distort
the most.

When discussing results, we will refer to this method as
‘partial pressure ordering’ or PPO, whereas the method for
improved cell regularity discussed in the next subsection will
be referred to as ‘shape correction forces’. If none of these
additional schemes to regularize cell shapes is employed, we
simply refer to the method as the ‘plain Voronoi scheme’.

3.2 Imposing regularity through the fluid

Lagrangian

If irregular cell shapes occur, we ideally would like that small
adjustment forces appear naturally that tend to make the
mesh more regular again. These adjustment forces should
preserve the energy and momentum conservation of the
scheme. This will automatically be the case if they are de-
rived from a suitably defined Lagrangian or Hamiltonian.
We are hence led to modify the fluid Lagrangian slightly
to include factors that penalize highly distorted cell shapes.
The idea is that such distorted cells should raise the esti-
mate of the inner energy slightly, such that they become
energetically disfavored.

We consider two ways to measure shape distortions of
cells, which may either be used individually, or combined.
One is based on the displacement of a point from the cen-
troid of its associated cell. The idea here is that it is ad-
vantageous if a point stays close to the center of a cell. In
particular, as we will discuss in more detail in Section 5.3,
it turns out that the ordinary VPH scheme is not able to
support waves in regular Cartesian grids at the Nyquist fre-
quency, a deficit that could be cured if there is always a
(weak) restoring force if a point is displaced from the centre
of its Voronoi cell.

The other is to measure the shape directly, and to steer
the particle motion such that high aspect ratios are avoided.
We construct a shape measure based on the second moment
of the cell, which we compare to a suitably defined cell ra-
dius. This measure will have a minimum for ‘round cells’,
while severe distortions from roundness (like highly elon-
gated cells) should trigger restoring forces.

Both of the above measures of cell regularity can be in-
troduced into the fluid Lagrangian by multiplying the ther-
mal energy with correction factors that increase the energy
slightly if a point is displaced from the centroid, or if a cell
is elongated. Specifically, we adopt as Lagrangian

L =
∑

k

1

2
mkṙ

2
k − (33)

∑

k

PkVk

γ − 1

[

1 + β0
(rk − sk)2

V
2/d

k

]{

1 + β1

(

w2
k

V
2/d

k

− β2

)}

.

Here rk is the coordinate of a point, Vk is the volume of its
corresponding Voronoi cell, and sk is the cell’s centroid. Pk is
the ordinary pressure of the cell, where we set ρk = mk/Vk as
usual. The coefficients β0 and β1 are introduced to measure
the strength of the correction forces associated with offsets
from cell centres, or with high aspect ratios, respectively.
For β0 = β1 = 0, the ordinary fluid Lagrangian of the VPH
scheme is recovered.

We define the centroid of a cell as

sk ≡ 〈r〉k =
1

Vk

∫

r χk(r) dr, (34)

where χk is the characteristic function of cell k, i.e. χk(r) =
1 if the point r lies in the cell k, and χk(r) = 0 otherwise.
The shape of a cell is measured via the second moment

w
2
k ≡

〈

(r − sk)2
〉

k
=

1

Vk

∫

(r − sk)2χk(r) dr. (35)

The factors in squared and curly brackets in the Lagrangian
of equation (33) are the adopted energy correction factors
that raise the energy of distorted cells. Here d counts the
number of dimensions, i.e. d = 2 for 2D and d = 3 for
3D. The factor V

2/d
k is hence proportional to the ‘radius’

Rk = V
1/d

k of a cell squared. β0 measures the strength of
the effect of displacements of points from the centroid of a
cell, while β1 is the corresponding factor for the aspect-ratio
factor. The constant β2 is only introduced to prevent that
even round cells lead to a significant enhancement of the
thermal energy. For perfectly round cells, we expect in 2D
approximately circles for which w2

k = V 2/d/(2π), hence we
pick β2 = 1/(2π). In 3D, we have spherical shapes instead
and we pick β2 = 3/5(3/4π)2/3.

The equations of motion for the Lagrangian (33) can be
derived in closed form for the Voronoi mesh, but due to the
length of the resulting expressions we give their derivation
in Appendix B. The advantage of using the Lagrangian to
obtain the cell-shaping forces is that the scheme then still
accurately conserves total energy, momentum and entropy,
while at the same time remaining translational and rotation-
ally invariant. Also, the correction forces are ‘just right’ to
achieve the desired regularity of the mesh, something that is
difficult to achieve with any heuristic scheme to derive such
forces, like the one we tried in the previous subsection.

In our results section, we show that this method is in-
deed capable of maintaining nicely regular meshes in the
sense described above. However, we also caution that the
stronger the extra forces are, the more unwanted features
start to appear as well. First of all, the extra forces may
introduce subtle deviations from the dispersion relation of
an ideal gas, and may lead to spurious motions in situations
with pressure equilibrium. The second, probably more se-
rious side effect of this method may occur when the cells
cannot easily relax to the desired regular cell structure, for
example along a strong jump in density. In this case a pres-
sure anomaly may develop due to the cell-shaping forces,
similar to what is found in SPH across contact discontinu-
ities. Still, we find that moderate values of β0 and β1 help to
improve the accuracy of the VPH scheme without distorting
the inviscid dynamics of an ideal gas too much.
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4 IMPLEMENTATION

We have implemented the above hydrodynamical parti-
cle model into the cosmological TreeSPH simulation code
GADGET-3, an updated version of GADGET-2 (Springel
2005; Springel et al. 2001). This code is parallelized for
distributed memory machines, and offers high-performance
solvers for self-gravity as well as individual and adaptive
timestepping for all particles. Our strategy in our modifica-
tions has been to implement Voronoi-based particle hydro-
dynamics as an alternative to SPH within the GADGET-3

code. This is, in particular, ideal for facilitating comparisons
between SPH and our Voronoi-based scheme, and it also al-
lows us to readily use all the non-standard physics already
implemented in GADGET-3 (e.g. radiative cooling and star
formation) for calculations with Voronoi-based fluid particle
dynamics.

The primary new code needed in GADGET-3 is an effi-
cient mesh construction algorithm. To this end we adapted
and modified the parallel Delaunay triangulation engine
from the AREPO code (Springel 2009), and turned it into an
optional module of the SPH code GADGET-3. In brief, the
tessellation code uses an incremental construction algorithm
for creating the Delaunay tessellation. Particles are inserted
in turn into an already existing, valid tessellation. To this
end, in a first step the tetrahedron in which the new point
falls is located, and then it is split into several new tetrahe-
dra, such that the inserted point becomes part of the tetrahe-
dralization. However, some of the new tetrahedra may then
not fulfill the empty-circumsphere property, i.e. the tessel-
lation is not a Delaunay triangulation any more. Delaunay-
hood is restored in a second step by local flip operations
that replace two adjacent tetrahedra with three tetrahedra,
or vice versa, until all tetrahedra fulfill again the empty-
circumsphere property. At this point, the next particle can
be inserted. We have implemented the mesh construction
both for 3D and 2D within the GADGET-3 code and paral-
lelized it for distributed memory machines.

