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ABSTRACT
Using a statistically representative sample of 911 centralgalaxies (CENs) from the SDSS
DR4 Group Catalogue, we study how the structure (shape and size) of the first rank (by stellar
mass) group and cluster members depends on (1) galaxy stellar mass (Mstar), (2) the global
environment defined by the dark matter halo mass (Mhalo) of the host group, and (3) the lo-
cal environment defined by their special halo-centric position. We establish a GALFIT-based
pipeline for 2D Sérsic fitting of SDSS data to measure the Sérsic index,n, and half-light ra-
dius,r50, from r-band galaxy images. Through tests with simulated and real image data, we
demonstrate that our pipeline can recover galaxy properties without significant bias. We also
find that uncertainties in the background sky level translate into a strong covariance between
the total magnitude, the half-light radius, and the Sérsicindex, especially for bright/massive
galaxies. We apply our pipeline to the CEN sample and find thatthe Sérsic indexn of CENs
depends strongly onMstar, but only weakly or not at all onMhalo. Then-Mstar relation holds
for CENs over the full range of halo masses that we consider. Less massive CENs tend to be
disk-like and high-mass systems are typically spheroids, with a considerable scatter inn at
all galaxy masses. Similarly, CEN sizes depend on galaxy stellar mass and luminosity, with
early and late-type galaxies exhibiting different slopes for the size-luminosity (r50-L) and the
size-stellar mass (r50-Mstar) scaling relations. Moreover, to test the impact of local environ-
ment on CENs, we compare the structure of CENs with that of comparable satellite galaxies
(SAT). We find that low mass (< 10

10.75
h
−2

M⊙) SATs have somewhat larger median Sérsic
indices compared with CENs of a similar stellar mass. Also, low mass, late-type SATs are
moderately smaller in size than late-type CENs of the same stellar mass. However, we find
no size differences between early-type CENs and SATs andno structural differencesbetween
CENs and SATs when they arematched in both optical colour and stellar mass.The similarity
in the structure of massive SATs and CENs demonstrates that this distinction has no signif-
icant impact on the structure of spheroids. We conclude thatMstar is the most fundamental
property determining the basic structural shape and size ofa galaxy. In contrast, the lack of a
significantn-Mhalo relation rules out a clear distinct group mass for producingspheroids, and
the morphological transformation processes that produce spheroids must occur at the centres
of groups spanning a wide range of masses.

Key words: galaxies: clusters: general — galaxies: evolution — galaxies: formation — galax-
ies: fundamental parameters — galaxies: structure.
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1 INTRODUCTION

Understanding the role that environment plays in shaping the mor-
phology of galaxies remains an important challenge in the study of
galaxy formation and evolution. In the standard galaxy formation
and evolution paradigm, all galaxies started as star-forming disks
at the centres of small dark matter (DM) haloes. Subsequent hierar-
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chical evolution has transformed galaxies into spheroids to produce
the bimodality observed in the present-day populations. Tied to
the strong colour bimodality are differences in morphologyand re-
lated galactic structure. Blue star-forming galaxies tendto be disk-
dominated with exponential radial light profiles (late-types), while
red non-star-forming systems have spheroidal mass distributions
with steeper light profiles (early-types). Many observations suggest
that there may be an environmental component to differencesin
galaxy properties; e.g., dependence of morphology (e.g., Dressler
1980; Goto et al. 2003; McIntosh et al. 2004; Blanton et al. 2005)
and star formation related properties (e.g., Hashimoto et al. 1998;
Balogh et al. 2004; Kauffmann et al. 2004) to local galaxy den-
sity. Presumably, the physical processes that have built larger DM
haloes housing groups and clusters of galaxies must be responsible
at some level for the observed evolution of the two primary galaxy
populations.

The latest theoretical models of galaxy evolution invoke the
transformation of blue disks into red spheroids within a hierar-
chical framework to explain the factor of two growth observed
in the early-type galaxy (ETG) population sincez = 1 (e.g.,
Bell et al. 2004; Blanton 2006; Borch et al. 2006; Faber et al.2007;
Brown et al. 2007). It is usually assumed that to successfully re-
produce the galaxy bimodality requires physical mechanisms that
both transform star formation and morphology. A variety of galaxy
transformation scenarios can be found in the literature, many of
which are predicted to be important only in particular environ-
ments. Yet, recent advances in understanding bimodality have fo-
cused on environmental processes that mostly impact star forma-
tion. For example, van den Bosch et al. (2008) successfully demon-
strate that quenching is important for producing redder galaxies
over a range of different environments, but a clear picture of what
governs morphological bimodality is still lacking and controversial.
To shed light on whether a special environment exists for thetrans-
formation of galaxy morphology, we study the shapes and sizes of
a representative sample of central galaxies from galaxy groups and
clusters in the Sloan Digital Sky Survey (SDSS, York et al. 2000).
Quantifying the structural properties of galaxies, such asthe steep-
ness of the light profile shape, provides a direct means to assess
morphological transformation.

If all galaxies started as small disks, then the simple existence
of spheroidal systems makes it clear that morphological transfor-
mation occurs. The transformation from late to early-type galaxies
may occur in one traumatic event or be the result of multiple pro-
cesses over billions of years. There is no shortage of theoretical
predictions for the creation of ETGs, from violent galaxy-galaxy
mergers to the slow fading of disks. Generally speaking, theearly
type population includes a range of spheroid-dominated morpholo-
gies with and without a disk component (e.g., ellipticals, lenticu-
lars, and bulge-dominated spiral galaxies). Thus, it is likely that
more than one physical mechanism is responsible for the variety
among ETGs. Narrowing down the processes that are most respon-
sible for turning disks into spheroids remains a critical piece of the
galaxy evolution puzzle. In this paper, we approach this problem
by testing whether or not there is a specific environment where a
strong morphological transition takes place that can then be tied to
a particular process.

There are several morphologically-altering mechanisms that
are predicted to be effective mainly in the high-density environs
of massive groups and clusters. Harassment, the cumulativeeffect
of many high speed encounters with satellite galaxies (Moore et al.
1996), is predicted to occur primarily in groups and clusters after
a satellite galaxy is accreted, and may transform a disk galaxy into

a more early-type morphology by heating and ’puffing up’ the disk
component. Tidal stripping, the effect of the tidal force suffered
by a satellite along its orbit, may transform a satellite galaxy into a
spheroid by removing its disk, and it may be effective in haloes over
a large mass range. Since the above two processes change the stellar
mass of a galaxy by at most a factor of two, if they are responsible
for the morphological transformation one would expect to see satel-
lites with statistically significant differences in their morphological
and structural properties compared with centrals of a similar stellar
mass. However, van den Bosch et al. (2008) and Weinmann et al.
(2008) find that satellite galaxies are only marginally moreconcen-
trated than central galaxies with same stellar mass, which suggests
that satellite galaxies only undergo a minor change in theirmor-
phology after they fall into a massive cluster, and that the above two
processes may not be sufficient to explaining their major morpho-
logical transformation. It is important to note that these processes
basically produce early types by diminishing the disk structure of
later-type spirals; i.e., these mechanisms may produce S0/Sa early
types, but they do not create massive spheroids or elliptical galax-
ies.

Besides the aforementioned cluster-specific mechanisms that
appear to have only minor impact on the morphologies of satel-
lite galaxies, numerical simulations demonstrate that themerger of
two disk galaxies with similar masses produces a spheroid galaxy
(e.g., Toomre 1977; Barnes & Hernquist 1996; Naab & Burkert
2003; Cox et al. 2006) and, hence, are likely an important mech-
anism for the formation of spheroids and ellipticals. Majormerg-
ers are believed to be efficient in group-size haloes and to besup-
pressed in more massive haloes because of the increasing differ-
ences in the relative velocities between member galaxies com-
pared to their own internal velocity dispersions. It has long been
assumed that the smaller velocity dispersions found in galaxy
groups allow more galaxy interactions (Cavaliere et al. 1992); also
the orbital decay timescale is shorter in lower-mass haloes(e.g.
Cooray & Milosavljević 2005). However, McIntosh et al. (2008)
find that major mergers among massive galaxies occurs at the cen-
tres of clusters, as well as large groups, yet this merely makes
bigger spheroids from smaller spheroids. Moreover, Hopkins et al.
(2008) also show, using theoretical arguments, that the massive
central galaxies of clusters still have a large chance to merge with
their satellites. These findings highlight once again the open ques-
tion of which environment or halo mass is ideal for transforming
disks into spheroids. It appears that major mergers preferentially
happen between central and satellite galaxies; therefore,the exis-
tence of a special halo mass for major morphological transforma-
tions such as mergers might manifest itself as a noticeable change
in the morphological distribution of central galaxies at some spe-
cific halo mass. We already know that central galaxies livingin
small haloes have disk-like shapes with low concentrationsand flat
light profiles while those in large haloes have spheroid-like shapes
with high concentrations and steep light profiles. A carefulstudy of
the distribution of structural properties in haloes spanning a range
in mass will help shed light on this open question.

Our analysis is based on two quantitative measures of galac-
tic structure, the Sérsic index and the size, which are directly
related to galaxy morphology. The measurement of galaxy light
profile shapes and sizes has a long history (Shaw & Gilmore
1989; Byun & Freeman 1995; de Jong 1996; Simard 1998;
Khosroshahi et al. 2000, and references therein) and the develop-
ment of automatic routines to handle the huge number of galax-
ies from modern surveys is well-motivated. In this work, we de-
velop a powerful pipeline for applying a well-tested and popular
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software package for two-dimensional (2D) galaxy image fitting
(GALFIT, Peng et al. 2002) to SDSSr-band data. We fit a Sérsic
model (Sérsic 1968) to the images of galaxies and use the Sérsic in-
dex,n, and half-light radius,r50, of the best fit models to describe
the shapes and sizes of galaxies, respectively. A well-known, yet
often overlooked, issue in profile fitting is the critical sensitivity to
the estimate of the background sky level (MacArthur et al. 2003).
We explore this issue in detail and discuss its impact on quantify-
ing the structure of galaxies, in particular that of high-mass central
galaxies.

In this paper, we try to answer two questions about the en-
vironment of morphological transformation: (1) is there a critical
DM halo mass where central galaxies are transformed from late-
type to early-type? (2) is the central position in groups andclusters
a special place for determining the structure of galaxies. Previous
work arguing whether galaxy morphology (e.g., Dressler 1980) or
star formation (e.g., van der Wel 2008) depends more critically on
environment employ local galaxy density measurements thatare
less natural and less physically meaningful than the halo mass and
the location within a host halo (Weinmann et al. 2006). Here we
use the SDSS DR4 Group Catalogue of Yang et al. (2007), which
provides statistical measures of the host halo mass (globalenviron-
ment) and the halo-centric position (local environment) for SDSS
galaxies. We study the quantitative structure of galaxies living at the
presumed dynamical centres of DM haloes spanning nearly three
orders of magnitude in mass. In hierarchical models of galaxy for-
mation, all galaxies begin as the central galaxy in a smallerhalo and
then become satellite galaxies if the small halo merges witha big-
ger one. Therefore, comparing the structural properties ofcentrals
and satellites can shed light on the evolution of galactic morphol-
ogy and its dependence on environment, and help answer whether
central galaxies are a distinct population with unique formation his-
tories.

