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ABSTRACT

We present a general expression for a lognormal filter given an arbitrary nonlinear galaxy
bias. We derive this filter as the maximum a posteriori solution assuming a lognormal prior
distribution for the matter field with a given mean field and modeling the observed galaxy dis-
tribution by a Poissonian process. We have performed a three–dimensional implementation
of this filter with a very efficient Newton–Krylov inversion scheme. Furthermore, we have
tested it with a dark matter N–body simulation assuming a unit galaxy bias relation and com-
pared the results with previous density field estimators like the inverse weighting scheme and
Wiener filtering. Our results show good agreement with the underlying dark matter field for
overdensities even aboveδ ∼ 1000 which exceeds by one order of magnitude the regime in
which the lognormal is expected to be valid. The reason is that for our filter the lognormal
assumption enters as a prior distribution function, but themaximum a posteriori solution is
also conditioned on the data. We find that the lognormal filteris superior to the previous filter-
ing schemes in terms of higher correlation coefficients and smaller Euclidean distances to the
underlying matter field. We also show how it is able to recoverthe positive tail of the matter
density field distribution for a unit bias relation down to scales of about>

∼
2 Mpc/h.

Key words: (cosmology:) large-scale structure of Universe – galaxies: clusters: general –
catalogues – galaxies: statistics

1 INTRODUCTION

The luminous matter we observe on the sky represents only a small
fraction of the total matter in the Universe and yet with a careful
treatment of the observational selection effects and the processes
of galaxy formation we can hope to extract valuable information
about the distribution of all matter from the distribution of lumi-
nous matter alone. The more precise the techniques for making this
connection are the better we will be able to test our theoriesfor the
history of the Universe.

In 1934 Hubble found that the distribution of galaxy counts in
cells on the sky is well fitted by a lognormal distribution (Hubble
1934). More recently, Wild et al. (2005) showed that this model is
valid at least down to gridding scales of about 10 Mpc for galax-
ies in the 2DF catalogue. As galaxies are good tracers of matter
on large cosmological scales the lognormal model should also ap-
ply to the matter field at least to some degree. Kitaura et al. (2009)
showed recently that the matter field reconstruction using (least
squares) Wiener filtering is very well fit by a lognormal distribu-

⋆ E-mail: kitaura@sissa.it, kitaura@mpa-garching.mpg.de

tion after smoothing the reconstruction with a Gaussian kernel of
radiusrS for 10 Mpc <∼ rS <∼ 30Mpc.

From a physical point of view, one would expect the density
field to be lognormally distributed after it has been smoothed on an
appropriate scale. This follows from assuming an initiallyGaussian
density and velocity field and extrapolating the continuityequation
for the matter flow into the nonlinear regime with the linear veloc-
ity fluctuations (see Coles & Jones 1991). Since the lognormal field
is not able to describe caustics, we expect this distribution to fail
below some threshold smoothing scale. Kayo et al. (2001) demon-
strated that the lognormal distribution is a good approximation up
to overdensties of aboutδ ∼100.

Shortly after the success of Wiener filtering in large–scale
structure reconstruction (see Zaroubi et al. 1995), which assumes
a Gaussian prior for the matter field, a reconstruction filterbased
on the lognormal prior distribution was proposed (see Sheth1995).
With such a filter nonlinearities in the density field should be better
recovered. In Sheth (1995) the Wiener filter was generalizedto be
applied to a lognormal distribution by a variable transformation. A
problem with this approach is that the noise covariance has acom-
plex form even for the simple Poisson likelihood assumptionand is
difficult to efficiently apply to realistic data–sets.
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2 Kitaura et al.

The idea of modeling the galaxies as Poisson–sampled
from a lognormal underlying field was first applied to data by
Saunders & Ballinger (2000). They proposed to use a filtering
scheme based on an expansion of the logarithm of the matter field
as a sum of harmonics. The density reconstruction using thistech-
nique as presented by Saunders et al. (2000) is fairly smoothand
nonlinear structures cannot be easily recognised. This could be due
to the sparse sampling of the PSCz catalogue which was used in
their study or to the truncation of the harmonic series.

As demonstrated in Kitaura & Enßlin (2008), the Poissonian
likelihood can be easily regularised by combining it with a prior
when estimating the maximum a posteriori. They showed this cal-
culation for Gaussian and entropic prior distribution functions.

The idea of using the full Poissonian likelihood without re-
maining at second order approximations using only the noiseco-
variance matrix is based on the Richardson–Lucy deconvolution al-
gorithm (see Richardson 1972; Lucy 1974). Shepp & Vardi (1982)
showed that this filter comes from the maximum likelihood esti-
mate of the Poissonian likelihood. Nusser & Haehnelt (1999)pro-
posed using this method to recover the density field from the Ly-
man alpha forest. The problem that arose here was that the algo-
rithm requires truncation as it assumes a flat prior for the matter
field and thus the deconvolution of the response operator is not
regularised. However, as Kitaura & Enßlin (2008) pointed out, this
kind of problem can be solved by introducing a prior. Enßlin et al.
(2008) proposed to calculate higher order corrections to obtain an
estimate for the mean of the posterior distribution by employing a
generating functional formalism with a Poissonian processon top
of a lognormal field for the galaxy distribution.

In this work we present a general expression for the Poisson–
lognormal filter given an arbitrary nonlinear galaxy bias. We derive
this filter as the maximum a posteriori solution assuming a log-
normal prior distribution for the matter field with a constant mean
field and modeling the observed galaxy distribution by a Poisso-
nian process. We have performed a three–dimensional implemen-
tation of this filter with a very efficient Newton–Krylov inversion
scheme extending theARGO computer code to perform nonlin-
ear inversions (see Kitaura & Enßlin 2008). Furthermore, wehave
tested it for a linear galaxy bias relation and compared the results
with other density field estimators commonly used in the litera-
ture (e.g. the inverse weighting scheme and the least squares (LSQ)
Wiener filter). The one–dimensional lognormal probabilitydistri-
bution is known to fit the matter distribution well up to overden-
sities of aboutδ ∼100 as found by Kayo et al. (2001). Our re-
sults show, however, good agreement for overdensities evenabove
δ ∼1000 which exceeds by one order of magnitude the expected
regime in which the lognormal is expected to be valid. The reason
for this apparent disagreement is that for the filter presented here
the lognormal assumption enters as a prior distribution function,
but the maximum a posteriori solution is also conditioned onthe
data. For the same reason Kitaura et al. (2009) obtained a highly
non–Gaussian distributed matter field after using LSQ–Wiener fil-
tering which according to the Bayesian formalism assumes a Gaus-
sian distribution. We find that the Poisson–lognormal filterhas a
range of applicability in recovering matter density fields down to
scales of about>∼2 Mpc/h. However, the matter statistics show that
the Poisson–lognormal filter fails to recover underdense regions
δ <∼ − 0.6 with very few data. In addition, we test the maximum a
posteriori assuming a Gaussian prior and found that it is notcapa-
ble of recovering the density field whenδ ≫ 1 and gives negative
densities in low density regions which makes this filter unreliable
for recovering densities ofδ <∼ 1.
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Figure 1. Two models of completenessw emulating apparent magnitude
limit effects (continuous curve:w1 and dashed curve:w2) dependent on
the distancer to the observer in Mpc/h.

