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ABSTRACT

We present a general expression for a lognormal filter givmearbitrary nonlinear galaxy
bias. We derive this filter as the maximum a posteriori soluissuming a lognormal prior
distribution for the matter field with a given mean field anddaling the observed galaxy dis-
tribution by a Poissonian process. We have performed a-tdmeeensional implementation
of this filter with a very efficient Newton—Krylov inversiorclseme. Furthermore, we have
tested it with a dark matter N-body simulation assuming agalaxy bias relation and com-
pared the results with previous density field estimatosstiiie inverse weighting scheme and
Wiener filtering. Our results show good agreement with thaenlying dark matter field for
overdensities even above~ 1000 which exceeds by one order of magnitude the regime in
which the lognormal is expected to be valid. The reason isftiraour filter the lognormal
assumption enters as a prior distribution function, butrtfaximum a posteriori solution is
also conditioned on the data. We find that the lognormal fiftsuperior to the previous filter-
ing schemes in terms of higher correlation coefficients analler Euclidean distances to the

underlying matter field. We also show how it is able to recdkerpositive tail of the matter
density field distribution for a unit bias relation down t@kzs of about> 2 Mpc/h.

Key words: (cosmology:) large-scale structure of Universe — galaxdassters: general —
catalogues — galaxies: statistics

1 INTRODUCTION

The luminous matter we observe on the sky represents onlyak sm
fraction of the total matter in the Universe and yet with aefalr
treatment of the observational selection effects and thegsses
of galaxy formation we can hope to extract valuable infoforat
about the distribution of all matter from the distributioflomi-
nous matter alone. The more precise the techniques for gékim
connection are the better we will be able to test our thedoiethe
history of the Universe.

In 1934 Hubble found that the distribution of galaxy coumts i
cells on the sky is well fitted by a lognormal distribution_ (e
1934). More recently, Wild et all. (2005) showed that this elag
valid at least down to gridding scales of about 10 Mpc for gala
ies in the 2DF catalogue. As galaxies are good tracers ofematt
on large cosmological scales the lognormal model shouta abs
ply to the matter field at least to some degree. KitauraleP8DY)
showed recently that the matter field reconstruction uslegst
squares) Wiener filtering is very well fit by a lognormal distr
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tion after smoothing the reconstruction with a Gaussiamédeof
radiusrs for 10 Mpc < rs < 30 Mpc.

From a physical point of view, one would expect the density
field to be lognormally distributed after it has been smodtte an
appropriate scale. This follows from assuming an initi@Bussian
density and velocity field and extrapolating the contineityiation
for the matter flow into the nonlinear regime with the lineatoc-
ity fluctuations (see Coles & Jores 1991). Since the lognbfieid
is not able to describe caustics, we expect this distributiofail
below some threshold smoothing scale. Kayo 2t al. (2001)odem
strated that the lognormal distribution is a good approxiomaup
to overdensties of aboit~100.

Shortly after the success of Wiener filtering in large—scale

structure reconstruction (see Zaroubi et al. 1995), whasdumes
a Gaussian prior for the matter field, a reconstruction fiiesed
on the lognormal prior distribution was proposed (see $hegs).
With such a filter nonlinearities in the density field shouédidetter
recovered. In_Sheth (1995) the Wiener filter was generaliadse
applied to a lognormal distribution by a variable transfation. A
problem with this approach is that the noise covariance ltasra
plex form even for the simple Poisson likelihood assumpéiod is
difficult to efficiently apply to realistic data—sets.


http://arxiv.org/abs/0911.1407v1

2 Kitaura et al.

The idea of modeling the galaxies as Poisson-sampled

from a lognormal underlying field was first applied to data by

Saunders & Ballinger| (2000). They proposed to use a filtering
scheme based on an expansion of the logarithm of the matigr fie

as a sum of harmonics. The density reconstruction usingehbfs
nigue as presented by Saunders et al. (2000) is fairly srmexudh
nonlinear structures cannot be easily recognised. Thisldmidue

to the sparse sampling of the PSCz catalogue which was used in

their study or to the truncation of the harmonic series.

As demonstrated in Kitaura & EnfRlin (2008), the Poissonian

likelihood can be easily regularised by combining it with réop
when estimating the maximum a posteriori. They showed tlis ¢
culation for Gaussian and entropic prior distribution fiioics.

The idea of using the full Poissonian likelihood without re-
maining at second order approximations using only the noise
variance matrix is based on the Richardson—Lucy decorivolal-
gorithm (se¢ Richardson 1972; Lucy 1974). Shepp & Vardi £)98
showed that this filter comes from the maximum likelihood-est
mate of the Poissonian likelihodd. Nusser & Haehrielt (19986}
posed using this method to recover the density field from the L

man alpha forest. The problem that arose here was that tbe alg

rithm requires truncation as it assumes a flat prior for thétena
field and thus the deconvolution of the response operatootis n
regularised. However, as Kitaura & Enf3lin (2008) pointet] this
kind of problem can be solved by introducing a prior. Enf3tiale
(2008) proposed to calculate higher order corrections taiokan
estimate for the mean of the posterior distribution by eryiplp a
generating functional formalism with a Poissonian proaassop

of a lognormal field for the galaxy distribution.
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Figure 1. Two models of completeness emulating apparent magnitude
limit effects (continuous curvew; and dashed curveu,) dependent on
the distance- to the observer in Mpc/h.

Finally, we show in appendixJA that the LSQ filter is the op-
timal linear filter under a Poisson noise assumption usingoup
second order statistics and does not neglect any signalge oor-
relation, contrary to what has been assumed in the lite¥gsee
for example Zaroubi et &l. 1995; Seljak 1998; Erdogdu £2604;
Kitaura & Enflin 2008). We also derive in appendix B a filtettwa
lognormal model for the underlying signal and an additivgnal—

In this work we present a general expression for the Poisson— independent and Gaussian distributed noise which could be o

lognormal filter given an arbitrary nonlinear galaxy biae térive
this filter as the maximum a posteriori solution assumingg lo
normal prior distribution for the matter field with a constamean
field and modeling the observed galaxy distribution by a &w®is
nian process. We have performed a three—dimensional ingplem
tation of this filter with a very efficient Newton—Krylov invgion
scheme extending therGo computer code to perform nonlin-
ear inversions (see Kitaura & Enf3lin 2008). Furthermore hane
tested it for a linear galaxy bias relation and compared ¢salts
with other density field estimators commonly used in therdite
ture (e.g. the inverse weighting scheme and the least sx(128€))
Wiener filter). The one—dimensional lognormal probabitigtri-
bution is known to fit the matter distribution well up to overd
sities of aboutd ~100 as found by Kayo et al. (2001). Our re-
sults show, however, good agreement for overdensities @veve

terested in other fields of astronomy.

