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ABSTRACT

Various radio observations have shown that the hot atmosplté galaxy clusters are mag-
netized. However, our understanding of the origin of theagmetic fields, their implications
on structure formation and their interplay with the dynasm€the cluster atmosphere, espe-
cially in the centers of galaxy clusters, is still very liedt In preparation for the upcoming
new generation of radio telescopes (like EVLA, LWA, LOFARda8KA), a huge effort is
being made to learn more about cosmological magnetic fiedahs fhe observational perspec-
tive. Here we present the implementation of magneto-hygrachics in the cosmological
SPH code GADGETL(Springel etlal. 2001; Springel 2005). Wewdis the details of the im-
plementation and various schemes to suppress numeritatilittes as well as regularization
schemes, in the context of cosmological simulations. Thepaance of the SPH-MHD code
is demonstrated in various one and two dimensional test@ma) which we performed with
a fully, three dimensional setup to test the code understEatiircumstances. Comparing so-

lutions obtained using ATHENA (Stone et al. 2008), we findedbemt agreement with our
SPH-MHD implementation. Finally we apply our SPH-MHD impientation to galaxy clus-
ter formation within a large, cosmological box. Performagesolution study we demonstrate
the robustness of the predicted shape of the magnetic fiefdgzrin galaxy clusters, which
is in good agreement with previous studies.

Key words: (magnetohydrodynamics)MHD - magnetic fields - methods: eniral - galax-

ies: clusters

1 INTRODUCTION

Magnetic fields have been detected in galaxy clusters by @l
servations, via the Faraday Rotation Signal of the mageetihus-
ter atmosphere towards polarized radio sources in or bettirsd
ters (see_Carilli & Taylor 2002; Govoni & Feretti 2004, forcemnt
reviews) and from diffuse synchrotron emission of the @uatmo-
sphere (see_Govoni & Feretti 2004; Ferrari et al. 2008, foeme
reviews). Our understanding of the origin of cosmologicabmetic
fields is particularly limited. But their evolution and pdds im-
plications for structure formation are also not yet fullydenstood.
In addition their interplay with the large-scale structémemation
processes, as well as their link to additional dynamics iwithe
cluster atmosphere is unclear, especially their role irctw core
regions and the influence of these regions on the evoluticgheof
magnetic fields.

The upcoming, new generation of radio telescopes (like
EVLA, LWA, LOFAR and SKA) will dramatically increase the
volume of observational data relevant for our understandif
cosmological seed magnetic fields in the near future. Tostiwe
gate the general characteristics of the magnetic fields dhban
yond galaxy clusters at the level required for a meaningéuh-c
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parison to current and forthcoming observations, numksicau-
lations are mandatory. Non-radiative simulations of gglabus-
ters within a cosmological environment which follow the evo
lution of a primordial magnetic seed field have been perfarme
using Smooth-Particle-Hydrodynamics (SPH) codes (Dolad e
1999, 2002, 2005) as well as Adaptive Mesh Refinement (AMR)
codes |(Briiggen et aAl. 2005; Dubois & Teyssier 2008). Algiou
these simulations are based on quite different numeriaai-te
niques they show good agreement in the predicted propesties
the magnetic fields in galaxy clusters. When radiative cmpls
included, strong amplification of the magnetic fields instte
cool-core region of clusters is found (Dubois & Teyssier &0@n
good agreement with previous work (Dolag 2000). Cosmokldgic
magneto-hydrodynamical simulations were also performgdgu
finite-volume and finite-difference methods. Such simaladiare
used to either follow a primordial magnetic field (Li et lal.020)
or the creation of magnetic fields in shocks through the deda
Biermann battery effect (Kulsrud etal. 1997; Ryu ef al. )99
which a subsequent turbulent dynamo may operate. The fatter
dict magnetic field strength in filaments with somewhat higta-
ues (e.g. see_Sigl etlal. 2004) than predicted by simulatidrish
start from a primordial magnetic seed field, but are in linthvere-
dictions of magnetic field values from turbulence (Ryu €28D8).
Therefore further investigations are needed to clarifystinecture,
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evolution and origin of magnetic fields in the largest stuues of
the Universe, their observational signatures, as well eis thter-
play with other processes acting in galaxy clusters and ahgel
scale structure.