Finally, we show in appendix A that the LSQ filter is the op-
timal linear filter under a Poisson noise assumption using upto
second order statistics and does not neglect any signal to noise cor-
relation, contrary to what has been assumed in the literature (see
for example Zaroubi et al. 1995; Seljak 1998; Erdoğdu et al.2004;
Kitaura & Enßlin 2008). We also derive in appendix B a filter with a
lognormal model for the underlying signal and an additive, signal–
independent and Gaussian distributed noise which could be of in-
terested in other fields of astronomy.

The paper is structured as follows. In section 2 we present the
Bayesian approach used in this work. After defining the likelihood
for the galaxy sample and the prior distributions for the matter field
we calculate the maximum a posteriori (MAP) estimates for the un-
derlying density field. Then the numerical scheme is presented in
section 3 which permits us to solve the MAP estimates. We then
present in section 4 a series of numerical experiments whichshow
the performance of the different density estimators. Finally, we dis-
cuss our results.

2 BAYESIAN APPROACH

A Bayesian approach requires the definition of a likelihood and a
prior. A full Bayesian analysis would require the complete char-
acterization of the posterior distribution using samplingschemes
(see e.g. Wandelt et al. 2004). We leave such an approach for a
forthcoming publication and restrict ourselves here to calculate the
extrema which leads to the maximum a posteriori expressions. This
permits us to get a fast estimate of the density field. In this work,
we consider a Poissonian likelihood for the observed distribution
of galaxies and combine it with a Gaussian and a lognormal prior
distribution for the overdensity field. In the next subsections these
distribution functions are presented and the calculation of the dif-
ferent MAP–estimators are shown in detail.

2.1 Poissonian likelihood

The likelihood represents the observation process which leads to
the data. It is the probability distribution function that describes
the nature of the observable. In this case we look for a model that

c© 0000 RAS, MNRAS000, 000–000
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accounts for the discrete nature of a galaxy distribution, the so–
called shot noise. This kind of noise is traditionally modeled by
a Poissonian distribution (see for example Peebles 1980a).Such a
model assumes that each cell of the Universe in which we count
some number of galaxies (maybe according to a certain luminos-
ity type) is statistically independent from each other. However, the
variance of counts in cells including a correlation term predicts
the non–Poissonian character of the distribution of galaxies (see
Peebles 1980a). Hierarchical structure formation models assume
that galaxies form inside dark matter halos via the energy dissipa-
tion by baryons (see e. g. White & Rees 1978). Somerville et al.
(2001) showed based on numerical N–body simulations that inre-
gions of lower than average overdensity, the scatter in the halo bias-
ing (the relation between the dark matter halos and the underlying
dark matter distribution) is generally smaller than the mean Poisson
shot noise, and in overdense regions it is larger (for a review on the
halo model see Cooray & Sheth 2002). Mo & White (1996) already
pointed out that halo–exclusion can cause sub–Poisson variance.
Casas-Miranda et al. (2002) demonstrated with higher resolved N–
body simulations that the galaxy biasing process, as well asthe
halo biasing process, is not only determined by the local value of
the mass density field, but also by other local quantities, such as
clumpiness, and by non–local properties, such as the large–scale
tidal field. Accounting for all these effects is out of scope of this
work, but should certainly be further investigated.

Here, we will restrict ourselves to a model in which the ob-
served distribution of galaxies is given by an inhomogeneous Pois-
son realization of a continuous density field. We define the likeli-
hood function as (see Peebles 1980b):

L(〈N o
g〉g|N

o
g) = ΠNcells

i=1 exp
ˆ

−〈No
g,i〉g

˜ 〈No
g,i〉

No
g,i

g

No
g,i!

, (1)

with No
g,i denoting the number count of observed galaxies in cell

i, and Ncells being the total number of cells. Here〈{ }〉g ≡
〈{ }〉(No

g |λo) ≡
P∞

No
g=0 PPois(N

o
g | wλ){ } denotes an ensemble

average over the Poissonian distribution with the expectednum-
ber of galaxy counts given by the Poissonian ensemble average:
λo ≡ wλ ≡ 〈No

g 〉g. The expected number count is related to the
underlying continuous galaxy overdensity fieldδg,i through:

〈No
g,i〉g ≡ Ngwi(1 + δg,i), (2)

whereNg is the mean number count of galaxies andwi the com-
pleteness at celli. The logarithm of the likelihood can be written
as:

lnLi = −Ngwi(1+δg,i)+No
g,i ln(Ngwi(1+δg,i))− ln(No

g,i!).
(3)

2.2 Gaussian prior

The prior probability distribution function describes thestatistical
nature of the signal one wants to infer from the observed data.
Here the physical model of the underlying matter field comes
in. As inflationary scenarios predict a close to Gaussian distribu-
tion function for the initial density fluctuations (see Guth1981;
Guth & Pi 1982; Starobinsky 1982; Hawking 1982; Linde 1982;
Albrecht & Steinhardt 1982; Bardeen et al. 1983) and linear theory
preserves this property throughout cosmic evolution it is reasonable
to assume a Gaussian prior to model the large–scale matter field.
Note, however, that this can only be true for|δ| ≪ 1 since oth-
erwise the Gaussian distribution predicts unphysical negative den-
sities. Here we follow Bardeen et al. (1986) to describe the prior

probability distribution of the density field by a multivariate Gaus-
sian distribution function:

P(δM|p) =
1

p

(2π)Ncells det(S)
exp

»

−
1

2
δ
†
MS−1

δM

–

, (4)

with p being the set of cosmological parameters which determine
the autocorrelation matrixS and δM is the overdensity in mass.
The application of the autocorrelation matrixS to a vectorx is a
convolution of the form:Sx ≡ S(r) ◦ x(r) (with r being the cell
coordinates in configuration space of the boxr = {iX , iY , iZ} and
with ”◦” denoting the convolution operation).