In §2 we present our sample selection. In§3 we present and
test our fitting pipeline and show the sensitivity of the fits to the
background sky level. We present the results of our fits to thecen-
tral galaxies in§4, both their Sérsic indices and sizes, and compare
them to satellite galaxies. We summarise our main conclusions in
§5. We also include an appendix where we compare our fits to those
of the NYU-VAGC (Blanton et al. 2005). Throughout we adopt a
flat ΛCDM cosmology withΩm = 0.3, ΩΛ = 0.7 and use the
Hubble constant in terms ofh ≡ H0/100km s−1 Mpc−1.

2 SAMPLE SELECTION

2.1 Central Galaxy Sample from SDSS Group Catalog

To study the structural properties of central galaxies (CENs)
in groups and clusters, we use the SDSS galaxy group cata-
logue of Yang et al. (2007, hereafter Y07). This catalogue iscon-
structed using the New York University Value-Added Galaxy
Catalog (NYU-VAGC, Blanton et al. 2005) reprocessing of the
spectroscopic ’Main’ selection (Strauss et al. 2002) from the
fourth data release of Sloan Digital Sky Survey (SDSS DR4,
Adelman-McCarthy et al. 2006). The NYU-VAGC provides im-
proved reductions and additional galaxy property measurements.
The group catalogue provides two physically motivated measures
of environment for each galaxy: (i) the dark matter halo massof its
host group (Mhalo), and (ii) its distance to the central (i.e, highest
stellar mass) group member of the group. Here we briefly describe
the group catalogue and we discuss its redshift completeness as it
relates to our final selection of a representative sample of CENs.

The details of the group finder used to construct the DR4 ver-
sion of the group catalogue are given in Yang et al. (2005, 2007).
Briefly, the group finder starts with a friends-of-friends (FOF) al-
gorithm using a restrictively small linking length to definepoten-
tial groups and their centres in a galaxy redshift survey. A rough
group mass is estimated from the total group luminosity, assuming
a mass-to-light ratio1. From the group mass, the group-finder uses
an adaptive filter to iterate on the virial search parameters(pro-
jected radius and velocity dispersion), which in turn are used to se-
lect group members in redshift space. This method is iterated until
the group members converge. This algorithm has been thoroughly
tested with mock galaxy redshift surveys and is shown to be more
successful than conventional FOF finders. The average complete-
ness of individual groups in terms of membership is∼ 90 percent,
with only ∼ 20 percent contamination from interlopers. The halo
mass of each group is estimated using two methods: (1) the ranking
of its total characteristic luminosity and (2) the ranking of its total
characteristic stellar mass. As shown in Y07, both methods agree
very well with each other, with a scatter of 0.1 dex (0.05 dex)at low
(high) halo masses. In this paper, we use the halo mass from stellar
mass ranking. Finally, owing to ther < 17.7 (extinction-corrected)
magnitude limit of the Main sample, the minimumMhalo for which
the group selection is complete changes with redshift. Therefore,
we limit our analysis to groups withz ≤ 0.08, which are detected
with high completeness down tolog(Mhalo/h

−1M⊙) = 11.78,
allowing us to study galaxies from small groups with good image
resolution.

The spectroscopic completeness of the sample used to deter-
mine galaxy groups plays a crucial role in identifying CENs.Owing
to fibre collisions, the Main sample misses about 8 percent ofSDSS
galaxies meeting the spectroscopic targeting criteria (Blanton et al.
2003). This effect is severe in regions of high galaxy numberden-
sity (Hogg et al. 2004), such as in large groups and clusters.The
Y07 group catalogue contains three samples that address this in-
completeness differently. Each sample spans the redshift range of
0.01 ≤ z ≤ 0.20. Sample I contains 362356 Main galaxies. Sam-
ple II includes 7091 additional galaxies with spectroscopic red-
shifts measured from other surveys (e.g., 2dF, Colless et al. 2001).
Sample III adds 38672 galaxies missing redshifts due to fibre-
collisions, which are assigned a redshift based on their nearest
neighbour. For the three samples, the group finder detects 201621,
204813 and 205846 groups, respectively.

Note that the fibre-collision correction applied to sample III
may transfer some CENs in sample II to satellite galaxies in sam-
ple III and vice versa. For our selection, we choose only galaxies
identified as CENs in both sample II and sample III. These galaxies
are guaranteed to be CENs regardless of whether the fibre-collision
correction was applied or not. In addition, we use theMhalo of
these CENs drawn from sample II. Our analysis (discussed in§3)
is based on a CPU-intensive galaxy image fitting routine, thus, to
construct a representative sample we randomly select CENs from
halo mass bins spanning the full range of groups in thez ≤ 0.08
volume-limited sample. Forlog(Mhalo/h

−1M⊙) = [12.0 : 14.0],
we randomly select 100 CENs from eight bins of 0.25 dex width.At
higher halo masses the number of groups decreases rapidly, thus to
maintain good statistics we select 100 CENs from the [14.0:14.5]
bin, and use all 11 CENs in groups withlog(Mhalo/h

−1M⊙) >

1 The resulting group catalogue is insensitive to the initialassumption re-
garding the M/L ratios.
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Figure 1. The colour-Mstar andMstar-Mhalo distributions of our selected CEN sample (black circles). Contours show the distribution of allz ≤ 0.08 CENs
from the SDSS DR4 group catalogue. Contours with different colours connect bins with same number of galaxies as labelled. Each bin has a width of 0.03 in
colour and 0.05 dex inMstar in the left panel, and a width of 0.05 dex inMstar and 0.06 dex inMhalo in theright panel.

14.5. The total number of CENs in our representative sample is
911.

In Figure 1, we plot the stellar mass (Mstar) distributions of
our CEN sample as a function of galaxy colour and halo mass. For
each galaxy, the NYU-VAGC provides the Petrosian0.1(g − r)
colour, K+E corrected toz = 0.1 (see Y07 for details), and we es-
timateMstar using the colour-derived M/L from Bell et al. (2003).
As shown in Figure 1, our representative CEN selection samples the
sameMstar, Mhalo and0.1(g−r) space as all CENs withz ≤ 0.08
in the group catalogue (shown by the contours). We note that our
selection of CENs spans a wide range ofMstar running from109.8

to 1011.7h−2M⊙. Owing to the exponentially decreasing number
density of high-mass haloes and theMstar-Mhalo relation of CENs
(Fig.1, right panel), our selection of a constant number of groups
per Mhalo bin results in a CEN sample that is heavily-weighted
towards higher stellar masses and redder colours.

2.2 Matched Satellite Galaxy Samples

In addition to studying the structural properties of CENs, we
also want to investigate whether their central position in groups
or clusters produces a distinctive structural difference com-
pared to non-CEN galaxies. Following a similar method as in
van den Bosch et al. (2008), we construct two control samplesof
satellite (SAT) galaxies, one to match CENs in stellar mass only,
and the other to match in both stellar mass and colour. For each
CEN in our sample, we first randomly select from all SATs with
z ≤ 0.08 a similar-mass counterpart with aMstar within ±0.08
dex, hereafter the SAT sample S1. We next find SATs likewise
again matched to CENs inMstar, but further restricted to match
their colour within∆0.1(g − r) = ±0.03, hereafter the SAT sam-
ple S2. Once a SAT is matched to a CEN, we remove it from the
pool so that there is no duplication in each SAT sample. The match-
ing criteria are equal to the measurement uncertainties of the stellar

mass and the colour (Bell et al. 2003), and using a matching crite-
ria with either a smaller∆Mstar or ∆0.1(g−r) will greatly reduce
the number of matched SATs, especially towards the massive end,
because we use a volume-limited sample and don’t allow duplicate
matches. For CENs withlog(Mhalo/h

−1M⊙) < 11.0 we find a
matched SAT using the above criteria more than 90 percent of the
time. At higher masses (log(Mhalo/h

−1M⊙) > 11.3), SATs be-
come rare and the fraction of massive CENs with a matched SAT
rapidly drops to less than 10 percent. Hence, we achieve SAT sam-
ples of 769 (S1) and 746 (S2) matches.

In Figure 2, we plot the stellar mass and colour comparisons
for our CEN-SAT matched samples as a function of CEN stellar
mass. There is a slight bias in that SATs in both sample S1 and S2
are less massive than their counterpart CENs with a median dif-
ference (SAT - CEN) of -0.01 dex, and SATs in S1 are obviously
redder than their counterpart CENs. The difference of colour for
the SAT sample S2 (lower rightpanel) is also small, with an almost
zero median for low mass (log(Mstar/h

−2M⊙) < 10.5) SAT-CEN
pairs and a median of 0.005 for massive (log(Mstar/h

−2M⊙) >
10.7) pairs. In thelower leftpanel we see an obvious difference be-
tween the colour of SAT-CEN pairs in SAT sample S1, with a me-
dian difference of 0.03 for massive (log(Mstar/h

−2M⊙ > 10.7)
pairs and 0.3 for low mass (log(Mstar/h

−2M⊙) < 10.3) pairs.

To evaluate whether the above biases are statistically signif-
icant or not, we match our CEN sample with mock samples cre-
ated from itself with random changes onMstar and colour accord-
ing to the measurement uncertainties. The match is done withthe
same criteria used for constructing the SAT sample S2 and re-
peated 20 times to produce a distribution of medians of∆Mstar

and∆0.1(g− r) perMstar bin between the CEN sample and mock
samples. We plot the results in Figure 2 with circles and errorbars
showing the mean and 3σ deviation respectively. We can see that
the biases of our real CEN-SAT matches are within 3σ deviations
of the self-matching results, except in thelower left panel, where
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Figure 2. The difference ofMstar (upperpanels) and colour (lower panels) between matched CENs and SATs as a function of CENMstar. The left column
shows the differences for the SAT sample S1, which is matchedwith our CEN sample only in stellar mass, while theright column shows the SAT sample S2,
which is matched with our CEN sample in both stellar mass and colour. The solid line in each panel shows the median of the difference for each 0.25 dex wide
Mstar bin. For comparison, circles with errorbars show the mean and 3σ deviation of the biases in each mass bin from matching the CENsample to 20 mock
samples created from itself with random changes according to measurement uncertainties (see text for details).

the bias atlog(Mstar/h
−2M⊙) < 11 are much larger than the 3σ

deviations. This result suggests that theMstar and colour distribu-
tions of our SAT samples are not significantly different fromthe
distributions of our CEN sample, except for the case of colour in
our SAT sample S1, where we find that SATs are redder than their
CEN counterparts as van den Bosch et al. (2008) finds. However,
the colour difference between low mass CENs and SATs in sample
S1 (∆0.1(g − r) ∼ 0.3) is larger than the average difference of
0.1 in the same stellar mass region found by van den Bosch et al.
(2008). The reason for this disagreement could be the small num-
ber statistics in our SAT sample. We conclude that the SATs from
sample S2 is effectively matched inMstar and colour with our CEN

sample, while the SATs from sample S1 are only matched inMstar

and have a systematic redder colour than the CEN sample.

