
ar
X

iv
:0

81
1.

36
10

v1
  [

as
tr

o-
ph

] 
 2

1 
N

ov
 2

00
8

Draft version November 21, 2008
Preprint typeset using LATEX style emulateapj v. 5/14/03

TYPE IA SUPERNOVA: CALCULATIONS OF TURBULENT FLAMES USING THE LINEAR EDDY MODEL

S. E. Woosley1, A. R. Kerstein2, V. Sankaran2, and F. Röpke3
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ABSTRACT

The nature of carbon burning flames in Type Ia supernovae is explored as they interact with Kol-
mogorov turbulence. One-dimensional calculations using the Linear Eddy Model of Kerstein (1991)
elucidate three regimes of turbulent burning. In the simplest case, large scale turbulence folds and
deforms thin laminar flamelets to produce a flame brush with a total burning rate given approximately
by the speed of turbulent fluctuations on the integral scale, UL. This is the regime where the super-
nova explosion begins and where most of its pre-detonation burning occurs. As the density declines,
turbulence starts to tear the individual flamelets, making broader structures that move faster. For
a brief time, these turbulent flamelets are still narrow compared to their spacing and the concept of
a flame brush moving with an overall speed of UL remains valid. However, the typical width of the
individual flamelets, which is given by the condition that their turnover time equals their burning
time, continues to increase as the density declines. Eventually, mixed regions almost as large as the
integral scale itself are transiently formed. At that point, a transition to detonation can occur. The
conditions for such a transition are explored numerically and it is estimated that the transition will
occur for densities near 1 × 107 g cm−3, provided the turbulent speed on the integral scale exceeds
about 15% sonic. An example calculation shows the details of a detonation actually developing.
Subject headings: supernovae: general; hydrodynamics, shock waves, turbulence

1. INTRODUCTION

Damköhler (1940) first discussed multiple regimes of
turbulent chemical combustion and gave scaling relations
for each. In modern terms, the two regimes can be dis-
tinguished by their Karlovitz number, Ka, (e.g., Peters
2000),

UL

Slam
= Ka2/3

(

L

δlam

)1/3

, (1)

or equivalently,

Ka =

(

δlam

lG

)1/2

. (2)

Here UL is the rms velocity of turbulent fluctuations on
an integral scale, L; Slam is the laminar conductive speed;
δlam is the width of the laminar flame; and lG is the Gib-
son length. For isotropic Kolmogorov turbulence (as-
sumed throughout this paper), the turbulent speed on
the scale of the flame thickness is

vturb(δlam) =

(

δlam

L

)1/3

UL, (3)

and the Gibson scale, the size of the eddy that turns over
in a (laminar) flame crossing time, is

lG =

(

Slam

UL

)3

L. (4)

For Ka <
∼1, individual laminar flames are moved

around by the largest turbulent eddies while smaller ed-
dies have little effect. The overall burning progresses
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at a speed determined by turbulence properties and is
independent of the burning rate on small scales. This
regime has been extensively explored in the astrophysical
context (Niemeyer 1995; Niemeyer & Hillebrandt 1995;
Niemeyer & Woosley 1997) and its properties are re-
flected in the Munich group’s subgrid model for flame
propagation (Schmidt et al. 2006a,b).

The condition Ka ≫ 1, on the other hand, implies
that turbulence can penetrate into the flame and trans-
port heat, and possibly fuel, faster than laminar burning
crosses a flame width. An equivalent condition is that the
Gibson scale is much less than the flame thickness. This
regime too has been discussed in the astrophysical liter-
ature (Khokhlov, Oran, & Wheeler 1997; Lisewski et al.
2000; Niemeyer & Woosley 1997; Niemeyer & Kerstein
1997). It is generally agreed that if spontaneous deto-
nation is to occur, it requires Ka > 1 and probably Ka
> 10 so that the burning region itself is disrupted, not
just the preheat zone.

It is also known in the chemical combustion commu-
nity (Kerstein 2001; Peters 1986, 2000) that the region
Ka ≫ 1 can be further divided based on the value of the
Damköhler number, Da = L/(ULτnuc). Here τnuc is the
characteristic burning time scale, appropriately modified
by turbulence. For Da < 1, the eddy turnover time on the
integral scale is short compared with the nuclear time;
for Da > 1, it is longer. In the literature, the term “dis-
tributed reaction zone(s)” has been used with reference
to the Da < 1 regime, the Da > 1 regime, or both lumped
together (i.e., all flames with Ka ≫ 1). Therefore we
avoid this terminology, choosing instead to follow Peters
(1986) in referring to Da < 1 as the “well-stirred reactor
regime” (WSR regime), and to follow Kerstein (2001) in
referring to Da > 1 as the “stirred flame regime” (SF
regime).

In the WSR regime, there is only one flame. It has a
width broader than the integral scale and a speed slower

http://arXiv.org/abs/0811.3610v1


2

than the turbulent speed on the integral scale. This sort
of flame is similar to the usual laminar flame, except that
the turbulent diffusion coefficient (Dturb ∼ ULL) now
substitutes for conduction. Within the SF regime, on
the other hand, there can be multiple burning regions,
but the idea of a flame brush composed of individual
flamelets with well-defined local properties is no longer
valid. The overall burning continues with an average
rate given by the turbulent speed on the integral scale,
but the flamelets do not have a uniform width and their
number and individual speeds are quite variable.

In this paper, we explore these three regimes of turbu-
lent nuclear combustion, Ka < 1, WSR, and SF, in the
context of a Type Ia supernova using a numerical tool,
the Linear Eddy Model (§ 3.1). If a transition to detona-
tion is to occur, we conclude that it must happen in the
SF regime, specifically where Da ∼ 10 and in the pres-
ence of a high degree of turbulence, UL

>
∼0.15 csound. An

example of a successful spontaneous transition to deto-
nation is given.

2. SPECIAL CONDITIONS IN A TYPE IA SUPERNOVA

The conditions characterizing turbulent (nuclear) com-
bustion in a Type Ia supernova are novel and have no
direct analogue on earth. This makes the supernova an
interesting environment for testing new physics, but it
also means that our terrestrial intuition regarding flames
can be misleading. For example, it is thought that labo-
ratory flames in the Ka ≫ 1 regime simply go out (Peters
2000) because they are unable to maintain their heat in
the presence of so much turbulence. But the flame in a
supernovae can never “go out” until the star comes apart
and, in terms, of local flame variables, that takes a very
long time. The relevant time scale is the hydrodynamic
time scale for the whole star, ∼1 s, not the shorter lo-
cal turbulent time scale, UL/L. Also the star is very
large, >

∼108 laminar flame thicknesses and 100 integral
scales. Rare events have many opportunities for real-
ization. There are also other conditions that are vastly
different and, in some cases, make detonation more easily
achievable.

2.1. High Reynolds Number

The Reynolds number in a Type Ia supernova is orders
of magnitude greater than achieved thus far in any ter-
restrial experiment or in any numerical simulation. The
source of viscosity is electron-ion interactions in a fully
ionized plasma (Nandkumar & Pethick 1984)

ν =
1.9 × 106

Z

(

(ρ6/µe)
5/3

1 + 1.02 (ρ6/µe)2/3

)

1

I2

∼ 2 × 106 gm cm−1 s−1

(5)

for Z = 7, µe = 2, ρ6 = 10, and I2 = 0.5. The Reynolds
number is then

Re =
ρULL

ν
∼ 5 × 1013, (6)

for ρ = 107 g cm−3, UL = 100 km s−1, and L = 10 km.
This large value of Re implies a tiny Kolmogorov scale,
much smaller than any laminar flame thickness under
consideration here, and irresolvably small in most nu-
merical simulations,

η = Re−3/4L ∼ 10−4 cm. (7)

Note also that this implies ten orders of magnitude in
length scale where the turbulence is (assumed to be) Kol-
mogorov and isotropic with constant energy dissipation,
U3

L/L.
On earth, the Kolmogorov scale is usually not so small

compared with the flame thickness. This makes achiev-
ing the SF and WSR regimes more difficult on earth,
though certainly not impossible.

2.2. Temperature-Dependent Heat Capacity

The heat capacity in the supernova at a relevant den-
sity, ρ ∼ 107 g cm−3, is due to a combination of semi-
degenerate electrons, ions and radiation. Radiation is
an important component of the heat capacity at these
low densities and hence the heat capacity is a rapidly
increasing function of the temperature. At a density of
107 g cm−3, for 50% C and 50% O, the heat capacity
at constant pressure is 3.5, 6.0, 9.0, 12.7, 18.2,, and 27.3
×107 erg gm−1 K−1 for a temperature of 0.5, 1.0, 1.5,
2.0, 2.5, and 3.0 ×109 K respectively. The power of T
upon which Cp depends varies from 0.70 to 2.70 in the
same temperature range.

This means that when the fuel is cold, a small amount
of burning raises the temperature a lot. Given the high
power of temperature upon which the burning depends,
burning just a little fuel dramatically shortens the nu-
clear time scale.

2.3. Temperature-Dependent Reaction Rate

The most important reaction rate in the regime where
detonation might occur is 12C + 12C. The rate for this
reaction is proportional to ρX2(12C)T n with n ∼ 19−27
for temperatures in the range 1 - 3 ×109 K (more sensi-
tive at lower temperature). This high temperature sensi-
tivity coupled with the temperature-dependent heat ca-
pacity means that once about half of the carbon has
burned, the remaining increase in the temperature hap-
pens very rapidly. As we shall see later this leads to
small but very rapid increases in the local pressure that
can help initiate a detonation.