Note that the Fourier transform of the autocorrelation matrix S
is equal to the power spectrum:ˆ̂S(k, k′) ≡ (2π)3P (k′)δD(k−k′)
(using the same Fourier definitions as in Kitaura & Enßlin 2008).
The logarithm of the prior distribution function can be written as:

lnP(δM|p) = −
1

2
δ
†
MS−1

δM + c, (5)

with c being the logarithm of the normalization.
The posterior distribution functionP is proportional to the

product of the priorP and the likelihoodL. To find the maximum
a posteriori (MAP) we need to calculate the extremum. Performing
the derivative of the posterior with respect to the matter overdensity
field δM yields:

∂ lnP

∂δM
∝

∂ lnP

∂δM
+

∂ lnL

∂δM
= 0. (6)

The derivative of the prior leads to:

∂ lnP

∂δM
= −S−1

δM. (7)

Since the likelihood is expressed as a function of the galaxydensity
field, we need to define the bias between the galaxy and matter
fields.

2.2.1 Linear bias

As a particular case, let us consider a linear bias function given by:

δg,i =
X

j

bi,jδM,j , (8)

which relates the corresponding power spectra in the following
way: b̂(k) =

p

Pg(k)/PM(k), with Pg(k) being the galaxy
power–spectrum andPM(k) being the matter power–spectrum.

The derivative of the likelihood with respect to the matter
overdensity fields is then given by:

X

i

∂ lnLi

∂δM,k

=
X

i

bi,k

»

−Ngwi +
No

g,i

1 +
P

l
bi,lδM,l

–

. (9)

Adding this result to the prior term Eq. (7) we obtain the MAP
equation:

δG
M,i =

X

j

Si,j

X

l

bl,j

 

No
g,l

1 +
P

k
bl,kδG

M,k

− Ngwl

!

, (10)

with the superscriptG standing for the Gaussian prior assumption.

2.2.2 Unity bias

Let us consider the special case when the matter field is equalto a
continuousgalaxy field:

δg,i = δM,i, (11)
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then the MAP equation reads:

δG
M,i =

X

j

Si,j

 

No
g,j

1 + δG
M,j

− Ngwj

!

. (12)

2.3 Lognormal prior

Here we introduce the lognormal prior distribution as proposed by
Coles & Jones (1991):

P(s|p) =
1

p

(2π)Ncells det(SL)
exp

»

−
1

2
(s − µ)†S−1

L (s − µ)

–

,

(13)
with s being the logarithm of the weighted matter density:

si ≡ log(1 + δMi), (14)

andSL the corresponding autocorrelation matrix. Note that the log-
normal autocorrelation functionSL applied to a vectorx is again a
convolution:SLx ≡ SL(r)◦x(r). The transformation of the corre-
lation function corresponding to the overdensity field to the signal
s is given by:

SL(r) ≡ log(1 + S(r)). (15)

The mean fieldµ is taken to be:

µi ≡ −σ2
0/2, (16)

with σ2
0 ≡ SL(0) as used by Kayo et al. (2001) to ensure an

overdensity field with zero mean1 (for a formal derivation see
Coles & Jones 1991). The logarithm of the prior distributionyields:

lnP(s|p) = −
1

2
(s − µ)†S−1

L (s − µ) + c, (17)

with c being some constant term. In this case, we look for the ex-
tremum with respect to the signals:

∂ ln P

∂s
=

∂ lnP

∂s
+

∂ lnL

∂s
= 0. (18)

The derivative of the prior has now an additional term due to the
mean–fieldµ:

∂ lnP

∂s
= −S−1

L (s − µ) . (19)

Now we need to relate the galaxy field to the matter field in or-
der to express the likelihood as a function of the signal statistically
defined through the prior distribution function.

2.4 General nonlinear bias

Let us consider here a general nonlinear relation between the galaxy
field and the matter field.

δg,i = B(δM)i, (20)

The derivative of the likelihood with respect to the signals which
we want to recover can be written as:
X

i

∂ lnLi

∂sk

=
X

i

X

l

∂ lnLi

∂ ln(1 + δg,l)

∂ ln(1 + δg,l)

∂ ln(1 + δM,k)
. (21)

The derivative of the likelihood with respect to the logarithm of the
normalized galaxy fieldln(1 + δg,l) yields:

∂ lnLi

∂ ln(1 + δg,l)
=
`

No
g,i − Ngwi (1 + B(δM)i)

´

δK
i,l. (22)

1 Here generalized to a multivariate lognormal distribution.

The factor relating the galaxy field to the matter field yields:

∂ ln(1 + δg,l)

∂ ln(1 + δM,k)
=

∂ ln(1 + B
“

exp(s) −~1
”

l
)

∂sk

=
∂B(δM)l

∂δM,k

(1 + δM,k)

1 + B(δM)l

. (23)

The final result for the derivative of the likelihood with respect to
the logarithm of the normalized matter fields assuming a general
nonlinear bias is given by:

X

i

∂ lnLi

∂sk

= (24)

X

i

∂B (δM)
i

∂δM,k

(1 + δM,k)

1 + B(δM)i

`

−Ngwi (1 + B(δM)i) + No
g,i

´

.

Combining this result with the prior term (Eq. 19) we obtain the
MAP equation:
X

j

S−1
Li,j

“

ln(1 + δL
M,j) − µj

”

= (25)

X

l

∂B
`

δL
M

´

l

∂δL
M,i

(1 + δL
M,i)

1 + B(δL
M)l

×
“

No
g,l − Ngwl

“

1 + B(δL
M)l

”””

,

with the superscriptL standing for the lognormal prior.

2.4.1 Linear bias

For the linear bias case the derivative of the likelihood reduces to
the following expression:

X

i

∂ lnLi

∂sk

=
X

i

bi,k(1 + δM,k)

1 +
P

l′
bi,l′δM,l′

(26)

×

 

−Ngwi

 

1 +
X

j

bi,jδM,j

!

+ No
g,i

!

.

Accordingly, the MAP equation reads:
X

j

S−1
Li,j

“

ln
“

1 + δL
M,j

”

− µj

”

= (27)

X

k

bk,i(1 + δL
M,k)

1 +
P

l′
bk,l′δ

L
M,l′

 

No
g,k − Ngwk

 

1 +
X

l

bk,lδ
L
M,l

!!

.