3 MEASURING THE STRUCTURE OF GALAXIES

The primary aim of this paper is to quantify the structural properties
of CENs. In particular, we measure the shape and size of the 2-D
luminosity profile of each galaxy using GALFIT (Peng et al. 2002).
This code fits a parametric model to the surface brightness profile of
a galaxy image and outputs a set of best-fitting parameters. For our
analysis we adopt the Sérsic (1968) model to describe the surface
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brightness at radiusr of a galaxy,Σ(r) = Σee
−bn[(r/r50)1/n

−1],
wherer50 is the half-light radius of a galaxy,Σe is the surface
brightness atr50, n is the Sérsic index, andbn is coupled to
n such that half of the total flux of a galaxy is withinr50 (for
0.5 < n < 10, bn ≈ 2n − 0.327). In addition tor50 and n,
GALFIT outputs the best-fitting total magnitudemtot, axis ratio
b/a, and position angleθ. The Sérsic profile is routinely used for
galaxy structure analysis to provide the half-light radiusand the
Sérsic index measures the galactic light profile shape; e.g., n = 4
is the de Vaucouleurs’r1/4 profile andn = 1 is the exponential
disk profile. We choose GALFIT as our fitting tool because it can
simultaneously fit Sérsic profiles to several galaxies in one image,
which is advantageous for galaxies in dense environments, where
galaxies have a high chance to be overlapping with one other.In
what follows, we outline our image fitting pipeline, test it with sim-
ulated galaxies, discuss technical issues, and estimate the effects
that background sky estimation has on parameter uncertainties.

3.1 The Galaxy Fitting Pipeline: Modified GALAPAGOS

To run GALFIT on each galaxy in our sample, we require a postage
stamp image with an appropriate size to measure structure over the
full extent of an object, the point spread function (PSF), the initial
guess for the fitting parameters, and an estimate of the background
sky level. In our pipeline, we start from the fully-processed SDSS
imaging frames, which have a size of2048 × 1042 pixels. We em-
ploy GALAPAGOS (Barden in prep.) to process the whole image
frame and to provide the needed information to GALFIT. GALA-
PAGOS was originally designed to facilitate fitting large galaxy
data sets based on HST/ACS images. We have modified this rou-
tine to work on SDSS images. In brief, GALAPAGOS takes the
following steps: (1) it detects neighbouring sources and produces
image masks; (2) it cuts out postage stamps for detected sources;
(3) it prepares an input file for GALFIT; and (4) it estimates local
sky values for target galaxies. We outline the details of these steps
below.

Source Detection and Initial Fit Parameter Guesses:We use
SExtractor (Bertin & Arnouts 1996) to detect and mask nearby
companion sources in the SDSS image of each galaxy that we de-
sire to fit, and to provide initial fit parameter guesses for the pri-
mary galaxy and any close neighbours that will be simultaneously
fit. SExtractor provides useful estimates of galaxy properties (mag-
nitude, size, axis ratio, position angle) for calculating the initial
guesses for the GALFIT parameters. A set of configuration param-
eters defines how SExtractor detects sources. After tuning,we find
that for SDSSr-band images the following configuration works
best: DETECTMINAREA=25, DETECTTHRESH=3.0 and DE-
BLEND MINCONT=0.003. This configuration provides a good
trade off between detecting and deblending most bright and ex-
tended sources without artificially deblending galaxies with strong
substructures into multiple sources. Since our goal is to study bright
galaxies in groups or clusters, we keep this configuration toal-
low a high success rate on bright galaxies. To distinguish whether
companions are stars or galaxies, all sources with SExtractor flag
STAR CLASS<0.9 are classified as galaxies. However, a small
fraction of sources may be misclassified using this criterion, and
we will discuss the effect of this misclassification on our fitting re-
sults in§3.3.

Postage Stamp Images:GALAPAGOS produces a rectangular
postage stamp centred on each galaxy of interest. The purpose of
postage stamps is to reduce the CPU time for fitting one galaxy. The

postage stamps are cut to a size that is large enough to ensurethat
the outer light profile will be fit. GALAPAGOS uses parametersin
the SExtractor catalogue to determine the X and Y dimension in
pixels of the postage stamps for each object:

X = 2.5 × a × rKron × (|sin(θ)| + (1 − e)|cos(θ)|), (1)

Y = 2.5 × a × rKron × (|cos(θ)| + (1 − e)|sin(θ)|), (2)

wherea × rKron is the Kron radius along the major axis in units
of pixels,θ is the position angle, ande is the ellipticity.

GALFIT Inputs: For running GALFIT, GALAPAGOS pro-
duces an input file of initial parameter guesses for the fit-
ting parameters based on the SExtractor output as follows:
mtot,i = MAG BEST for the apparentr-band magnitude,r50,i =
0.162r1.87

flux, whererflux is FLUX RADIUS; b/ai = 1− e, where
e is ELLIPTICITY; and θi = THETA IMAGE. We start with
an initial Sérsic index ofn = 1.5. We note that for this analy-
sis, we do not use the higher fitting modes, such as diskyness and
boxiness, offered with the GALFIT software. Nearby companions
within 1.5 times the SExtractor Kron aperture of the target galaxy
are fit simultaneously with a Sérsic model using initial parameters
also determined as described above. Companions further away are
masked out using the masks provided by SExtractor. In addition to
the input file, GALFIT requires a PSF image to convolve with the
model image. The PSF at the centre of the target galaxy is extracted
from the SDSS photo pipeline by employing a SDSS published tool
readAtlasImages1.

Background Sky Estimation:The background sky level is a
critically important ingredient in galaxy image fitting. For example,
an overestimation of the sky can result in flux, size, and Sérsic in-
dex underestimation. GALAPAGOS includes a sophisticated way
to measure the local sky around a galaxy, which is demonstrated
to be successful for ACS images (Häussler et al. 2007). How-
ever, GALAPAGOS uses a hierarchical iteration for fitting galax-
ies, from bright to faint, over the whole frame to isolate skypix-
els. Rather than using this CPU-intensive approach, we relyon
the SDSS, which provides useful and well-tested sky estimates.
The SDSS global sky is considered to be a good measure of the
background sky level for studying the structure of SDSS galaxies
(von der Linden et al. 2007). We treat the background sky as a fixed
flux pedestal during the fitting to reduce degeneracies between the
sky and the outer isophotes of high-n models.

3.2 Testing the Pipeline with Simulations

We test our SDSS image fitting pipeline by running it on 850 sim-
ulated galaxies. The goals of this test are two fold: (1) to estimate
random and bias of the structural parameters returned by ourfit-
ting pipeline; and (2) to confirm that using the SDSS global sky
does not produce bias. We compare the actual properties thatde-
fine each simulated galaxy (input) to the corresponding fit result
(output) following Figure 9 in Blanton et al. (2005).

For our tests, we use the SDSS-based simulations of
Blanton et al. (2005). Briefly, each simulated galaxy is an axisym-
metric Sérsic model. The simulation sample has a range of input
parameters matching the NYU-VAGC Large-Scale Structure (LSS)
sample from SDSS DR4. Each simulated galaxy is converted to raw
data units, scaled to the SDSS pixel size, and convolved withthe
PSF at its position. After adding Poisson noise, the resulting image

1 http://www.sdss.org/dr4/products/images/readpsf.html
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Figure 3.A comparison between input and output parameters when usingGALFIT to fit Sérsic models to 850 simulated Sérsic galaxies. We plot the difference
(output-input) as a function of input for three important S´ersic parameters: the indexn, the half-light radiusr50, and the total magnitude. In each panel, grey
points represent individual simulated galaxies. The solidlines show the 3rd quartile, median and 1st quartile (from top to bottom).

is placed into an actual SDSS image at a random location. Gener-
ally, about 60 simulated galaxies were added to each2048 × 1024
pixel image.

The results of applying our pipeline to the SDSS simulations
are shown in Figure 3. We plot the output-input offset as a function
of input for three important parameters: the total magnitude mtot,
the half-light radiusr50, and the Sérsic indexn. The results demon-
strate that our pipeline successfully recovers these structural param-
eters of simulated Sérsic galaxies with almost no offset and only a

small scatter. For half of the simulation sample the pipeline returns
structural measurements within 10 percent of the true value. As ex-
pected, there is a larger parameter offset scatter for simulated galax-
ies withnin > 4 than for those withnin < 4 (see Häussler et al.
(2007)). We see a slightly increased scatter with magnitudeowing
to the lower S/N of fainter galaxies. We note that the good agree-
ment between input and output parameters also demonstratesthat
the SDSS global sky is a good choice for galaxy image fitting. We
address the effects of sky uncertainties on our structural properties
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measurements in more detail in§3.4. To the degree that Sérsic pro-
files provide a reasonable fit to the true light distribution of galax-
ies, the good performance of our pipeline on simulated galaxies is
promising for the analysis of real galaxies.

3.3 Śersic Fitting of the CEN Sample

We apply our pipeline to fit each galaxy in the CEN sample with
a Sérsic model. To evaluate the fit quality we visually checked a
random subsample of 200 CENs and find that about 15 percent of
our fits suffer from a variety of technical issues. These issues in-
clude stars misclassified as galaxies and unreliable fits to compan-
ion sources. Here we discuss what portion of our fitting results are
affected by these issues and how we can correct for them.

The accuracy of star/galaxy classification affects the fitting
quality. Although CEN galaxies can always be correctly classified,
a small portion of their companions may suffer from misclassifi-
cation. Some galaxies are misclassified as stars and some stars are
misclassified as galaxies, but only the latter has a severe impact
on our fitting. Fitting a Sérsic model to a stellar profile typically
results in a very largen with an overestimated extent and an over-
estimated flux. As a result, this false extension takes lightaway
from the whole image and hence causes an underestimate ofmtot,
r50 and n for the target galaxy. Conversely, companion galaxies
misidentified as stars and fit by a PSF are spatially compact and
faint, thus their improper treatment has little impact on the mea-
sured structure or flux of the target galaxy. We estimate thatless
than 5 percent of our CEN sample (in a random sense) suffer from
the issue of companion stars being misclassified as galaxies.

A drawback to fitting several sources simultaneously is thatan
unrealistic model fit for a companion will spoil the fitting quality of
the target galaxy. We develop an empirical set of criteria for iden-
tifying bad companions such that any companion being fitted with
σa50

/a50 > 0.3 andn > 8.0 is identified as a bad companion,
wherea50 is the semi-major axisa50 = r50/

√

b/a, b/a is the axis
ratio, andσa50

is the internal GALFIT error ofa50. Such bad com-
panions are usually small and/or low surface brightness galaxies
and tend to be fit with an overestimated size, Sérsic index and mag-
nitude, resulting in a severe underestimate of the same quantities for
the target galaxies. We examine SExtractor magnitude differences
between bad companions (mBC ) and target galaxies (mT ) and find
that bad companions, as defined here, are mostly fainter thantheir
corresponding targets. Actually, the majority of bad companions
have∆m = mBC − mT > 2.5 and the distribution of∆m is
peaked at∆m ∼ 3.5. Thus we simply mask out all∆m > 2.5 bad
companions and refit the image. We iterate this procedure until all
the targets have no more bad companions. About 8 percent of our
CEN sample start with bad companions and we correct all of them
as described above. Some of the target CENs have∆m < 2.5 bad
companions within a few arcseconds and any masking might ad-
versely affect the fit. Hence instead we opt to exclude those target
galaxies from our CEN sample. The fraction of CENs having such
bad companions depends on halo mass: from 7 percent at high-
masses to 3 percent at low-masses. In total, 32 CENs are excluded
from our sample owing to problems with bad companions.