At the beginning, a large tetrahedron is constructed
that encloses the full computational domain. The boundary
conditions (always adopted as periodic at the moment) of
the rectangular computational domain as well as the bound-
aries arising from the domain decomposition are treated
with ‘ghost particles’. One technically difficult aspect is to
make the tessellation code completely robust even in the case
of the existence of degenerate particle distributions, where
more than 4 points lie on a common circumsphere (or more
than 3 points are on a common circumcircle). Detecting such
a case robustly and correctly in light of the finite precision
of floating point arithmetic is a non-trivial problem. How-
ever, the incremental insertion algorithm requires consistent
and correct evaluations of all geometric predicates, other-
wise it will typically fail in situations with degeneracies or
near-degeneracies. We solve this problem by monitoring the
floating point round-off in geometric tests, and by resorting
to exact arithmetic in case there is a risk that the result of
a geometric test may be modified by round-off error.

5 TEST RESULTS

In this section, we discuss a number of test problems carried
out with our new hydrodynamical particle method, focus-

ing in particular on regimes where differences with respect
to SPH can be expected. An application of the method in
full cosmological simulations of galaxy formation will be pre-
sented in future work.

5.1 Surface tension

In standard entropy-conserving SPH with particles of equal
mass, there is a subtle surface tension effect across contact
discontinuities with a large jump in density. This can be un-
derstood as a result of the desire of SPH to suppress mixing
of the two phases, because this is energetically unfavorable
for fixed particle entropies. For the mixed state, approxi-
mately the same average density would be estimated for each
particle, which leads to a higher estimate of the thermal en-
ergy, unless the thermodynamic entropies are averaged be-
tween the particles as well, which is an irreversible process
in which entropy is in fact produced if the total energy stays
constant.

To demonstrate the existence of the surface tension ef-
fect, we have prepared (in 2D for simplicity) an overdense
ellipse in a thin background medium, at pressure equilib-
rium. For definiteness, the density of the ellipse was set to
ρ2 = 4, that of the background medium to ρ1 = 1, with a
pressure of P = 2.5. 3854 particles in a periodic box of unit
length on a side were used to set up the experiment. Fig-
ure 3 shows the initial configuration, as well as the particle
distribution after a time t = 7, both for SPH and for the
Voronoi-based fluid particle approach.

Even though the pressures of the particles are formally
equal for all particles in the initial conditions, the ellipse
transforms to a circle when SPH is used. In contrast, for
the VPH scheme, the same experiment maintains the initial
shape of the ellipse, modulo some small rearrangements of
the points near the boundary, since the initial set-up was not
in perfect equilibrium (due to the fact that the point distri-
butions of the two Cartesian grids used to set up the two
phases do not match seamlessly at the boundary). Clearly,
the numerical realization of the contact discontinuity in SPH
gives rise to a spurious surface tension, and this in turn will
suppress Kelvin-Helmholtz instabilities below a certain criti-
cal wavelength. The VPH approach does not have this prob-
lem and can in principle accurately support a contact dis-
continuity at each face boundary between individual cells.
It needs to be stressed however that also in the Voronoi
scheme no mixing of the entropies at the particle level hap-
pens. If the particles of two phases were simply spatially
mixed while keeping their specific entropies constant, the
resulting medium would not be at a single temperature or
density.

5.2 Sod shock tube

The classic Sod shock tube tests examine the ability of a
hydrodynamic scheme to reproduce the basic wave struc-
ture that appears in the Riemann problem, namely shock
waves, contact discontinuities and rarefaction waves. Also,
comparison to the analytic solution gives a useful quantita-
tive benchmark for the accuracy of a scheme.

We consider gas that is initially at rest. In the left half-
space, the pressure is P1 = 1.0 and the density is ρ1 = 1.0,
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Figure 3. Surface tension effect in SPH. The left column shows an overdense ellipsoidal region shortly after it is set-up at t = 0 in
pressure equilibrium within a thinner background. When evolved with SPH, the ellipsoid slowly transforms into a sphere, as shown by
the state of the system after time t = 7 (top left). In contrast, the Voronoi scheme can preserve the shape much better (bottom panels)
and shows no sign of surface tension effects.

whereas in the right half-space we adopt P2 = 0.1795 and
ρ2 = 0.25. The adiabatic index is set to γ = 1.4. The same
sod shock parameters have previously been used in a number
of code tests (e.g. Hernquist & Katz 1989; Rasio & Shapiro
1991; Wadsley et al. 2004; Springel 2005). When the evolu-
tion begins, a shock wave of Mach number M = 1.48 travels
into the low-pressure region, and a rarefaction fan moves
into the high pressure region. In between, a moving contact
discontinuity develops.

In our numerical test of this problem with the VPH
scheme we use a 3D setup in a box with dimensions (20, 1, 1),
where the left and right halves are filled with particles ar-
ranged on a Cartesian grid. Altogether 8370 particles with
equal masses were used as initial condition. The evolution
was then carried out with our default settings for the artifi-
cial viscosity until t = 3. In Fig. 4, we compare the numerical
result to the analytical solution at this time. Reassuringly,
we find quite good agreement of the VPH scheme with the

analytical solution. In comparison to SPH, the rarefaction
wave in the Voronoi simulation shows a slight dip at the low
density end, but not the hump at the high density end that
is typical of SPH. Another difference is that the contact
discontinuity is sharper and better preserved in the VPH
approach. All of the described features appear to be largely
independent of how the points are distributed initially as
long as the gas is relaxed on both sides. In particular, the
arrangement on a Cartesian grid does not lead to any notice-
able artifacts compared with simulations where the initial
point distribution is less ordered and has a glass-like config-
uration. However the results are somewhat less accurate for
irregular grids (see also A3) when the plain Voronoi scheme
is used.

We have also examined the influence of the extra forces
that can be enabled to improve the regularity of the mesh
(see Sections 3.1 and 3.2). To this end we tested the effect of
the PPO scheme as well as the shape correction method with
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Figure 4. 3D Sod shock tube simulation at t = 3.0. We compare
results from our Voronoi particle scheme (red points) with the
analytical solution (solid lines) in terms of the density, pressure
and entropy profiles.

parameters up to β0 = 1.2, β1 = 0.1. When these ordering
forces are invoked, the results for the sod-shock test are in
general not influenced much, but the particle noise around
the analytical solution is reduced. We also found that the
extent of postshock oscillations for weaker artificial viscosity
settings tends to be reduced if these ordering methods are
used.

5.3 Dispersion relations

Even though this may seem like a simple test, it is actually
important to check how well our new method can simulate
small-amplitude1 acoustic waves, especially at low resolu-
tion when few points per wavelength are available. We are
especially interested in how accurately the expected disper-
sion relation is reproduced in this regime, i.e. whether such
waves propagate with the correct speed of sound. A sec-
ondary question is how strongly such waves are damped by
the artificial viscosity in the scheme.

To measure the dispersion relation, we set up small-
amplitude standing waves in a periodic box and measure
their oscillation frequency. In Figure 5, we compare re-
sults for SPH with our Voronoi-based fluid particle model,
with and without shape correction forces, as a function of
wavenumber. The wavenumber is normalized to the Nyquist
frequency of the initial particle grid, such that k/kNyquist = 1
corresponds to the shortest wave that can be represented by

1 The amplitude needs to be small in order to prevent wave steep-
ening.

0.1 1.0
k / k Ny

0.1

1.0

ω
 /k

   
/c

SPH

β = 0.0

β = 3.0

β = 5.5

Figure 5. Dependence of the numerical sound speed on
wavenumber, expressed in units of the Nyquist frequency of the
underlying particle grid. For the standard VPH scheme, waves
at the Nyquist frequency are not propagated properly (hence no
frequency can be measured at k = kNy), but this is remedied
by the shape correction forces. If they are invoked, the resulting
dispersion relation becomes more accurate than that of SPH for
all k.

the particles. In this standing wave, neighbouring particles
oscillate 180 degrees out of phase ‘opposite’ to each other.