2.4.2 Unity bias

For an unity bias the derivative of the likelihood reduces to:

δg,i = δM,i. (28)

Then, the derivative of the likelihood reduces to:
X

i

∂ lnLi

∂sk

= −Ngwk exp (sk) + No
g,k, (29)

and the MAP equation reads:
X

j

S−1
Li,j (sj − µj) = No

g,i − Ngwi exp(si). (30)

Using the definitions:Ngwj exp(sj) = Ngwj(1+ δg,i) = 〈No
g 〉g

andǫoj ≡ No − 〈No
g 〉g we can rewrite the MAP equation as:
X

j

S−1
Li,j (sj − µj) = ǫoi , (31)

c© 0000 RAS, MNRAS000, 000–000



Poisson–Lognormal Reconstruction5

2563

δM

δ g
2563

δM

δ g

Figure 2. Cell-to-cell overdensity correlation between the mock galaxy sample and the matter field based on the Millenium run (Springel et al. 2005). On the
left: mock galaxy catalogue by De Lucia & Blaizot (2007). On the right: Poisson sample over the matter field with a constantcompleteness of10−4 . Also
given are the correlation coefficientr and Euclidean distance to the underlying matter field DEuc.

The signals is thus given by the propagation of the noiseǫo given
the correlationSL up to a shift due to the meanµ. Expressing it as
a function of the matter overdensity-field we obtain:
X

j

S−1
Li,j

“

ln
“

1 + δL
M,j

”

− µj

”

=
“

No
g,i − Ngwi(1 + δL

M,i)
”

.

(32)

3 NUMERICAL APPROACH

The problem we are studying here requires the solution of a nonlin-
ear system of2563 (about17 · 106) coupled equations. Note, that
each cell introduces an equation. Thus, to find the MAP solution
(Eqns. 12 and 26) we apply an operator based iterative inversion
scheme as proposed in Kitaura & Enßlin (2008) which reduces the
most expensive operations to FFTs. In particular, we use a nonlin-
ear Newton–Krylov scheme which is briefly presented in the next
subsections (for a reference see e.g. Kitaura & Enßlin 2008).

3.1 Method

Let us write a system of nonlinear equations as:A(x) = f , with A

being the nonlinear operator dependent onx andf some constant
vector. We then define the gradient of the quadratic approximation
as:

∇Q(x) ≡ A(x) − f . (33)

The corresponding Hessian matrix is then given by the second
derivative of the gradient ofQ:

H ≡ ∇∇Q(x). (34)

The basic Newton–Raphson solver scheme is given by:

x
j+1 = x

j −
“

Hj
”−1

∇Q(xj). (35)

This scheme turns out to be extremely inefficient. Therefore, we
implement a Krylov step in which the solution is updated in the
following way:

x
j+1 = x

j + τ jξj , (36)

with the stepsizeτ given by (for a derivation see Kitaura & Enßlin
2008):

τ j = −
ξj†∇Q(xj)

ξj†Hjξj
. (37)

and ξ being the searching vector (for schemes to calculateξ see
Kitaura & Enßlin 2008). In the next subsections we give the par-
ticular expressions for the quantities required to calculate the MAP
given a Gaussian prior first and finally given a lognormal prior.

3.1.1 Gaussian prior

Rewriting Eqn. 12 as:

δ
G
M − Sdiag(1 + δ

G
M)−1

N
o
g = NgSwg. (38)

We can identifyA(s) = δG
M − Sdiag(1 + δG

M)−1N o
g andf =

NgSwg. The corresponding gradient of the quadratic form is given
by:

∇Q(s) = δ
G
M − S

“

diag(1 + δ
G
M)−1

N
o
g − Ngwg

”

, (39)

and the Hessian yields:

H = 1+ Sdiag(1 + δ
G
M)−2

N
o
g. (40)

3.1.2 Lognormal prior

We formulate Eq. 32 in an analogous way to the previous subsec-
tion as:

S−1
L (s − µ) + diag

`

Ngwg

´

exp(s) = N
o
g, (41)

with A(s) = S−1
L (s − µ) + diag

`

Ngwg

´

exp(s) andf = N o
g.

Thus, the gradient of the quadratic form is given by:

∇Q(s) = S−1
L (s − µ) + diag

`

Ngwg

´

exp(s) − N
o
g, (42)

and the corresponding Hessian matrix reads:

H = S−1
L + diag

`

Ngwg

´

diag (exp(s)) . (43)
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LIKELIHOODS
Gaussian Poissonian

PRIORS

Flat (a) δIW
g,i =

No
g,i

wiNg
− 1

Gaussian δ
LSQ
M,i

=
P

j

“

S−1
i,j + wjNgδK

i,j

”−1
Ngδo

g,j δG
M,i

=
P

j Si,j

„

No
g,j

1+δG
M,j

− Ngwj

«

Lognormal (b)
P

j S−1
Li,j

“

ln
“

1 + δL
M,j

”

− µj

”

= No
g,i − Ngwi(1 + δL

M,i)

Table 1. Filters which are used in this work classified by the assumed likelihood and prior (with the exception of (a) and (b)). Note, that the bias has been set
to one. (a) COBE-filter used in CMB mapping (see Janssen & Gulkis 1992). (b) for a derivation of this filter see appendix B.

4 NUMERICAL EXPERIMENTS

In this section we investigate the performance of the Poisson–
lognormal filter. We construct the mock observed galaxy distribu-
tions by making a Poisson sample over the dark matter particles
of the Millennium run according to different completeness models
(see subsection 4.2). This permits us to avoid the galaxy biasing
and redshift distortions problems in our tests.

We also test the Poisson–lognormal filter against other filters.
We make a comparison to the MAP with a Gaussian prior assump-
tion, to the inverse weighted data, and to the LSQ–Wiener filter
(see section below 4.1.1). For an overview of the filters usedin this
work see table 1.

Finally, we test the quality of the reconstruction by making
a cell–to–cell comparison to the underlying matter field which is
assumed to be given by the dark matter distribution of the Millen-
nium run at redshift zero (see Springel et al. 2005). In addition, we
study the matter density statistics of the dark matter field and the
reconstructions.

4.1 Quality validation of the density reconstruction

In order to show the performance of the Poisson–lognormal fil-
ter we compare the results with two other estimates of the density
field. We follow Kitaura & Enßlin (2008) and Kitaura et al. (2009)
in quantitatively measuring the quality of the reconstructions.

4.1.1 Alternative density field estimators: Inverse weighting and
LSQ–Wiener filtering

Let us first introduce a representation of the data which tries to
compensate for the selection function effect which we call inverse
weighting (IW). We define the inverse weighted galaxy number
count per celli as:

N IW
g,i ≡

1

wi

No
g,i. (44)

The corresponding inverse weighted overdensity is calculated as
follows:

δIW
g,i ≡

N IW
g,i

Ng

− 1. (45)

Note that the inverse weighting scheme can be derived as the max-
imum likelihood estimator assuming a Poissonian likelihood (for
a derivation see Kitaura et al. 2009). As discussed in Kitaura et al.
(2009) IW boosts the estimated density field at low completeness.
Therefore it includes in general an additional smoothing step which
lessons this effect (see e.g. Erdoğdu et al. 2004).