The complexity of galaxy clusters comes principly from thei
hierarchical build up within the large-scale structure toé Uni-
verse. In order to study their formation it is necessarypottofv a
large volume of the Universe. However, one must also descok-
mic structures down to relatively small scales, thus spanhito 6
orders of magnitudes in size. The complexity of the clusteroa
sphere reflects the infall of thousands of smaller objectsthair
subsequent destruction or survival within the cluster ipiiaé Be-
ing the source of shocks and turbulence, these processedlylir
act on the magnetic field causing re-distribution and ancgliion.
Therefore realistic modelling of these processes crljicpends
on the ability of the simulation to resolve and follow cottgchis
dynamics in galaxy clusters.

Starting from a well-established cosmological n-body
smoothed particle hydrodynamic (SPH) code GADGET
(Springel et al._2001; Springel 2005) we present here the im-
plementation of magneto-hydrodynamics, which allows us to
explore the full size and dynamical range of state of the art
cosmological simulations. GADGET also allows us to turn on
the treatment of many additional physical processes whietof
interest for structure formation and make interestingdinkith the
treatment of magnetic fields for future studies. This inelther-
mal conduction|(Jubelgas et al. 2004; Dolag &t al. 2004)sichy
viscosity (Sijacki & Springel 2006), cooling and star-fation
(Springel & Hernquist. 2003), detailed modelling of the Istel
population and chemical enrichment (Tornatore &t al. [2Q007)
and a self consistent treatment of cosmic rays (EnRlin| 2047 ;
Pfrommer et al. 2007). The MHD implementation presente her
is fully compatible with all these extensions, but here wentva
to focus on non-radiative simulations. All such processes a
expected to increased the complexity and lead to interplaly w
the evolution of the magnetic field. This would make it impbles
to critically check the numerical effects caused by theedéht
SPH-MHD implementations and therefore we will ignore such
additional processes in this work.

The paper is structured as follows: In section 2 we present
the details of the numerical implementation, whereas iri@ec
3 we present various code validation tests, all performefilip
three dimensional setups. In section 4 we present the faymat
a galaxy cluster as an example for a cosmological applicdie
fore we present our conclusions in section 5. In addition resgnt
a convergence test for the code in the appendix.

2 SPH-MHDIMPLEMENTATION

We have implemented the MHD equations in the cosmological
SPH codeGADGET (Springel et all 2001; Springel 2005). In this
section we present the relevant details of this implemamat
While developing the MHD implementation made us&aDGET-

1 (Springel et al. 2001) andADGET-2(Springe| 2005), all simula-
tions presented in this paper are based on the most recesbrver
of the code GADGET-3 (Springel, in prep). Note that the imple-
mentation therefore is fully parallelized and benefits fromany
optimizations within the general parts of the code, esfligdiae
calculation of self gravity and optimization in data stwes as
well as work-load balancing. Therefore, this implemewotatis an
ideal tool to follow the evolution of magnetic fields and alus

to explore dynamical ranges of more than 5 orders of magaitud
within cosmological simulations.

During the last years, many general improvements in the
implementation of the SPH method have been made. Examples
include are more modern formulations of the artificial visitp
(Monaghan 1997), the introduction of self-consistent ection
terms from varying smoothing length (Springel & Herngui802;
Monaghan 2002) or the continuous definition of the smoothing
length (Springel & Hernquist 2002). All these improvements
only increased the accuracy and stability of the underly&RH
formulation but also improved, directly or indirectly, tteecu-
racy and stability of any MHD implementation. The main, indi
rect benefits of these improvements are the self-consisteai-
ment of the magnetic waves within the formulation of thefirti
cial viscosity (Price & Monaghan 2004a), the possibilitydimp
the viscosity limiter (see equation 10 and discussion itice@.3)
and the inclusion of the correction terms from varying srhow
length in both the induction equation and the Lorenz forecente
(Price & Monaghan 2004b). In the remaining sections we wdi d
cuss our SPH-MHD implementation in detail.