A first important result made clear by Figure 5 is that
for the standard VPH scheme the oscillation frequency for
k/kNyquist = 1 drops to zero, or in other words, such waves
are not supported by the scheme at all. This is readily un-
derstood from the degeneracy effect pointed out in Figure 2.
If particles are set-up such that they ‘collide’ in a pairwise
fashion, then there is nothing in the reversible part of the
dynamics of the VPH scheme that can prevent an interpar-
ticle penetration, simply because the pressure gradient stays
zero in this case. However, this situation is exactly the one
encountered if we prepare a standing wave at the Nyquist
frequency of an initially regular particle grid. The wave will
not oscillate since the pressure gradient will remain zero,
and therefore particle crossings would be inevitable (unless
prevented by the artificial viscosity). This is potentially a se-
rious shortcoming of the VPH scheme in its standard form,
as it means that it cannot treat waves at around the Nyquist
frequency properly.

However, the shape correction force due to β0 has ex-
actly the right property to make these small waves oscillate
again. In fact, we can calculate what value of β0 is required
to reproduce the dispersion relation at k/kNyquist = 1 ex-
actly. For this value of β0 ≃ 5.5, we however also get slightly
too stiff behaviour of the fluid for somewhat longer wave-
lengths, as shown by Fig. 5. A value of around β0 ∼ 3 rep-
resents a good compromise, and in particular yields a more
accurate dispersion relation than SPH for all k. We also note
that for certain numbers of neighbours, the SPH result is in-
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accurate at all wavelength; here the numerical soundspeed
shows an offset relative to the expected sound speed, which
is presumably a result of a bias in the density estimate for
the background density.

5.4 Density noise and regularity in a settled

particle distribution

In this subsection we want to examine the level of noise
present in a relaxed region of gas of constant specific entropy,
as it may arise somewhere within a larger, self-consistent
simulation. To mimic this situation, we start from a distribu-
tion of points arranged on a Cartesian grid and impose a ran-
dom Gaussian velocity field with dispersion 〈v2〉 = 0.05 c2

s

and zero mean. The idea is that these velocity fluctuations
break the initial grid symmetry and will then get damped
away by the artificial viscosity, which is here set to a high
value to speed up the process of settling to a new pressure
equilibrium. Since we want to retain the initially equal val-
ues of the specific entropies per particle, we disable the en-
tropy source term for the viscosity in this experiment. Once
the new equilibrium for an irregular particle distribution is
achieved, we can then examine the noise properties of this
particle representation of a constant density, constant pres-
sure gas.

For SPH with N = 16 neighbours, we find that the
particles settle into several domains in which the points are
quite regularly distributed, based on visual inspection. The
estimated density values ρi for the particles are not all equal
though, instead they show a distribution with rms-scatter
equal to ∼ 1.4 %, and also a small bias relative to the ex-
pected value equal to the mean density 〈ρ〉 = Nm/V of the
full volume.

In contrast, the standard VPH approach creates a dis-
tribution in which the density values are essentially single-
valued, and are all very close to 〈ρ〉. This means that the
cells have all equal volume, and the residual pressure fluctu-
ations, if any, are extremely small. However, the geometry
of the Voronoi tessellation is quite irregular and features
numerous cells with relatively large aspect ratios, or with
points close to cell boundaries. This can be seen in Figure 6,
where we show a plot of the final mesh for a test case carried
out in 2D.

It is now interesting to repeat the test for the case when
shape correction forces according to Section 3.2 are included.
As desired, the final mesh becomes much more regular in
this case, as seen in the corresponding example included
in Figure 6. However, even in the final equilibrium state
the correction forces do not necessarily completely vanish
in this case. Instead, they are compensated by small resid-
ual pressure (and hence also density) fluctuations. This is
demonstrated in the distribution functions of the density
values for the three cases we considered, which we give in
Figure 7. Here the shape correction case yields a somewhat
broader distribution, similar to SPH, but without showing
a bias.

In Figure 8, we give a quantitative measure for the cell-
regularity (here taken as the distribution function of the
normalized displacement of points from the centres of their
cells) of the final meshes in the Voronoi-based simulations.
Even moderate values of the coefficients β0 and β1 can dras-
tically improve the regularity of the particle distribution

     
 

 

 

 

 

     
 

 

 

 

 

Figure 6. Final mesh geometry in VPH in a 2D settling test,
carried out without (top) or with shape correction forces (bottom)
based on β0 = 1.0 and β1 = 0.01.

while introducing less noise in the density estimate than
anyway present in SPH.

5.5 Point explosion

If energy is injected at a point into a cold gas at constant
density, a spherical blast wave will develop. The Taylor-
Sedov solution provides an analytic solution for this self-
similar problem, which is a useful test involving very strong
shocks. We have set-up this problem in 2D, using unit
background density (represented with a Cartesian mesh),
γ = 7/5 and vanishingly small initial specific entropy s = 1
compared to the injected energy of E = 108. We inject the
energy into the centre of the domain at time t = 0. To avoid
that the evolution is strongly affected by the non-spherical
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Figure 7. Density distribution functions of the particles in a
settling test for constant entropy gas, carried out with different
schemes. We compare SPH (red), ordinary VPH (black), the PPO
version of VPH (blue), and VPH with shape correction forces
based on β0 = 1.0 and β1 = 0.01 (in green). The distributions
were measured at a time when the initial kinetic energy had de-
cayed to Ekin ≈ 0.001Ekin(t = 0).
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Figure 8. Cell-regularity of a noisy flow after relaxation. To char-
acterize the regularity of the cells, we simply consider the distri-
bution of the distance of the points to their cell’s centroids, in

units of the 2D cell radius r =
√

V/π. The black histogram shows
the distribution for the ordinary Voronoi scheme, blue shows the
PPO version, and green lines give the result for the Voronoi with
shape correction forces derived from the Lagrangian. The distri-
butions were measured at a time when the initial kinetic energy
had decayed to Ekin ≈ 0.001Ekin(t = 0).
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Figure 9. Sedov-Taylor point explosion problem, calculated in
2D with the basic VPH scheme using times40962 points. We
compare the radial density profile at t = 0.0014 for the Voronoi
scheme (red points) and the analytical solution (solid line).

geometry of the central Voronoi cell, we have spread out the
energy with a Gaussian kernel with a radius of about 4 mean
particle spacings.

We note that this set-up can be especially sensitive to
the problem of particle crossing when a too low viscosity
and individual timesteps are used. In the latter case, the lo-
cal Courant timestep of particles outside of the explosion is
initially very big. When the supersonic shock front arrives,
such particles may then still live on a too large timestep,
such that they are effectively overtaken by the shock, creat-
ing severe artifacts in the evolution of the shock front. We
have addressed this in our test by imposing a low enough
maximum timestep for all particles, but more sophisticated
schemes to set the timesteps, which guarantee that it is re-
duced before the shock arrives, can of course be implemented
in principal (see Saitoh & Makino 2009; Springel 2009).