For an additional comparison let us introduce the least squares

version of the Wiener filter (or LSQ filter for short) given by
Kitaura et al. (see 2009):

δ
LSQ
M ≡ B−1

“

S−1 + W†N−1W
”−1

W†N−1
δ

o
g, (46)

with W being the three dimensional mask operator defined by:
Wi,j ≡ wjδ

K
i,j (δK

i,j is the Kroenecker delta), and the Fourier trans-

form of B given by: ˆ̂
Bk,k′ ≡ bk′δK

k,k′ as introduced in subsection
2.4.1. We define the observed galaxy overdensity which we useas
the input vector for the LSQ reconstruction by:

δo
g,i ≡

No
g,i

Ng

− wi. (47)

The noise term in Eq. 46 has the following form (see Kitaura etal.
2009):

Ni,j ≡
wi

Ng

δK
i,j . (48)

Note that the LSQ–Wiener filter is the optimal linear filter using
up to second order statistics even for the Poisson–noise assumption
for which the noise is signal dependent. There is not an additional
assumption or approximation by neglecting the signal to noise cor-
relation. This point has been unclear in the literature (seefor ex-
ample Zaroubi et al. 1995; Seljak 1998; Erdoğdu et al. 2004). We
show that the signal and the noise are indeed uncorrelated inthe
appendix. The LSQ–Wiener filter also happens to be the MAP fil-
ter for a Gaussian likelihood and a Gaussian prior as indicated in
table 1.

In our numerical experiments we use a unity bias:bk = 1.
Thus, the Fourier transform ofS yields: Pg(k) = PM(k). The
power–spectrumPM(k) is given by a nonlinear fit that also de-
scribes the effects of virialised structures with a halo term as given
by Smith et al. (2003) at redshiftz = 0. We choose the con-
cordanceΛCDM–cosmology withΩm = 0.24, ΩK = 0 and
ΩΛ = 0.76 (Spergel et al. 2007). In addition, we assumed a Hubble
constant withh = 73 and a spectral indexns = 1.

4.1.2 Quantitative measures

Let us define the correlation coefficientr between the reconstructed
and original matter density fields by:

r(δrec, δM) ≡

PNcells
i

δM,iδ
rec
i

q

PNcells
i

(δM,i)
2
q

PNcells
j

`

δrec
j

´2
, (49)

and the Euclidean distance

DEuc(δ
rec, δM) ≡

v

u

u

t

1

Ncells

Ncells
X

i

(δrec
i − δM,i))

2. (50)
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Figure 3. Reconstruction assuming a Gaussian prior. Left panel: meanover 15 neighboring slices around Y∼ 176 Mpc through a 500 Mpc cube box with a
2563 grid without smoothing. Right panel: cell–to–cell correlation between the overdensity of the full three–dimensionalreconstruction and the matter field.

4.2 Input data setup

We construct the mock observed galaxy distribution taking aran-
dom subsample of the particles in the Millennium run at redshift
zero (see Springel et al. 2005) which was gridded on a2563 mesh.
Later we also investigate the resolution dependence using a1283,
and a643 mesh. As already stated above, our setup permits us to
avoid the galaxy biasing problem in our tests. Note, that we also
avoid the redshift distortions by considering the dark matter par-
ticles in real–space. In this way we generate three different input
mock galaxy catalogues. One has about 1 Million particles and has
been produced as a Poisson sampling with a homogeneous com-
pleteness ofw = 10−4. The other two mocks were generated with
a radial selection function using two exponential decayingmodels
of completenessw (see Fig. 1) emulating apparent magnitude limit
effects (see radial selection function in Kitaura et al. 2009). The
final mock galaxy samples have 350961 and 123679 particles us-
ing the softer and steeper decaying selection functions respectively.
The observer was set at the center of the box, i.e. at coordinates:
X=250 Mpc/h, Y=250 Mpc/h, and Z=250 Mpc/h.

The left panel on Fig. 2 shows a cell–to–cell comparison be-
tween the dark matter distribution of the Millennium run (∼ 1010

particles) gridded on a2563 mesh and a subsample of 1 Million
homogeneously selected mock galaxies of the De Lucia & Blaizot
(2007) catalogue. One can clearly see a deviation of the pixels with
respect to the perfect slope of45◦. This effect is due to galaxy bias-
ing. The right panel shows the analougous comparison with a Pois-
son sampling using a homogeneous completeness ofw = 10−4

which leaves about 1 Million particles. Here, we see a nearlyper-
fect scatter around the45◦ slope demonstrating that our mocks do
not include biasing.

4.3 MAP results

Here we calculate the maximum a posteriori solutions which we
derived in the previous theoretical sections. There we assumed two
different prior distributions for the matter field: a Gaussian and a
lognormal prior.

4.3.1 Gaussian prior and Poissonian likelihood

In this subsection we present the results given by the maximum
a posteriori solution assuming a Gaussian prior and a Poissonian
likelihood. The solution of Eqn. 12 leads to a matter field which
dramatically underestimates large overdensities (see Fig. 3). This
shows that the Gaussian prior cannot fit the underlying matter field
which has a clearly non–Gaussian distribution with a minimum
overdensity of∼ −1 up to maximal overdensities of about 1500 at
the resolution we are looking at (∼ 2 Mpc/h cell side length). The
density peaks are highly suppressed with a Gaussian prior. This ef-
fect is known from the Wiener filter as traditionally appliedwhere
the noise covariance is dependent on the signal (see discussion in
Kitaura et al. 2009). Note, that the filter we are using here isa more
accurate being based on the full Poissonian distribution and not
only on the second order term as in the Wiener filter.

4.3.2 Lognormal prior and Poissonian likelihood

Here we present the results of the maximum a posteriori solution
assuming a lognormal prior and a Poissonian likelihood. Forthat
we solve the MAP Eqn. 32.

We show in Fig. 4 the performance of the Poisson–lognormal
filter with a homogeneous completeness. Panel a in Fig. 4 shows
a slice through the matter distribution from the Millenniumrun.
Panel b shows the mock galaxy sample. Panels c and d show the
Poisson–lognormal filter and the LSQ filter reconstruction respec-
tively. The performance depicted in cell–to–cell correlation plots
shown in panels e and f demonstrate the superior behaviour ofthe
Poisson–lognormal filter reconstruction in terms of highercorre-
lation, smaller Euclidean distances and better alignment along the
perfect correlation slope. The Poisson–lognormal filter recovers the
density field up to overdensities above 1500 whereas the LSQ filter
tends to underestimate the density field.