3.4 Sky Uncertainty and Parameter Covariance

Although the SDSS global sky works as a good choice of sky back-
ground for fitting isolated galaxies, as the simulations show, the real

sky is difficult to measure especially for CENs in dense environ-
ments. In this subsection, we estimate the uncertainty in the SDSS
global sky values and evaluate how this uncertainty translates into
fit parameter errors.

We use the difference between the SDSS global sky and mean
sky to characterise the uncertainty in the sky measurement.SDSS
measures the global sky as the median data counts (ADUs) fromev-
ery pixel of the source-subtracted frame after sigma-clipping. Be-
sides the global sky, SDSS also provides a mean sky for each frame
and a local sky for each detected object in the frame. SDSS mea-
sures the background in sub-frame boxes of of256 × 256 pixels
centred every 128 pixels. The local sky of each object in a SDSS
frame is an interpolation of the sub-frame background values at
the position of the object centre. The mean of all sub-framesis the
mean sky for a frame.

In the left panel of Figure 4, we plot the difference between
the SDSS global sky and mean sky for our CEN sample. The mean
sky is somewhat larger than the global sky on average becauseindi-
vidual sub-frames may suffer contamination from large and bright
sources. We also plot the difference between the SDSS globaland
local sky measurements for our sample in the left panel. These dif-
ferences are much larger than that between the global and mean sky
because the local sky is heavily contaminated by large and bright
sources. Furthermore, in themiddle panel of Figure 4, we show
that the overestimates of the local sky are halo-mass dependent for
CENs. The local sky at the centre of massive haloes tends to be
higher than that in less massive haloes. Since the real sky back-
ground should be independent of the properties of haloes, this de-
pendence implies that local sky measures for CENs suffer from in-
creased contamination from the higher density of galaxies in larger
haloes. In contrast, SATs display little dependence on halomass,
even though their local sky is also overestimated, as shown in the
right panel of Figure 4. We attribute this lack of halo dependence to
the fact that SATs are found over a range of halo-centric positions
and hence at various galaxy densities. It is also possible that intra
cluster light (ICL) at the centre of massive haloes can contribute to
the difference between CEN and SAT sky estimates as we show in
Figure 4. Given the large overestimates and the halo dependence
of the SDSS local sky, we will not use it as a measurement of the
sky background. Moreover, we conclude that the SDSS mean sky
not only provides a robust alternative measurement of the sky back-
ground but it also tells us in which direction the sky measurement
might be biased.

To study the effect of sky uncertainties on the Sérsic fitting of
actual galaxies, we first select a representative subset of 45 CENs
from our sample that span a3 × 3 matrix in Mhalo-n space as
follows:

• for log(Mhalo/h
−1M⊙)=[12.0:12.5],n=[1.8:2.2], [3.3:3.7],

[4.8:5.2]
• for log(Mhalo/h

−1M⊙)=[13.0:13.5],n=[2.8:3.2], [4.3:4.7],
[6.3:6.7]
• for log(Mhalo/h

−1M⊙)=[14.0:14.5],n=[3.8:4.2], [4.8:5.2],
[6.3:6.7]

Next, we randomly select five galaxies from each bin of the above
matrix. For each galaxy, we Monte-Carlo sample 50 values from
the distribution of the mean-global difference shown by thered line
in the left panel of Figure 4. These values are added to the global
sky and the galaxy is refit using these new background levels.This
procedure provides a distribution of fitting parameters caused by
the uncertainty in measuring the sky. For this subset of 45 CENs,
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we plot distributions around the mean value of three important fit
parameters (mtot, n anda50) in Figure 5.

The distributions in Figure 5 clearly demonstrate a covariance
between best-fitting parameter values and the choice of sky.The
boxes represent our original results using the SDSS global sky.
The series of (50) crosses, which form a short and nearly straight
line through each box, represent the fitting results using the Monte
Carlo sampling of the sky background as described above. Thecor-
relations betweenmtot anda50 (bottom) andmtot andn (top) show
the strong degeneracy of these parameters in the Sérsic model. If we
increase the sky background, the best-fitting flux decreasesto keep
the total (galaxy + sky) flux constant, while the best-fittingn and
a50 decrease. Conversely, decreasing the sky background levelre-
sults in larger best-fitting values formtot, n, anda50. We find that
the covariance is more severe for galaxies with highern. This effect
shows that the sky estimate is very crucial for producing accurate
Sérsic profile fits. This is especially true for galaxies with n > 4
because the flat, extended wings of the profile are sensitive to sky
uncertainties. The strength and direction of these covariances must
be accounted for when analysing the size-luminosity relation, as we
will discuss in§4.2

4 THE STRUCTURE OF CENS

In this section we explore ther-band structural properties of our
CEN sample. CENs are the most massive members of the SDSS
groups and clusters, and are presumed to be located at the dynami-
cal centre of the host halo. We focus on the structural shape (char-
acterised by the Sérsic indexn) and the size (characterised by the
half-light radiusr50) of the Sérsic profile of CENs. We study the
relationships between these parameters and galaxy stellarmasses
and host halo masses to investigate which factor is more related to
the structure of CENs. We also compare the structural parameters
of CENs and SATs using our two matched SAT samples (see§2
for details) and study whether the central halo location impacts the
shape or size of a galaxy.

To evaluate the accuracy of our measurements of galaxy struc-
tural parameters and total flux using our GALFIT pipeline, we
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Figure 5. The covariances among best-fitting total magnitude, Sérsic index
anda50 as a result of sky uncertainty for 45 representative CENs. Boxes
represent the GALFIT result using the SDSS global sky. For each galaxy,
the series of (50) crosses represent fits using sky background levels taken
from Monte Carlo samplings of the sky as described in the text.
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compare our fit results with the one-dimensional (1D) Sérsic fit-
ting parameters based on the NYU-VAGC analysis (Blanton et al.
2005, hereafter ’NYU-VAGC’). The NYU-VAGC Sérsic parame-
ters have been widely used in the study of galaxy morphology and
size (e.g. Shen et al. 2003; Blanton et al. 2005; Maller et al.2008).
We find that for high Sérsic index (our GALFITn > 3.0) galaxies,
NYU-VAGC underestimates the Sérsic index by about 1.3 and un-
derestimates the total magnitude by about 0.4 mag compared to our
results. There are two reasons for these underestimates: (1) NYU-
VAGC’s 1D profile fitting systematically underestimates theSérsic
index and total magnitude for highn galaxies, as shown by Figure 9
of Blanton et al. (2005); (2) NYU-VAGC uses the SDSS local sky,
which overestimates the background sky level and hence results in
underestimates ofn and the total magnitude. Furthermore, for low
Sérsic index (our GALFITn < 3.0) galaxies, NYU-VAGC over-
estimates the Sérsic index but still underestimates the total magni-
tude by about 0.2 mag. Besides using the local sky, NYU-VAGC’s
azimuthally-averaged 1D fitting procedure systematicallyoveres-
timates the Sérsic index for highly inclined galaxies, which are
mostly disks. We also compare both our GALFIT results and the
NYU-VAGC results with the Petrosian quantities from the SDSS
photometric pipeline. By following the formalism of Grahamet al.
(2005), we find that under our working assumptions (a Sérsicmodel
and a global sky), our GALFIT fitting pipeline more accurately
measures the structural properties of SDSS galaxies then NYU-
VAGC’s. The details of this comparison are in Appendix A.

4.1 The Śersic Index of CENs

With reliable and accurate measurements of galaxy structural prop-
erties from our fitting pipeline in hand, we turn to the study of
how the Sérsic index of CENs is related to their stellar massand
their environment. The Sérsic index is widely used to characterise
the profile and concentration of galaxies in both observational
(e.g., Graham et al. 1996; Blanton et al. 2005; MacArthur et al.
2003; de Jong et al. 2004; Allen et al. 2006) and numerical (e.g.,
Naab & Trujillo 2006; Aceves et al. 2006) studies. Some arguethat
the morphology-density relation implies that the structure of galax-
ies is affected by the environment. Others argue that the structure
of galaxies depends strongly on stellar mass but only weaklyon
the environment (e.g., Hogg et al. 2004; Kauffmann et al. 2004;
van der Wel 2008). In this section, we explore the dependenceof
the Sérsic -index distribution of CEN galaxies on bothMstar and
Mhalo.

4.1.1 Dependence on Stellar Mass

In theupper leftpanel of Figure 6, we plot the Sérsic index of CENs
as a function of their stellar mass. TheMstar values for our CEN
sample are calculated following the formula from Bell et al.(2003):

log[Mstar/M⊙] = −0.306+1.0970.0(g−r)−0.15−0.4(0.0Mr−4.67), (3)

where the constant 0.15 corrects to a Kroupa (2001) IMF, and
0.0(g − r) is the Petrosian colour from the NYU-VAGC shifted to
thez = 0 rest-frame using the Blanton et al. (2003)K-corrections
and correcting for Milky Way extinction using the Schlegel et al.
(1998) dust maps. The absoluter-band magnitude0.0Mr is ex-
tinction and K-corrected in the same manner, but we use the to-
tal flux from our fitting for this quantity rather than the Petrosian
magnitude in the SDSS pipeline. We show in Appendix A that
our fitting procedure better recovers the total magnitude ofgalax-
ies than the Petrosian photometry. The red symbols with error-

bars in Figure 6 show the median and the 1st and 3rd quartile
of the n distribution in Mstar bins with a 0.25 dex width. From
the plot we see that the median Sérsic index is a strong function
of stellar mass: low-mass CENs have lown (disk-like) and high-
mass CENs have highn (spheroid-like). Yet, there is large scatter
in the relation betweenn and Mstar , especially for CENs with
3×1010 < Mstar/h

−2M⊙ < 1011, where the Sérsic index ranges
from 1 < n < 6 or larger. Higher-mass CENs tend to haven > 3.

We also show how the uncertainty and covariance of the GAL-
FIT n values affect then-Mstar relation in theupper leftpanel of
Figure 6 (green symbols). The red symbols in the plot only take
into account of the scatter from our fits. However, as we showed in
§3.4, there is a strong covariance between the fit parametersn and
mtot and the sky uncertainty, and we usemtot to estimate stellar
mass. To evaluate how this covariance may change the aboven-
Mstar relation, we re-calculate the relation using the results from
the representative subset of 45 CENs in§3.4. For each CEN in our
sample we randomly select one CEN from the nearest five inn
space among the representative subset, and we assume that each
CEN has the samen and mtot covariance as its matched com-
panion. In this way, we construct a probability distribution of n
andMstar (from mtot) for all 911 CENs. The median, 1st and 3rd
quartiles of this distribution are shown by the green symbols and er-
rorbars in theupper leftpanel of Figure 6. The new relation shows
little difference compared with the original because the parameter
uncertainties owing to sky are smaller than the intrinsic scatter in
our sample (red symbols). For example, the average relativescatter
between the 1st and 3rd quartiles ofn owing to the background sky
level uncertainty is only∆n/n ∼ 0.2, while the measured scatter
is ∆n/n ∼ 0.75 and hence dominates.