In Figure 9, we show the radial density profile at t =
0.0014 for a resolution of 2 × 4096, and compare to the ex-
pected analytic solution. The expected solution is captured
reasonably well, with a similar quality as in SPH codes. In
particular, the shock location is well reproduced, albeit with
a small pre-shock increase of the density. When shape cor-
rection forces are added as described in Section 3.2, only
negligible differences in the overall quality of the result are
found, but the scatter around the azimuthally averaged so-
lution is reduced.

5.6 Kelvin-Helmholtz instabilities

Kelvin-Helmholtz (KH) instabilities occur in regions of
strong shear, which is especially common at contact discon-
tinuities between two fluid phases. An initially small trans-
verse perturbation along the interface becomes amplified
and grows in linear theory according to ∝ exp(t/tKH). After
a few characteristic timescales

tKH =
ρ1 + ρ2

2 k v
√

ρ1ρ2
, (36)

an initially wave-like perturbation becomes large and non-
linear, developing the typical KH-rolls. Here ρ1 and ρ2 are
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the densities of the two media, v is the velocity jump par-
allel to their common interface, and k = 2π/λpert is the
wavenumber of the perturbation with wavelength λpert. For
an ideal gas, all wavelengths are unstable, and the smallest
wavelengths grow fastest.

The KH instability is especially important for the de-
velopment of turbulence, and is thought to play a promi-
nent role in stripping and mixing processes occurring dur-
ing galaxy formation. Recently, a number of studies have
pointed out that standard SPH has problems to correctly
capture the KH instability when the initial conditions con-
tain sharp density gradients (Agertz et al. 2007; Price 2008).
In certain cases, the instability is suppressed completely
and does simply not grow. This can in part be under-
stood in terms of the surface tension effect present in
SPH, as described earlier, because surface tension sup-
presses the growth of KH instabilities below a critical wave-
length (Landau & Lifshitz 1966). Furthermore, the asym-
metric particle density at the interface causes a rearrange-
ment of the points in SPH, such that a ‘gap’ in the sampling
appears that causes relatively large errors in the pressure
forces at the interface (Agertz et al. 2007).

It is therefore very interesting to test how well the VPH
approach does in this respect. Since VPH does not exhibit a
surface tension effect, it offers the prospect of a better treat-
ment of the KH instability. In Figure 10, we show results for
a KH test calculation, carried out with different particle-
based hydrodynamic schemes. Our two-dimensional initial
conditions consist of γ = 5/3 gas with density ρ1 = 2 in
the stripe |y − 0.5| < 0.25, moving to the right with veloc-
ity v1 = 0.5, and of gas with density ρ2 = 1 and velocity
v2 = −0.5 in the region |y − 0.5| > 0.25. The pressure was
initialized everywhere to P = 2.5, and a periodic domain of
unit length on a side was used, sampled with a mean spac-
ing of 0.0023 for the low-density gas, and 0.0017 for the high
density gas. Hence the two phases were represented with ap-
proximately equal mass particles. Note that the initial dis-
continuity was imposed as a perfectly sharp jump in these
initial conditions, following previous studies of this prob-
lem. We remark however that it is somewhat questionable
whether such sharp jumps are not introducing an inconsis-
tency with the basic premises of SPH calculations, which
can only represent smoothed density fields. In order to seed
an initial perturbation, we imposed a vertical perturbation
on the y-positions of the form

δy(x) = a0 sin(4πx/L), (37)

where L is the boxsize, and a0 = 0.006 is the amplitude of
the initial perturbation.

The three columns of Figure 10 compare the results for
the ordinary VPH scheme (left), the VPH method with the
additional ordering viscosity of the PPO scheme (middle),
and SPH (right), at time t = 1.2. From top to bottom,
we show specific entropy maps, pressure maps, the particle
distribution, and vorticity maps. All maps were here gen-
erated by linearly interpolating a Delaunay tessellation of
the points, allowing to extend the points’ properties as read
from the simulation files to continuous fields.

We see right away that the VPH scheme captures the
KH instability best. Its primary KH billow has evolved fur-
thest, and it triggered the growth of smaller-scale secondary
billows. In contrast, the SPH result shows only an anemic

growth of the instability. In the SPH pressure map a strong
pressure anomaly is visible at the interface. This surface
effect effectively suppresses all small-scale KH-instabilities,
and the two phases stay separate because the associated sur-
face tension suppresses a breaking up of the interface. As a
result, the instability cannot cascade down to smaller scales.
The PPO scheme shown in the middle column lies literally
in the middle in this respect. The growth of the primary
KH mode is very similar to that found in the VPH scheme.
However, the additional viscosity introduced in this scheme
to produce highly regular cells substantially attenuates the
growth of secondary small-scale KH instabilities. We note
however that this effect depends on the strength of the ad-
ditional ordering forces that are invoked. The result shown
here was calculated with κ = 1, which we consider the max-
imum that one may ever want to use. For more reasonable
smaller values, intermediate results that are close to that of
the plain VPH scheme are obtained.

Interestingly, the vorticity ∇× v in the ordinary VPH
scheme is clearly largest overall, especially for the larger
modes and in the central region of the primary KH billow.
Here the rotation is so fast that the pressure shows a no-
ticeable depression, which counteracts the centrifugal forces
from the rotation with pressure gradients. Unfortunately,
the ability of the pure Voronoi simulation to sustain vor-
tices comes at the expense of a larger particle irregularity.
As the enlargement with the particle distribution shows, the
particles tend to form Voronoi cells with quite high aspect
ratios, reducing the accuracy of the gradient estimates and
requiring relatively large settings for the artificial viscosity
to prevent interparticle penetrations. In contrast, the PPO
variant of the Voronoi scheme produces highly regular parti-
cle spacings, and in this respect resembles SPH. However, in
this example calculation with κ = 1, the scheme then devel-
ops effectively a much higher intrinsic shear viscosity, which
tends to transform the differential rotation into a rotation
of numerous ordered domains. The shear of these domains
shows up in the differential vorticity maps in a distribute
fashion. Once the damping of the differential rotation gets
too strong, the primary vortex is affected as well, as seen in
the reduction of the central pressure gradient in the PPO
scheme.

Finally, we test the shape correction forces discussed in
Section 3.2, and our scheme for the treatment of subresolu-
tion mixing introduced in Section 2.5 with the same initial
conditions. We show in Fig. 11 the resulting entropy maps of
two further calculations of the KH instability test. In both
panels, we show runs of the VPH scheme that make use
of the shape correction forces derived from the Lagrangian,
with β0 = 1.2 and β1 = 0.1. In the bottom panel, we have in
addition activated the artificial heat conduction due to local
shear with χ = 0.25, which models mixing of the fluids at
the scale of the resolution. The two variants are qualitatively
similar, but the artificial heat conduction has clearly washed
out the sharp discontinuity in the entropy at the fluid inter-
face. This resembles more closely the results of mesh-based
finite-volume hydro codes. Compared to the results of pure
VPH in Figure 10, we see that the scheme with shape cor-
rection forces has also an effectively enlarged viscosity, quite
similar to the PPO approach. Overall, it is clear that even
without a subresolution mixing model the Voronoi based
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Figure 10. Simulations of the KH-instability with different particle-based methods. The left column shows the plain Voronoi scheme,
the middle column Voronoi with PPO, and the right column SPH. From top to bottom, we show maps of specific entropy, maps of the
pressure, the point distribution, and maps of the differential rotation ∇× v. The maps show x = [0.18, 0.58], y = [0, 0.4] of the periodic
simulation domain, while for clarity the particle distribution is shown only for x = [0.28, 0.48], y = [0.1, 0.3].
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Figure 11. KH-instability test simulated with the Voronoi
scheme with additional shape correction forces, based on the same
initial conditions as in Figure 10 and again at time t = 1.2. The
maps show the entropy distribution without (top) and with (bot-
tom) additional heat diffusion terms to model subresolution mix-
ing, as described in Section 2.5.

particle hydrodynamics does significantly better in the KH
test than standard SPH.