We study the inhomogeneous completeness effects by select-
ing dark matter particle subsamples with two different radial se-
lection functions depicted in Fig. 1. In the upper panel of Fig. 5,
the inverse weighting scheme is shown to overestimate the density
at low completeness (at the borders and corners of the cube).This
is in agreement with tests performed by Kitaura et al. (2009). The
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Figure 4. Panel a: slice through the Millenium run dark matter particle simulation. Panel b: mock galaxy distribution with106 particles. Panel c: reconstruction
with the lognormal filter. Panel d: reconstruction with the LSQ-Wiener filter. Panel e: cell–to–cell correlation between the overdensity of the full three–
dimensional reconstruction with the Lognormal filter (panel c) and the matter field (panel a). Panel f: cell–to–cell correlation between the full three–dimensional
overdensity of the reconstruction with the LSQ-Wiener filter (panel d) and the matter field (panel a). The cell–to–cell correlation between the mock galaxy
distribution (panel b) and the dark matter distribution canbe seen on the right panel of Fig. 2. The plots were produced bycalculating the mean over 15
neighboring slices around slice 218 (Y∼ 176 Mpc/h) through a 500 Mpc/h cube box with a2563 grid.
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filter reconstruction. Panels e: Lognormal filter reconstruction. The plots were produced by calculating the mean over 15 neighboring slices around slice 218
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Figure 6. The same as Fig. 5 corresponding to the radial selection function w2 with a mock galaxy distribution of 123679 particles.
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Figure 7. Matter field reconstructions with the lognormal filter on a grid mesh with1283 and643 cells for a uniform selection using about106 mock galaxies.
Panel a: mean over 9 slices through the reconstruction on a mesh with1283 cells around slice 109 (Y ∼ 179 Mpc/h). Panel b: mean over 5 slices through
the reconstruction on a mesh with643 cells around slice 55 (Y ∼ 179 Mpc/h). Panels c and d show the cell–to–cell statistics corresponding to the full
reconstructions shown in panels a and b, respectively.

LSQ filter, on the other hand, smooths the density more strongly
in at low completeness regions and leads to a significantly lower
Euclidean distance. The correlation coefficient is lower since the
LSQ filtering suppresses the signal and gives a smooth version of
the density field which is valid on larger scales (see panels cand d
of Fig. 5), but does not reproduce small-scale features. Thelower
panels show the results coming from the Poisson–lognormal filter
reconstruction. The density at low completeness is suppressed to
zero due to the mean field used for this calculation (see Eq. 16). In
regions of very low completeness the filter tends to favor themean
density. The statistical correlation shows to be clearly superior to
the previous cases and the Euclidean distance with respect to the
underlying matter field is far smaller (see panel f). The cell–to–cell
correlation plot shows a scatter around the45 slope and reproduces
even the highest overdensities like the one at∼1600 which can also
be seen in panel b. We perform the analogous study with the steeper
radial selection function (see Fig. 1). The results are shown in Fig. 6
and are consistent with the previously discussed ones.

We perform the same study for two more resolutions: a mesh
with 1283 cells and a mesh with643 cells for the same comov-

ing box. First we grid the dark matter field coming from the Mil-
lenium run on the lower resolution mesh and then we apply the
radial selectionw(r) using w = 10−4, w(r) = w1(r) and
w(r) = w2(r). The results of the Poisson–lognormal filter recon-
structions are shown in Figs. 7 and 8. We see a clear tendency to
better recover the underlying matter field when using a lowerreso-
lution (compare Fig. 4 with Fig. 7 and Figs. 5, 6 with Fig. 8).

4.3.3 Matter statistics

Finally, we calculate the matter statistics and the corresponding
skewness and kurtosis for the dark matter field and the lognormal
reconstructions corresponding to the incomplete mocks with selec-
tion functionsw1 andw2 (for particular expressions to calculate
the matter statistics, the skewness and the kurosis see Kitaura et al.
2009). The matter statistics represented in Fig. 9 shows consistent
results for different grid resolutions (compare left, middle and right
panels). After convolving the matter fields with a Gaussian kernel
using a smoothing radius of 10 Mpc/h the matter distributionap-
pears to be closely lognormal distributed for all resolutions (see
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Figure 9. Matter statistics for the dark matter field from the Millenium run (black curve, red error bars) using about∼ 1010 particles and the corresponding
reconstructions using the selected mocks with radial completenessw1 (dashed curve, green error bars) andw2 (dashed–dotted curve, cyan error bars) having
about∼ 105 particles for different resolutions (2563: left panels,1283: middle panels and643: right panels). Upper panels (a, b and c): without smoothing.
Lower panels: after convolution with a Gaussian kernel withsmoothing radii of 5 Mpc/h (panels d, e and f) and 10 Mpc/h (panels g, h and i). The number of
cells was counted for a logarithmic density binning of 0.2 inln(1 + δM) for all cases except for panel a for which a binning of 0.4 was used. Also skewness
(s, s1 ands2) and kurtosis (k, k1 andk2) in ln(1 + δM) are shown corresponding to the matter field, the reconstructions for the casew1 and the casew2,
respectively. The error bars are given by the shot noise caused by the number counts of cells in each density bin without taking into account the uncertainties
introduced by the completeness or the reconstruction method itself.

panels at the bottom). The skewness (s, s1 ands2) and the kurtosis
(k, k1 andk2) show some deviation from zero particularly in the
reconstructed fields (skewness and kurtosis without subindex corre-
spond to the dark matter field, with the subindex ”1” to the selected
sample withw1 and with the subindex ”2” to the selected sample
with w2). However, their values are small which means that the
distributions are not especially peaked or have significantly longer
tails with respect to the lognormal distribution. This result is con-
sistent with observations (Kitaura et al. 2009) where for a similar
smoothing radius the matter field obtained from the Sloan Digital

Sky survey (data release 6) was found to be close to lognormaldis-
tributed. When convolving with a Gaussian kernel with a 5 Mpc/h
smoothing radius (panels d, e and f) the distribution shows atail
towards larger densities with higher skewness and kurtosisthan for
the panels at the bottom which cannot be attributed to the uncer-
tainty at the high densities shown by the large error bars caused by
the low number counts in that regime. This deviation from thelog-
normal distribution is even better demonstrated in the upper panels
which show the matter statistics without any additional smoothing.
The results show that the multivariate lognormal prior distribution
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does not impose a lognormal matter field statistics to the recovered
density field. Here the prior is subdominant with respect to the data
similarly to the case of the LSQ–Wiener reconstruction which can
lead to non–Gaussian statistics even though it is based on a Gaus-
sian prior (see Kitaura et al. 2009).