The paper is structured as follows. In secfibn 2 we present th
Bayesian approach used in this work. After defining the iitedd
for the galaxy sample and the prior distributions for theterdteld
we calculate the maximum a posteriori (MAP) estimates ferih-
derlying density field. Then the numerical scheme is preskimt
sectionB which permits us to solve the MAP estimates. We then
present in sectionl 4 a series of numerical experiments wdtiow
the performance of the different density estimators. Bmnade dis-
Cuss our results.

2 BAYESIAN APPROACH

A Bayesian approach requires the definition of a likelihoad a

& ~1000 which exceeds by one order of magnitude the expected Prior. A full Bayesian analysis would require the complebare

regime in which the lognormal is expected to be valid. Theoea
for this apparent disagreement is that for the filter presikhiere
the lognormal assumption enters as a prior distributiorction,
but the maximum a posteriori solution is also conditionedttomn
data. For the same reason Kitaura etlal. (2009) obtainedhdyhig
non—Gaussian distributed matter field after using LSQ-¥ridik
tering which according to the Bayesian formalism assumeausG
sian distribution. We find that the Poisson—lognormal fies a
range of applicability in recovering matter density fieldsvh to
scales of about> 2 Mpc/h. However, the matter statistics show that
the Poisson—lognormal filter fails to recover underdenggons

0 < — 0.6 with very few data. In addition, we test the maximum a
posteriori assuming a Gaussian prior and found that it isapa-
ble of recovering the density field whén> 1 and gives negative
densities in low density regions which makes this filter lintde
for recovering densities af < 1.

acterization of the posterior distribution using samplsapemes
(see e.g.._Wandelt etlal. 2004). We leave such an approach for a
forthcoming publication and restrict ourselves here towale the
extrema which leads to the maximum a posteriori expressidns
permits us to get a fast estimate of the density field. In thoskw

we consider a Poissonian likelihood for the observed thistion

of galaxies and combine it with a Gaussian and a lognormal pri
distribution for the overdensity field. In the next subses these
distribution functions are presented and the calculatfomhe dif-
ferent MAP—estimators are shown in detail.

2.1 Poissonian likelihood

The likelihood represents the observation process whiatsleéo
the data. It is the probability distribution function thagstribes
the nature of the observable. In this case we look for a mdd! t

(© 0000 RAS, MNRASD0O, 000—-000



accounts for the discrete nature of a galaxy distributibe, $0—
called shot noise. This kind of noise is traditionally mateby
a Poissonian distribution (see for example Pe&bles 1980@eh a

model assumes that each cell of the Universe in which we count

some number of galaxies (maybe according to a certain lwsnino
ity type) is statistically independent from each other. ldwer, the
variance of counts in cells including a correlation termdirts
the non—Poissonian character of the distribution of gakxXsee
Peebles 1980a). Hierarchical structure formation modstsirae
that galaxies form inside dark matter halos via the energgipia-
tion by baryons (see e. d. White & Rges 1978). Somervillelet al
(2001) showed based on numerical N—body simulations thag-in
gions of lower than average overdensity, the scatter indhelias-
ing (the relation between the dark matter halos and the brider
dark matter distribution) is generally smaller than the meaisson
shot noise, and in overdense regions it is larger (for a veuviethe
halo model see Cooray & Sheth 2002). Mo & White (1996) already
pointed out that halo—exclusion can cause sub—Poissoaneai
Casas-Miranda et al. (2002) demonstrated with higher vedd\—
body simulations that the galaxy biasing process, as wethas
halo biasing process, is not only determined by the localevaff
the mass density field, but also by other local quantitiesh sas
clumpiness, and by non—local properties, such as the lacgée-
tidal field. Accounting for all these effects is out of scofdethis
work, but should certainly be further investigated.

Here, we will restrict ourselves to a model in which the ob-
served distribution of galaxies is given by an inhomoges&®ois-
son realization of a continuous density field. We define tkelil
hood function as (see Peehles 1980b):

(Ngi)e ™

LUNG:INY) sils
g,%

= I exp [ (Vg )]

im @
with N ; denoting the number count of observed galaxies in cell
i, and Ncens being the total number of cells. Herd }); =

{ D(Ng\»’) = Z?\,"gzo Ppois(Ng | wA){} denotes an ensemble
average over the Poissonian distribution with the expented-
ber of galaxy counts given by the Poissonian ensemble aserag
A° = wA = (Ng)g. The expected number count is related to the
underlying continuous galaxy overdensity fiélg; through:

<N§,i>g = Ngwi(l + 9g,4), (2

where N, is the mean number count of galaxies angdthe com-
pleteness at cell. The logarithm of the likelihood can be written
as:

Inl; = —Ngwi(l —‘r(;g,z) —"-N;’i ln(Ngwi(l —‘r(;g,z)) —1H(N;i!).
(3)

2.2 Gaussian prior

The prior probability distribution function describes thiatistical
nature of the signal one wants to infer from the observed. data
Here the physical model of the underlying matter field comes
in. As inflationary scenarios predict a close to Gaussiatribis

tion function for the initial density fluctuations (see Gutf81;
Guth & Pi11982; Starobinsky 1982; Hawking 1982; Linde 1982;
Albrecht & Steinhardt 1982; Bardeen etlal. 1983) and lineaoty
preserves this property throughout cosmic evolution g&sonable

to assume a Gaussian prior to model the large—scale mattér fie
Note, however, that this can only be true féf < 1 since oth-
erwise the Gaussian distribution predicts unphysical tiegden-
sities. Here we follow Bardeen et al. (1986) to describe therp
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probability distribution of the density field by a multivate Gaus-
sian distribution function:

1
(27) Neatis det(S)

with p being the set of cosmological parameters which determine
the autocorrelation matri$ and év is the overdensity in mass.
The application of the autocorrelation mat$xto a vectorz is a
convolution of the formSz = S(r) o z(r) (with » being the cell
coordinates in configuration space of the box {ix,iv,iz} and
with "o” denoting the convolution operation).