2.4. Strong Turbulence

As burning plumes of ash float due to the Rayleigh-
Taylor instability, they create shear and turbulence on
their boundaries. Since the plumes are large, the speed
at which buoyancy balances drag is high. A speed of
order 10 - 30% sonic is necessary to burn a large frac-
tion of the star before it comes apart. Typical turbulent
speeds on an integral scale of 10 km are about 150 km
s−1 (Röpke 2007), but speeds as great as 1000 km s−1

may occasionally occur. The sound speed in the star at a
density of 107 g cm−3 is 3500 km s−1, so the fastest tur-
bulence is not terribly subsonic. Fluctuations in burning
rate do not have to accelerate the burning by orders of
magnitude in order to make a detonation happen.

2.5. Large Lewis Number

The Lewis number, which is the ratio of thermal diffu-
sivity to mass diffusivity, is very large in the supernova.
The ionic diffusion coefficient for a carbon-oxygen plasma
is (Bildsten & Hall 2001; Hansen et al. 1975)

Dion = 3ωpα
2Γ−4/3 ∼ 0.1 cm2 s−1, (8)
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where ωp = (4πni(Ze)2/Amp)
1/2 is the plasma fre-

quency, α = (3/(4πni))
1/3, with ni, the ion density, and

Γ = (Ze)2/αkT . The thermal diffusion coefficient is

Drad =
4acT 3

3ρ2CP κ
∼ 104. (9)

Here representative conditions and opacities have been
assumed: T ≈ 1 − 2 × 109 K, ρ = 107 g cm−3, and
κ ≈ 0.02 cm2 gm−1 (Timmes 2000). Combining these
two equations, Le = Drad/Dion ∼ 105.

Terrestrial Lewis numbers are close to unity. The large
Lewis number in the star has an effect on the laminar
speed (§ 4), but this dependence is greatly mitigated in
the turbulent regime (§ 5.3) where the turbulent diffusion
coefficient exceeds Drad. In that case, the effective Lewis
number approaches unity since both ions and heat are
transported with equal efficiency by the turbulent eddies
(Aspden et al. 2008).

3. THE LINEAR EDDY MODEL

3.1. The LEM Code

The range of scales that must be resolved to address
the flame propagation problem in a Type Ia supernova is
very large, ∼ 10−1−106 cm even if the Kolmogorov scale
is not resolved. This range exceeds the current or antic-
ipated capabilities of 3D simulations, or even 2D simu-
lations. This conundrum arises for many turbulent flow
environments, and motivated the development of the Lin-
ear Eddy Model (LEM), a 1D simulation tool (Kerstein
1991).

LEM simulates the evolution of scalar properties on a
1D spatial domain. This can be interpreted as property
profile evolution along a 1D line of sight through 3D tur-
bulent flow. The 1D domain is treated as a closed system
with respect to enforcement of conservation laws. In this
and other respects, LEM is not fully consistent with the
evolution observed along a line of sight, yet it captures
the salient features and provides useful results.

The physical processes that are time advanced on the
LEM domain are diffusive (e.g., Fickian) transport (in
the present context representing species transport, radi-
ation transport or subgrid turbulent transport), chemical
(or nuclear) reactions, and turbulent eddy motions. For
combustion applications, including the present applica-
tion, LEM includes an equation of state, an energy equa-
tion, and thermal expansion, using a zero-Mach-number
(constant-pressure) formulation (Smith & Menon 1997).
The novelty of the LEM approach is the representation
of eddy motions.

On a 1D domain, advection in the usual sense cannot
reorder the fluid elements along the domain, hence can-
not emulate the folding of material surfaces that is an
essential feature of turbulent stirring. A model of eddy
motions is introduced that is formulated to capture this
folding effect and other properties of turbulent stirring.
Namely, a turbulent eddy is represented as an instanta-
neous map, called the triplet map, that is applied to a
designated interval of the 1D domain.

The triplet map is applied by first compressing all
property profiles in the interval by a factor of three.
The property profiles in the interval are then replaced
by three side-by-side copies (‘images’) of the compressed
profiles. The middle copy is then flipped.

This procedure preserves the continuity of spatial prop-
erty profiles. It also leaves the total linear measure
(model analog of volume) of fluid corresponding to a
given state or set of states (based on the property val-
ues) unchanged. This is the 1D analog of the solenoidal
condition. Flipping of the middle copy introduces fluid-
element reordering analogous to the folding of material
surfaces. The three-fold compression emulates gradient
amplification by compressive strain. The dispersive effect
of extensive strain is represented in LEM by the mapping
of neighboring fluid elements to different images.

Computationally, the triplet map is implemented as a
permutation of the cells of a uniform discretization of
the 1D domain. This and other details of LEM are ex-
plained elsewhere (Kerstein 1991). Here, features rele-
vant to what follows are described. Some symbols that
are used have different meanings than in later sections.

An LEM simulation time advances processes other
than advection until it is time to implement a triplet
map. After the map, advancement of the other processes
resumes until it is time for the next map.

Model inputs are the initial and boundary conditions,
the transport coefficients and rate constants govern-
ing diffusive and chemical advancement, and parameters
controlling the time sequence of triplet maps. Map size
l is sampled from a probability density function (pdf)
f(l) that is designed to reproduce relevant features of
the inertial-range turbulent cascade. One key feature is
the turbulent diffusivity Dturb associated with maps of
size l < S. The inertial-range scaling Dturb ∝ S4/3 is en-
forced. In Kerstein (1991), it is shown that this implies
f(l) = Al−8/3, where A is a normalization factor.

Map size l is restricted to the range [η, L], where η
and L are the model analogs of the Kolmogorov scale
and the integral scale, respectively. Then as shown in
the Appendix, the total turbulent diffusivity is given
by Dturb = 1

18ΛA(L4/3 − η4/3), where Λ is the total
frequency of maps of all sizes per unit domain length.
Here, homogeneous turbulence is assumed, so none of
the model parameters depend on location, and map lo-
cation is sampled uniformly within the notionally infinite
1D domain.

The parameters η, L, and Dturb are model inputs and
Λ is determined from them. Dturb is not typically known
for turbulent flows, but rather is inferred from the re-
lation Dturb = ULL/C, where C is an empirical coef-
ficient. Here, LEM results are compared to 3D simu-
lations of turbulent premixed combustion for which UL

and L are known, but Dturb is not, so C must be speci-
fied in order to evaluate the LEM input parameter Dturb.
Smith & Menon (1997) calibrated C by comparing LEM
results for turbulent premixed methane-air combustion
(using a simplified chemical mechanism) to turbulent
burning velocity measurements. They chose the value
C = 15 for some cases and C = 3.5 for others, reflecting
the wide variation of turbulent burning velocity results
obtained in different experiments.

The experimental set-ups did not correspond to the
idealized case of flames freely propagating through sta-
tionary, homogeneous turbulence. Here, LEM results are
compared to 3D simulation results more closely analo-
gous to the LEM flow configuration. The C value in-
ferred from this comparison is close to the lower of the
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two C values reported by Smith and Menon.

3.2. Modifications for the SN Ia Problem

The standard (i.e., terrestrial chemical combustion)
version of LEM was modified to use an equation of state,
opacities, and a nuclear reaction network appropriate to
the supernova. The equation of state (the “Helmholtz
EOS”; Timmes & Swesty 2000) included pressure and
energy contributions from radiation, ions (treated as an
ideal gas), and electrons and pairs of arbitrary speed
and degeneracy. The opacity routine (Timmes 2000)
included heat transport by radiative diffusion and con-
duction. Energy generation and composition changes
were followed using a nuclear reaction network with 7
species: 4He, 12C, 16O, 20Ne, 24Mg, 28Si, and 56Ni
(though no appreciable 56Ni was ever produced in this
study). These species were connected together by a
chain of (α, γ) reactions as well as the heavy ion re-
actions 3α, 12C + 12C, 16O + 16O, and 12C + 16O.
Though it is an unpublished version written by the au-
thors, the network was similar to that of Timmes et al.
(2000). The network did not include electron screen-
ing corrections to the reaction rates which were, in gen-
eral, small at the low densities considered here. Testing
the fast 7 isotope network against a larger 19 isotope
network that included screening and about 85 reactions
(Weaver, Zimmerman, & Woosley 1978) showed that the
small network gave an energy generation that was typi-
cally 20 - 40% smaller. Since this is equivalent to a small
error in the temperature, the results of the 7 isotope,
unscreened network were deemed sufficiently accurate.

The code was then checked and calibrated against sev-
eral other studies of flame propagation. For simple lami-
nar flames (§ 4), the turbulence parameter, C (§ 3.1),
doesn’t enter. For turbulent flames in the flamelet
regime, the default setting C = 15 was used (§ 5.1).
However, for flames in the WSR regime (§ 5.3), good
agreement with prior 3D studies required a smaller value
of C = 5. This value is within the range anticipated
from terrestrial experiments (§ 3.1) and was used for all
calculations in the WSR and SF regimes (i.e., all studies
with Ka > 1) unless otherwise noted. Future 3D studies,
especially of the SF regime, are encouraged in order to
gain better confidence and understanding of C for flames
of this sort.

4. SINGLE LAMINAR FLAMES

In the absence of turbulence, a flame has a simple
structure in which a self-similar profile of temperature
and fuel concentration propagates into the fuel with a
well-defined width and speed. Heat is transported by a
combination of conduction and radiative diffusion, and
this heat raises the temperature to the point where fuel
burns on a diffusion time scale. Such flames are well
understood (Landau & Lifshitz 1959), even in the super-
nova context (Timmes & Woosley 1992). In multiple di-
mensions, laminar flames may become deformed and take
on a cusp-like appearance due to the Landau-Darrieus
instability (Niemeyer & Hillebrandt 1995), but this in-
stability does not lead to a major destabilization of the
overall burning (Röpke et al. 2004), nor does it greatly
affect the propagation speed (Bell et al. 2004a).