5.7 The ‘blob test’: mass loss of a gas cloud in a

supersonic wind

A challenging test problem for hydrodynamical codes has
been proposed by Agertz et al. (2007). The setup consists
of an overdense spherical cloud in pressure equilibrium with
the surrounding hot medium. This background gas is given a
large velocity, so that the cloud feels it as a supersonic head
wind. The test is motivated by astrophysical situations such
as the stripping of gas out of the halos of galaxies as they fall
into larger systems. It is a three-dimensional problem that
involves many different non-linear hydrodynamical phenom-
ena, including shocks, Kelvin-Helmholtz instabilities, mix-
ing, and the generation of turbulence. Because of this com-
plexity, an analytical solution for the problem is not known.

The general expectation is that the wind will compress the
cloud, accelerate it, and strip some of its gas by developing
fluid instabilities as it streams past the cloud.

Interestingly, in the test calculations of Agertz et al.
(2007), substantial differences were found in the mass loss
rates of the cloud when calculated with Eulerian mesh codes
and with SPH. Whereas the mesh codes led to an eventual
complete destruction of the cloud, the mass loss rate was in
general smaller in SPH, such that some cloud material still
remained once the partially destroyed cloud was accelerated
to the wind speed and the mass loss stopped. Given these
qualitatively different outcomes, it is interesting to test how
the VPH scheme performs on this problem.

We used the same initial conditions as employed by
Agertz et al. (2007), in the version with 106 particles. The
setup consists of a periodic box with extension [0, 2000] ×
[0, 2000]× [0, 8000] kpc. The background ‘wind’ gas has den-
sity ρwind = 4.74 × 10−34 g cm−3, temperature Twind =
107 K, and a velocity vwind = (0, 0, 1000) kms−1. The cloud
has a radius Rcloud = 197 kpc, and is placed initially at
rcloud = (1000, 1000, 1000) kpc. Its density is 10 times higher
than the background, ρcloud = 10 ρwind, while at the same
time being 10 times colder, Tcloud = 106 K. This yields a
sound speed of cwind = 371 kms−1 for the wind, and an
expected characteristic timescale of order τKH ≃ 2Gyr for
the development of large KH instabilities in the shear-flow
around the cloud.

In Figure 12, we show the time evolution of density
slices through the central plane of the simulation box, calcu-
lated with our new Voronoi scheme. In agreement with both
grid-based and SPH codes, a bow shock is produced ahead of
the cloud. The cloud gets compressed and accelerated under
the ram pressure of the wind, and the wind that streams past
the deformed and slowly accelerating cloud induces Kelvin-
Helmholtz instabilities at its surface which strip material
and produce a turbulent wake. At the stagnation point of
the flow in front of the cloud, the pressure eventually breaks
through along the axis of symmetry. The resulting “smoke
ring” is then still exposed to Kelvin-Helmholtz induced tur-
bulence while it is being accelerated to the velocity of the
background stream. Due to the periodic boundary condi-
tions we note that the bow shock extends past the domain
boundary and then back inwards again from the other side,
reaching the cloud at about t ≈ 3 τKH. This leads to a recom-
pression of the remainder of the cloud which can temporarily
raise the number of particles that are still counted as cloud
members.

The mass loss as a function of time is displayed in Fig-
ure 13, for different particle-based hydrodynamical schemes.
We follow Agertz et al. (2007) and consider a particle to be
still part of the cloud when its density is still larger than
ρ > 0.64ρcloud, and its temperature fulfills T < 0.9 Twind. We
show results for 5 different calculations in total. The stan-
dard VPH scheme is shown in blue. Interestingly, it leads to a
complete destruction of the cloud at time t ≈ 3 τKH, a result
which is actually surprisingly close to the high-resolution
mesh-based calculations reported in Agertz et al. (2007). On
the other hand, the two SPH-based results (shown in red
and black) calculated with the GADGET2 code do not re-
sult in a destruction of the cloud. Instead at time t = 5 τKH,
still about half the mass of the original cloud can be char-
acterized as residual cloud material. This is even slightly
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larger than what was reported by Agertz et al. (2007) for the
GASOLINE code. We have however found that the formula-
tion and the strength of the artificial viscosity can influence
this result significantly. Also, we confirmed that integra-
tion of the entropy as independent thermodynamic variable
(which is the default in GADGET2) results in less stripped
material than when the thermal energy is integrated as done
in GASOLINE. This is however probably largely a result of
the particular initial conditions used here; the contact dis-
continuity in the ICs of Agertz et al. (2007), that we employ
here, has been relaxed using the traditional SPH formulation
of GASOLINE, creating a pressure blib. When this is then
used to initialize the entropies integrated in GADGET2, a
spurious entropy blib is created that further amplifies the
initial sampling ‘gap’.

When strong shape correction forces are introduced into
the VPH formalism, we find an intermediate result between
plain VPH and SPH. In this case, a small 10% remnant of
the cloud remains at time t = 5 τKH. This is consistent with
our earlier findings for the KH instabilities. While standard
SPH can be expected to suppress the KH-instabilities signif-
icantly at the cloud interface, it tends to underestimate the
rate of stripping. Our new VPH method does not show this
problem, but if viscous forces are introduced that guaran-
tee very regular mean particle separations, some small-scale
suppression of fluid instabilities can be reintroduced.

We finally note that the use of a time variable viscosity
as presently implemented in our code has not changed the
mass-loss curves significantly. The reason is that the rele-
vant particle viscosities are pushed to a large value as they
pass through the bow shock, and stay at large values in
the complicated flow around the cloud surface. Only at late
times the mass loss tends to become faster as a result of the
effectively lower viscosity.

5.8 Gravitational collapse of a gas sphere

Finally, we consider a three-dimensional problem with self-
gravity, the so-called ‘Evrard-collapse’ (Evrard 1988). It
consists of an initially cold gas cloud, with a spherically
symmetric density profile of ρ(r) ∝ 1/r. The total mass,
outer radius and gravitational constant are all set to unity,
M = R = G = 1, and the initial thermal energy per
unit mass is set to u = 0.05. In this configuration the
sphere is significantly underpressurized. It hence collapses
essentially in free-fall, until it bounces back at the centre,
with a strong shock running through the infalling material.
The sphere then settles into a new virial equilibrium. As
this problem involves large conversions of potential gravita-
tional energy into kinetic energy and thermal energy (and
back), as well as strong shocks, it is a challenging and use-
ful test for hydrodynamic codes that are applied to struc-
ture formation problems. For this reason, it has been widely
used as a test for a number of SPH codes (e.g. Evrard
1988; Hernquist & Katz 1989; Steinmetz & Mueller 1993;
Dave et al. 1997; Springel et al. 2001; Wadsley et al. 2004;
Springel 2005).