Note that the Fourier transform of the autocorrelation iragr
is equal to the power spectrul(k, k') = (27)° P(k")op (k—k')
(using the same Fourier definitions as in Kitaura & En3lin€00
The logarithm of the prior distribution function can be weit as:

©)

P(dumlp) =

1 _
exp {—55;/18 151\4 R O]

1 _
InP(dm|p) = —56&5 Lo + c,

with ¢ being the logarithm of the normalization.

The posterior distribution functio® is proportional to the
product of the priofP and the likelihoodZ. To find the maximum
a posteriori (MAP) we need to calculate the extremum. Partifog
the derivative of the posterior with respect to the matterdensity
field 6 yields:

OlnP OlnP  OlnL

oo > Bow Ao ©)
The derivative of the prior leads to:
dln P _ —1
Frvale —-S oM. @)

Since the likelihood is expressed as a function of the gadiexgity
field, we need to define the bias between the galaxy and matter
fields.

2.2.1 Linear bias

As a particular case, let us consider a linear bias functieengoy:

Sgi = Y bigong, (8)
i

which relates the corresponding power spectra in the fatigw
way: b(k) = +/Ps(k)/Pu(k), with P.(k) being the galaxy
power—spectrum anéh: (k) being the matter power—spectrum.
The derivative of the likelihood with respect to the matter
overdensity fields is then given by:
g,

8111[:7; -—
=S bip |-Now; + ——=821
I B o T

a5M,k
Adding this result to the prior term Ed.](7) we obtain the MAP
equation:

}. 9)

Nol
M= Siiy bij | =t
; ’ Z P\ 2 bkl

with the superscrip& standing for the Gaussian prior assumption.

— Ngwl> 5 (10)

2.2.2 Unity bias

Let us consider the special case when the matter field is ¢ojaal
continuouggalaxy field:

Og,i = OM,i, (11)
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then the MAP equation reads:

61\(:/;IL ZSZJ<

(12)

— Nng) .

Here we introduce the lognormal prior distribution as psgEbby
Coles & Jones (1991):

1+6

2.3 Lognormal prior

The factor relating the galaxy field to the matter field yields

Oln(l1+ B (exp(s) — T)l)

8111(1 —+ 5g,l)
8111(1 + (SM,k) o 08
_ 0B(wm)i (14 0mk) 23)
vk 1+ B(dm):

The final result for the derivative of the likelihood with pest to
the logarithm of the normalized matter fieddassuming a general
nonlinear bias is given by:

1 1 -
P(slp) = exp |—=(s — p)'S (s — } ,
( |p) (27T)N°eus det(SL) p l: 2( ”) SL ( :u‘) Z OlnL; (24)
(13) ~ sk
with s being the logarithm of the weighted matter density: .
Z 8B (0m); (1+0mk) (=Now; (1+ B(8n)i) + N2.) -
sqi = lo (1+5ML) (14) . OO, 1+B(5M) ’

andSy, the corresponding autocorrelation matrix. Note that tige lo
normal autocorrelation functio®;, applied to a vectox is again a
convolution:S,x = Si.(r) oz(r). The transformation of the corre-
lation function corresponding to the overdensity field te signal

s is given by:

SL(r) = log(1+ S(r)). 15)
The mean fielg is taken to be:
pi = —03/2, (16)
with 02 = SL(0) as used by Kayo etall (2001) to ensure an

overdensity field with zero meEn(for a formal derivation see
Coles & Jones 1991). The logarithm of the prior distributyaeids:

1 _
—5(s =)'y’ (s -
with ¢ being some constant term. In this case, we look for the ex-
tremum with respect to the signail

OlnP O0lnP " Oln L
ds ~ Os s

The derivative of the prior has now an additional term duehto t
mean—fieldu:

InP(s|p) = K) +c, 17)

—0. (18)

InP s (s (19)
Now we need to relate the galaxy field to the matter field in or-
der to express the likelihood as a function of the signaistieally
defined through the prior distribution function.

2.4 General nonlinear bias

Let us consider here a general nonlinear relation betwesegetaxy
field and the matter field.

dg,i = B(0m)i, (20)

The derivative of the likelihood with respect to the sigeakhich
we want to recover can be written as:
8111(1 —+ 5g,1)

Oln L; Oln L;
Xi: Zzal 81n(1+6M,k)'

0sp 1+ (Sg7
The derivative of the likelihood with respect to the logamit of the
normalized galaxy fieldin(1 + d,;) yields:
8 In [,Z
8111(1 + 5g,l)

(21)

= (Ngi — Ngwi (14 B(dm)i)) 6i0. (22)

1 Here generalized to a multivariate lognormal distribution

Combining this result with the prior term (Elg.]119) we obtaie t
MAP equation:

> sl (ln(l +0%s) ) =
J

(14 6%,
+ Oni,s) « (
1+B(5M)

(25)

NS, — Naw, (1 n B(ah)l))) ,

with the superscrlpL standing for the lognormal prior.