As a test of the LEM implementation and to provide
a calibration point for more complex studies to follow,

the one-dimensional laminar speed was calculated for
carbon-burning flames at a variety of densities for two
initial carbon mass fractions, X0

12 = 0.50 and 0.75. The
results are given in Table 1 and Fig. 1. The speed of
the flame with carbon mass fraction 0.50 and density
107 g cm−3 was 3.2 × 103 cm s−1, in good agreement
with the 3.5×103 cm s−1 found by Aspden et al. (2008),
who used somewhat different nuclear physics. The ash
temperatures for the two compositions considered here
were also in good agreement with the values calculated
by Woosley (2007). The flame speeds for other densities
were in agreement with previous studies by Bell et al.
(2004b), and Timmes & Woosley (1992).

In these calculations, heat was transported by conduc-
tion and radiation and the laminar scale was well re-
solved. Zoning for the case of 107 g cm−3, X0

12 = 0.50 was
0.0244 cm and the flame width, several cm. A recalcula-
tion of the flame speed with coarser grids gave essentially
the same answer. For resolutions of 0.196 cm and 0.0978
cm the calculated flame speed was 3.2 and 3.1 ×103 cm
s−1, respectively, indicating that our calculation and that
of Aspden et al. (2008) were both converged and did not
differ because of resolution.

Some dependence on Lewis Number was noted. Two
calculations of the speed for X0

12 = 0.50 and Le = 100 and
Le = 1000 gave speeds of 3.0× 104 cm s−1 and 3.2× 104

cm s−1 respectively.

5. THREE REGIMES OF TURBULENT BURNING

5.1. Large Scale Turbulence and Flame Brushes
(Flamelet Regime)

The interior of a Type Ia supernova is turbulent,
first because of the convection that precedes the ex-
plosion, which gives a lower bound for UL ∼ 50 -
100 km s−1 (Kuhlen et al. 2006; Woosley et al. 2004),
and second because of the Rayleigh-Taylor and Kelvin-
Helmholtz instabilities associated with the flame itself
(Hillebrandt & Niemeyer 2000). Because these speeds
are so much greater than the laminar speed (Table 1), es-
pecially at low density, it is expected that turbulence has
a major effect on flame propagation. Initially, however,
the flame is very thin compared to the Gibson length and
is just carried around by the eddies (Damköhler 1940).
Overall the burning rate is independent of the speed of
each little flamelet, and is governed instead by the speed
of the largest turbulent eddies. This is Damköhler’s
“large scale turbulence” limit.

To illustrate burning in this regime, we considered a
laminar flame similar to that in Fig. 1 with a carbon mass
fraction of 0.75 and a fuel density 1.0× 107 g cm−3, but
embedded in a turbulent background with characteristic
speed 400 m s−1 on an integral scale of 10 m. On this
length scale in a supernova, one would actually expect
much larger turbulent speeds, 10 to 100 km s−1, cascad-
ing down from still higher values on larger scales. For
the time being such large, highly turbulent regimes with
narrow flames remain out of computational reach, even
in 1D. Conditions chosen here were thus artificial, but
illustrative. The Gibson scale here (eq. 4) is 21 cm, con-
siderably larger than the laminar flame width, which is
∼1 cm (Fig. 1), but still about still 50 times less than the
integral scale. The results are given in Fig. 2. Sometimes
only a single flame was observed, but at the particular
moment sampled here, there were eleven (counting the
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Fig. 1.— Laminar flame structure for initial carbon mass fractions of 0.50 (left frame) and 0.75 (right frame) and a density of 1.0 ×107

g cm−3. Carbon mass fraction is given in red and the temperature, in units of 109 K, is in black. The energy generation (green) has
been normalized to a maximum value of 7.47 ×1020 erg g−1 s−1 (X0

12
= 0.50) and 8.40 × 1021 erg g−1 s−1 (X0

12
= 0.75). The flame is

propagating to the left with a speed of 3.2 × 103 cm s−1 (X0

12
= 0.50) and 1.1 × 104 cm s−1 (X0

12
= 0.75). The assumed Lewis Number

in both cases was 1000. These calculations with the LEM code used 2048 zones and show its ability to resolve and physically calculate
laminar flames where radiation transport is dominant.
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Fig. 2.— Multiple laminar flames for a carbon mass fraction of 0.75, density, 1.0 ×107 g cm−3, integral length scale, 10 m, and turbulent
speed on that scale, 400 m −1. The left frame shows the entire flame brush, while the right frame shows greater detail for a few of the
flamelets. The entire collection of flamelets is moving to the left at an average rate of 500 m s−1 (see Fig. 3).The time here is 0.015 s into
the calculation and the instantaneous rate of burning corresponds to a speed of 980 m s−1. This calculation with the LEM code used 40000
zones and Le = 100.

small blip of entrained ash at 800 cm).
Fig. 3 shows the overall propagation speed of the flame

brush. Here, as in the rest of the paper, the burning
“speed” is defined by an integral over the grid of the
burning rate,

vf =

∫

Snucdx

q
, (10)

where Snuc is the nuclear energy generation rate on the
grid (erg g−1 s−1), and q is the energy released by burn-
ing a gram of fuel. For fuel with 50% carbon, q is
3.2×1017 erg g−1 and for 75% carbon it is 4.5×1017 erg
g−1.

For the case shown in Fig. 3, the average burning speed
is 500 m s−1, close to the turbulent rms speed on the
integral scale, 400 m s−1. In LEM, one expects for the
flamelet regime that vturb = 18 Dturb/L (see Appendix).

Combining this with Dturb = ULL/C (§ 3.1) and using
the same value for C as the simulation (C = 15), one has
vturb = (18/15)UL, which is excellent agreement.

Fig. 3 also shows that the burning rate is far from
regular. Speeds over three times the average are some-
times seen. At other times, the flame briefly almost goes
out. A similar behavior would be expected in the actual
supernova early on when the density is higher and the
turbulent speed is not that much greater than the lami-
nar one. Then, as here, there would be just a few flames
within the integral scale and the burning rate would be
highly irregular. For example, at a density of 109 g cm−3

with a carbon mass fraction of 0.50, the laminar flame
speed is 36 km s−1 (Timmes & Woosley 1992) and the
ratio L/lGib ∼ (UL/Slam)3 is, for UL = 130 km s−1, also
about 50. The difference at these high densities is that
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Fig. 3.— Speed of the flame brush as a function of time for the
same calculation shown in Fig. 2. The speed, as measured by the
overall energy generation on the grid, is highly variable ranging
from a lower bound given by the laminar speed of a single flamelet
(1.1×104 cm s−1) to several times the mean value. The dashed line
indicates the average during the time interval studied, 5.5×104 cm
s−1, which is close to the rms turbulent speed on the integral scale,
4 × 104 cm s−1. The turnover time on the integral scale is 0.025 s
and one sees the effect of the occasional large eddy in accelerating
the burning.

the flame would be irresolvably small, even in the present
version of LEM, for a calculation that carried the entire
integral scale.

5.2. Transition to Stirred Flames

The flames at such high density are individually very
thin and the laminar speed far below sonic, so detona-
tion at early times is avoided. As the density declines,
the Gibson length shrinks and the flame brush contains
an increasingly large number of flamelets. Just before en-
tering the SF regime in the supernova, there are roughly
a thousand flamelets within the flame brush (UL ∼ 100
km s−1; Slam ∼ 100 m s−1). The statistical variations in
overall speed are therefore small.

As the density in the star declines below several times
107 g cm−3, the Gibson length becomes less than the
laminar flame width and the transport of fuel and heat
by turbulent advection starts to become important on
the scale of the flame. By the time the density reaches
1.0 × 107 g cm−3, for typical turbulent speeds, not only
is the preheat region of the flame being mixed by tur-
bulence, but the burning zone itself has been disrupted
and combustion has a qualitatively different character
(Aspden et al. 2008; Peters 2000). In the star, this tran-
sition is brought about by the slowing and thickening
of the laminar flame with decreasing density in a back-
ground of turbulence with nearly constant energy dissi-
pation rate and integral length scale.

5.3. The Well-Stirred Reactor (WSR Regime)

Before discussing the stirred flame regime further
though (§ 5.4), it is helpful to consider a limiting case
where the turbulence thickens a single flame to a dimen-
sion greater than the integral scale, i.e., δturb > l, where
l is some integral scale to be varied subject to the condi-
tion v′3(l)/l = ǫ = constant, where v′ is the velocity on
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Fig. 4.— Comparison of carbon mass fraction and temperature
for two flames calculated at a density of 107 g cm−3, integral scale,
l = 15 cm, and turbulent speed, 2.45 × 105 cm s−1. The purple
and blue curves are the average temperature and carbon mass frac-
tion from the 3D study of Aspden et al. (2008). The black and red
curves are from the corresponding study using LEM and C = 5
(Table 2). The speed of the flame calculated in 3D was 1.8 × 104

cm s−1. With LEM it was 1.5 × 104 cm s−1, about five times
the laminar flame speed for these conditions. The flame widths
calculated in the two studies are quite similar. Differences in the
temperature are attributable, in part, to the different fuel temper-
ature employed in the two studies - 1×108 K for the 3D study and
6× 108 K for the LEM study and the smaller network used for the
3D study (see text).

the integral scale, l. While probably not realized in the
supernova because of the large integral scale, this is the
regime most easily accessible to multi-dimensional simu-
lations and corresponds to what is commonly meant by
the “well-stirred reactor” (e.g., Fig. 7 of Peters 1986).
The solutions here also obey scaling relations predicted
by Damköhler (1940).