4.1.2 The Dependence on Host Halo Mass

In theupper rightpanel of Figure 6, we show the dependence of the
Sérsic index of CENs on their host halo mass. Recall thatMhalo is
calculated by matching the rank of the total stellar mass of groups
and clusters with that of dark matter haloes from numerical simu-
lations (see Y07 for details). We find thatn depends only weakly
on Mhalo and that the scatter of then-Mhalo relation is large. For
CENs in haloes withlog[Mhalo/h

−1(M⊙)] < 12.5, we find a me-
dian value ofn = 3 and a relative scatter of∆n/n ∼ 1.3. For
massive haloes withlog[Mhalo/h

−1(M⊙)] > 14.0 the median is
n = 5 and the relative scatter is∆n/n ∼ 0.6.

The n-Mhalo relation, although weak, suggests that the halo
mass may also affect the structure of CENs. However, from the
right panel of Figure 1 we know that the stellar mass of CENs also
depends on the halo mass in the sense that CENs in massive haloes
tend to have larger stellar masses than CENs in smaller haloes.
Given this dependence and the strength of then-Mstar relation,
it is tempting to rule out any dependence ofn on halo mass. To
address this, we attempt to remove anyMstar -Mhalo dependence
from both then-Mstar andn-Mhalo relations.

First, in the lower left panel of Figure 6, we plot then-Mstar

relations for CENs in five halo mass bins, each 0.5 dex in width. All
the bins with less than six CENs are excluded to get better statis-
tics. The roughlyMhalo -independent relations all have a slope and
amplitude that is similar to the singlen-Mstar relation for the full
sample (red symbols in theupper leftpanel). There is some evi-
dence that the relations for differentMhalo bins are somewhat off-
set along theMstar direction in the sense that CENs in less massive
haloes tend to have largern than their counterparts in more massive
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Figure 6. Upper left: the relation between Sérsic index and stellar mass for ourCEN sample. Black crosses represent the best-fittingn for individual CEN
galaxies. The red line connects the median (open squares) ofthen distribution in eachMstar bin. The green line and open circles show the median once the
n andmtot fitting uncertainties owing to sky are folded into the distribution (see text for details). The errorbars show the first and third quartiles.Upper right:
the relation between the best-fitting Sérsic index and halomass for our CEN sample. Black crosses and red lines with errorbars are done as in the left panel.
Lower left: then-Mstar relation split into different bins of fixed halo mass as indicated by key.Lower right: then-Mhalo relation split into different bins of
fixed stellar mass as indicated by the key. In both lower panels, the symbols and errorbars provide the median, 1st, and 3rdquartiles. In thelower panels, only
the best-fitting results are used.

haloes. But since the scatter in the relations are large, we cannot
draw any firm conclusions.

Similarly, we study then-Mhalo relations of CENs in five dif-
ferentMstar bins, each with a width of 0.4 dex, as shown in the
lower right panel of Figure 6. We find that then-Mhalo relations
for each bin of fixed galaxy mass is different from the singlen-

Mhalo relation for the full sample. For the most part, the relations
are all flat, i.e. each CEN of a givenMstar has a constantn, within
the scatter, independent of its host halo mass. We note that several
of the fixed stellar mass relations have a small negative slope when
considering only the median values. This slight trend is a manifes-
tation of the small offsets among then-Mstar relations in different
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Mhalo bins in thelower left panel. A much larger sample is re-
quired to validate whether the profile shape of CENs, as measured
with Sérsic fitting, has a small second-order dependence onhalo
mass.

4.1.3 Discussion

We study the distribution ofn for our CEN sample and its depen-
dence onMstar andMhalo and find that the Sérsic profile shape
of CENs is strongly correlated withMstar but only weakly (or
not at all) correlated withMhalo. Low-mass CENs tend to have
shallower, disk-like profiles, while massive CENs have steeper,
more spheroid-like shapes. Thisn-Mstar relation holds for CENs
from differentMhalo bins with almost the same slope and ampli-
tude. On the other hand, CENs haven values that depend very
weakly, if at all, on global environment as defined byMhalo,
which is consistent with other observations (Kauffmann et al. 2004;
van der Wel 2008). This correlation disappears (or even becomes
an anti-correlation) if we divide our CEN sample into different
Mstar bins. This suggests thatMhalo has almost no effect on the
shape or concentration of CENs. The key factor that determinesn
of a CEN is its stellar mass. Given the relationship between the
masses of CENs and their host halo masses, the phenomenon of
CENs in massive haloes having a more concentrated structure(as
implied by morphology-density relation) can be explained simply
by (1) an intrinsicn-Mstar correlation, and (2) massive CENs liv-
ing preferentially in massive haloes (i.e., mass segregation).

We find low-n (disk-like) CENs in haloes spanning a large
range in halo mass (from1012 to 1014h−1M⊙), which rules out
a distinct (special)Mhalo for producing spheroids. Likewise, find-
ing high-n (early-type) CENs over the same range of environments
suggests that major mergers, or some other processes that trans-
forms disk galaxies into spheroid-like galaxies, occur at the centres
of haloes with a wide range of masses. Finally, it is unclear whether
the halo plays a small, secondary role in determining the overall
profile shape of its CEN as hinted at in the bottom panels of Fig-
ure 6. TheMstar -Mhalo relation in Figure 1 shows that CENs of a
fixed stellar mass reside in haloes with a range of masses. We spec-
ulate that the tendency for CENs of a fixed stellar mass to be more
concentrated in smaller haloes and less so in larger haloes may tell
us something about the recent accretion history of the host and its
impact on the stellar mass growth of the CEN. Halos grow through
the accretion of, and the merging with, other haloes. Briefly, con-
sider two haloes (A and B) that were equal in mass and contained
similar central disk galaxies in the recent past. Since thattime both
haloes have doubled in mass, halo A by a single major merger with
a comparable halo, and B by accreting many minor subhaloes. Ow-
ing to dynamical friction timescales, the disk CEN in halo A will
both (i) grow in mass faster than halo B’s CEN and (ii) be trans-
formed into a spheroid because it is doomed to experience a major
merger with the CEN of the merging halo. Conversely, the massof
the CEN in halo B will take much longer to grow by the occasional
minor merger with small infalling companions, and this process is
much less likely to destroy its disk morphology. Therefore,when
comparing haloes of the same mass, galaxies that grew through
major mergers will be more massive and more concentrated. Like-
wise, when comparing CENs of the same stellar mass, those which
grew through major mergers (i.e., more concentrated) will reside
in lower mass haloes on average more than their disk-dominated
counterparts as we see in the lower left panel of Figure 6. Numer-
ical modelling and a more-detailed analysis on a much largerdata
set could test these predictions.

 0

 20

 40

 60

 80

 100

 120

 0  1  2  3  4  5  6  7  8  9  10

N
um

be
r

n

early-type CENs
late-type CENs

Figure 7. The distribution of Sérsic index for our visual inspected early-
(solid line) and late-type (dotted line) CENs. The Sérsic index comes from
our best fits.

4.2 The Size of CENs

In addition to the Sérsic index, the half-light size is an important
characteristic of galaxy structure. It is well-established that galax-
ies follow well-defined size-luminosity (r50-L) and size-stellar
mass (r50-Mr) relations (e.g. Shen et al. 2003; Bernardi et al. 2007;
Dutton et al. 2007), which are commonly used to constrain galaxy
formation and evolution theories. In this subsection, we study the
size-luminosity relation and the size-stellar mass relations of our
CEN sample and compare our results with those obtained by oth-
ers. Our CEN sample contains both early and late-type galaxies.
Thus, we visually inspect each galaxy and divide the sample into
two types based on whether spiral disk structure is present (late-
type) or not (early-type). In Figure 7 we plot the distribution of our
best-fitting Sérsic index for our visual inspected early- (solid line)
and late-type (dotted line) CENs. Unlike employing a sharp cut at
n = 2.5 as in many studies, the majority of our early-type CENs
haven > 3.5, while late-type CENs haven < 3.5. In what fol-
lows, we will discuss the early and late-type size-luminosity and
size-stellar mass relations separately.

In Figure 8, we show the size-luminosity relation of early- (the
upper leftpanel) and late-type (thelower left panel) CEN galax-
ies. Here we use the half-light radiusr50 (in units of h−1 kpc)
to represent the size of a galaxy. We haver50 = π

180
× a50

3600
×

√

b/a × dA(z), wherea50 and b/a is the semi-major axis and
the axis ratio of our best-fitting model of the galaxy,dA(z) is
the angular diameter distance at redshiftz of the galaxy. We cal-
culate the absolute magnitude using the total magnitude from our
Sérsic fit, K+E corrected toz = 0.1. Following Shen et al. (2003,
hereafter S03), who also measured ther50-L or r50-Mr relation
for SDSS galaxies, we use linear regression to fit ther50-L rela-
tion, i.e. log[r 50/(h

−1kpc)] = −0.4αMr + β. We find slopes of
α = 1.02 ± 0.03 for early-type CENs andα = 0.88 ± 0.04 for
late-type CENs. The linear fits are shown by thick solid linesin
each panel.

At the bright end,Mr − 5 log h < −22, the relation steepens.
The origin of this steepening is unclear. It could be caused by the
covariance between the semi-major axisa50 and the total magni-
tudemtot, as shown in the upper panel of Figure 5. Our tests in
§3.4 show that there is a very strong covariance betweena50 and
mtot, owing to uncertainties in the measurement of background sky
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level, and that this covariance becomes stronger for brightand large
galaxies. The covariance betweena50 andmtot will produce a co-
variance betweenr50 andMr in Figure 8 sinceMr is calculated
from mtot. The direction of the average covariance at the bright
magnitude end, as shown by the arrow in theupper leftpanel of Fig-
ure 8, is almost parallel to the slope of the relation at the bright end.
Moreover, the amplitude of the covariance increases for brighter
and larger galaxies as seen in Figure 5. Hence the covariancebe-
tween size and total magnitude in the profile fitting could contribute
to the slope steepening at the bright end.

To account for any bias at the bright end, we refit exclud-
ing sources withMr − 5 log h < −22 and find slopes ofα =
0.82 ± 0.06 (early-type) andα = 0.57 ± 0.04 (late-type). For
reference, a fit to ther50-L relation of early-type CENs brighter
than -22 has a slope ofα = 1.32±0.08. We don’t fit the bright end
of late-type CENs, because there are only several galaxies.Using
the fit over the faint end (Mr − 5 log h ≥ −22), we find an early-

type r50-L relation with a much steeper slope than theα = 0.65
of S03 (the thin dotted line in theupper leftpanel of Figure 8).
Our fit to ther50-L relation for late-type CENs fainter than -22 is
also qualitatively steeper than that of S03 (comparing the dashed
and dotted line in thelower left panel), who fit ther50-L rela-
tion with a four-parameter model. We note that the definitionof
early/late types in S03 is different from ours. They classified galax-
ies with a Sérsic indexn > 2.5 as early-type and the others as
late-type. The different definitions of early/late-type between S03
and us could contribute to the measured slope differences. We also
try the same early/late-type classification as S03 by using Sérsic
index from our best fits and refit ther50-L relation for the faint
end CENs. We findα = 0.78 ± 0.05 for the slope of early-type
CENs, which becomes flatter due to containing more low Sérsic
index galaxies than our visually inspected early-type sample but is
still steeper than the slope of S03. There are two other possible rea-
sons for the large discrepancies in slope between ther50-L relation
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of S03 and our result: (1) S03 use the results of an early version
of the NYU-VAGC fitting, which underestimates both the totalflux
and the size of galaxies, as shown in Appendix A; (2) S03 covers
a wide range of luminosity and hence contains many faint (fainter
than the faintest one in our sample) galaxies. The slope of the r50-
L relation could have a smooth transition from a flat one at the
faint galaxy end to a steep one at the luminous galaxy end, as sug-
gested by Desroches et al. (2007). Including many faint galaxies in
the S03’s sample can flatten the average slope of the whole sample,
making their slope smaller than ours.