2.4.1 Linear bias

For the linear bias case the derivative of the likelihoodupes to
the following expression:

81n[,i
; OSk Zl"’Zy b1 O
X (—Ngwi (1 —‘eri,j(SM’j) +N§7i> .
J

Accordingly, the MAP equation reads:

3 s (i (14 80,) — ) =
J
. L
Z bk,’t(l + 5M’k) <N§7k - Ngwk (1 + Z bk,ﬁ{(/l,l)) .
l

— 1+ 3y by Oy
For an unity bias the derivative of the likelihood reduces to

+ om,k)

(26)

27)

2.4.2 Unity bias

g, = Omi- (28)
Then, the derivative of the likelihood reduces to:
oln L; — o
Z an = _Ngwk exp (Sk) + Ng,Im (29)
i Sk
and the MAP equation reads:
> St (55— 1) = Ngi = Ngwiexp(si).  (30)
J
Using the definitionsN gw; exp(s;) = Ngw;(1+6g,:) = (Ng)g

ande; = N° — (N, ) we can rewrite the MAP equation as:

ZSLZ] :u] - ?7
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(31)
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Figure 2. Cell-to-cell overdensity correlation between the moclagglsample and the matter field based on the Millenium |runifi§et et al| 2005). On the
left: mock galaxy catalogue by De Lucia & Blaizot (2007). G tright: Poisson sample over the matter field with a constampleteness of0—%. Also
given are the correlation coefficientand Euclidean distance to the underlying matter fiejd,D

The signals is thus given by the propagation of the noéSegiven
the correlatiors, up to a shift due to the meagn. Expressing it as
a function of the matter overdensity-field we obtain:

> Sii (hl (1 + 51%1,3') - Mj) = (N;i — Ngwi(1+ 51%4,1-)) .
J
(32)

3 NUMERICAL APPROACH

The problem we are studying here requires the solution ohéimo
ear system o256 (about17 - 10°) coupled equations. Note, that
each cell introduces an equation. Thus, to find the MAP smiuti
(Egns[I2 an@26) we apply an operator based iterative iiovers
scheme as proposed.in Kitaura & EnRlin (2008) which reduoes t
most expensive operations to FFTs. In particular, we usendmo
ear Newton—Krylov scheme which is briefly presented in the ne
subsections (for a reference see e.g. Kitaura & EnRlin/2008)

3.1 Method

Let us write a system of nonlinear equations4gt) = f, with A
being the nonlinear operator dependentmand f some constant
vector. We then define the gradient of the quadratic apprat@n
as:

VQ(z) = Az) - f. (33)

with the stepsize given by (for a derivation see Kitaura & Enf3lin
2008):

givQ(x)
= szHJ&j ’
and ¢ being the searching vector (for schemes to calcujasee
Kitaura & EnRlinl 2008). In the next subsections we give the pa
ticular expressions for the quantities required to cateuae MAP
given a Gaussian prior first and finally given a lognormal prio

@7

3.1.1 Gaussian prior
Rewriting Eqn[IR as:
o5 — Sdiag(1 + %) ' Ng = NySw. (38)

We can identifyA(s) = 85 — Sdiag(1 + d5) NS and f =
‘N, Sw,. The corresponding gradient of the quadratic form is given
by:

VQ(s) = 65 — S (diag(1 + 6%) Ny - Nyw, ), (39)
and the Hessian yields:

H = 1 + Sdiag(1 + d%;) >Ng. (40)

3.1.2 Lognormal prior

The corresponding Hessian matrix is then given by the second e formulate EqC32 in an analogous way to the previous subsec

derivative of the gradient a:

H=VVQ(x). (34)
The basic Newton—Raphson solver scheme is given by:
. . N —1 .
et =g (H’) vQ(z). (35)

This scheme turns out to be extremely inefficient. Therefare
implement a Krylov step in which the solution is updated ie th

following way:
PR ) 2

(36)
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tion as:
S.' (s — p) + diag (Ngwg) exp(s) = N,

with A(s) = S ' (s — p) + diag (Ngwg) exp(s) and f = Ng.
Thus, the gradient of the quadratic form is given by:

(41)

VQ(s) =S, (s — p) + diag (Nsw,) exp(s) — Ng,  (42)
and the corresponding Hessian matrix reads:
H=S5."'+diag (Ngwy) diag (exp(s)) . (43)
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LIKELIHOODS
Gaussian Poissonian
PRIORS
Flat () 5IVY NgN,_'L _1
. LS _ — 1= N2 —
Gaussian /1? > (S,L-,jl +w]-Ng6§fj> Ngdg ; i = 25 Si (W Ngwj)
Lognormal (b) > St g (ln (1 + 6M’j) — u]) = Ng, — Ngw;(1+ 685 ;)

Table 1. Filters which are used in this work classified by the assurketiiood and prior (with the exception of (a) and (b)). Ndtet the bias has been set
to one. (a) COBE-filter used in CMB mapping (see Janssen &i6aB92). (b) for a derivation of this filter see apperidlx B.

4 NUMERICAL EXPERIMENTS

In this section we investigate the performance of the Paisso
lognormal filter. We construct the mock observed galaxyritigt
tions by making a Poisson sample over the dark matter pasticl
of the Millennium run according to different completenessdels
(see subsection 4.2). This permits us to avoid the galaxsiriga
and redshift distortions problems in our tests.

We also test the Poisson—lognormal filter against otherdilte

We make a comparison to the MAP with a Gaussian prior assump-

tion, to the inverse weighted data, and to the LSQ-Wienearfilt
(see section belolv4.1.1). For an overview of the filters uis¢kis
work see tablE]1.

Finally, we test the quality of the reconstruction by making
a cell-to—cell comparison to the underlying matter field ahhis
assumed to be given by the dark matter distribution of théel
nium run at redshift zero (see Springel €f al. 2005). In aoiditve
study the matter density statistics of the dark matter field the
reconstructions.

4.1 Quality validation of the density reconstruction

In order to show the performance of the Poisson—lognormal fil
ter we compare the results with two other estimates of theitjen
field. We follow!|Kitaura & Enf3lin|(2008) and Kitaura et al. (%)

in quantitatively measuring the quality of the reconstiqrts.