For our test we create a realization of the sphere by
stretching a Cartesian grid appropriately, such that the de-
sired initial density profile is obtained. Because the Voronoi
scheme needs to tessellate a well-defined total volume, we
cannot impose vacuum boundaries in the same way as in

Figure 12. Time evolution of the density for a gas cloud in a
supersonic wind. From top to bottom, we show density maps
normalized to the initial wind density at times t = 0.75 τKH,

t = 1.5 τKH, and t = 2.25τKH in the central plane of the simu-
lation box. Here the standard Voronoi scheme with 106 particles
was used.
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Figure 13. Mass loss of a gas cloud in a supersonic wind (the
‘blob test’), simulated with 106 particles and different hydrody-
namical schemes. We show the remaining mass associated with
the cloud (particles that fulfill ρ > 0.64ρcloud and T < 0.9 Twind)
as a function of time (in units of τKH) for different hydrody-
namical schemes. The different colors refer to the SPH codes
GADGET2 (black), modified GADGET2 with an GASOLINE-
like integration scheme (red), standard VPH (green) and VPH
with dynamic viscosity (see Section 2.4 (blue)

SPH. Instead, we embed the sphere in a box within a back-
ground grid of particles with extremely small mass, such
that the total mass in the background can still be ignored in
the evolution of the system. We calculate the gravity with
the same tree algorithm used in the GADGET2 code, simply
using the N-body approach with the masses and positions
of the VPH particles. It turns out however that particles
sometimes tend to pair up under their pairwise gravitational
forces in the plain VPH scheme. This is related to the same
defect discussed in the context of Figure 2. If two parti-
cles are very close to a Voronoi wall, they can be moved
still closer together without increasing the hydrodynamic
pressure force, so that a residual gravitational attraction (if
not damped out by the gravitational softening) can move
the particles very close together, with problematic conse-
quences for the stability and accuracy of the scheme. How-
ever, the shape correction forces we introduced in Section 3.2
can nicely solve this problem. This effect is illustrated in
Figure 14, where we show the central mesh geometry for
a two-dimensional version of the Evrard collapse problem.
In the following we consider therefore a calculation of the
3D Evrard collapse with our usual choice of β0 = 1.2 and
β1 = 0.1.

In Figure 15, we compare radial profiles of gas density,
radial velocity and entropy for the Evrard collapse at time
t = 0.7, calculated with 78712 particles. We compare the
VPH result (shown in red) to results obtained with SPH
(black lines). We find that the collapse is essentially equally
well described with VPH as with SPH. The Voronoi scheme
shows a slightly shallower density profile in the virialized
region, and outside the shock the density falls off a bit less
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Figure 14. Cell regularity without (bottom) and with cell regu-
larization forces (top) in a simulation of a sphere of gas collaps-
ing under self-gravity (Evrard collapse problem). In the bottom
panel, the group of points clusters together close to the origin
under their mutual gravitational attraction, producing a quite ir-
regular mesh there. This effect is prevented when additional shape
correction forces are invoked, as shown in the top panel.

steeply. However, these differences lie well in the range of
changes one obtains for different viscosity prescriptions, and
therefore do not seem to be particularly important. We also
note that the extra viscous forces needed to maintain a reg-
ular particle distribution in VPH do not introduce any un-
physical features in the solution. In particular, the radial
profile of the specific entropy shows no signs of extra cool-
ing or heating.

6 CONCLUSIONS

We have discussed a new fluid particle model where the den-
sity is estimated with the Voronoi tessellation generated by
the particle positions. Unlike in SPH, there is an auxiliary
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Figure 15. Evrard collapse at time t = 0.7 simulated with SPH
(black) and the Voronoi scheme with shape correction forces (red).
From top to bottom, we show radially averaged profiles of gas
density, radial gas velocity, and specific entropy.

mesh, which adds complexity to the scheme. However, the
use of this fully adaptive mesh offers a number of advantages.
It offers higher resolution for a given number of particles,
since fluid features are not inherently smoothed as in SPH.
In fact, the tessellation techniques are probably close to an
optimum exploitation of the density information contained
in the particle distribution (Pelupessy et al. 2003).

As a result, contact discontinuities can be resolved with
one cell, and surface tension effects present in standard SPH
across contacts with large density jumps are eliminated. This
has further implications for the growth rate of fluid instabil-
ities in inviscid gases. Furthermore, the free parameters in
the density estimate of SPH, involving both the number of
neighbours as well as the kernel shape, are eliminated, which
can be viewed as a good thing since the optimum values for
them are not known, and incorrect choices can invoke the
well-known clumping instability in SPH.

One somewhat problematic aspect of Voronoi-based
particle hydrodynamics is that the noise in the scheme is
quite sensitive to the level of mesh regularity. Flows with a
lot of shear can readily develop Voronoi meshes with points
that lie close to the surfaces of their Voronoi cells. In this
case the noise in the gradient estimates increases, and, more
importantly, it becomes difficult to safely prevent particle
interpenetration, since closeness to a wall of the tessellation
always implies that there is a second point on the other side
of the wall which is also close, i.e. in other words, that a
close particle pair is present.

We have explored two approaches for keeping the mesh
relatively regular. One is simply based on trying to formu-
late additional artificial viscosity terms such that the viscos-
ity tries to make cells ‘rounder’. Whereas this shows some
success, it does not succeed in all situations, particularly in
strong shear flows where the artificial viscosity needs to be
very low. A more radical approach also explored is to add
correction terms to the underlying fluid Lagrangian with the
aim to penalize strong deviations from regular mesh geome-
tries. Our goal was to impose small, non-dissipative correc-
tion forces that maintain a proper mesh geometry. Thanks to
the Lagrangian formulation, the required form of the correc-
tion forces to retain fully conservative behaviour can readily
be derived, and the fluid motion under these forces shows the
desired properties. However, if the correction terms are too
large, one risks deviations from the proper hydrodynamic so-
lution. Further experimentation will be required to identify
the optimum setting of these parameters.

The Voronoi-based fluid particle approach can be rel-
atively seamlessly integrated into an existing SPH code,
provided a tessellation engine can be added in an appro-
priate fashion. Other aspects of the physics (in particu-
lar self-gravity, an additional collisionless component, radia-
tive cooling, star formation, and feedback processes) can be
treated in essentially identical ways as in SPH. This makes
it possible to readily apply Voronoi particle hydrodynam-
ics to problems of interest in cosmological structure forma-
tion. In general, our first results suggest that VPH is su-
perior to SPH, albeit at much increased complexity. How-
ever, it is at present still unclear whether it is competitive
with finite volume hydrodynamics carried out on a similarly
constructed Voronoi mesh, as realized in the AREPO code
(Springel 2009). To elucidate this point further, we are in the
process of carrying out galaxy collision simulations as well as

c© 0000 RAS, MNRAS 000, 000–000



20 S. Heß & V. Springel

cosmological structure formation simulations with our new
technique and will report the results in forthcoming work.
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APPENDIX A: DIFFERENTIAL OPERATORS ON VORONOI MESHES

In this Appendix, we collect some useful formulae for discretized versions of differential operators on Voronoi meshes, such as
the gradient or the divergence, and we test the accuracy of the gradient estimate as a function of the regularity of the Voronoi
mesh.