2.1 SPH implementation in GADGET

The basic idea of SPH is to discretize the fluid in mass ele-
ments {n;), represented by particles at positiafs(Lucy |1977;
Gingold & Monaghan_1977). To build continuous fluid quanti-
ties, one starts with a general definition of a kernel smaogthi
method. The most frequently used keri&l(|z], k) is the Bs-
Spline (Monaghan & Lattanzio 1985), which can be written as

8 1—6(5)3“3(5) 0
W(z,h)=—59 2(1-4%) 0.
0 1
It is worth stressing that, contrary to other SPH implemgoma
GADGET uses the notation in which the kern#l (x, h) reaches
zero atz/h = 1 and not atz/h = 2. The densityp; at each
particle position¥; can be estimated via

(pi) =Y miW (@ — &, hi), @

where the smoothing length is defined by solving the equation

(©)

A typical value forN is in the range of 32-64, which correspond
to the number of neighbors which are traditionally choseS8hH
implementations.

In GADGET, the equation of motion for the SPH particles
are implemented based on a derivation from the fluid Lageangi
(Springel & Hernguist 2002) and take the form

3
T heps = Nm.
3 PP m

—\ (hyd) N
dvi co Pz =, co P; =
(5) == my {fi VWt 75V @
i=1 ’ ’
The coefficientsf; are defined by
—1

co hL apz

=1 5
fi [+3piahi] : (5)

and reflect the full, self-consistent correction termsiagisrom
varying the particle smoothing length. The abbreviatidh =
W (|7 — 75, hs) andW; = W (|7; — 75|, h;) are the two kernels



of the interacting particles. The pressure of each particlven
by P, = Aip], where the entropic functiod; stays constant for
each particle in the absence of shocks or other sources bf hea
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The formulation of the MHD equations with®ADGET has to be
be adapted accordingly to this choice of variables.

To capture shocks properly, artificial viscosity is needed.

Therefore, IGADGET the viscous force is implemented as

dv; (visc) N B
(E) == mylly Vi, (6)

j=1

2.3 Magnetic signal velocity

A natural generalization of the signal velocitzgg in the framework
of MHD is to replace the sound velocity by the fastest magnetic
wave as suggested by Price & Monaghan (2004a). Therefore the

wherell;; > 0is non-zero only when particles approach each other sound velocity; gets replaced by

in physical space. The viscosity generates entropy at a rate

dAZ _1’7—1
e 2 prt

N
ijﬂiﬁfij - ViWij, (7)

=1

Here, the symboWij denotes the arithmetic mean of the two ker-

nelsW; andW;.
For the parameterization of the artificial viscosity, stayt

with version 2 ofGADGET, a formulation proposed by Monaghan
(1997) based on an analogy with Riemann solutions of corapres

ible gas dynamics, is used. In this case, the resulting sigcterm
can be written as
1, = ZODOU G e ©
1] — K3
pis !
for 7, - ¥i; < 0 andIl;; = 0 otherwise, i.e. the pair-wise vis-
cosity is only non-zero if the particles are approachingheatber.

Hereu;; = ¥;; - 735 /|35 is the relative velocity projected onto the

separation vector and the signal velocity is estimated as
sig

i = Ci ¢ — B, 9)

with ¢; = /+P;/p: denoting the sound velocity. lBADGET-2the

v

valuesa = 1 and3 = 3 are commonly used for the dimension-

less parameters within the artificial viscosity. Here weehalso
included a viscosity-limiterf;*** = (fs"°*" + f5"°*") /2, which
is often used to suppress the viscosity locally in regionstaing
shear flows, as measured by

it = 9, (10)

[(V-0), |+ [(Vx¥) | +0i

. LKC2+B_?)
' V2 [\ popa
0.5

B2 \? 2(B .7 175 ])2
(C%-‘r ’L.) _461( 7"J/‘|7ﬁ]|) . (12)
Hopi Hopi

As this new definition of the signal velocity also enters timeet
step criteria[(T11), no extra time-step criteria due to theymetic
field has to be defined. We note that we still see improvements i
the solution to the test problems, if we choose more conteeva
settings within the Courant condition. Therefore we gelherse
Ceourant = 0.075, which is half the value usually used in pure
hydrodynamical problems. Different authors also propasese
different values fora. and 8 within the artificial viscosity defini-
tion (8). Whereas typicallyy = 1 is chosen, Monaghan (1997)
proposed to us@ = 3.|Price & Monaghan| (2004a,b) propose to
useB = 2 or 8 = 1 respectively. We find slight improvements in
our test problems when using = 2 and3 = 1.5, which we use
throughout this paper. We also note, that the viscosity eg%0n
switch ffjhe‘”' was introduced based on an earlier realization of the
artificial viscosity and it is not clear if it is still needeéls we note
significant improvements in our test problems when negigdtiis
switch we do not use this switch throughout this paper. Atsdte
cosmological application presented in the last part of gaper,
this switch was always turned off.