4.1.1 Alternative density field estimators: Inverse weighand
LSQ-Wiener filtering

Let us first introduce a representation of the data whicts tioe
compensate for the selection function effect which we cadise
weighting (IW). We define the inverse weighted galaxy number
count per celi as:

1
o Ng ;. (44)

IW __
N =
The corresponding inverse weighted overdensity is caiedlas
follows:
NIV
L
Ng

o =

(45)
Note that the inverse weighting scheme can be derived asdake m
imum likelihood estimator assuming a Poissonian likelihgfor

a derivation see Kitaura etlal. 2009). As discussed in Kitafmal.
(2009) IW boosts the estimated density field at low compkdsn
Therefore it includes in general an additional smoothieg sthich

lessons this effect (see elg. Erdogdu €t al. 2004).
For an additional comparison let us introduce the leastregua

version of the Wiener filter (or LSQ filter for short) given by
Kitaura et al. (see 2009):
-1
ovsQ = pg? (sr1 +WTN’1W) WIN152,  (46)
with W being the three dimensional mask operator defined by:
Wi ; = w;dr; (1 is the Kroenecker delta), and the Fourier trans-

form of B given by:Bk,k, = bkléﬁk, as introduced in subsection
[241. We define the observed galaxy overdensity which wesise
the input vector for the LSQ reconstruction by:

(47)

The noise term in EQ.46 has the following form (see Kitauralet
2009):

— K
N;j; = N 6 (48)
Note that the LSQ-Wiener filter is the optimal linear filteings
up to second order statistics even for the Poisson—noisengsion
for which the noise is signal dependent. There is not an iatail
assumption or approximation by neglecting the signal tsecbr-
relation. This point has been unclear in the literature (se@x-
ample Zaroubi et al. 1995; Seljak 1998; Erdogdu et al. 20048
show that the signal and the noise are indeed uncorrelatétkin
appendix. The LSQ-Wiener filter also happens to be the MAP fil-
ter for a Gaussian likelihood and a Gaussian prior as inglitat
table[d.

In our numerical experiments we use a unity bigs:= 1.
Thus, the Fourier transform & yields: P;(k) = Pu(k). The
power—spectrumPy; (k) is given by a nonlinear fit that also de-
scribes the effects of virialised structures with a halotes given
by |Smith et al. [(2003) at redshit = 0. We choose the con-
cordanceACDM-cosmology withQ2,, 0.24, Qx = 0 and
Qa = 0.76 (Spergel et al. 2007). In addition, we assumed a Hubble
constant withh, = 73 and a spectral index; = 1.

4.1.2 Quantitative measures

Let us define the correlation coefficiartbetween the reconstructed
and original matter density fields by:

Z cells 5 5rec

r(67, 0m) = , (49)
\/Z cells 5Mz \/Z cells 6rec)
and the Euclidean distance
1 Neells
Diuc(8°, 8:) = | > (de—6ma))? (50)

(© 0000 RAS, MNRASD0O, 000—-000
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Figure 3. Reconstruction assuming a Gaussian prior. Left panel: rmean15 neighboring slices around176 Mpc through a 500 Mpc cube box with a
2562 grid without smoothing. Right panel: cell-to—cell cort@a between the overdensity of the full three—dimensigaabnstruction and the matter field.

4.2 Input data setup

We construct the mock observed galaxy distribution takimgra
dom subsample of the particles in the Millennium run at rétish
zero (see Springel etlal. 2005) which was gridded aagt mesh.
Later we also investigate the resolution dependence usigy

4.3.1 Gaussian prior and Poissonian likelihood

In this subsection we present the results given by the maximu
a posteriori solution assuming a Gaussian prior and a Ro&so
likelihood. The solution of Eqi._12 leads to a matter field ethi
dramatically underestimates large overdensities (sed3Fidrhis

and a64® mesh. As already stated above, our setup permits us to shows that the Gaussian prior cannot fit the underlying méétel

avoid the galaxy biasing problem in our tests. Note, that ise a
avoid the redshift distortions by considering the dark evaptar-
ticles in real-space. In this way we generate three diffeirgrut
mock galaxy catalogues. One has about 1 Million particlestas

which has a clearly non-Gaussian distribution with a mimimu
overdensity of~ —1 up to maximal overdensities of about 1500 at
the resolution we are looking at-(2 Mpc/h cell side length). The
density peaks are highly suppressed with a Gaussian phar.€f-

been produced as a Poisson sampling with a homogeneous comfect is known from the Wiener filter as traditionally appliatiere

pleteness ofv = 10~*. The other two mocks were generated with
a radial selection function using two exponential decaymaglels

of completeness (see Figlll) emulating apparent magnitude limit
effects (see radial selection functionlin Kitaura et al. 200rhe
final mock galaxy samples have 350961 and 123679 particles us
ing the softer and steeper decaying selection functiometisely.

The observer was set at the center of the box, i.e. at codedina
X=250 Mpc/h, Y=250 Mpc/h, and Z=250 Mpc/h.

The left panel on Fid.]2 shows a cell-to—cell comparison be-
tween the dark matter distribution of the Millennium run (0'°
particles) gridded on 256* mesh and a subsample of 1 Million
homogeneously selected mock galaxies of the De Lucia & Btaiz
(2007) catalogue. One can clearly see a deviation of théspivi¢h
respect to the perfect slope4if°. This effect is due to galaxy bias-
ing. The right panel shows the analougous comparison withis P
son sampling using a homogeneous completeness ef 10~*
which leaves about 1 Million particles. Here, we see a nepely
fect scatter around th&° slope demonstrating that our mocks do
not include biasing.

4.3 MAP results

Here we calculate the maximum a posteriori solutions whieh w
derived in the previous theoretical sections. There werasduwo
different prior distributions for the matter field: a Gaussiand a
lognormal prior.

(© 0000 RAS, MNRASDOQ, 000-000

the noise covariance is dependent on the signal (see diseurs
Kitaura et al. 2009). Note, that the filter we are using heeeri®re
accurate being based on the full Poissonian distributich raot
only on the second order term as in the Wiener filter.

4.3.2 Lognormal prior and Poissonian likelihood

Here we present the results of the maximum a posterioriisolut
assuming a lognormal prior and a Poissonian likelihood.tRat
we solve the MAP Eqii_32.