A1 Gradient

The cell averaged gradient of any quantity φ can be estimated via Gauss’ theorem

1

V

∫

V

∇φ =
1

V

∫

∂V

φ dS, (A1)

which can be used as one way to derive an estimate of the local gradient by approximating the value of φ on the surface of a
cell with the arithmetic mean between the cell and its neighbours. However, one can also circumvent the problem of finding
a proper value for φ on the surface by using a different starting point. Green’s theorem states:
∫

V

∇φdV =

∫

∂V

r(∇φ · dS) −
∫

V

r∆φdV (A2)

With the help of r = r⊥ + (ri − rj)/2 + ri the right hand side can be discretized for the Voronoi mesh as follows:
∫

∂V

r(∇φ · dS) =
∑

j 6=i

∫

Aij

r(∇φ · dS) −
∫

Vi

r∆φdV (A3)

=
∑

j 6=i

∫

Aij

(

1

2
Rij + r

⊥
)

(∇φ · eij)dS + ri

∑

j 6=i

∫

Aij

(∇φ · eij)dS −
∫

Vi

r∆φdV (A4)

=
∑

j 6=i

(∇φ · Rij)Aij

(

1

2
eij +

1

RijAij

∫

Aij

r
⊥dS

)

+ ri

∫

Vi

∆φdV −
∫

Vi

r∆φdV (A5)

=
∑

j 6=i

(∇φ · Rij)Aij

(

1

2
eij +

cij

Rij

)

−
∫

Vi

(r − ri) ∆φdV (A6)

(A7)

If the points lie at the centroid of the cells so that
∫

V
(r − ri) dV vanishes, the second term becomes negligible.

Now we use Rij · ∇φ = (φj − φi), so that we obtain for the gradient estimate (∇φ)i at point i

(∇φ)i =
1

Vi

∑

j 6=i

(φj − φi)Aij

(

1

2
eij +

cij

Rij

)

(A8)

=
1

Vi

∑

j 6=i

Aij

[

(φj − φi)
cij

Rij
+ (φj + φi)

eij

2

]

. (A9)

We note that application of this gradient estimate to the Euler momentum equation in the form

mir̈i = −Vi ∇Pi (A10)

yields

mir̈i = −
∑

j 6=i

Aij

[

(Pj − Pi)
cij

Rij
+ (Pj + Pi)

eij

2

]

(A11)

which is consistent with the expression derived directly from the Lagrangian.

A2 Divergence and curl

To estimate the divergence and curl of the velocity which we need for the viscosity calculation of Section 2.4 we use:
∫

Vi

(r∇ (∇v) + ∇v) dV =

∫

∂V

r(∇v · dS) (A12)

and provided that 1
Vi

∫

Vi
∇× (∇× v) is negligible, we derive in a similar way a discretized version of the divergence operator.

This yields

(∇ · v)i = − 1

Vi

∑

j 6=i

Aij

[

(vj − vi) ·
(

1

2
eij +

cij

Rij

)]

. (A13)
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Similarly, the curl operator can be derived in the form

(∇× B)i = − 1

Vi

∑

j 6=i

Aij

[

(Bj − Bi) ×
(

1

2
eij +

cij

Rij

)]

, (A14)

where B denotes some vector field. Again with the use of a Green’s identity the Laplacian of a scalar function can be computed.
∫

V

∆φ dV =
∑

j 6=i

∫

Aij

(∇φ · dS) ≃
∑

j 6=i

Aij
φj − φi

Rij
. (A15)

A3 Accuracy of the gradient

To test the accuracy of the numerical gradient estimate, we assume a quadratic model function φ(r) with constant gradient
and Hesse matrix, of the form

φ(r) = φ0 + Ar +
1

2
r

T
Br. (A16)

For definiteness, we set B = bI , where I is the identity matrix. We then populate a box of unit length on a side with a set
of points, and evaluate the function φ(r) at the coordinates of each of the points. After constructing the Voronoi tessellation
for the point set, we then estimate the local gradient for each cell based on

(∇φ)i =
1

Vi

∑

j

(φj − φi) Aij

(

1

2
eij +

cij

Rij

)

, (A17)

and alternatively also based on a simpler version of this formula where the terms proportional to cij are omitted, which
corresponds to the simplest version of a Green-Gauss gradient estimate. We use three different point distributions with 4096
points in a box of size unity. First we use a (i) random Poisson point distribution, a (ii) relaxed point distribution obtained
from the VPH scheme where each cell has the same volume (obtained from the top of Fig. 5.4), and (iii) a distribution relaxed
with PPO (obtained from the bottom of Fig. 5.4) where in addition very round cells were produced in which the majority of
the points lies close to the geometric centres of the cells. In all three cases we compare the magnitude of the estimated gradient
vector to the magnitude of A, and we plot the median of the relative error as a function of b/|A|. To exclude boundary effects,
only cells whose neighbours do not overlap with the box boundary are considered in the measurement.

In Figure A1, we show the results. The panel on the left gives our adopted gradient estimate, while the panel on the
right is for the simpler version of the Green-Gauss gradient estimate. Interestingly, for b = 0, the error vanishes exactly,
independent of the regularity of the Voronoi mesh. However, once the second order term starts to influence the measurement,
i.e. for large values if b/|A|, the more regular meshes clearly yield a lower error, as expected. In all cases, the gradient estimate
that includes the cij term is superior to the simple Green-Gauss gradient estimate. In particular, only when it is included, a
vanishing error for a linearly varying field is obtained.

APPENDIX B: CONTROLLING THE SHAPE OF CELLS

As outlined in Section 3.2, we modify the fluid Lagrangian slightly to include factors that penalize highly distorted cell
shapes. If such shapes occur, we want small adjustment forces to appear that tend to make the mesh more regular again.
These adjustment forces need to preserve energy and momentum conservation of the scheme, which will automatically be
the case if they are derived from a suitably defined Lagrangian or Hamiltonian. In this Appendix, we derive the equations of
motion for the Lagrangian

L =
∑

k

1

2
mkṙ

2
k −

∑

k

PkVk

γ − 1

[

1 + β0
(rk − sk)2

V
2/d

k

]{

1 + β1

(

w2
k

V
2/d

k

− β2

)}

, (B1)

where the factor in square brackets disfavours displacements of points from the geometric centres of their cells, and the factor
in curly brackets disfavours cells with large aspect ratios.

We define the centroid of a cell as

sk ≡ 〈r〉k =
1

Vk

∫

r χk(r) dr, (B2)

where χk is the characteristic function of cell k. The shape of a cell is measured via the second moment

w
2
k ≡

〈

(r − sk)2
〉

k
=

1

Vk

∫

(r − sk)2χk(r) dr. (B3)

Here d counts the number of dimensions, i.e. d = 2 for 2D and d = 3 for 3D. The factor V
2/d

k is hence proportional to the

‘radius’ Rk = V
1/d

k of a cell squared. β0 measures the strength of the effect of displacements of points from the centroid of
a cell, while β1 is the corresponding factor for the aspect-ratio factor. The constant β2 is only introduced to prevent that
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Figure A1. Median relative error in the gradient estimate obtained either with our default formula (left) or with the simpler Green-
Gauss estimate where the cij terms are omitted (right). We show results for three different types of point sets, a Poisson sample (black),
a regularized distribution where each Voronoi cell has equal volume (red), and a regularized distribution where in addition the cells are
quite ‘round’ and regular (blue). The accuracy is measured as function of the strength of a second order variation in the underlying field.

even round cells lead to a significant enhancement of the thermal energy. For perfectly round cells, we expect in 2D roughly
circles for which w2

k = V 2/d/(2π), hence we pick β2 = 1/(2π). In 3D, we have approximately spheres instead and we pick
β2 = 3/5(3/4π)2/3 .