2.4 Induction equation

The evolution of the magnetic field is given by the inductigua-

which can help to avoid spurious angular momentum and vortic  tjon,

ity transport in gas disks (Balséra 1995; Steinmetz 1998 the
common choicer; = 0.0001c¢; /h;.

B _ (5. V- B9, (13)

This also leads naturally to a Courant-like hydrodynamical dt

time-step
Ccourant hz

1 )
)

AtYD = (11)

max; (v

whereC.ourant iS @ NUMerical constant, typically choosen to be in

the range.15 — 0.2.

2.2 Co-moving variables and integration

The equations of motion are integrated using a leap-frogghat
tion making use of a kick-drift-kick scheme. Within this sche,
all the pre-factors due to the cosmological background msipa

are taken into account within the calculation of the kickdan

drift-factors (see_Quinn et gl. 1997; Springel 2005). Fa itte-

gration of the entropy within a cosmological simulation,aatbr
d

if ohmic dissipation is neglected and the constraint B = 0 is
used. The SPH equivalent reads

dB; 1 f&
dt © Ha2 p; ’
N
j=1
—28;, (14)

where(Ha?)~" = 4L takes into account that the internal time vari-
able iINnGADGET is the expansion parameter Note that here, by

construction, only the kernél’; and its derivative is used. The sec-
ond term—25; accounts for the dilution of the frozen in magnetic

field due to cosmic expansion. Both these additions + #he®) ~*

(Ha®)™t = —(’i is present in equatidd 7 to take into account that factor and the—2B, term — are only present in the cosmological

d
the internal time variable iIBADGET is the expansion parameter

simulations and absent for the code evaluation presentsetiion
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[B. In component form the induction equation reads

N
dBf 1 fie kgl ko \OWi T
L= d (v B — Biy: ) ——L
dt Ha?2 i Zlmj(vzj i LUZJ) du |7—,»Z]|
j=
—2BF. (15)

Note that, as also suggested |by Price & Monaghan (2004b), we

wrote down the equations including the correction fagférwhich
reflects the correction termé‘a‘g) arising from the variable parti-
cle smoothing length. Unfortunately it is not possibile foedtly
infer the exact form of the correction factors from first jgiples
for the induction equation. However, Price & Monaghan (21)04
showed that, if not chosen in the same way as for the Loreie for
inconsistency between the induction equation and magfate
results. The effect of these factors in the induction eguas quite
small, but nevertheless one notices tiny improvementssinpeb-
lems when they are included. Therefore, we included thenalfor
applications presented in this paper.

25 Magneticforce

The magnetic field acts on the gas via the Lorenz force, whach ¢

be written in a symmetric, conservative form involving thagn

netic stress tensar (Phillips & Monaghan 1985)
R

MM = (3535 _ §|Bi|25kl) . (16)

The magnetic contribution to the acceleration of ikt particle

can therefore be written as

_ \ (mag) 3y N
dv; a’” coM; =
= — m; | fi - VW
( dt ) o Z J |: p?

<

j=1
coM' =
+ f; p—zj 'ijj:| :

J

(17

tation of the magnetic force. However their performance foaad
to depend on the details of the simulation setup. In the remtians
we will briefly discuss the different possibilities in thentext of
building up an implementation for cosmological simulaton

2.6.1 Adding a constant value

One method to remove the instability was pointed out by
Phillips & Monaghan|(1985), who suggested to calculate thgim
mum of the magnetic stress tensor and to subtract it globady &ll
particles. Or similar, as suggested_in Price & Monaghan %200
subtract the contribution of a constant magnetic field. Tham-

ple and straight forward if there is a strong, external mégriield
contribution from the initial setup, which can be assodatgth

the term one subtracts. However, with cosmological sinaratin
mind, this approach is not very viable. and therefore we diclise
this approach.