However, we also observe several effects causing a deviation
in the reconstructed fields from thetrue matter field statistics. The
reconstructions tend to overestimate the number of cells around the
mean density (see the peaks of the distribution in the upper pan-
els of Fig. 9). This trend is more acute for the stronger sampled
mock for whichw2 was used. This can be seen by comparing the
dashed–dotted curves with the dashed curves and the kurtosis k1

with k2 (k2 is always larger thank1). We also observe that the re-
constructions underestimate the number of cells in the extremely
underdense regions (δ <∼ − 0.6). In addition, we investigated the
statistics of the reconstructed fields based on the homogeneously
sampled mock data usingw = 10−4 and found that the densities
are distributed in a very similar way to the reconstructed matter
fields withw1. These effects are caused by the conservative char-
acter of the reconstruction method. The maximum a posteriori solu-
tion leads to a stronger smoothing in the undersampled low–density
regions and produces a larger number of cells with densitiescloser
to the mean.

5 CONCLUSIONS

In this work we have presented a general expression for the
Poisson–lognormal filter given an arbitrary nonlinear galaxy bias.
We derived this filter as the maximum a posteriori solution assum-
ing a lognormal prior distribution for the matter field with acon-
stant mean field and modeling the observed galaxy distribution by
a Poissonian process (see Eq. 26).

We have performed a three–dimensional implementation of
this filter with a very efficient Newton–Krylov inversion scheme
(see section 3). Furthermore, we have tested it for a linear galaxy
bias relation and compared the results with other density field esti-
mators commonly used in the literature (e.g. the inverse weighting
scheme and the least squares (LSQ) Wiener filter (see section4)).

We also found that the solution of Eqn. 12, assuming a Gaus-
sian prior distribution for the matter field, leads to a reconstruc-
tion which clearly underestimates large overdensities (see Fig. 3).
This shows that the Gaussian prior cannot fit the underlying matter
field which has a clearly non–Gaussian distribution with a mini-
mum overdensity ofδ ∼ −1 up to maximal overdensities of about
δ ∼ 1700 for a resolution of∼ 2 Mpc/h. The density peaks are
highly suppressed with the Gaussian prior. This effect is known
from the Wiener filter as traditionally applied in which the noise co-
variance is dependent on the signal (see discussion in Kitaura et al.
2009).

However, we have seen that even the LSQ–Wiener filter fails
for high overdensities (δM >∼ 100). We showed in appendix A
that the LSQ–filter is the optimal linear filter under a Poisson
noise assumption and does not neglect any signal to noise corre-
lation, contrary to what has been assumed in literature (seefor
example Zaroubi et al. 1995; Seljak 1998; Erdoğdu et al. 2004;
Kitaura & Enßlin 2008). The LSQ filter is the optimal linear fil-
ter only up to second order statistics and thus is less well suited
to distributions with high skewness or long tails such as thelog-
normal distribution. Another reason for the inferior performance of
the LSQ–filter with respect to the Poisson–lognormal filter is its

linearity. Note, that the relation at overdensitiesδ ≫ 1 is highly
nonlinear.

The one–dimensional lognormal probability distribution is
known to fit well the matter distribution up to overdensitiesof about
δ ∼100 as found by Kayo et al. (2001). Our results show, however,
good agreement for overdensities even aboveδ ∼1000 which ex-
ceeds by one order of magnitude the regime in which the lognor-
mal is expected to be valid. This is because in our filter the log-
normal assumption enters as a prior distribution function,but the
maximum a posteriori solution is also conditioned on the data. In a
similar way Kitaura et al. (2009) was able to recover a highlynon–
Gaussian distributed matter field from the SDSS dr6 after using
LSQ–Wiener filtering which according to the Bayesian formalism
assumes a Gaussian distribution. Assuming that the galaxy bias is
known we find that the Poisson–lognormal filter is able to recover
the matter density fields down to scales of about>∼ 2 Mpc/h. How-
ever, our study of the matter statistics comparing the dark matter
with the reconstructed fields shows that the Poisson–lognormal fil-
ter fails to recover underdense regions forδ <∼ −0.6. At lower den-
sities the recovered field is smoothed out due to the conservative
maximum a posteriori solution.

Our work shows a great improvement with respect to previous
filters in recovering the matter density field from a point source dis-
tribution. Still much work has to be done to further analyse the sta-
tistical properties of the cosmological structure. Nevertheless, the
nonlinear reconstruction method derived in this work couldbe of
great interest for large scale structure density field reconstructions
taking a galaxy distribution or even some other observableslike the
Lyman alpha forest.
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APPENDIX A: THE LSQ FILTER

Here we show a derivation of the LSQ filter which does not require
a data degradation model with an additive noise term. Let us adopt
here the usual notation for the data:d ≡ δo

g. The data vector is
accordingly defined by:

d ≡
N o

g

Ng

− W~1, (A1)

for a definition of the mask operatorW see section 4.1.1. We define
here the signal vectors as the matter overdensity field:s ≡ δM. In
the linear approximation we try to find a filterF which applied to
the datad gives an estimate of the signals of the form:

〈s〉LSQ ≡ Fd. (A2)

This filter should minimize the following quantity in the least
squares approach (see Wiener 1949; Rybicki & Press 1992;
Zaroubi et al. 1995):

A ≡ 〈(Fd − s)2〉

= F〈dd
†〉F† − F〈ds

†〉 − 〈sd
†〉F† + 〈ss

†〉. (A3)

As Kitaura & Enßlin (2008) pointed out it is important to note
that the ensemble average〈{ }〉 goes over the galaxy and matter
field realizations and the filter is thus different from the Wiener
filter as derived in a Bayesian framework. We define here the
global ensemble average by:〈{ }〉 = 〈〈{ }〉g〉M. Here 〈{ }〉g ≡
〈{ }〉(No

g |λo) ≡
P∞

No
g=0 PPois(N

o
g | wλ){ } denotes an ensemble

average over the Poissonian distribution with the expectednumber
of galaxy counts given by the Poissonian ensemble average:λo ≡
wλ ≡ 〈No

g 〉g, and〈{ }〉M ≡ 〈{ }〉(δM|pM) ≡
R

dδMP (δM | pM)
being the ensemble average over all possible matter densityreal-
izations with some prior distributionP (δM | pM) with pM being a
set of parameters which determine the matter field, say the cosmo-
logical parameters. We impose〈δM〉M = 0.