Note that this Lagrangian is only a function of the point coordinates for given entropies, so the equations of motion for
conservative dynamics are perfectly well defined, even though they lead to more lengthy expressions than in the standard
case. We first obtain the following Lagrangian equation of motion:

mir̈i =
∂L

∂ri
= −

∑

k

1

γ − 1

(

∂

∂ri
PkVk

) [ ]{}

−
∑

k

PkVk

γ − 1

{}

β0
∂

∂ri

(rk − sk)2

V
2/d

k

−
∑

k

PkVk

γ − 1

[ ]

β1
∂

∂ri

w2
k

V
2/d

k

, (B4)

where the empty square and curly brackets are notational short-cuts for the corresponding terms in the original Lagrangian.
We note that we can use the identity

∂

∂ri
PkVk = (1 − γ)Pk

∂Vk

∂ri
. (B5)

We also note that in the second and third terms of equation (B4) we encounter partial derivatives of Vk, which we can combine
with the first term into a more compact form. This allows us to write the equation of motion in the form

mir̈i =
∑

k

P ⋆
k

∂Vk

∂ri
−
∑

k

Qk
∂

∂ri
(rk − sk)2 −

∑

k

Lk
∂

∂ri
w2

k (B6)

where we have defined

P ⋆
k ≡ Pk

(

[]{}

+
2

d

β0

γ − 1

(rk − sk)2

V
2/d
k

{}

+
2

d

β1

γ − 1

w2
k

V
2/d

k

[ ]

)

(B7)

and introduced the quantities

Qk ≡ β0

γ − 1
PkV

1−2/d
k

{}

, (B8)

Lk ≡ β1

γ − 1
PkV

1−2/d
k

[ ]

. (B9)

We already know an explicit expression for ∂Vk/∂ri, but we still need to derive such a thing for the derivatives of (rk − sk)2

and w2
k. Let us first deal with the term involving Qk in the equations of motion, i.e.

(mir̈i)Q = −
∑

k

Qk
∂

∂ri
(rk − sk)2 = −2

∑

k

Qk

(

∂(rk − sk)

∂ri

)T

(rk − sk). (B10)
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Here the exponent T stands for the transpose, and the notation ∂a

∂b
is the Jacobian matrix with elements

(

∂a

∂b

)

lm
= ∂al

∂bm
.

Based on the definition of sk in terms of the characteristic function we find

∂

∂ri
(rk − sk) = δki1 − 1

Vk
(rk − sk)

(

∂Vk

∂ri

)T

+
1

Vk

∫

dr (rk − r)
(

∂χk

∂ri

)T

. (B11)

For the derivative of the characteristic function we can use a result from Serrano & Español (2001) and write

∂χk

∂ri
=
∑

j

δki
χkχj

σ2
(r − rk) − χkχi

σ2
(r − ri), (B12)

which is based on approximating the characteristic function with

χk(r) =
exp
[

− (r−rk)2

2σ2

]

∑

j
exp
[

− (r−rj )2

2σ2

] , (B13)

which becomes exact in the limit σ → 0. Putting these results into equation (B10) one gets

(mir̈i)Q = −2Qi(ri − si) + 2
∑

k

Qk

Vk
(rk − sk)2

∂Vk

∂ri
− 2
∑

j

Qi

Vi

∫

dr
χiχj

σ2
(r − ri)(ri − r)T (ri − si)

+2
∑

k

Qk

Vk

∫

dr
χiχk

σ2
(r − ri)(rk − r)T (rk − sk). (B14)

We can now identify the area of a face between two cells as

Aij = Rij

∫

dr
χiχj

σ2
, (B15)

and the centroid of the face as

sij =
Rij

Aij

∫

dr
χiχj

σ2
r. (B16)

Furthermore, we define a second-order tensor of the face relative its centroid as

T ij =
Rij

Aij

∫

dr
χiχj

σ2
(r − sij)(r − sij)

T . (B17)

With these definitions, we can rewrite equation (B14) as

(mir̈i)Q = −2Qi(ri−si)+2
∑

k

Qk

Vk
(rk−sk)2

∂Vk

∂ri
+2
∑

j 6=i

Aii

Rij
{T ij(ei − ej) + [(sij − ri)ei − (sij − rj)ej ] (sij − ri)} , (B18)

where we introduced the further short-cut

ei ≡ Qi

Vi
(ri − si). (B19)

We note that the second term in this equation can be absorbed in yet a further redefinition of P ⋆
k , which we will exploit later

on. We next consider the term in the full equation of motion that involves the Lk factor. This is given by

(mir̈i)L = −
∑

k

Lk
∂w2

k

∂ri
= −

∑

k

Lk

[

−w2
k

Vk

∂Vk

∂ri
+

1

Vk

∫

dr
∂χk

∂ri
(r − sk)T (r − sk)

]

(B20)

=
∑

k

Lkw2
k

Vk

∂Vk

∂ri
−
∑

j

Li

Vi

∫

dr
χiχj

σ2
(r − ri)(r − si)

T (r − si) +
∑

j

Lj

Vj

∫

dr
χiχj

σ2
(r − ri)(r − sj)

T (r − sj).

We now define a further moment for each cell face, namely the vector-valued quantity

gij ≡ Rij

Aij

∫

dr
χiχj

σ2
(r − sij)

2 (r − sij). (B21)

Note that gij always vanishes in 2D but can be non-zero in 3D. With this definition, we can rewrite equation (B20) as

(mir̈i)L =
∑

k

Lkw2
k

Vk

∂Vk

∂ri
(B22)

+
∑

j 6=i

Aij

Rij

{(

Lj

Vj
− Li

Vi

)

gij + 2T ij(f j − f i) +

[

(f j(sij − sj) − f i(sij − si)) + Tr(T ij)

(

Lj

Vj
− Li

Vi

)]

(sij − ri),

}

where we have defined the short-cut
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f i ≡
Li

Vi
(sij − si). (B23)

Again, the first term involving ∂Vk/∂ri can be absorbed into a redefinition of P ⋆
k . Putting everything together, the complete

equation of motion can then be written as

mir̈i =
∑

k

P ⋆⋆
k

∂Vk

∂ri
− 2Qi(ri − si)

+
∑

j 6=i

Aij

Rij

{

2T ij(ei − ej + f j − f i)

+

[

2(sij − ri)ei − 2(sij − rj)ej + (sij − sj)f j − (sij − si)f i + Tr(T ij)

(

Lj

Vj
− Li

Vi

)]

(sij − ri)

+

(

Lj

Vj
− Li

Vi

)

gij

}

, (B24)

where we have defined

P ⋆⋆
k = P ⋆

k +
Lkw2

k

Vk
+

2Qk(rk − sk)2

Vk
. (B25)

While a bit lengthy, this can be straightforwardly calculated for the VPH scheme. Nevertheless, we want to add a brief note
on how to compute the Tensors Tij , which is done as part of the mesh construction. We have
〈

(r − s)2
〉

k
=
〈

(r − r0)
2
〉

k
− (r0 − s)2 (B26)

for any reference point r0. Suppose we have a triangle in 2D given by (r0, r1, r2), then the moment can be obtained as

〈

(r − r0)
2
〉

k
=

1

6

[

(r1 − r0)(r1 − r0)
T + (r1 − r0)(r2 − r0)

T + (r2 − r0)(r2 − r0)
T
]

. (B27)

Similar relations hold for 3D and can be exploited for an efficient calculation of the tensors T ij and the vectors gij .
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