2.6.2 Anti clumping term

Monaghan|(2000) suggested the introduction of an additimnan

in the momentum equation which prevents particles from plum
ing in the presence of strong magnetic stress. Includirgytérim,
equation[(Ib) reads

MM = (p:;vp:g - %@mkl - Riéféf) : (20)
whereR; is a steepened kernel which can be defined as
€ (Wi\"
= — . 21
R 2 (Wl) (21)

The modification of the kernel is made so that contributiores a
significant only at distances below the average particleisga:,
soW; is defined a3V; = W (uq). Typical values for the remaining
parameters are = 0.8 andn = 5. This method was also used in

Herea® = g—t is needed to transform the equations to the internal |Price & Monaghanl (20044,b) where they found= 1.5k to be a

variables for cosmological simulations and is set to ondliother
cases. Alsquo has to be chosen properly as
[TIME]?[LENGTH]

4r[MASS]h2 7
with h = 1 for non cosmological runs. The factof$° reflect the
correction terms{%) arising from the variable particle smoothing

Mo = (18)

length as introduced already (see also Price & Monaghantd004

In component form the equation reads

dﬁf (visc) a3"/
dt C mo

+ f5°

N
kl =
‘ [ o MFLOW; T
i

topl Ou |7yl

j=1
M ow; T
p; Ou |||’

(19)
It is well

(Phillips & Monaghan 1985), The reason for this is that thegma
netic stress can become negative, leading to the clumpipgntif
cles. Therefore, some additional measures have to be taleipt
press the onset of this instability.

2.6 Instability corrections

There are several methods proposed in the literature tossphe
onset of the clumping instability which is caused by the iempén-

known that this formulation becomes unstable
for situations, in which the magnetic forces are dominating

good choice for 1D simulations and switched#o= 1.1h for 2D
simulations. In agreement with Price & Monaghan (2005) wd fin
that in 3D and allowing the smoothing length to vary, thisrapgh
does not help to suppress the instabilities efficiently.

2.6.3 div(B) force subtraction

Bgarve et al. [(2001) suggested explicitly subtracting tHeatfof
any numerically non-vanishing divergence Bf Therefore, one
can explicitly subtract the term

dl_fk (corr) s 1 - N B»
(d—Z) = BB m [f' i
(22)

from the momentum equation. Here agaifly = §- andpo are
introduced to transform the equation to the internal unsesdu To
be consistent with the other formulations, we inclugét, which
are the% terms. In the original work (Bgrve etlal. 2008 ,= 1

was choosen. In component form this equation reads

dl_fk (corr)

N - i

P Bl ow; 7i;

3y k co ¢ i g
—a”'—pBB; m; | fi — —
10 ; J[ p; Ou |7



An MHD Gadget for cosmological simulations 5

‘,l
45

B} ow,

72 ou Tl

+ f7° (23)
In principle, this term breaks the momentum conserving fofm
the MHD formulation. However, in practice, this seems to leia
nor effect| Bgrve et al. (2004) argued that stability foelinwaves
in 2D can be safely reached even when not subtracting thesfufl
but choosing3 < 1; e.g. they suggested = 0.5 to further min-
imizing the non-conservative contribution. However, ihit clear
if this stays true for 3D setups and in the non-linear regifui-
tional we do not use a higher order kernel as done in Boarve et al
(2004), therefore it is not clear if their conclusions dtitild in our
case. As the results in our test problems seem unharmed ppshe
sible violation of momentum conservation due to the forrtiafa
of the correction factor in the Lorenz force, we keep it in then
suggested in earlier work (elg. Barve ef al. 2001)3.e= 1.

In [Barve et al.[(2006) a more general formalism to obtain
for each particle was introduced with the aim to further miizie
the violation of momentum conservation in the formulatidrire
correction terms in the Lorenz force. Unfortunately, in kight of
cosmological simulation, this seems not to be very prakctisait
contains a scan for a maximum value over all particles, wirch
a cosmological context makes no sense as there is not a specifi
single object to which such characteristics can be tuned to.