We show in Fig[# the performance of the Poisson—lognormal
filter with a homogeneous completeness. Panel a in[Fig. 4 show
a slice through the matter distribution from the Millenniuom.
Panel b shows the mock galaxy sample. Panels ¢ and d show the
Poisson-lognormal filter and the LSQ filter reconstructiespec-
tively. The performance depicted in cell-to—cell cornelatplots
shown in panels e and f demonstrate the superior behavidheof
Poisson-lognormal filter reconstruction in terms of higberre-
lation, smaller Euclidean distances and better alignmiemigathe
perfect correlation slope. The Poisson—lognormal filteovers the
density field up to overdensities above 1500 whereas the U&® fi
tends to underestimate the density field.

We study the inhomogeneous completeness effects by select-
ing dark matter particle subsamples with two different ahdie-
lection functions depicted in Figl 1. In the upper panel af.[E,
the inverse weighting scheme is shown to overestimate thsitgle
at low completeness (at the borders and corners of the clibis).
is in agreement with tests performed by Kitaura etlal. (2008
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Figure 4. Panel a: slice through the Millenium run dark matter pagtgimulation. Panel b: mock galaxy distribution with® particles. Panel c: reconstruction
with the lognormal filter. Panel d: reconstruction with th8Q-Wiener filter. Panel e: cell-to—cell correlation betwélee overdensity of the full three—
dimensional reconstruction with the Lognormal filter (pag)exnd the matter field (panel a). Panel f: cell-to—cell elation between the full three—dimensional
overdensity of the reconstruction with the LSQ-Wiener filiganel d) and the matter field (panel a). The cell-to—celtetation between the mock galaxy
distribution (panel b) and the dark matter distribution t&nseen on the right panel of FId. 2. The plots were producecalyulating the mean over 15
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Figure 7. Matter field reconstructions with the lognormal filter on @gnesh with1282 and643 cells for a uniform selection using abal@® mock galaxies.
Panel a: mean over 9 slices through the reconstruction onsh migh 1283 cells around slice 109 ~ 179 Mpc/h). Panel b: mean over 5 slices through
the reconstruction on a mesh wiéd3 cells around slice 55¥ ~ 179 Mpc/h). Panels ¢ and d show the cell-to—cell statisticsespmnding to the full

reconstructions shown in panels a and b, respectively.

LSQ filter, on the other hand, smooths the density more slyong
in at low completeness regions and leads to a significantlgrlo
Euclidean distance. The correlation coefficient is lowecsithe
LSQ filtering suppresses the signal and gives a smooth vedfio
the density field which is valid on larger scales (see panalsdcd
of Fig.[d), but does not reproduce small-scale features.|der
panels show the results coming from the Poisson—lognortte fi
reconstruction. The density at low completeness is suppdeto
zero due to the mean field used for this calculation (se€ Bqli6
regions of very low completeness the filter tends to favomtiean
density. The statistical correlation shows to be clearlyesior to
the previous cases and the Euclidean distance with respéioe t
underlying matter field is far smaller (see panel f). The-g¢elcell
correlation plot shows a scatter around #ieslope and reproduces
even the highest overdensities like the one #4600 which can also
be seen in panel b. We perform the analogous study with thpete
radial selection function (see Fig. 1). The results are shiovrig [6
and are consistent with the previously discussed ones.

ing box. First we grid the dark matter field coming from the Mil
lenium run on the lower resolution mesh and then we apply the
radial selectionw(r) usingw = 107%, w(r) = wi(r) and
w(r) = w2(r). The results of the Poisson—lognormal filter recon-
structions are shown in Figsl 7 and 8. We see a clear tendency t
better recover the underlying matter field when using a lowso-
lution (compare Fid.J4 with Fig]7 and Figs.[3, 6 with Hig. 8).

4.3.3 Matter statistics

Finally, we calculate the matter statistics and the cooedimg
skewness and kurtosis for the dark matter field and the logabr
reconstructions corresponding to the incomplete mockis sétec-
tion functionsw; andw- (for particular expressions to calculate
the matter statistics, the skewness and the kuros|s seer&igd al.
2009). The matter statistics represented in [Hig. 9 showsistemt
results for different grid resolutions (compare left, mMadnd right
panels). After convolving the matter fields with a Gaussiamkl

We perform the same study for two more resolutions: a mesh using a smoothing radius of 10 Mpc/h the matter distributipn

with 1282 cells and a mesh with4® cells for the same comov-

(© 0000 RAS, MNRASDOQ, 000-000

pears to be closely lognormal distributed for all resolusidsee
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Figure 9. Matter statistics for the dark matter field from the Millemiurun (black curve, red error bars) using abeutl0'° particles and the corresponding
reconstructions using the selected mocks with radial cetepessv; (dashed curve, green error bars) ang(dashed—dotted curve, cyan error bars) having
about~ 10° particles for different resolution2%6°: left panels,128%: middle panels ané42: right panels). Upper panels (a, b and c¢): without smoothing
Lower panels: after convolution with a Gaussian kernel witibothing radii of 5 Mpc/h (panels d, e and f) and 10 Mpc/h éisg, h and i). The number of
cells was counted for a logarithmic density binning of 0.2h(1 + &y ) for all cases except for panel a for which a binning of 0.4 weexdu Also skewness
(s, s1 ands2) and kurtosis k, k1 andk2) in In(1 + dyp) are shown corresponding to the matter field, the recongingfor the casev; and the casevs,
respectively. The error bars are given by the shot noiseechlog the number counts of cells in each density bin withddhgginto account the uncertainties

introduced by the completeness or the reconstruction rdetbelf.

panels at the bottom). The skewnesssg andsz) and the kurtosis
(k, k1 andk2) show some deviation from zero particularly in the
reconstructed fields (skewness and kurtosis without seiodrre-
spond to the dark matter field, with the subindex "1” to thestdd
sample withw; and with the subindex "2” to the selected sample
with w2). However, their values are small which means that the
distributions are not especially peaked or have signifigdanger
tails with respect to the lognormal distribution. This rés$sicon-
sistent with observations (Kitaura ef al. 2009) where foimailar
smoothing radius the matter field obtained from the Sloaritélig

(© 0000 RAS, MNRASDOQ, 000-000

Sky survey (data release 6) was found to be close to lognatisal
tributed. When convolving with a Gaussian kernel with a 5 Mpc
smoothing radius (panels d, e and f) the distribution showala
towards larger densities with higher skewness and kurtbais for
the panels at the bottom which cannot be attributed to therunc
tainty at the high densities shown by the large error barsedby
the low number counts in that regime. This deviation fromltge
normal distribution is even better demonstrated in the uppaels
which show the matter statistics without any additional sthimg.
The results show that the multivariate lognormal priorribistion
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does not impose a lognormal matter field statistics to thevered
density field. Here the prior is subdominant with respechtodata
similarly to the case of the LSQ-Wiener reconstruction Wwtdan
lead to non—Gaussian statistics even though it is based aus-G
sian prior (see Kitaura et al. 2009).