5.3.1. An example compared with previous 3D
simulations

Aspden et al. (2008) recently carried out 3D simula-
tions of flame propagation in the WSR regime for a den-
sity and composition appropriate to Type Ia supernovae.
We focus here on their calculation at 107 g cm−3, X0

12 =
0.50, and ǫ = U3

L/L = 1015 erg g s−1. Figures 4, 5, 6,
and Table 2 show the results for an LEM calculation at
the same values of integral scale, l = 15 cm, and v′(l) =
2.47 km s−1 that they employed. A single broad flame
propagates at a steady speed about 5 times faster than
the laminar value. The width of the flame, as measured
by the full width at half maximum of the energy genera-
tion curve is about 50 cm, or 20 times the laminar width
(Fig. 1).

The most noticeable differences with the 3D calcula-
tion (Fig. 4) are a consequence of differing assumptions
regarding the background (fuel) temperature in the su-
pernova. Aspden et al. used 1 × 108 K; here we use
6 × 108 K. The lower temperature would characterize a
region of low turbulence following some expansion prior
to a detonation transition. The latter is characteristic of
the convection zone in the supernova at the time of run-
away. For a non-turbulent medium, the former is more
physical. However, anticipating that we will be inter-
ested here in turbulent energies U3

L/L ∼ 1017 − 1018 erg
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Fig. 5.— Two recomputations of the turbulently broadened flame
in Fig. 4. Both calculations used the LEM code with a zoning of
2048 zones (∆x = 0.147 cm). The maximum energy generation in
both plots is normalized to 2.3 × 1020 erg g−1 s−1. The calcula-
tion in the first frame used a diffusive energy transport coefficient
based on radiation and conduction. The one in the second frame,
virtually identical in result, used the subgrid model discussed in
the text.

g−1 s−1 and that at least a few turnovers on the inte-
gral scale are expected prior to a detonation, the latter
is also a reasonable assumption. For UL ∼ 108 cm s−1

and L = 10 km, 1016 erg g−1 would be deposited in one
turnover time. At a density of 107 g cm−3, this cor-
responds to a temperature increase from 1 × 108 K (or
essentially zero) to 6 × 108 K. Because of the tempera-
ture sensitivity of the heat capacity (§ 2.2), we expect
our results to be insensitive to the assumed fuel temper-
ature. However we do note that, if a fuel temperature of
1 × 108 is assumed in LEM, better agreement with the
width is obtained than in Fig. 4, but the best value of C
is lowered to C = 2.

While lower values of C are actually more favorable to
detonation, we prefer to use the larger value because it is
more consistent with the range seen in terrestrial exper-
iments (§ 3.1) and because a hotter fuel temperature is
both physically justifiable and more stable numerically.

For the calculation shown in the first frame of Fig. 5,
energy transport by conduction and radiative diffusion
was included, just as in the laminar flame cases, and
zoning was sufficient to resolve a laminar flame had one

Fig. 6.— Speed of the turbulently broadened flame shown in
Fig. 5 as a function of time. The turnover time on the integral
scale is 6.1 × 10−5 s. It takes many turnover times to reach the
terminal speed, but then that speed is maintained rather precisely.
The dashed line shows the average speed, 1.5 × 104 cm s−1, or 5
times the laminar value.

been present. However, the transport here is really dom-
inated by the turbulence. The radiative diffusion coef-
ficient (eq. 9) varies from 730 cm2 s−1 in the fuel to
1.8 × 104 cm2 s−1 in the ash while the turbulent diffu-
sion coefficient (§ 3.1; Dturb = v′l/C with v′ = 2.47 km
s−1, l = 15 cm, and C = 5) is 7.4 × 105 cm2 s−1.

Fig. 7 shows the distribution of carbon with tempera-
ture in the case of a laminar flame (Fig. 1) and the tur-
bulent flame (Fig. 5). Both plots show a single-valued,
monotonic relation. For the laminar flame this is not
surprising. At each temperature in the self-similar front
there is a unique carbon abundance. When eddies, cou-
pled with diffusion move heat and carbon around in a
way that, in LEM at least, is discontinuous, the result
is perhaps more surprising. It is also important that the
curves are substantially different in the two cases.

The curve for the turbulent case in Fig. 5 is what one
would result were carbon to burn at constant pressure
with no transport whatsoever (Aspden et al. 2008). This
means the process that is transporting heat is transport-
ing composition with equal efficiency, i.e., the effective
Lewis number is one. One expects this sort of behavior
when turbulence is dominating in the transport of both.
The Lewis number in the calculation was still 1000, but
small scale eddies kept the mixture so well stirred that
even a small amount of ionic diffusion at the grid scale
gave the same result as if Le = 1. In fact, the actual tur-
bulent transport would have been even more efficient had
the resolution been higher. Recall that the Kolmogorov
scale is not resolved here.

5.3.2. A subgrid model for turbulent transport

If the turbulent diffusion coefficient, Dturb ∼ v′l, is so
much greater than conduction and radiation, then the re-
sults should be independent of Drad. The second frame
of Fig. 5 shows that this is indeed the case. Here the cal-
culation sets conduction and radiative transport to zero,
but instead uses a diffusion coefficient coupling individ-
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Fig. 7.— Carbon mass fraction as a function of temperature for all grid points for the calculation of the laminar flame (left; see also Fig. 1)
and the turbulently broadened flame (right; see also Fig. 5). The initial density and carbon mass fraction in both cases were X0

12
= 0.5 and

1.0 × 107 g cm−3. Burning in the laminar flame occurs chiefly at a higher carbon mass fraction due to preheating by radiation. Burning
in the turbulent flame occurs as hot fuel and cold ash are mixed with negligible radiation transport. Because burning a certain fraction of
carbon releases a certain amount of energy and, at constant pressure, gives a unique temperature, all points lie on a well-defined line. A
mixture of radiation transport and advection would have given points in between these two lines (see also Aspden et al. (2008)).

ual zones of

DSG = v(∆x)∆x
15

C
(11)

where ∆x is the grid resolution (constant in this paper),
and

v(∆x) =

(

∆x

l

)3

v′. (12)

The subgrid diffusion coefficient DSG represents the mix-
ing effects of unresolved eddies smaller than the grid
scale. The results for C = 5 are identical.

The exact value of DSG is not very important so long
as it is derived from a length scale that is very much less
than the (turbulently broadened) flame thickness. There
is a characteristic eddy size that is chiefly responsible for
the diffusion (Appendix A) and so long as that scale is
well resolved, the results are similar. However there is a
choice for DSG that works best as the resolution becomes
coarser. Fig. 8 shows that a diffusion coefficient derived
from the turbulent speed on the grid scale has much bet-
ter scaling properties than one based on e.g., 6∆x, even
though the smallest eddy in LEM is 6∆x. The figure
also shows that the diffusive properties of a temperature
discontinuity remain unaltered as the resolution is de-
creased by a factor of 50.

5.3.3. The effect of increasing the integral scale

Encouraged by these results, which imply that one
need not resolve the laminar scale in this regime in or-
der to obtain accurate results, we proceeded to explore
flame properties for a large range of l consistent with the
condition ǫt = v′3/l = 1015 erg g−1 s−1 (Table 2).

In general, the speed of a flame propagated by diffusion
should obey the scaling relation

vf ∼
√

D

τnuc
. (13)

where Dturb ∼ v′ l. Fig. 9 shows the effect on the flame
of increasing l at constant turbulent energy dissipation

ǫ, mass density, and carbon mass fraction. For awhile,
the profiles follow the scaling implied by eq. 13. If the
burning time is independent of l,

vturb ∝ (v′l)1/2 ∝ l2/3,

δturb ∝ vturb ∝ l2/3.
(14)

For given, l, the flame speed also remains roughly steady.
However, this scaling also predicts its own breakdown.

Since vturb increases as l2/3 while v′ only increases as
l1/3 there must be a critical integral scale λ for which
the two become equal. λ is determined by the relation
λ/v′ = τnuc, where v′ is the velocity fluctuation at scale

λ. Rewriting this as λ =
(

v′3τ3
nuc/λ

)1/2
gives

λ =
(

ǫτ3
nuc

)1/2
. (15)

At l = λ, the flame width and integral scale are the
same and the burning speed is approximately equal to the
turbulent speed on that scale (Kerstein 2001; Woosley
2007). This is also the size of an eddy that burns in one
turnover time. The quantity, ǫ = U3

L/L, is a constant by
assumption. Approximate values of λ have been tabu-
lated for various densities, turbulent energies and carbon
mass fractions by Woosley (2007). Better values for the
cases considered here can be inferred from the data in
Table 2 which uses our reaction network. Once l > λ,
the flamelets no longer has the appearance of a diffusively
broadened structure, though the individual flamelets can
occasionally coalesce into larger structures. This is the
SF regime of the next section. As Fig. 10 and Fig. 11
show, the flame structure and speed both become highly
variable as the integral scale approaches this value.

5.3.4. The nuclear time scale in the WSR regime

Burning in the WSR, l < λ, produces flames that,
for a given constant density and fuel composition, have
a well-defined nuclear time scale, τnuc. Fig. 12 shows
the temperature, and nuclear time scale as function of
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Fig. 8.— Resolution study of the subgrid model. Nuclear burning and conduction were turned off so that all transport was by turbulent
eddies. Turbulence with a speed of 10 km s−1 was assumed on an integral scale of 5 cm. An island of ash 20 cm wide and initially centered
at 50 cm was inserted in a background of fuel. The ensuing diffusive spreading was calculated using a grid of 10,000 (first frame), 1000
(second frame), and 200 (third frame) zones. The extent to which the fuel diffuses after 5× 10−5 s is very similar in all three runs. Larger
subgrid diffusion coefficients on the other hand gave a resolution-dependent spreading that was more extensive for lower resolution. The
fourth frame shows the result for Dturb = v(6∆x) 6∆x instead of Dturb = v(∆x) ∆x (see text). In that case, the image for 10000 zones
(not shown) is virtually unchanged. (Note that the grid moves to keep the point 2 × 109 K centered.)

carbon mass fraction in the fuel for two initial carbon
concentrations (50% and 75% by mass) and fuel den-
sity 107 g cm−3. The burning is assumed to be iso-
baric and two time scales are computed. One time scale
reflects the instantaneous rate of carbon consumption,
τ = X12/(dX12/dt) (the dash-dotted line). More rele-
vant to the flame speed, however, is the induction time
scale, which is the time required to consume most of the
remaining fuel. In a situation where burning increases
the temperature, and therefore the reaction rate, the in-
duction time can be much shorter than the instantaneous
burning time scale (defined by the current abundance di-
vided by the current burning rate). Dividing the turbu-
lent flame width by the turbulent flame speed for those
cases in Table 2 where both quantities are well defined
gives an approximately constant value τnuc ≈ 0.003 s for
ǫ = 1015 erg g−1 s−1 and X0

12 = 0.50. This corresponds
to a carbon mass fraction in Fig. 12 of X12 ≈ 0.20 where
the energy generation is about 1/e of its maximum.