We also compare our results with other studies of ther50-
L relation of BCGs, a subset of massive early-type galaxies at
the centres of large clusters. Bernardi et al. (2007) fit a de Vau-
couleurs model to SDSS images of BCGs from the C4 cluster cat-
alogue (Miller et al. 2005) and study ther50-L relation by using
the half-light radius of their best-fitting models. They finda slope
of α = 0.89 for early-type BCGs over the luminosity range of
Mr − 5log(h) = [−20.3 : −23.3]. This slope is a bit shallower
than our slope (∼ 1.0) for early-type CENs over the same lumi-
nosity range. The difference could be attributed to the factthat
they fit BCGs with a de Vaucouleurs profile rather than a Sérsic
profile, which yields a smaller size and hence results in a flatter
r50-L relation, as shown in their paper. von der Linden et al. (2007)
performed isophotal photometry on the SDSS BCGs from the C4
cluster catalogue (Miller et al. 2005) and foundα = 0.65 ± 0.02
for BCGs over the luminosity rangeMr − 5log(h) = [−20.3 :
−23.3]. However, the isophotal photometry technique could miss
the extended outer parts of galaxy light profiles and hence result
in underestimates of bothr50 andL. Lauer et al. (2007) combined
surface photometry presented in several HST imaging programs for
219 early type galaxies and fit them using a de Vaucouleurs pro-
file. They foundα = 1.18 ± 0.06 for galaxies withMV < −21
and that ther50-L relation changed from a flat slope to a steep
slope at aroundMV = −22. This slope is close to our slope for
CENs brighter thanMr − 5log(h) = −22. Also, their slope be-
haves qualitatively like ours, with a steep slope at the bright end
and a more shallow slope at the faint end. Gonzalez et al. (2005) fit
Sérsic profiles to the I-band images of 24 luminous BCGs residing
in large clusters and foundα = 1.8 ± 0.2, but these fits included
significant ICL. During our tests in§3.4, we showed the sensitivity
to the background sky estimate and the covariance of the sizeand
magnitude from profile fitting. This could become more acute for
high luminosity CENs, where distinguishing the ICL from theex-
tended outer light bound to a galaxy becomes increasingly difficult.

Overall, although it is well known that size strongly correlates
with luminosity, the slope of this relation is hard to determine pre-
cisely. As we summarised in Table 1, authors with different sam-
ples, measurement techniques, definitions of size and/or even the
criteria to split their samples into early and late types obtain dif-
ferent slopes. What’s more, a small uncertainty in background sky
translates into a strong covariance between size and luminosity and
hence can change the slope, especially for bright and large galaxies.
Based on our analysis of the robustness and uncertainty of our fit-
ting, and combined with previous work, we propose slopes forthe
r50-L relation ofα ∼ 0.9 andα ∼ 0.6 for early-type and late-type
CENs, respectively.

Closely related to the size-luminosity relation of CEN galax-
ies is their size-stellar massr50-Mstar relation. For comparison,
we plot ther50-Mstar relations for our early-type (upper right) and
late-type (lower left) CENs in Figure 8. We find slopes ofα =
0.90± 0.02 (early-type) andα = 0.47 ± 0.03 (late-type) by using
the relationlog[r50/(h

−1kpc)] = αlog[Mstar/(h
−2M⊙)] + β to

fit the whole luminosity/stellar mass range of our CEN sam-
ple. Similar to ther50-L relations, ourr50-Mstar relations are
steepened by the covariance between size and total magnitude
in the profile fitting. We also refit the relations with bright
(Mr − 5log(h) < −22) CENs excluded and find slopes ofα =
0.68 ± 0.03 (early-type) andα = 0.35 ± 0.03 (late-type). Our
slopes of faint end (Mr − 5log(h) ≥ −22) CENs are steeper than
those in S03 (thin dotted lines in each panel). As discussed above,
differences in the fitting procedures could be responsible for the
difference. Also we note that ther50-Mstar relation in S03 is de-
rived by using thez-bandr50.

4.3 Comparison Between CENs and SATs

One of our two primary questions regarding the environmental de-
pendence of morphological transformation is whether or notthe
group centre is a special place for determining the structure of
galaxies. In this subsection, we compare the structural properties
of CEN galaxies with those of galaxies selected from the two SAT
samples, which are comparable to our CEN sample. First, we con-
sider SATs matched in stellar mass with our CEN sample, the SAT
sample S1. Second, we study SATs matched both in stellar mass
and colour, the SAT sample S2. (see§2 for details). We address our
above question by testing if CENs and SATs are two distinct popu-
lations of galaxies possessing different structural properties. SATs
were CENs before being accreted by a larger halo, thus, differences
between these galaxies probe the impact of local environment on
SAT-specific transformation processes.

Many studies have demonstrated structural differences be-
tween brightest cluster galaxies (BCGs) and non-BCGs. For ex-
ample, BCGs are found to have larger sizes (e.g., Bernardi etal.
2007; von der Linden et al. 2007; Liu et al. 2008) and steeper light
profiles (e.g., Graham et al. 1996) compared to other massiveearly
type galaxies (ETGs) in the same cluster. These results are inter-
preted as differences between CEN and SAT galaxies and, as such,
are thought to indicate unique formation histories. However, it is
important to keep in mind that the BCGs in these studies represent
a special subset of all CENs; namely they are the most-luminous
and highest-mass galaxies found at the centres of massive clusters
and are the tip of the galaxy group mass function. Moreover, acom-
parison of BCGs with other morphologically similar clustermem-
bers is effectively a comparison of galaxies of different masses. In
general, the structural properties of ETGs have a smooth transition
as their luminosity and/or stellar mass changes (Desrocheset al.
2007). Therefore, it is unclear whether differences between BCGs
and non-BCGs are intrinsic and originate from separate formation
mechanisms or are simply a reflection of their different masses. To
avoid this selection effect, we compare the structure of CENand
SAT galaxies that are matched in stellar mass.

4.3.1 Sérsic Indexn

We compare then-Mstar relations of CENs and SATs in Figure
9. The relation for CENs is reproduced from Figure 6, and then-
Mstar relations of SAT sample S1 and S2 are measured in an iden-
tical fashion as for the CENS, i.e. their stellar masses are based
on their best-fitting total magnitudes from our Sérsic fitting analy-
sis and the error bar represents the first and third quartile in each
Mstar bin. We also repeat our self-matching test in Sec. 2.2 and
find that the scatter of Sérsic index medians due to our match-
ing scheme is much smaller than the sample scatter. So we de-
cide to choose the scatter of the sample (as shown by the first
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Table 1.Slope of ther50-L relation for early-type galaxies from various authors

Work Sample α ∆α Luminosity range Model

This work Y07 CENs 1.02 ±0.03 Mr − 5log(h) = [−19 : −24] Sérsic
This work Y07 CENs 0.82 ±0.06 Mr − 5log(h) > −22 Sérsic
This work Y07 CENs 1.32 ±0.08 Mr − 5log(h) < −22 Sérsic

Shen et al. (2003) SDSS galaxies 0.65 – Mr − 5log(h) = [−15.3 : −23.3] Sérsic
von der Linden et al. (2008) C4 BCGs 0.65±0.02 Mr − 5log(h) = [−20.3 : −23.3] isophotal photometry

Bernardi et al. (2007) C4 BCGs 0.89 – Mr − 5log(h) = [−20.3 : −23.8] de Vaucouleurs
Lauer et al. (2006) 219 galaxies 1.18±0.06 MV < −21 de Vaucouleurs

Gonzalez et al. (2006) 24 BCGs 1.8 ±0.2 MI < −24 Sérsic
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Figure 9. Comparison of then-Mstar relation for CEN galaxies with that
of SATs matched in stellar mass (SAT sample S1,upper panel), and with
SAT galaxies matched to our CEN sample in both colour and stellar mass
(SAT sample S2,lower panel). In each panel, solid lines with filled circles
represent the median values of the CEN relation and dot-dashed lines with
open squares show the SAT samples. The errorbars give the first and third
quartiles of then distribution in eachMstar bin as in Figure 6, and bins
with less than six galaxies are excluded.

and third quartiles in the plot) to represent the confidence inter-
val whenever comparing medians of measurements from two sam-
ples. Note that we match our CEN and SAT samples using the stel-
lar mass estimated from the Petrosian magnitude in§2, but plot
the result using the stellar mass estimated from the total magni-
tude in our Sérsic fits. The only possible concern about thispro-
cedure is that it may change the colour difference between CENs
and SATs in the SAT sample S2 at given stellar mass (see the
lower right panel of Fig. 2). To evaluate the magnitude of this
effect we calculate the difference between the median colour of
CENs and SATs in the SAT sample S2 in the same stellar mass
bin with a width of 0.5 dex fromlog[Mstar/(h

−2M⊙)] = 9.5 to
log[Mstar/(h

−2M⊙)] = 12.0, where now the stellar mass is the
one computed by using our Sérsic total magnitude. We find a very
small difference: SATs are redder by0.015. However, this differ-
ence is still well within the measurement uncertainties of colour
(±0.03) and hence our claim that the SAT sample S2 is matched
with the CEN sample in bothMstar and colour is still valid. As for
the SAT sample S1, as long as we compare CENs and SATs in same
stellar mass bin, the modification of stellar mass does not change
the results.

In the lower panel of Figure 9, we see that then-Mstar re-
lation of SATs is almost identical to that of CENs matched in
BOTH stellar mass AND colour. The only exception is for SATs
in our highest-mass bin, which have a somewhat higher median
Sérsic value than CENs of similar mass and colour. We note that
this bin has the smallest number of SATs (13), so small number
statistics may account for the difference in the medians. How-
ever, if we release the constraint on colour matching, low mass
SATs (log[Mstar/(h

−2M⊙)] < 10.75) tend to have a somewhat
higher median Sérsic index than their CEN counterparts (upper
panel), although the discrepancy is within the scatter. In contrast,
the more massive SATs have similarn-Mstar relations as CENs
matched only in stellar mass, except again for the highest-mass
SATs. Our results are in good agreement with those obtained by
van den Bosch et al. (2008), who used concentration defined by
the ratio of SDSS radii containing 90 percent and 50 percent of
the Petrosian flux, rather thann, to describe the profile shape of
galaxies and found that low mass SATs are redder and slightly
more concentrated if matched with similar mass CENs. In addition,
van den Bosch et al. (2008) found that the concentration difference
goes to zero when matched in colour and M as we find here.