However, we also observe several effects causing a daviatio
in the reconstructed fields from tiweie matter field statistics. The
reconstructions tend to overestimate the number of cellsratthe
mean density (see the peaks of the distribution in the upaef p
els of Fig.[9). This trend is more acute for the stronger sachpl
mock for whichws was used. This can be seen by comparing the
dashed—dotted curves with the dashed curves and the lauktosi
with ko (k2 is always larger thak,). We also observe that the re-
constructions underestimate the number of cells in theemety
underdense regions £ — 0.6). In addition, we investigated the
statistics of the reconstructed fields based on the homogshe
sampled mock data using = 10~* and found that the densities
are distributed in a very similar way to the reconstructedtena
fields withw;. These effects are caused by the conservative char-
acter of the reconstruction method. The maximum a posteatr-
tion leads to a stronger smoothing in the undersampled lensity
regions and produces a larger number of cells with dengitéser
to the mean.

5 CONCLUSIONS

In this work we have presented a general expression for the
Poisson-lognormal filter given an arbitrary nonlinear gglhias.

We derived this filter as the maximum a posteriori solutiosuas-

ing a lognormal prior distribution for the matter field withcan-
stant mean field and modeling the observed galaxy distabuiy

a Poissonian process (see Ed. 26).

We have performed a three—dimensional implementation of
this filter with a very efficient Newton—Krylov inversion seme
(see sectiofi]3). Furthermore, we have tested it for a linakaxy
bias relation and compared the results with other density disti-
mators commonly used in the literature (e.g. the inversehiiig
scheme and the least squares (LSQ) Wiener filter (see sEiion

We also found that the solution of Eqnl 12, assuming a Gaus-
sian prior distribution for the matter field, leads to a restounc-
tion which clearly underestimates large overdensities Eg.[3).
This shows that the Gaussian prior cannot fit the underlyiagien
field which has a clearly non—Gaussian distribution with @imi
mum overdensity of ~ —1 up to maximal overdensities of about
d ~ 1700 for a resolution of~ 2 Mpc/h. The density peaks are
highly suppressed with the Gaussian prior. This effect isvkm
from the Wiener filter as traditionally applied in which thaise co-
variance is dependent on the signal (see discussion infsittal.
2009).

However, we have seen that even the LSQ-Wiener filter fails
for high overdensities 64 > 100). We showed in appendik]A
that the LSQ-filter is the optimal linear filter under a Poisso
noise assumption and does not neglect any signal to noise-cor
lation, contrary to what has been assumed in literature f@ee
examplel_Zaroubi et al. 199%; Seljak 1998; Erdogdu et al.4200
Kitaura & Enf3lin| 2008). The LSQ filter is the optimal linear-fil
ter only up to second order statistics and thus is less wékdu
to distributions with high skewness or long tails such asltige
normal distribution. Another reason for the inferior penf@ance of
the LSQ-filter with respect to the Poisson—lognormal filteits

linearity. Note, that the relation at overdensities> 1 is highly
nonlinear.

The one—dimensional lognormal probability distributian i
known to fit well the matter distribution up to overdensitiésbout
6 ~100 as found by Kayo et al. (2001). Our results show, however,
good agreement for overdensities even abbvel000 which ex-
ceeds by one order of magnitude the regime in which the legnor
mal is expected to be valid. This is because in our filter the lo
normal assumption enters as a prior distribution functimrt, the
maximum a posteriori solution is also conditioned on theudit a
similar wayl Kitaura et all (2009) was able to recover a higtop—
Gaussian distributed matter field from the SDSS dr6 aftemgusi
LSQ-Wiener filtering which according to the Bayesian forisral
assumes a Gaussian distribution. Assuming that the galasyid
known we find that the Poisson—lognormal filter is able to veco
the matter density fields down to scales of abpu® Mpc/h. How-
ever, our study of the matter statistics comparing the daaikten
with the reconstructed fields shows that the Poisson—lagalfil-
ter fails to recover underdense regionsdgg —0.6. At lower den-
sities the recovered field is smoothed out due to the cortbezva
maximum a posteriori solution.

Our work shows a great improvement with respect to previous
filters in recovering the matter density field from a pointreeudis-
tribution. Still much work has to be done to further analyse dta-
tistical properties of the cosmological structure. Naveless, the
nonlinear reconstruction method derived in this work cdugdof
great interest for large scale structure density field rstantions
taking a galaxy distribution or even some other observdtideshe
Lyman alpha forest.
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APPENDIX A: THE LSQ FILTER

Here we show a derivation of the LSQ filter which does not neqjui
a data degradation model with an additive noise term. Letiopta
here the usual notation for the dath:= J;. The data vector is
accordingly defined by:

N° .
d=—% — Wi, (A1)
Ng

for a definition of the mask operatwV see section 4.1.1. We define
here the signal vectar as the matter overdensity fielgd:= . In
the linear approximation we try to find a filtérwhich applied to
the datad gives an estimate of the signabf the form:

<S>LSQ = Fd. (AZ)

This filter should minimize the following quantity in the Ka
squares approach (see_ Wiener 1949; Rybicki & Press | 1992;
Zaroubi et al. 1995):

((Fd—s)")

F(dd"\F' — F(ds™) — (sd")F' + (ssT). (A3)

A =

As|Kitaura & EnRlin (2008) pointed out it is important to note
that the ensemble averagé}) goes over the galaxy and matter
field realizations and the filter is thus different from theenér
filter as derived in a Bayesian framework. We define here the
global ensemble average bif }) = (({ })e)m. Here({ })s =
{Havee) = Z?\,"gzo Prois(Ng | wA){ } denotes an ensemble
average over the Poissonian distribution with the expeatedber
of galaxy counts given by the Poissonian ensemble avepage:
wA = (Ng)e, and({ Hhm = { D ouipy) = [ domP(Ou | py)
being the ensemble average over all possible matter demesity
izations with some prior distributiof? (du | py) With py; being a
set of parameters which determine the matter field, say thego
logical parameters. We impogé ) = 0.