Defining τnuc in this fashion as the induction time
scale from the point where the energy generation reaches
1/e of its eventual maximum allows the computation of

λ = (ǫτ3
nuc)

1/2. For the case of carbon mass fraction in
the fuel = 75%, the induction time scale was calculated
based on a starting carbon mass fraction of 37%. The
values of λ so determined are given in Table 3. These val-
ues are about a factor of two less than given in Woosley
(2007) because they refer to a time scale derived from
the width of the energy generating region. If one instead
uses the larger width based upon temperature or carbon
mass fraction, the derived values for λ are about twice
as large, consistent with Woosley (2007).

5.4. Stirred Flames (SF Regime)

The stirred flame (SF) regime, which is characterized
by Ka ≫ 1 and Da = L/(ULτ) = (L/λ)2/3 > 1, is the
most complex of the three regimes of turbulent burning.
In this case, there is no well-determined scale for the
flame width. Structures of size ∼ λ persist to some ex-
tent, but since the flame experiences a new eddy of length
λ, in approximately the same time it takes to burn a dis-
tance λ, it is subject to continual disruption. At times
there may be almost no burning; at others, nearly simul-
taneous burning happens on scales much larger than λ.
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Fig. 9.— Flames for larger integral scales than Fig. 5, but still
in the WSR regime. The integral scales are 120 cm (first frame)
and 960 cm (second frame), and the corresponding rms turbulent
speeds on those scales, 4.93 km s−1 and 9.86 km s−1. The average
propagation speeds are 0.61 km s−1 and and 2.3 km s−1. Note that
both the flame speeds and widths scale as l2/3 in this regime, both
in this figure and as compared with Fig. 5. In the flame with the
larger integral scale (right frame), one begins to see some structure
in the flame and small “ledges” of mixture with nearly constant
fuel abundance and temperature (§ 5.4.3).

The fact that the flame has no persistent steady state
also reflects a poorly defined nuclear time scale. Each
temperature has a different burning time scale and thus
the characteristic widths of mixtures prepared by the tur-
bulence is very temperature sensitive. Cooler mixtures
have larger length scales. In general though, the average
time scales are longer and the flame structures larger
than expected from our studies of the WSR.

Because of the large integral scale in the supernova,
the SF regime is encountered as soon as the Karlovitz
Number exceeds about 10. The Damköhler number at
that point is already much greater than unity and the
WSR regime (Da < 1) is encountered much later, if ever.

5.4.1. The transition from the flamelet to the SF regime

Just before the laminar flame is disrupted at Ka ∼ 10,
there are ∼ UL/Slam flame surfaces folded in the flame
brush. The average spacing between these flamelets is
d ∼ (L/UL)Slam (Table 3) and the thickness of each is
δlam. A short time later, as Ka continues to increase,

these flamelets are smeared out to make a smaller number
of broader, faster structures with characteristic average
thickness λ. Their number then is ∼

√
Da = (L/λ)1/3,

and their spacing is ∼ L/
√

Da = L2/3λ1/3. So long as
Da ≫ 1, as it is at the transition, the new broadened
structures will, on the average, still be separated by dis-
tances much greater than their size and will not coalesce
into one large mixture.

The quantity λ (eq. 15) that plays a such a critical role
in this discussion can be thought of as a generalization
of the Gibson length (eq. 4). For the flamelet regime,
the Gibson scale is the size of the eddy that would be
crossed by a laminar flame with speed Slam on an eddy
turnover time. It is smaller for larger turbulent energy.
The quantity λ, on the other hand, is also the size of
an eddy that turns over on a nuclear time scale, but its
size depends only on turbulence properties, not the ra-
diative diffusion that sets Slam. It is larger for larger
turbulent energy. As the supernova expands, the Gibson
scale shrinks as Slam declines. Eventually when Ka = 1,
lG = δlam, but except for differences due to a changing
nuclear time scale (§ 5.3.3), at Ka = 1, λ is also approx-
imately equal to lG and δlam. Thereafter, as the density
decreases more, lG ceases to have much meaning since
laminar flame speeds are no longer relevant. The new
relevant scale, λ = (ǫτ3)1/2, on the other hand, grows
rapidly at lower density due to the increasing nuclear
time scale.

What this means is that the transition from laminar
burning to the SF regime is probably smooth and un-
eventful. Flamelets will grow gradually in speed and
width as the density declines, not discontinuously. Be-
cause the nuclear time, and thus λ, lack precise defini-
tions in the SF regime, and because of intermittency, one
cannot completely rule out large scale transient mixing
at the laminar-SF transition, especially if the turbulent
energy is very large, but a detonation here seems unlikely.
If it did happen at such high density, a very bright super-
nova would result due to the near complete incineration
of the star.

5.4.2. Complex structure

As the density continues to decrease, λ increases and
there are fewer, thicker, faster turbulent flamelets in the
flame brush (Fig. 10 and Fig. 11). The limit of one flame
of size λ = L is reached when Da = 1. This is the
condition suggested by Woosley (2007) as likely for det-
onation. The present study shows, however, that mixed
regions larger than λ can exist transiently even for Da
≫ 1. Since the critical mass for detonation decreases
rapidly with increasing density, this makes detonation
easier.

Consider the case of 50% carbon, a turbulent dissipa-
tion rate of 1015 erg g−1 s−1, density 107 g cm−3, and
integral scale l = 4.92 km (Table 2). For these conditions,
λ = 64 m (Table 3) and Ka = (4.92×105/6.4×103)2/3 =

18. The average number of flame surfaces is
√

Ka ∼ 4.
Fig. 13 shows that mixed regions as big as L (and much
bigger than λ) occasionally exist. The extent of mixing
and hence the flame speed is highly variable (Fig. 11).
Most of the time, less mixing is seen than in Fig. 13 and
only a few disjoint regions of burning are present, but
structures like these can exist for an eddy turnover time
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Fig. 10.— A turbulent flame calculated for a still larger integral scale than in Fig. 9 and sampled at four different times. The density
and carbon mass fraction continue to be 1.0×107 g cm−3 and X0

12
= 0.50, and ǫ = 1015 erg g−1 s−1. The integral scale here is 76.8 m and

the flame’s average speed is 8.3 km s−1 compared with an rms turbulent speed on the integral scale of 19.7 km s−1. No well-organized,
self-similar solution is visible at the four different times (contrast to Fig. 5 and Fig. 9). At some times the flame resembles the multiple
structures in the flamelet regime (compare the lower right with Fig. 2). At others, sizable islands of well-mixed fuel and ash have nearly
constant temperature. Some of these (lower left) are almost as large as the integral scale itself. The average width of the flame is still
somewhat broader than the integral scale by about a factor of two.

or so. Characteristics of these regions include a carbon
mass fraction much less than in the fuel, typically on
the rapidly rising part of the energy generation curve in
Fig. 12, and temperatures that are a substantial fraction
of the ash temperature. The relatively high temperatures
are a consequence of the temperature dependent nature
of the heat capacity (§ 2.2).

5.4.3. Ledges

The ledges seen in Fig. 13 play an important role in
promoting detonation and it is thus worth spending a
moment to discuss their credibility. They have not been
seen previously in any combustion simulation or experi-
ment. For accessible terrestrial conditions, it is believed
that chemical flames in this regime would extinguish
(Peters 2000). Numerical exploration of this regime,
other than with LEM, has so far been impractical.

Nevertheless, it has long been known that property
fields in turbulence exhibit intermittent behavior, includ-
ing the occurrence of transient well-mixed regions sepa-
rated by cliffs (sharp property changes). This structure
is seen, for instance, in 1D profile data from 3D numer-

ical simulations (Watanabe & Gotoh 2006). A quantita-
tive signature of this structure is the saturation of high-
order structure-function exponents, reflecting the domi-
nant contribution of the cliff regions to high-order inter-
mittency statistics (Celani et al. 2000). Measurements
by Moisey et al. (2001) show clear evidence of the satu-
ration of the scalar structure-function exponents. LEM
structure-function exponents exhibit a somewhat slower
roll-off to saturation (Kerstein 1991), suggesting that the
prevalence and duration of well-mixed regions in LEM
might be lower than actually occurs in turbulence. This
is plausible because maps in LEM are statistically inde-
pendent events, but the eddies that they represent ac-
tually occur in bunches because each eddy breakdown is
an energy source for subsequent eddy breakdown. This
bunching contributes to the intermittency of turbulence.

There is some limited understanding of why turbulence
exhibits these properties (Celani et al. 2000). Further
clarification would provide insight into a mechanism that
appears to play a key role in the timely occurrence of
detonations in supernovae.