4.3.2 Size

Besides then-Mstar relations, we use ther50-L andr50-Mstar re-
lations to compare the structural properties of CEN and SAT galax-
ies. We plot the sizes, luminosities, and stellar masses of our CEN
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Figure 10.Comparison of CEN (red points) and SAT (blue points) galaxy size-luminosity (left column) and size-stellar mass (right column) scaling relations.
These SATs (sample S1) have similar stellar masses as our CENsample. The black (green) lines and errorbars show the median, first and third quartiles of the
CEN (SAT) distribution in each luminosity or stellar mass bin. Both CENs and SATs are separated into early-type (upperpanels) and late-type (lower panels)
galaxies (see text for detail).

sample from Figure 8 as red points in Figures 10 and Figure 11.
The blue points represent the data for our SAT samples S1 (Fig.
10) and S2 (Fig. 11). The size, absolute magnitude and stellar mass
of SATs are calculated in the same way as CENs as described in
§4.1 and§4.2. Also, as in§4.2, we divide the SAT samples S1 and
S2 into early-type and late-type galaxies based on our visual in-
spection. However, instead of computing the slopes of the CEN and
SAT scaling relations, we compare the half-light size distributions
(median, first, and third quartiles) of each sample in narrowbins of
luminosity (0.25 mag wide for ther50-L relation) and stellar mass
(0.2 dex wide forr50-Mstar ). In this manner, we directly compare
CENs with SATs from each sample only in regions of overlapping
luminosity or stellar mass. Hence, we avoid comparing scaling re-
lation slopes based upon samples that span different luminosity and
stellar mass ranges. This helps to avoid the effects of smallnumber
statistics at the bright/massive and the faint/low-mass ends, which
can bias the scaling relation slopes.

The comparisons in Figures 10 and 11 show that for early type
galaxies, whether or not they are matched in colour, CENs and
SATs display almost no difference in their size distributions. The
only differences occur at the bright/massive ends of the SATrela-

tions, where both SAT sample S1 and S2 suffer from small num-
ber statistics. For late-type SAT galaxies, the two samplesalso have
size-luminosity relations that are similar to the CENs (thelower left
panel in both figures). SATs have smaller median sizes than CENs
when we only match in stellar mass (thelower right panel of Fig-
ure 10), but this difference disappears when we compare to SATs
matched in both colour and stellar mass (thelower right panel of
Figure 11).

4.3.3 Discussion

Using then-Mstar, r50-L and r50-Mstar relations, we compare
galaxies in our CEN sample to SATs of the same stellar mass.
We find two basic differences between CEN and SAT galaxies: (1)
low mass (log[Mstar/(h

−2M⊙)] < 10.75) SATs have a slightly
higher median Sérsic index compared to CENs of the same stellar
mass; and (2) low-mass, late-type SATs have smaller median sizes
compared to their same-mass CEN counterparts. Our findings are
in good qualitative agreement with the results of Weinmann et al.
(2008) for a much larger SDSS sample. Using the NYU-VAGC
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Figure 11.Same as Figure 10, except comparing CENs with SATs of similarstellar mass and colour.

half-light radii and concentrations for over105 galaxies, they found
that late-type SATs are smaller and more concentrated than late-
type CENs of the same stellar mass. We note, however, that their
size measurements suffer from a systematic underestimate owing
to an overestimate of the background sky levels (as we discuss in
Appendix A).

We also find that the above two basic differences disappear
when we compare CENs and SATs of the same stellar massand
optical colour. Moreover, we find no structural differences between
high-mass (log[Mstar/(h

−2M⊙)] > 10.75) CEN and SAT galax-
ies, which tend to have early-type (spheroid-dominated) morpholo-
gies, or between early-type CENs and SATs, in general.

For lower-mass (log[Mstar/(h
−2M⊙)] < 10.75) SATs, the

minor differences with CENs of similar stellar mass, and thelack
of any difference with CENs of the same mass and colour, can be
understood in terms of our selection criteria for the SAT sample S1
and S2. According to the hierarchical scenario of structureforma-
tion, larger haloes housing groups and clusters are formed through
the accretion and merging of smaller haloes. Thus, all SATs were
once the CEN galaxy in a smaller halo. Under this assumption,low-
mass SATs tend to be redder on average than CENs of similar stel-
lar mass because SATs have had their star formation quenchedby
environmental processes once they became non-CEN members of a

larger halo (van den Bosch et al. 2008). In addition, as Weinmann
et al. (2008) point out, quenching will also cause a moderatein-
crease in the concentration and decrease in the size of late-type
SATs, as we find here when comparing similar mass SATs and
CENs. It is important to keep in mind that the average structural
differences are small and, as such, SAT quenching cannot be used
to explain the major morphological transformation of many disks
into spheroids that is required to produce the strong morpholog-
ical bimodality between blue and red galaxies. When we restrict
our SAT selection to match lower-mass CENs inbothstellar mass
and colour (SAT sample S2), we preferentially choose blue SATs.
Lower-mass CENs are typically blue (Figure 1) and their colour is
associated with late-type morphology (disk-like) and on-going star
formation. Therefore, we argue that blue SATs are likely exam-
ples of newly accreted SATs, i.e. recent CENs of the most recently
accreted subhaloes. If true, new SATs have not been members of
larger haloes long enough to alter their colour and structural prop-
erties. This line of reasoning agrees with the absence of structural
differences we find for the CENs and SATs in SAT sample S2.

When we consider higher-mass
(log[Mstar/(h

−2M⊙)] > 10.75) SATs (either sample S1 or
S2), they have the same red colour (see lower left panel of Figure.
2) and highly-concentrated, large Sérsic index profiles associated
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with early-type morphologies as CENs of similar mass. While
massive SATs are rare compared to their CEN counterparts, they
are structurally indistinguishable. In a broader sense, wefind that
all morphologically early-type SATs and CENs have the same size
scaling relations and that any reported differences between CENs
and SATs (e.g. Graham et al. 1996; Liu et al. 2008) are actually the
result of comparing two populations, e.g. BCGs and non-BCGs,
with different stellar mass distributions. Owing to the similar red
colours of massive CENs and SATs, there is no way to discern
recent arrivals from long-term members in larger haloes, but it is
clear that the transformation into spheroids does not depend on
becoming a SAT. If that were true, we would expect massive CENs
to be disk-like when they are clearly otherwise. Rather, we argue
that the strong morphological transformation from disk to spheroid
occurred at an earlier time when a massive SAT was the CEN of
a smaller halo and that the local environment had no additional
impact on the structure of high-mass spheroids. We find that
the difference between disk-dominated and spheroid-dominated
structure is more directly related to the stellar mass of a galaxy.
Clearly, there is some relationship between the mass of CENsand
their host halo mass (Figure 1), but further study is required to
understand whether or not any aspect of the environment plays an
important role in the transformation of disks and the production of
high-mass spheroids.

5 SUMMARY

In this paper, we study how the structural properties of central
galaxies (CENs) in groups and clusters depend on galaxy stellar
mass, global environment (group halo mass), and local environment
(central/satellite position within the host halo). We select from the
SDSS DR4 group catalogue (Yang et al. 2007) a statistically repre-
sentative sample of 911 CENs whose host halo masses span from
1012 to 1015h−1M⊙. We use 2D Sérsic model fits to quantify the
shape (Sérsic index) and size (half-light radius) of each galaxy. To
this end, we establish a well-tested, GALFIT-based pipeline to fit
Sérsic models to SDSS imaging data in ther-band. We summarise
our main findings below.

We thoroughly test the performance of our GALFIT pipeline
on simulated and real SDSS galaxy image data. Our 2D fitting re-
covers the structural properties of simulated galaxies with no bias,
unlike the one-dimensional fits to azimuthally-averaged data em-
ployed for the NYU-VAGC that systematically underestimatethe
total flux, size and Sérsic index of higher-n profiles. For galaxy
profile fitting, we also demonstrate that the SDSS global sky is pre-
ferred over the SDSS local value as a background level measure-
ment. We compare our fitting results with those from the NYU-
VAGC and find that our fits include light from the outer parts of
galaxies, which is missed when an overestimate of the (local) sky
background is used. We test how this background uncertaintytrans-
lates into a systematic uncertainty in the fitting parameters owing
to a strong covariance between Sérsic index, total magnitude, and
half-light size. This covariance affects bright and large galaxies
more and could contribute to the apparent steeping in the slope
of the size-luminosity and size-stellar mass relations at the bright
(massive) end.

We find that the Sérsic index of CENs depends strongly
on Mstar, but weakly or not at all onMhalo. The depen-
dence on stellar mass is in the sense that low mass galax-
ies (Mstar < 1010.5h−2M⊙) have lower, disk-like indices (n ∼
2.0), while massive galaxies (Mstar > 1011.0h−2M⊙) have higher,

spheroid-like (∼ 5) indices. Over a large range inMhalo , from
small groups to large clusters, any change in then distribution
of CENs is likely the result of the correlation betweenMstar and
Mhalo. The fact that spheroidal CENs are found at all group masses,
and the lack of a strongn dependence onMhalo , both rule out a
distinct halo mass for producing spheroids. Moreover, the strong
dependence ofn on Mstar suggests thatMstar is the key factor in
determining the shape of CENs.

Similar to the light profile shape, the half-light size of CENs
depends on galaxy stellar mass and luminosity. We separate our
CEN sample into early and late-type galaxies by visual inspection
and we find ar50-L slope ofα ∼ 0.83(0.62) for early-type (late-
type) galaxies with−22 < Mr − 5log(h) < −20. We also com-
pare ourr50-L slope for early-type CENs with those from other
studies and find that there is fairly large discrepancy. Thisdiscrep-
ancy could result from several factors including differentsamples,
size measurement techniques, or early-type galaxy definitions.

To study whether the structural properties of CENs depend
on their special position at the centre of the gravitationalpo-
tential well, we compare their shapes and sizes with those of
non-CEN satellite (SAT) galaxies. We find that low mass (<
10.010.75h−2M⊙) SATs have somewhat larger median Sérsic in-
dices compared with CENs of similar stellar mass. In addition, low
mass late-type SATs are moderately smaller in size than late-type
CENs when matched in stellar mass, but no size differences are
found between early-type CENs and SATs. We findno structural
differencesbetween SATs and CENs when they arematched in both
optical colour and stellar mass.The small differences in the sizes
of low-mass, late-type CENs and SATs are consistent with SAT
quenching as found by others (e.g., in van den Bosch et al. (2008)
and Weinmann et al. (2008)). The similarity in the structureof mas-
sive SATs and massive CENs demonstrates that the local environ-
ment has no significant impact on the structure of a massive galaxy
that enters a denser environment and that these two populations are
morphologically indistinguishable.

We conclude thatMstar is the most fundamental property in
determining the basic structural shape and size of a galaxy.In con-
trast, the lack of a significantn-Mhalo relation rules out a clear
distinct group mass for producing spheroids. This fact, combined
with the existence of spheroid CENs in low-mass and high-mass
groups, suggests that the strong morphological transformation pro-
cesses that produce spheroids must occur at the centres of groups
spanning a wide range of masses.
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Figure A1. Differences between the NYU-VAGC and GALFIT Sérsic parameters fromr-band SDSS data as a function of the GALFIT Sérsic parame-
ters for our total sample of 1657 CEN+SAT galaxies. The linesshow the quartiles of each distribution as in Fig. 3. Black points are for galaxies with
|∆sky| > 0.1 ADU and red points for|∆sky| < 0.1 ADU, where∆sky = local sky − global sky. Note, in theleft panels it is clear that the NYU-VAGC
fitting has ann = 6 limit.