Recalling the derivations done by Wiener (1949);
Rybicki & Press 1(1992);| Zaroubi etial! (1995) we find mini-
mizing the action with respect to the filter:

oA _
oF
the following LSQ filter expression:

0, (A4)

F=(sd")(dd")™". (A5)

Traditionally one would then define a data degradation maitél
an additive noise term of the formd: = Rs + €, with R being some
response operator. Then substituting this data model iAB@nd
neglecting noise to signal correlation terms one wouldialadinal
expression for the LSQ filter (see Zaroubi et al. 1995).

Al Signal to noise correlation

One can show that the noise is actually uncorrelated wititjrel
by making the following definition:

€ = Ngi — (Ng)e, (A6)
and then calculating the correlation:
<€?<N§,j>g>g = <N§,i< ;j)g - <Ng0,i>g<N§,j>g>g =0. (A7)

Note, that this implies(e? (35 ;)¢)¢ = 0 and thus alsdes '), = 0.
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A2 LSQ filter derivation without the additive noise
assumption

However, one does not even need to use the additive noisepssu
tion to derive the LSQ filter. Let us show here how to make such a
derivation. We define the observed galaxy number countseer ¢

as:
N;i = Wg(ﬂh + (5;1'). (A8)

The corresponding ensemble average over all possibleygedak
izations is:
(Ngi)e = Ngwi(1+ 8g,0). (A9)

Recalling the linear bias relation:
Sgi =D bi;0;,
J

we can then calculate with the above definitions the signdbta
correlation matrix:

(sid;) (0m,i0g,5) = ((Om,i0g ;) )™
(0,6 (02 jedm = wy by o (Sntidna,jo)n. (ALL)

5’

(A10)

We also have to calculate the data autocorrelation matrix:

NC, N,
) = 05050 = (5 - w) (52— oo
j g,i0g,j N, Ne J]e
NO,NC,
= NgNejpem (A12)
N

g

Here we need a model for the two-point number count stagistic
Note, that we can introduce here Poissonity:

(NgiNg Ve = (Ng.)e(Ng e + (Ngi)abi.

g7

(A13)

With the additional matter field ensemble average we get:

((Ng i)e(Ng j e = sziwj (1 + Z bik Z bj,z<5M,k5M,z>5>
3

l

(A14)
We can define the noise covariance matrix as:
1 (e} (e} (e} (e}
Nij = = {{(NgiNgj)s — (Ngi)e(Ng )e)m
Ng
1 o K Wi K
= r((N 7i> >M§i,' = :(517 (A15)
Nz g g J Ng J
The LSQ filter can be then written as:
(A16)

Fi ;= ij’ Z bjr 1 (OM,i0M,1) M
7 !

-1
W

X <wj/ E bj/,k E bj,k’<5M,k51\/I,k/>1\/ij+N_J5jl'$,j> .
k k’ g

The corresponding matrix notation of the LSQ filter yields:

-1
F— SR (RSRT + N) , (A7)
with S = (dmdl,)m andR = WB (see sectioi 411 for a defi-
nition of the bias operatdB). This data-space expression is equiv-
alent to the signal-space representation (for a demoitwstrate
appendix C in Kitaura & Enf3lin 2008):

-1
F— (s*1 + RTN’lR) RIN". (A18)

We conclude that the LSQ filter is the optimal linear filter and
Poisson noise assumption. We have shown that this filter cloes
neglect any signal to noise correlation.

APPENDIX B: LOGNORMAL PRIOR AND GAUSSIAN
LIKELIHOOD

For completeness we derive a nonlinear filter which assuntes a
normal prior and a Gaussian likelihood. Following Sheth96l)9
one could use the Wiener filter with a data transformation amd
ply it to recover non-Gaussian distributed fields. The peobin
such a model is that one requires a multiplicative noiseraption
of the form:

d; = b€+ ¢
In(d;) = In(1+6;)+In(e))
di = s;+ €i, (Bl)

for each celli, with d; = In(d}), s; = In(1 + ;) ande; = In(e;).
Note, that with such a data model one could easily apply thendfi
filter assuming that the signaland the noise are Gaussian dis-
tributed.

B1 Additive noise model

However, one may rather prefer a data model with an additisen
term as commonly used in the literature (see e.g. Zaroubl et a
1995;| Tegmark 1997). We define therefore a data model of the
form:

d=Ré +e, (B2)
including in the signal higher order terms:
d =exp(s) — T. (B3)

One can then assume the signal to be lognormal distributkthan
noise to be Gaussian distributed and signal-independent.

B2 Gaussian likelihood

Let us write the log-likelihood as:

InL —% (eTNfle—ln(det (N))) +ec. (B4)

Making the substitutior = d — Rd we get:

e'N"'e =d'N"'d + 6'"RIN"'RS — §'RIN"' —d'N"'RS.
(BS)
To find the maximum a posteriori solution we have to calcullage
derivative of the likelihood with respect to the signal

ol L dlnL; 96

Z dsk Z zl: 95 Osk (86)
From Eq[B3 we get:
o)
8?;1 = exp(si)éfk. (B7)
Assuming a signal independent noise yields:
dln L; _ _
(;;k =—> 8RN, n R+ Y diN;'Ri;. (B8
Jjlm gl
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Combining these results with the derivative of the logndrpmeor
(Eq.[19) leads to:

Z Sljjl,k (85 — 1) = (B9)

jlm gl

(Z (exp(sj) — T) Rj,lNlT"lLRm,k + Zdij’llRl,k> exp(sk)-

(© 0000 RAS, MNRASDOQ, 000-000
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