6. CONDITIONS FOR DETONATION
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Fig. 11.— Instantaneous flame speed divided by average speed for four different choices of l and v′ at a density of 107 g cm−3, fuel
carbon concentration 50%, and turbulent energy dissipation rate 1015 erg g−1 s−1. The four choices correspond to the four integral scales
in Table 2, l = 120 cm, 960 cm, 614 m, and 4.92 km. For the smallest scale (top left), l < λ = 64 m, and the flame speed (and width)
are nearly constant. Going to larger length scales one sees the effect of individual large eddies and unsteady burning. In the last frame
(lower right), the flame width and speed are approximately the same as turbulence on the integral scale and large burning rates are seen
approximately every l/v′ seconds. The speed plotted here is the rate at which a single flame would move into the fuel with an burning rate
equivalent to that on the entire grid. The actual burning here actually happens mostly in regions with much smaller carbon concentrations
than in the unmixed fuel.

In order that a detonation occur, three conditions must
be satisfied. First, some region must burn supersonically.
The simplest example would be a hot, isothermal volume
in which the nuclear induction time scale was a constant.
As the temperature rises, the time scale decreases and
for a sufficiently large volume there comes a temperature
where the burning time is shorter than the sound cross-
ing time. The pressure will increase in that region faster
than expansion can damp its growth and, after a maxi-
mum temperature is reached (i.e., the fuel is gone), the
region expands at a speed that is somewhat higher than
the sound speed in the surrounding medium. In reality,
the temperature is never completely isothermal, but, as
we shall see, it suffices to burn only some fraction of the
fuel within the volume in a sound crossing time. A subset
of fluid elements within the volume must have the same
temperature to some level of tolerance that depends on
their burning time scale. The smaller the fraction, the
smaller the overpressure, but sonic expansion neverthe-
less occurs. The colder matter is an inert dilutant.

Second, the size of the “detonator” must ex-
ceed some critical value (Dursi & Timmes 2006;
Niemeyer & Woosley 1997). That critical mass is larger
if the mass fraction of combustible fuel is small or if the
fraction of inert cold matter is large. Because some mix-
ing of ash into the pre-detonation region is unavoidable
and because an appreciable amount of carbon must burn
to reach temperatures where the time scales start to ap-
proach sonic, the critical masses we compute here will be
larger than those for mixtures of just carbon and oxygen
with a smooth temperature structure. For a given tur-
bulent energy, density must fall to lower values to obtain
these larger structures.

Third, and perhaps most subtly, there must exist,
in a significant fraction of the mass, preferably at
its edge, a nearly sonic phase velocity for the burn-
ing (Khokhlov, Oran, & Wheeler 1997; Zeldovich et al.
1985). This is the “shock wave amplification by coherent
energy release” (SWACER) mechanism for initiating a
detonation in an unconfined medium. One requires an
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Fig. 12.— Nuclear time scale and energy generation as a function of carbon mass fraction for carbon burning under isobaric conditions.
The initial carbon mass fraction in the first frame was 0.50, though only the evolution below 0.30 is shown. Similarly in the second frame the
initial carbon mass fraction was 0.75. Solid lines show the induction time scale (the time remaining until most of the carbon is consumed)
and the nuclear energy generation rate divided by the maximum value achieved in the evolution. Dashed lines show the nuclear time scale,
[(1/X12)(dX12/dt)]−1, and the temperature divided by the ash temperature. For the 50% carbon run the maximum energy generation
and ash temperature were 3.89 × 1019 erg g−1 s−1, and 2.59 × 109 K. For the 75% run, the corresponding values were 1.29 × 1021 erg
g−1 s−1, and 2.95 × 109 K. The induction time was arbitrarily defined to reach zero when the remaining carbon fraction was 0.03 for the
50% carbon case and 0.05 for the 75% carbon case. Energy released beyond these points is negligible and the time for the carbon to go to
precisely zero is arbitrarily long. For high remaining carbon abundance, the induction time scale is much shorter than the instantaneous
nuclear time scale because much of the remaining carbon will burn at a higher temperature. Note the relatively small change in induction
time over an interesting range of carbon mass fraction, 0.2 to 0.1 (left) and 0.4 to 0.1 (right).
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Fig. 13.— A single flame in the stirred flame regime for an integral scale of 4.92 km. The turbulent speed on that scale is 78.9 km s−1

and the average flame speed and width are also close to these values. Many complex and folded structures are seen like in Fig. 10, but the
above two snapshots show that occasionally quite regular, well-mixed regions of fuel and ash exist. Sometimes several of these structures
add together to create a mixed region about as large, or even larger than the integral scale.

appreciable boundary layer where

dτnuc(T )

dx
≈ (csound)

−1. (16)

Two properties of the flame in the SF regime assist in
satisfying these three conditions. First is the unsteady
nature of the burning (§ 5.4.2). As fuel and ash are
mixed, burning may briefly almost go out, only to return
with a vengeance after sufficient mixing and slow burning
have occurred. This allows the creation of regions that,
after some delay comparable to a turnover time, can con-
sume fuel at a rate faster than a single flame moving at
the turbulent rms speed on the integral scale. Amplifica-

tion factors of three are frequently observed, and larger
values are presumably possible in rare instances.

Second, as discussed in § 5.4.3, transient well-mixed
structures, ledges, are a frequent occurrence in the SF
regime. Turbulence does not always lead to heterogene-
ity on macroscopic scales. These mixed regions have
relatively constant induction time and they are at least
occasionally bounded by regions in which the tempera-
ture decreases (and fuel concentration increases) fairly
smoothly. The characteristic size of these regions is ap-
proximately λ, which increases with decreasing density.
As a result, the ratio of mixing time to sound crossing
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Fig. 14.— The birth of a detonation. A sample mixture calculated using LEM for a density 1.0× 107 g cm−3, v’ = 500 km s−1, and L =
10 km was mapped into a compressible hydrodynamics code and its subsequent evolution was followed. The time selected was characterized
by a very subsonic flame speed but temperature gradients that looked “interesting”. Following the remap, which preserved distance scale,
ash was on the left and fuel on the right. A detonation developed that, barring large barriers of ash, would explode the whole star (see
text). Shown in the plot are carbon mass fraction (gold), pressure (blue), temperature (black), and velocity (red) at four different times
- 0, 0.15, 0.30, and 0.43 ms after the mapping. The velocity has been divided by 500 km s−1 in frames 1 and 2, 2000 km s−1 in frame 3
and 5000 km s−1 in frame 4. The pressure has been scaled by the background value, 9.08 × 1023 dyne, in frames 1, 2, and 3, and by an
additional factor of 5 in frame 4. The temperature has been divided by 3.0 × 109 K.

time decreases, since

τt

τsonic
∝ λ2/3

λ
= λ−1/3, (17)

and this helps detonation happen. However, as the den-
sity decreases, the critical size required to initiate a deto-
nation also increases dramatically (Niemeyer & Woosley
1997; Woosley 2007), so mixing a smaller region at higher
density may, in some cases, be better than a larger one
at low density. Detonation may occur before the char-
acteristic size of the mixed region becomes equal to the
integral scale.

Another important point favoring detonation is that
once burning starts to happen on a time scale approach-
ing sonic, it no longer occurs at constant pressure. The
pressure rises with respect to the surrounding fuel and
is not immediately relieved by expansion. At constant
volume, a given amount of carbon burning raises the
temperature more, thus appreciably shortening the time
scale for additional burning. That is, for the relevant

conditions, the heat capacity at constant pressure is ap-
preciably larger than the heat capacity at constant vol-
ume. The final temperature from burning all the fuel is
also higher.

6.1. Detonation Observed for a Mixture Calculated
Using LEM

In order to verify that some of the mixed re-
gions calculated using LEM would actually deto-
nate, the burning of select mixtures was followed
using the compressible hydrodynamics code, Kepler
(Weaver, Zimmerman, & Woosley 1978; Woosley et al.
2002, Fig. 14). The composition and temperature struc-
ture were taken from an LEM simulation of flame-
turbulence interaction at a density of 1.0 ×107 g cm−3

for a characteristic turbulent speed of 500 km s−1 on an
integral scale of 10 km (Table 2). Carbon had a mass
fraction of 0.75 in the fuel. Use of 65536 zones gave
a characteristic Reynolds number of 80,000 and a reso-
lution not achievable in a multi-dimensional simulation
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on this length scale. The LEM calculation was run for
0.10 s, or 5 eddy turnover times on the integral scale,
during which 40 dumps were created at equal time inter-
vals. Visual inspection isolated several cases for further
study. One of these was dump number 28, made 70 ms
after the beginning of the run. The overall burning rate
at this time was not particularly high, corresponding to
an effective speed of only 250 km s−1. However, most
of the energy generation was occurring in regions where
the carbon mass fraction was already low (Fig. 14), so
the local rate of pressure increase was quite large, even
though the integrated total change in pressure in the end
was small.

Kepler, frequently used for studying stars and super-
nova explosions, is an implicit 1D hydrodynamics code
with a spherical Lagrangian mesh. In order to simulate
a problem with approximately plane parallel geometry,
the 4 km of interest was mapped on top of a sphere of
pure ash (mostly magnesium and silicon) with a radius
10 km so that LEM zones of constant thickness had ap-
proximately constant mass and thickness in Kepler. In
the figure, that 10 km has been subtracted off of the x-
coordinate. The overall thickness in km of the region of
interest was the same in the Kepler study as in the LEM
calculation. The temperature was by no means isother-
mal in this region. In fact, an isothermal runaway would
not have initiated a detonation here, even if the burning
were supersonic. However, several key elements favoring
detonation were in place. First, there were some regions
where the temperature was already high because of pre-
vious mixing and burning. The rate of carbon burning
was quite high in these regions with a peak energy gen-
eration rate near 1021 erg g s−1. These were embedded
in an extended region with X12 ≈ 0.4 that was already
quite warm due to mixing. Finally that mixture lay at
the base of a region where the carbon mass fraction in-
creased steadily, if somewhat noisily, in an outwardly di-
rection. It is important to emphasize that this was the
result of an LEM calculation, and not an artificial con-
struct.