In general we find that this correction term significantly im-
proves all results in our test simulations and effectivelgmesses
the onset of the clumping instability. It was also alreadgcass-
fully used in previous, cosmological applications (e.gldacet al.
2004; Rordorf et al. 2004; Dolag et/al. 2005).

2.7 Regularization schemes

Beside instabilities, noise (e.g. fluctuations of the mégnigeld

imprinted by numerical effects when integrating the indhrct
equation) is a source of errors in SPH-MHD implementatidina
goal of a regularization scheme is to obtain a magnetic fidlthv
does not show strong fluctuations below the smoothing lefgtis

can be achieved indirectly through improvements in the tiyithg

SPH formalism and by reformulation of the the interactiamse-
duce the creation of small irregularities from numericéefs (e.qg.
through particle splitting). Alternative approaches aredirectly
suppress the magnetic field or to dissipate small irredidarby
introducing artificial dissipation.

2.7.1 Improvements in the underlying SPH formalism

Here, the entropy conserving formalisin_(Springel & Hersgui
2002) of the underlying SPH implementation contributes siga
nificant improvement of the MHD formalism compared to prexso
MHD implementations in SPH by generally improving the den-
sity estimate and the calculation of derivatives. It hasambted,
that this is not only due to thé@% terms, but in large part also
from the new formalism for calculation of the smoothing léng
As described before, the smoothing lengthfor each particle is
no longer calculated by counting neighbors within the sphbut
by solving equation[{3) for each formal number of neighbdts
there exists only one unambiguous valuehef Note that, as this
equation is solved iteratively, it is usual to give somewa#d range

2.7.2 Particle splitting

Bgarve et al.|(2001) developed a scheme to regularize theamte
tion of particles in SPH based on a discretization of the dtmoo
ing lengthh; by factors of 2. In such cases, interactions between
two particles with different smoothing length can be readiby
splitting the one with the larger smoothing length i2td (where

n is the dimensionality) particles, placed or2a sub-grid. Such
split particles then have the same smoothing length as ttielpa
with which they interact. Originally this scheme was invehto
avoid the problems induced by a variable smoothing lengtfote

the correction terms where properly introduced in SPH) amdbg
good results in 1D and 2D (see Bgrve etial. 2001, 2004,12006).
However, in 3D the resulting change in the number of neighbor
is quite large when the smoothing length is quantized inofact
of 2. Therefore the additional sampling noise for particias be
large. This is especially problematic when the lower dgrisitp-
proaching — but still above — the threshold for doubling thetiple
smoothing lengths. Here particles have a particularly ksnaboth-

ing length (relative to the optimal, unquantized one) aretdfore
have only small numbers of neighbors. Unfortunately, tffisogis
much larger than the gain in accuracy by the regularizatibleast
when based on standard SPH formalism, (see D&l Pra 2003). Als
as the% terms formally take care of all correction terms induced
in the formalism when allowing a variable smoothing lengttis
splitting — and specifically the quantization of the smooghength
—is no longer needed. This might be different when furthearioa-

ing the SPH (and specially the MHD) method. For example when
re-mapping techniges based on Voronoi tessellation am (gsg.
Bgarve et al. 2006), or special coordinates like sphericalytindi-

cal are used (e.g. Omang eilal. 2006).

2.7.3 Smoothing the magnetic field

Another method to remove small scale fluctuations and tolaegu
ize the magnetic field is to smooth the magnetic field perigdic
As suggested by Bgrve et al. (2001), one can calculate a sewbot
magnetic field<B}> for each particle,

2 Wi

Then, in periodic intervals, one can calculate a new, remdd
magnetic field by

(24)

B = q(B,) + (1 - q)B. (25)
Note that this, in principal, acts similar to the mixing pegss on
resolution scale present in Eulerian schemes. Howeveoduated
in this way, the amount of mixing (e.g. dissipation) of matime
field depends on the frequency with which this procedure is ap
plied and the value of chosen. Typically, we setto one and per-
form the smoothing at every 1520/ main time-step. It is worth
while to mention that implemented in this form, total eneigyot
conserved (as magnetic field fluctuations on scales smha#arthe
smoothing length are just removed) and, as the time-stgpende
on the chosen resolution, this method is even resolutioaredgmt.
Never the less it leads to improvements in the results of esir t
problems, without strongly smoothing sharp features s alorks

of N, however in our case we can choose the range smaller than 1without problem in 3D and has already been used in cosmabgic

and typically we uséV = 64 +0.1.