Recalling the derivations done by Wiener (1949);
Rybicki & Press (1992); Zaroubi et al. (1995) we find mini-
mizing the action with respect to the filter:

∂A

∂F
= 0, (A4)

the following LSQ filter expression:

F = 〈sd
†〉〈dd

†〉−1. (A5)

Traditionally one would then define a data degradation modelwith
an additive noise term of the form:d = Rs+ǫ, with R being some
response operator. Then substituting this data model in Eq.A5 and
neglecting noise to signal correlation terms one would obtain a final
expression for the LSQ filter (see Zaroubi et al. 1995).

A1 Signal to noise correlation

One can show that the noise is actually uncorrelated with thesignal
by making the following definition:

ǫoi ≡ No
g,i − 〈No

g,i〉g, (A6)

and then calculating the correlation:

〈ǫoi 〈N
o
g,j〉g〉g = 〈No

g,i〈N
o
g,j〉g − 〈No

g,i〉g〈N
o
g,j〉g〉g = 0. (A7)

Note, that this implies:〈ǫoi 〈δ
o
g,j〉g〉g = 0 and thus also〈ǫs†〉g = 0.
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A2 LSQ filter derivation without the additive noise
assumption

However, one does not even need to use the additive noise assump-
tion to derive the LSQ filter. Let us show here how to make such a
derivation. We define the observed galaxy number counts per cell i
as:

No
g,i ≡ Ng(wi + δo

g,i). (A8)

The corresponding ensemble average over all possible galaxy real-
izations is:

〈No
g,i〉g ≡ Ngwi(1 + δg,i). (A9)

Recalling the linear bias relation:

δg,i =
X

j

bi,jδj , (A10)

we can then calculate with the above definitions the signal todata
correlation matrix:

〈sidj〉 ≡ 〈δM,iδ
o
g,j〉 = 〈〈δM,iδ

o
g,j〉g〉M

= 〈δM,i〈δ
o
g,j〉g〉M = wj

X

j′

bj,j′〈δM,iδM,j′〉M. (A11)

We also have to calculate the data autocorrelation matrix:

〈didj〉 ≡ 〈δo
g,iδ

o
g,j〉 = 〈〈

„

No
g,i

Ng

− wi

«„

No
g,j

Ng

− wj

«

〉g〉M

=
〈〈No

g,iN
o
g,j〉g〉M

N
2
g

− wiwj . (A12)

Here we need a model for the two-point number count statistics.
Note, that we can introduce here Poissonity:

〈No
g,iN

o
g,j〉g ≡ 〈No

g,i〉g〈N
o
g,j〉g + 〈No

g,i〉gδ
K
i,j . (A13)

With the additional matter field ensemble average we get:

〈〈No
g,i〉g〈N

o
g,j〉g〉M = N

2
gwiwj

 

1 +
X

k

bi,k

X

l

bj,l〈δM,kδM,l〉δ

!

.

(A14)
We can define the noise covariance matrix as:

Ni,j ≡
1

N
2
g

〈〈No
g,iN

o
g,j〉g − 〈No

g,i〉g〈N
o
g,j〉g〉M

=
1

N
2
g

〈〈No
g,i〉g〉MδK

i,j =
wi

Ng

δK
i,j . (A15)

The LSQ filter can be then written as:

Fi,j =
X

j′

wj′

X

l

bj′,l〈δM,iδM,l〉M (A16)

×

 

wj′

X

k

bj′,k

X

k′

bj,k′〈δM,kδM,k′〉Mwj +
wj

Ng

δK
j′,j

!−1

.

The corresponding matrix notation of the LSQ filter yields:

F = SR†
“

RSR† + N
”−1

, (A17)

with S ≡ 〈δMδ
†
M〉M andR ≡ WB (see section 4.1.1 for a defi-

nition of the bias operatorB). This data-space expression is equiv-
alent to the signal-space representation (for a demonstration see
appendix C in Kitaura & Enßlin 2008):

F =
“

S−1 + R†N−1R
”−1

R†N−1. (A18)

We conclude that the LSQ filter is the optimal linear filter under a
Poisson noise assumption. We have shown that this filter doesnot
neglect any signal to noise correlation.

APPENDIX B: LOGNORMAL PRIOR AND GAUSSIAN
LIKELIHOOD

For completeness we derive a nonlinear filter which assumes alog-
normal prior and a Gaussian likelihood. Following Sheth (1995)
one could use the Wiener filter with a data transformation andap-
ply it to recover non-Gaussian distributed fields. The problem in
such a model is that one requires a multiplicative noise assumption
of the form:

d′
i ≡ δiǫ

′
i + ǫ′i

ln(d′
i) = ln(1 + δi) + ln(ǫ′i)

di ≡ si + ǫi, (B1)

for each celli, with di ≡ ln(d′
i), si ≡ ln(1 + δi) andǫi ≡ ln(ǫ′i).

Note, that with such a data model one could easily apply the Wiener
filter assuming that the signals and the noiseǫ are Gaussian dis-
tributed.

B1 Additive noise model

However, one may rather prefer a data model with an additive noise
term as commonly used in the literature (see e.g. Zaroubi et al.
1995; Tegmark 1997). We define therefore a data model of the
form:

d ≡ Rδ + ǫ, (B2)

including in the signal higher order terms:

δ = exp(s) −~1. (B3)

One can then assume the signal to be lognormal distributed and the
noise to be Gaussian distributed and signal-independent.

B2 Gaussian likelihood

Let us write the log-likelihood as:

lnL ∝ −
1

2

“

ǫ
†N−1

ǫ − ln (det (N))
”

+ c. (B4)

Making the substitutionǫ = d − Rδ we get:

ǫ
†N−1

ǫ = d
†N−1

d + δ
†R†N−1Rδ − δ

†R†N−1 − d
†N−1Rδ.

(B5)
To find the maximum a posteriori solution we have to calculatethe
derivative of the likelihood with respect to the signals:

X

i

∂ lnLi

∂sk

=
X

i

X

l

∂ lnLi

∂δl

∂δl

∂sk

. (B6)

From Eq. B3 we get:

∂δl

∂sk

= exp(si)δ
K
i,k. (B7)

Assuming a signal independent noise yields:

∂ lnLi

∂δk

= −
X

jlm

δjRj,lN
−1
l,mRm,i +

X

jl

djN
−1
j,l Rl,i. (B8)
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Combining these results with the derivative of the lognormal prior
(Eq. 19) leads to:
X

j

S−1
Lj,k (sj − µj) = (B9)

0

@

X

jlm

“

exp(sj) −~1
”

Rj,lN
−1
l,mRm,k +

X

jl

djN
−1
j,l Rl,k

1

A exp(sk).
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