During the first phase, the “initiator” burned rapidly
producing an overpressure in the surrounding zones of
about 10 - 15%. This increase was sufficient to cause the
warm material to burn faster, on a roughly sonic time
scale. Their expansion then compressed and ignited ma-
terial at successively higher carbon mass fractions in the
gradient. While weak at first, the detonation strength-
ened and by the last frame shown was strong enough
that its permanent propagation was guaranteed. It was
followed until it left the grid. Among the interesting im-
plications here is that a region need not be highly isother-
mal, nor need all of it initially burn on a supersonic time
scale to provoke a detonation, though near sonic speeds
are needed. A pile up of strong acoustic pulses at around
2.3 km initiates the runaway.

6.2. Active Turbulent Combustion

Almost as interesting were the many other sample mix-
tures in this and other runs that, when mapped into Ke-
pler, did not detonate. Instead, the irregular burning
that is characteristic of combustion in the SF regime pro-
duces strong pressure waves. A particularly strong pulse
occurs roughly every turnover time on the integral scale
because these big mixing events trigger a lot of burning.

An example from the same run that produced the deto-
nation in Fig. 14 is shown about one turnover time later
(dump 39 at 95 ms) in Fig. 15. This time the burning
did not produce a detonation, but substantial burning
still occurred on less than a sonic time scale for the 4 km
shown (the sound crossing time for this region is about
1 ms). This burning produced a strong pulse that sent
matter moving inwards and outwards at ∼ 600 km s−1,
about the same value as assumed for turbulence on an
integral scale of 10 km in the study.

In three dimensions, these pulses would be quasi-
spherical and would occur all over the surface where
burning and mixing are going on. Collisions between the
fronts would pump additional energy into turbulence on a
scale comparable to the width of the burning region, i.e.,
the integral scale, or about 10 km. As noted, the veloc-
ities in these pulses are frequently larger than expected
from the assumed turbulent energy on that length scale.
As discussed by Kerstein (1996); Niemeyer & Woosley
(1997), this sets the stage for a potential runaway. More
turbulence leads to increased mixing which leads to more
violent irregular burning, which creates more turbulence.
The culmination of this runaway could be a detonation.

7. CONCLUSIONS

Three regimes of turbulent flame propagation relevant
to nuclear burning in a Type Ia supernova have been
explored. At high density, for Karlovitz numbers less
than about one, burning occurs in multiply folded lami-
nar flames. The overall progress of burning is governed
by the turbulent energy and has a speed that is inde-
pendent of the laminar speed. A similar description of
“laminar flame brushes” has been given many times in
the literature, but this is the first time it has been sim-
ulated in a supernova (e.g., Fig. 2).

The average number of flamelets in the flame brush
is UL/Slam, and initially is not large. Because of this,
there will be considerable variation in the burning rate.
We estimate such variations to be as large as a factor
of three. However, detonation does not happen so early
because the turbulent speed then is very subsonic and
the individual flamelets are thin. Later, the number
of flamelets becomes very large, reaching hundreds or
even thousands, and variations in the overall burning
rate are much smaller. Detonation remains impossible
in the flamelet regime. No critical mass of hot fuel can
be obtained.

As the Karlovitz number increases above about 10, hot
ash and cold fuel can be mixed for the first time and det-
onation is, in principle, possible. Two cases of turbulent
burning were explored corresponding to the well-stirred
reactor (WSR; Da < 1, § 5.3) and stirred flames (SF;
Da > 1; § 5.4). In the WSR regime, turbulent diffusion
substitutes for heat diffusion and turbulently broadened
flames result. These flames can be much larger than
the integral scale. Because the integral scale in a su-
pernova is so large, this limiting case is probably never
fully realized, but is amenable to numerical simulation
(Aspden et al. 2008). We normalized an uncertain con-
stant in the LEM calculation, C, (§ 3.1) to those simu-
lations. In the stirred flame regime, one again has some-
thing like a flame brush, but with turbulently broadened
structures substituting for the individual flamelets in the
flamelet regime. The structure of burning here is com-
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Fig. 15.— Development of a small scale explosion within a flame front in the WSR regime. The highly variable gold line is the carbon
mass fraction. The dark line that is initially zero is the velocity. The velocity scale is in units of 1000 km s−1. Unlike in Fig. 14, the rapid
burning of a mixed region does not initiate a detonation here, but it does produce a strong subsonic pulse. These may be very common
events and would be a mechanism for adding turbulent energy at the flame scale. The two edits here are from the same run that produced
the detonation in Fig. 14 sampled 3.9 × 10−4 s apart.

plex and highly variable. Because the burning time scale
is very temperature sensitive, it is possible to mix large
regions of “warm” fuel and ash in which are embedded
smaller nuggets on the verge of explosion. Mixed regions
of nearly constant temperature are sometimes observed
(Fig. 13, § 5.4.3).

Spontaneous detonation can happen in the SF regime
(Fig. 14, § 6.1). It does not require complete mixing
on the integral scale, and hence Da ≈ 1 as discussed in
Woosley (2007), but is favored by values of Da that are
not large. The necessary conditions occur infrequently
and require a favorable confluence of several mixed re-
gions including: a) some region, perhaps not large and
with a low mass fraction of carbon, where the burning
occurs sufficiently rapidly to increase the pressure by a
small fraction supersonically; and b) an extended region
where the carbon mass fraction rises gradually and the
temperature falls slowly. Neither region need be partic-
ularly homogeneous as long as some part of the com-
position burns supersonically for condition a) and there
are neither large barriers of ash or abrupt, sustained in-
creases in carbon mass fraction for condition b).

In general, the production of these situations require
turbulent speeds that are already a considerable frac-
tion of sonic, certainly within 10% and probably 20%.
Overall the progress of burning in the SF regime varies
frequently by a factor of three up and down, and rare
excursions to larger values probably also occur due to
intermittency (Pan et al. 2008). We also find that ap-
preciable turbulence can be put into the burning region
on a scale comparable to the integral scale by small sub-
sonic explosions of mixtures that fail to detonate (§ 6.2,
Fig. 15). Before the big bang in these stars, there is a lot
of thunder. Though we have not demonstrated it here,
we speculate that this energy input may exceed that put
in at the large scale by the flame instabilities. If so, there
is the possibility of a turbulent runaway in which mix-
ing pumps energy into turbulence which in turn causes
accelerated mixing (Kerstein 1996). The endpoint would

be detonation.
These necessary conditions for detonation are summa-

rized in Fig. 16. Detonation is estimated to occur for
a reasonable range of turbulent energies in the nearly
horizontal band between the lines Da = 10 and Da =
100. It must be acknowledged that this figure is very
approximate because the nuclear time scale (and hence
Damköhler number) are poorly determined. The effec-
tive nuclear time scale in Da is probably longer than
in Table 3 and intermittency essentially raises the ef-
fective turbulent speed making detonation possible at a
higher density. This is why the conditions Da = 10 - 100
in Fig. 16 are probably more favored than say 1 to 10.
Above Da = 100, the mixed regions may be too small to
initiate a detonation.

Three-dimensional simulations by Röpke (2007) show
that the necessary degree of turbulence for detonation,
roughly u′ = 500 km s−1, is realized in the full star mod-
els.

We also find some dependence of the detonation con-
ditions on initial carbon mass fraction (see also Woosley
2007). For lower carbon mass fractions, Damköhler num-
bers of order 10 are reached at a higher density. If det-
onation does occur at a higher density, the explosion
makes more 56Ni and a brighter supernova. However,
detonation depends on achieving a significant overpres-
sure on a sonic time scale. By the time that carbon-
poor fuel carbon reaches a temperature where it burns
rapidly (Fig. 12), the remaining burning produces too
small an overpressure. Detonating carbon-rich fuel is,
in this sense, easier (see also Umeda et al. 1999a,b). It
is important to note that the relevant location for deto-
nation is probably in the outer layers where the density
first declines below 107 g cm−1 at the flame front, not
near the center. The carbon abundance is higher in these
outer layers.

All in all, our results are supportive of the hypoth-
esis that some, perhaps even all Chandrasekhar mass
white dwarfs explode by a delayed detonation that oc-
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Fig. 16.— Speeds required on an integral scale of 10 km to
establish the necessary conditions for detonation. The first panel is
for an initial carbon mass fraction of 50%; the second, for 75%. The
solid line that increases rapidly from left to right is the condition
Da = 10 and the two dashed line parallel to it are Da = 1 (upper)
and 100 (lower). The nearly horizontal solid line is the sound speed
divided by 5 and the dash-dotted line beneath is the sound speed
divided by 10. The lowest solid line is the condition Ka = 10.
Scaling to other values is given in the text. In order to detonate
the speed on the integral scale must be greater than that given by
Ka = 10 and in the vicinity of Da = 10. It is also necessary that
the turbulent speed be at least 1/10 the sound speed and, better
still, 1/5 the sound speed, but turbulent speeds above 20% sonic
may not be achieved in the star. Thus detonation for the assumed
conditions and a carbon mass fraction of 0.5 probably occurs in
the band between 0.8 and 1.6 ×107 g cm−3. For 75% carbon, the
likely density range is 0.5 to 1.0 ×107 g cm−3.

curs shortly after the burning enters the SF regime. This
would then make the location and number of detonation
points, along with the ignition conditions (Kuhlen et al.
2006), the principal determining factors in the intrinsic
properties of a Type Ia supernova.