simulations|(Dolag et al. 2004, 2005).
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Figure 1. Test5A at timet = 7 with the MHD implementation similar to
that used in_Dolag et al. (1999. 2002), but already includimgginstability
correction due to subtraction of tdév(5) term in the force equation and in
a fully three-dimensional setup. Shown in the first row aeedbnsity (left
panel), total energy and pressure (middle panel) and:theomponent of
the velocity field (right panel). The second row shows gheomponent in
the velocity field (left panel), the three components of thegnetic field
(middle panel) and the measure of Hif@(é) error, see equatiof (B2), in
the right panel. The black lines with error bars show the Sésilts, the
red lines are the reference results obtained with Athenalib setup.

2.7.4 Artificial magnetic dissipation

Another possibility to regularize the magnetic field wassereged
by |Price & Monaghanl (2004a), who suggested including afi-arti
cial dissipation for the magnetic field, analogous to thiieidl vis-
cosity used in SPH. In Price & Monaghan (2004a) it was suggest
that the dissipation terms be constructed based on the rtiagne
field component perpendicular to the line joining the intéirey
particles. However, to better suppress the small scaleufitiohs
within the magnetic field which appear due to numerical éffec
especially in multi-dimensional tests, Price & Monaghaf04t)
suggested basing the artificial dissipation on the changjeedbtal
magnetic field rather than on the perpendicular field compisne
only. We also found this to work significantly better in oustte
cases and therefore only use the later implementation ghimut
this paper. Such an artificial dissipation term can be irsiLid the
induction equation as

déz (diss) B 1 pis
dt ~ Ha? 2
N mvysig ..
"4 (Bi - Bj) =L - ViWi. (26)
= Pij |75

The parametet s is used to control the strength of the effect, typ-
ical values are suggested to be arouns ~ 0.5. Similar to the
artificial viscosity, this will create entropy at the rate

(dAi)(diss) - _’y—l ap
dt  p 4o
N sig —
m;v,.° & " S
Y o (Bi- 5)" ol Vil (27)
= Pij |73

The pre-factor(vy — 1)/(pf1) properly converts the dissipation
term to a change in entropy.
This method reduces noise significantly. However, dependin

on the choice ofvz, it can also lead to smearing of sharp features.
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Figure 2. As figure[d, but including the magnetic waves in the signal ve-
locity and turning off the shear viscosity suppression gdamed in the
code description. The main advantage is a significant raguirt the noise,
specifically in the velocity, but also in the magnetic fieldsé\thediv(é)
errors are reduced by a factorsf2.

To avoid this outside of strong shocks (e.g. where this isledg
Price & Monaghanl (2005) proposed evolving; for each parti-
cle, similar to the handling of the time dependent viscoagysug-
gested by Morris & Monaghan (1297). Such, evolutiomegf for

each particle will be followed by integrating

dop _ _(aB—aB™) s, (28)
dt T
where the source teri$i can be chosen as
|V x B |V- §|>
S = Somax | ——1, (29)
( VHop  \/Bop

(see_Price & Monaghan 2005). The time-scaldefines how fast
the dissipation constant decays. Taking the signal velomite can
translate this directly into a distance to the shock overcivtihe

dissipation constant decays. A useful choice @an be written as

T = —hz
- C vsig’

where the constardt typically is chosen to be around 0.2, allowing

the dissipation constant to decay within a time that coordp

to the shock travelling 5 kernel lengths (see Price & Monagha
20044),

(30)

2.8 Euler potential

A very elegant way to implement the MHD equations in La-
grangian codes is the usage of so calledler potentials(see
Rosswog & Pride 2007, and references therein). Two indegrend
variablesa and 8 are constructed to correspond to an implicit
gauge for the vector potential. They can be thought of asidabe
of magnetic field lines and will be advected with the flow. listh
formulation, the magnetic field at any time can be represkease

B =Vax V. (31)