APPENDIX A: COMPARISON WITH NYU-VAGC S érsic
FITS

Blanton et al. (2005, hereafter ’NYU-VAGC’) fit Sérsic models to
the azimuthally-averaged 1D profiles output by the SDSS photo-
metric pipeline (Stoughton et al. 2002) for all SDSS DR4 galax-
ies meeting the Main sample criteria. Tests show that the NYU-
VAGC Sérsic fitting does well for simulated galaxies with aninput
Sérsic indexnin < 2, a small size or a faint magnitude. But for
nin > 2 simulations, the NYU-VAGC fitting systematically under-
estimatesn, r50, and total flux [see Figure 9 in Blanton et al. (2005)
for details]. For example, for a simulated galaxy withnin = 4
the NYU-VAGC fitting underestimates these parameters by 15 per-
cent. For comparison, our GALFIT fitting results for 850 sim-
ulated Sérsic galaxies placed in SDSS images show very little
bias for nin > 4 galaxies (see Figure 3). Note that we adopt
the global sky value from the SDSS image header in our GAL-
FIT profile fits, while NYU-VAGC uses the local sky level. It has
been reported that the SDSS pipeline overestimates the local sky in

dense environments (Lauer et al. 2007; von der Linden et al. 2007;
Adelman-McCarthy et al. 2008). As such, Sérsic fits based onover-
estimates of the sky may result in fainter magnitudes, smaller sizes
and/or lower Sérsic indices as we demonstrate in§3.4.

Figure A1 shows comparisons between our fit results and
those from NYU-VAGC for our total sample of 911 CENs plus
746 SATs from our SAT sample S2 (see§2 for details). Below, we
discuss in detail the discrepancies between the two fits for galaxies
with n > 3 from GALFIT, and then for those with lower Sérsic
indices.

A1 High Sérsic Galaxies

For n > 3 galaxies, the NYU-GALFIT parameter discrepancy
for real galaxies in Figure A1 follows a similar trend as those be-
tween the input and fit parameters for simulated galaxies in Fig-
ure 9 of Blanton et al. (2005), but with an increased amplitude. For
example, the Sérsic difference (lower left panel) grows byabout
∆n ≃ 1.3 over the interval3 < n < 6, compared with∆n ≃ 0.6
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over the same interval in the Blanton et al. (2005) simulations.
Here two factors are at play: one is the systematic underestimate
of NYU-VAGC’s 1D fitting procedure for steep Sérsic profilesas
demonstrated in their test fitting using simulations. The second fac-
tor is the difference between the sky levels used in each procedure.
In Figure A2, we attempt to separate these two factors by split-
ting the whole sample into GALFIT Sérsic index and relativesky
difference bins, where the relative sky difference is the difference
between the local and the global sky normalised by the Petrosian
surface brightness of the galaxies (Ipetro = fPetro/(2πr2

50,Petro)
in units of ADUs per pixel, wherefPetro andr50,Petro are the Pet-
rosian flux and Petrosian half-light radius, respectively). Forn > 4
galaxies with a normalised sky difference less than 0.01, meaning
that the sky difference is at most a minor issue, then andr50 dis-
agreements more or less reflect the systematic underestimates seen
in the NYU-VAGC fitting of simulated galaxies. As∆sky/Ipetro

increases, the NYU-GALFIT disagreements grow and we see a
trend of larger NYU-VAGC underestimates for galaxies with higher
n, as expected when the local sky estimate includes more of the
light belonging to each galaxy.

A2 Low Sérsic Galaxies

We have outlined how the NYU-VAGC and GALFIT methods both
do very well in fitting pure-Sérsic simulations withnin < 3, there-
fore we expect minor differences when comparing fits to real galax-
ies with disk-like profiles. However, we find that the fit parameters
from the two procedures differ in two ways forn < 3 galaxies, as
shown in Figure A1. First, the NYU-VAGC fits have systematically
higher Sérsic values than the GALFIT fits, which is inconsistent
with the results from the simulations. Second, there is a systematic
offset of about 0.2 mag between the magnitude of NYU-VAGC fits
and our GALFIT fits in the sense that NYU-VAGC finds fainter
fluxes. We note that the offset appears to be independent of the dif-
ference in the sky (∆sky = local sky − global sky) used in each
fitting procedure, as shown by the similarity between the red(small
∆sky) and the black (large∆sky) points forn < 3 galaxies in
Figure A1.

We suspect that the NYU-VAGC procedure of fitting a 1-D
Sérsic model to azimuthally averaged annuli overestimates Sérsic
indices for disk galaxies. We check the distribution of Sérsic in-
dices for the whole NYU-VAGC and find that the number of galax-
ies with0.5 < nNYU−VAGC < 1.0 is much less than those with
1.0 < nNYU−VAGC < 1.5. This results in conflicts with other
observations of disk galaxies (e.g. Driver et al. 2006; van der Wel
2008; Häussler et al. 2007). To test our suspicion, we visually in-
spect galaxies from our sample with a late-type fit (n < 2) by
GALFIT, but an early-type fit (nNYU−VAGC > 2.5) by NYU-
VAGC. To exclude the sky influence, we restrict our inspection to
36 galaxies with|∆sky| < 0.5 ADU. At least two thirds of these
galaxies have very obvious spiral features as expected for galax-
ies with disk-dominated light profiles. Another 20 percent have
disturbed morphologies or very bright nearby stars, which could
cause spurious fits. A majority of the spirals are inclined with
b/a < 0.5. As clearly demonstrated by Bailin & Harris (2008),
nNY U−V AGC is systematically overestimated for more inclined
galaxies. This effect is the result of edge-on or inclined galaxies
having steeper azimuthally averaged radial profiles because the av-
eraged flux from the narrow outer part of such galaxy is decreased
by being smoothed over a large circular area.
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Figure A2. The NYU-GALFIT discrepancies shown in Figure A1 as a func-
tion of sky difference, divided into GALFIT Sérsic index bins as shown by
the colour coding. Here the sky difference is expressed by the ratio between
∆sky = local sky − global sky and the average Petrosian surface bright-
ness (Petrosian quantities are directly drawn from SDSS tables).

A3 Comparing Sérsic Magnitude Estimates

Besides the tendency to overestimate the Sérsic indices ofac-
tual disk-dominated galaxies when using 1D fits to azimuthally-
averaged radial profiles, we also explore the offset betweenthe
NYU-VAGC and the GALFIT Sérsic magnitudes in more detail.
For this exercise we use an independent measure of galaxy flux,
the SDSS Petrosian magnitude, to anchor our comparisons of dif-
ferent Sérsic magnitudes from the two methods. The SDSS photo-
metric pipeline calculates the flux within a circular aperture equal
to two times the Petrosian radius, which provides an approximate
total galaxy magnitude. It is well known, however, that Petrosian
magnitudes systematically miss some flux when applied to differ-
ent Sérsic model profiles. As shown in Graham et al. (2005), the
Petrosian magnitude misses very little flux for ann = 1 profile,
but for ann = 4 galaxy it will underestimate the brightness by
about 0.2 magnitudes. We note that the Graham et al. (2005) calcu-
lations are valid only when the sky is known perfectly. Any un-
der/overestimation of the sky background will increase/decrease
the discrepancy between the Petrosian and the Sérsic magni-
tudes. Using the formalism of Graham et al. (2005), we predict the
Petrosian-Sérsic magnitude offset (∆mag = Petrosian − Sersic)
under the influence of different amounts of overestimation of the
real sky by subtracting a range of background pedestals to each
Sérsic model before measuring the Petrosian flux. Our∆mag pre-
dictions for differentn are shown in Figure A3 (top panel) as a
function of the sky overestimate (∆sky), normalised by the Pet-
rosian surface brightness (as in Figure A2). When the normalised
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Figure A3. The difference between Petrosian and Sérsic model quantities
as a function of sky offset normalised to the Petrosian surface brightness.
Cases with different Sérsic index are colour coded as indicated in the top
panel. Solid lines are for our predictions based on a pure Sérsic model (see
text for details), for which∆sky means the imaginary overestimation of sky
background. The small squares are for each galaxy in our GALFIT sample,
for which∆sky means the SDSS local-global sky difference. The filled cir-
cles with error bars show the mean and standard deviation of our sample in
different bins. We also compare with the mean and standard deviation (tri-
angles with error bars) of the NYU-VAGC fitting parameters, which should
be plotted at∆sky = 0, but are shifted a little to allow them to be plotted
on a log-scale plot.

sky difference is less than10−4, our predictions converge as ex-
pected to the values claimed in Graham et al. (2005). However, as
the overestimates of the local sky increase, underestimates of the
Petrosian magnitude for differentn grow systematically. Likewise,
we also make predictions for the offsets between the Petrosian and
the Sérsic half-light radii (r50,Petro/r50,Sersic) as a function of sky
offsets and plot these in the bottom panel of Figure A3.

In Figure A3, we also compare our GALFIT results for ac-
tual galaxies (small squares) to the sky dependent predictions. Our
working assumptions are: (1) a Sérsic model is a reasonablemodel
to describe galaxy light profiles, and (2) the SDSS global skyis
a good measurement of the real sky and is preferred to using the
SDSS local value. Here∆sky is the local-global sky difference in
SDSS and all the Petrosian results are measured using the local sky.
In theupperpanel, we see that our fit results are close to the∆mag
predictions for a wide range of sky differences and Sérsic indices.
We also find fair agreement between ourr50 results and the pre-
dictions in thelowerpanel of Figure A3, suggesting that our fitting
results are self-consistent under the two assumptions above.

Finally, we compare the NYU-VAGC results for the real data
with the predictions. Given that the NYU-VAGC fitting uses the

same local sky as the Petrosian quantities, all the galaxieswith
NYU-VAGC fits have∆sky = 0 by definition. Therefore, the val-
ues of∆mag andr50,Petro/r50,Sersic for the NYU-VAGC Sérsic
results for our sample (triangles in Figure A3) should satisfy the
predictions of Graham et al. (2005). Yet, we see that the NYU-
VAGC Sérsic results are actually underestimates, on average, com-
pared to the predictions. For example, then = 1 galaxies have
Sérsic magnitudes that are 0.1 magfainter than the Petrosian mea-
surement, which isinconsistentwith either the predictions or the
definition of the two magnitudes. By definition, Sérsic magnitudes
are based on a model flux integrated to infinity, thus there is no
reason for such a magnitude to be fainter than the Petrosianaper-
ture magnitude, which only includes light our to some radius. It
is unclear why the NYU-VAGC Sérsic fitting procedure produces
fainter magnitudes than expected, but this effect combinedwith the
nonzero∆sky values explain the systematic 0.2 mag offset that we
find between the GALFIT and the NYU-VAGC Sérsic magnitudes
for n < 3 galaxies (Figure A1). Based on the above analysis, we
conclude that if the two assumptions of our fitting are valid,i.e.
assuming a Sérsic model is the correct model and that the SDSS
global sky is an accurate measure of the true sky background,then
our GALFIT fitting of the SDSS data returns more accurate mea-
surements for the structural parameters of galaxies than those in the
NYU-VAGC.

This paper has been typeset from a TEX/ LATEX file prepared by the
author.
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