Several avenues for future investigation are opened
up by this work. First, our results hinge on the cali-
bration of the 1D LEM model to direct 3D simulation
(Aspden et al. 2008). The 3D study used for normaliza-
tion here was carried out in the WSR regime, but the
results (e.g., the constant C) were assumed to be valid in
the SF regime. Given the subgrid model developed here,
it should be possible to carry out equivalent 3D studies
for the SF regime (Da ≫ 1).

The results for detonation (§ 6.1) and active turbu-
lent combustion (§ 6.2) were obtained by mapping re-
sults from LEM using a linear grid into a 1D compress-
ible hydro-code with spherical coordinates. It would be
greatly preferable to see both the mixing and the strong
pressure waves in the same, preferably 3D study. Because
of the range in length scales, the need for a large effective
Reynolds number, and the rare, transient nature of the
phenomena, this will require a very major investment of
computational resources, but should be practical in the
near future.

Ultimately, of course, one would want to see these re-
sults applied to full scale models of the supernova and
its light curve.
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A. LEM FLAME SPEED IN THE FLAMELET REGIME

Properties of the triplet map imply a simple, exact expression for the turbulent burning velocity vturb in terms of
the LEM parameters Dturb (turbulent diffusivity) and L (largest allowed map size) under the conditions vturb ≫ Slam

(here assuming the flamelet regime) and Dturb ≫ ν/ρ (implying Re ≫ 1). On the LEM domain (coordinate x), assume
fuel on the right and ash on the left, so the flame advances rightward (direction of increasing x). vturb is evaluated by
tracking the forward progress of the rightmost (forwardmost) ash location. The only mechanism affecting this location,
denoted r, is the triplet map because small Slam implies that the contribution of laminar burning is negligible.

Any triplet map containing r maps r to three locations, the rightmost of which, denoted r′, exceeds r. Specifically,
if the map interval is [x1, x2], then r′ = x2 − 1

3 (x2 − r), i.e., the distance from r′ to x2 is one third of the pre-map

distance. The advancement of the rightmost ash location is therefore r′ − r = 2
3 (x2 − r).

Suppose that the interval [x1, x2] is chosen arbitrarily. If it contains r, then r is equally likely to be anywhere within
the interval, and hence is uniformly distributed in the interval. The advancement is therefore averaged over r values
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in the interval. Because the advancement is linear in r, this implies that the average value (x1 + x2)/2 is substituted
for r, giving the average advancement 〈r′ − r〉 = 1

3 (x2 − x1) = 1
3 l, where l is the map size.

Suppose that all maps were the same size l and denote the frequency of maps containing a given location as φ. Then
the average rate vturb of advancement of r is φ times the average advancement of r per map, giving vturb = 1

3φl.
φ can be expressed in terms of Dturb. From random walk theory, Dturb is one-half of the frequency of events that

displace a point times the mean-square displacement per event. The mean-square displacement induced by a size-l
triplet map is 4

27 l2 citepart5, so Dturb = 2
27φl2, giving φ = 27

2 Dturb/l2 and thus vturb = 9
2Dturb/l. This illustrates the

analysis but is not the case of interest because inertial-range turbulence is represented in LEM by a distribution of
map sizes l.

As explained in Kerstein (1991), in LEM the map size distribution is f(l) = Al−8/3 for l in the range [η, L], where
A is a normalization factor. The total frequency of maps of all sizes per unit domain length is denoted Λ. The
frequency of maps in the size range [l, l + dl] that contain a given point is then Λlf(l) dl, so Dturb = 2

27Λ
∫

l3f(l) dl =
1
18ΛA(L4/3 − η4/3). For high Re, the η term is negligible and is dropped, giving Dturb = 1

18ΛAL4/3.

To obtain vturb, the average advancement 1
3 l for map size l is multiplied by Λlf(l) dl and integrated over l to obtain

(ignoring the η term) vturb = ΛAL1/3. In terms of Dturb, the result vturb = 18Dturb/L is obtained. The numerical
factor is four times larger than if all maps were of size L. A heuristic interpretation of this result is that the typical
map size from a flame propagation viewpoint is L/4 when f(l) is based on inertial-range scaling.
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Table 1. Properties of Laminar Flames

X12 ρ Slam δlam(ǫ) δlam(T ) δlam(C)
(107 g cm−3) (cm/s) (cm) (cm) (cm)

0.50 0.6 8.62(2) 11.7 15.6 19.3
0.50 0.8 1.77(3) 4.35 6.01 7.03
0.50 1.0 3.23(3) 2.08 3.12 3.32
0.50 1.2 4.99(3) 1.15 1.78 1.82
0.50 1.4 7.19(3) 0.70 1.14 1.10
0.50 1.6 9.66(3) 0.45 0.76 0.72
0.50 1.8 1.26(4) 0.31 0.54 0.50
0.50 2.0 1.58(4) 0.22 0.40 0.36
0.50 2.5 2.47(4) 0.12 0.23 0.19
0.50 3.0 3.54(4) 0.067 0.14 0.11
0.50 3.5 4.66(4) 0.041 0.090 0.065

0.75 0.3 1.73(2) 172 157 325
0.75 0.4 8.65(2) 21.4 22.4 40.0
0.75 0.5 1.74(3) 9.80 11.4 17.7
0.75 0.6 2.80(3) 5.02 6.12 8.94
0.75 0.7 4.10(3) 2.94 3.52 5.29
0.75 0.8 5.86(3) 1.80 2.27 3.21
0.75 0.9 8.39(3) 1.25 1.73 2.20
0.75 1.0 1.08(4) 0.85 1.21 1.49
0.75 1.2 1.70(4) 0.43 0.66 0.77
0.75 1.4 2.37(4) 0.25 0.40 0.45
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Table 2. Flame Properties at ρ = 1.0 × 107 g cm−3

X12 l UL Zones ∆x Transport vf δf (ǫ) δf (T )
(cm) (km/s) (cm) (km/s) cm cm

0.50 - 0 2048 0.0244 rad 0.0323 2.1 3.1
0.50 - 0 256 0.196 rad 0.0314 2.1 3.1
0.50 15 2.47 2048 0.244 rad. 0.149 40 70
0.50 15 2.47 2048 0.244 SG 0.156 40 70
0.50 120 4.93 2048 0.977 SG 0.61 160 300
0.50 960 9.86 2048 9.77 SG 2.3 ∼700 ∼1200
0.50 960 9.86 16384 1.22 SG 2.3 ∼700 ∼1200
0.50 7680 19.7 8192 9.77 SG 8.2 fluc. fluc.
0.50 6.14(4) 39.4 32768 9.16 SG 26 fluc. fluc.
0.50 4.92(5) 78.9 65536 49.9 SG 110 fluc. fluc.
0.50 3.93(6) 158 65536 360 SG 280 fluc. fluc.
0.50 3.93(6) 340 65536 360 SG 440 - 470? fluc. fluc.

0.75 - 0 2048 0.0391 rad 0.113 0.85 1.2
0.75 10 2.16 2048 0.0977 rad 0.415 10 20
0.75 40 3.42 4096 0.0977 rad 0.922 ∼25 ∼60
0.75 80 4.31 8192 0.0977 rad 1.46 ∼40 ∼90
0.75 80 4.31 8192 0.0977 SG 1.54 ∼40 ∼90
0.75 320 6.84 32768 0.0977 SG 3.2 fluc. fluc.
0.75 2560 13.7 32768 0.391 SG 12 fluc. fluc.
0.75 2.05(4) 27.4 32768 3.05 SG 40 fluc. fluc.
0.75 1.00(4) 215 32768 2.50 SG 96 fluc. fluc.
0.75 1.00(6) 500 32768 152 SG 1020 fluc. fluc.
0.75 1.00(6) 500 65536 76.3 SG 870 fluc. fluc.
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Table 3. Characteristic Scales in the WSR and ST Regimes for UL =
100 km s−1 and L = 10 km

X12 ρ τnuc λ d Ka
(107 g cm−3) (sec) (cm) (cm)

0.50 0.6 6.1(-2) 4.7(5) 1.0(2) 3.5(3)
0.50 0.8 1.2(-2) 4.0(4) 1.8(2) 8.9(2)
0.50 1.0 3.5(-3) 6.4(3) 3.2(2) 2.5(2)
0.50 1.2 1.3(-3) 1.5(3) 5.0(2) 9.6(1)
0.50 1.4 5.8(-4) 4.5(2) 7.2(2) 4.3(1)
0.50 1.6 2.9(-4) 1.6(2) 9.7(2) 2.2(1)
0.50 1.8 1.6(-4) 6.4(1) 1.3(3) 1.3(1)
0.50 2.0 9.5(-5) 2.9(1) 1.6(3) 7.5(0)
0.50 2.5 3.2(-5) 5.7(0) 2.5(3) 2.8(0)
0.50 3.0 1.3(-5) 1.5(0) 3.5(3) 1.2(0)
0.50 3.5 6.4(-6) 5.1(-1) 4.7(3) 6.4(-1)

0.75 0.3 3.6(-1) 6.8(6) 1.7(1) 1.8(5)
0.75 0.4 6.0(-2) 4.6(5) 8.7(1) 5.8(3)
0.75 0.5 1.6(-2) 6.4(4) 1.7(2) 1.4(3)
0.75 0.6 5.3(-3) 1.2(4) 2.8(2) 4.8(2)
0.75 0.7 2.1(-3) 3.0(3) 4.1(2) 2.1(2)
0.75 0.8 1.0(-3) 9.9(2) 5.9(2) 9.5(1)
0.75 0.9 5.0(-4) 3.5(2) 8.4(2) 4.6(1)
0.75 1.0 2.8(-4) 1.4(2) 1.1(3) 2.6(1)
0.75 1.2 1.0(-4) 3.3(1) 1.7(3) 9.4(0)
0.75 1.4 4.5(-5) 9.6(0) 2.4(3) 4.3(0)