In principle, having obtained the magnetic field, one coldd ase

this magnetic field in the equation of motion as before. Harev
this would mean that the magnetic force is based on the second
derivative of a variable. This is usually quite noisy and reatom-
mendable unless regularization schemes are implementgonas

by e.g. Rosswog & Price (2007). In addition, due to its form, a
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Figure 3. As figure[2, but including the regular smoothing of the maignet
field as a regularization scheme. This SPH-MHD implementaliasically
reflects the one usedlin Dolag et al. (2004, 2005). The maiarddges are
a further, significant reduction in the noise as well as angtreduction of
thediv(B3) errors by a factor ofs 10.

implementation based on the Euler potential cannot beyaasés-
tigated in 3D test problems with periodic boundary condiidor
the resulting magnetic field as can be done for the other img@he
tations. A simple example here is constant magnetic fieldchvh
can be represented by a linear function of Ehéer potentials

Therefore we use this simple description only as a check in
cosmological simulations, to investigate the influencelf(5)
driven errors. Applied to cosmological simulations thelation of
the magnetic field predicted when using Euler potentialsispper
bound on the amplification processes in the absence of aranatyn
action. Therefore Euler potentials are a useful tool to khtbe
influence of numerics on the results of cosmological sinmet
where we have no other means to verify the results.

3 TEST PROBLEMS

To test performance of the code and to infer the optimal nu-
merical settings for the regularization schemes, we peréadr
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Figure 4. As figure[2, but including artificial magnetic dissipationaaeg-
ularization scheme. Similar to the smoothing of the magrféid, signif-
icant reduction in the noise as well as a strong reductiorhefdiv(5)

errors by a factor ofz 10 is obtained compared to thmsic SPH-MHD
implementation.

independent of the initial density. Therefore, typicatiadiparticle
distributions for the shock-tube tests where basedbparticles

in low density andL0® particles in high density regions within unit
volume. Usually, these unit volumes are then replicatedirBgg
along thez-direction each. For some test cases with strong (and
therefore fast) shocks, we evolved the simulations lorigesuch
cases we doubled the simulation setup size inctiérection.

We assume ideal gas (e;g= 5/3) and, as described before,
use an equivalent of 64 neighbors for calculating the SPHximo
ing length. This ensures that, in the low density regions,3PH
particles get smoothed over a region corresponding to demgth.
The number of resolution elements corresponding to a undgtle
therefore ranges from 1 to 4, depending whether one aseediz
smoothed region or the mean inter-particle distance wieffec-
tive resolution in SPH. In general, SPH converges somevibaes
compared to grid codes when comparing simulations withainees
number of grid cells as SPH particles (see Appendix A for an ex
ample).

For the SPH results we usually plot the mean within a 3D slab

the series of shock-tube problems as presented by Ryu & Jonescorresponding to the smoothing length and (as error baedRMS

(1995). In particular tesbA, which is also used in_Brio & Wu
(1988), was used to show the effects of different numericzdtt
ments. Additionally we performed several 2D test casesudicl
ing the Fast Rotortest (Toth 2000; Londrillo & Del Zanna 2000;
Balsara & Spicer _1999), &trong Blast(Londrillo & Del Zanna
2000; |Balsara & Spicerl_1999) and th®rzang-Tang \ortex
(Orzang & Tang 1979; Dai & Woodwerd 1994; Picone & Dahlburg
1991 Londrillo & Del Zanna 2000). To obtain results undelie
tic circumstances, we performed all the tests by setting fiflya
three-dimensional particle distribution. We also avoattitg from
regular grids but used glass-like (White 1996) initial pet dis-
tributions instead. To obtain such a configuration, theiges are
originally distributed in an random fashion within the visle and
then allowed to relax until they settle in a equilibrium distition
which is quasi force-free and homogeneous in density. Brasmi-
lar to the distribution of atoms in an amorphous structuee djlass.
Compared to a distribution of the particles based on a ghid, t
guarantees that all the kernel averages in the SPH formabsm
ple the kernel in a uniform way rather than multiple timested t
same distances (which furthermore would be fractions ofititker-
lying grid spacing). For all tests we used the same partielsses,

over the individual particles within this volume. The refece so-
lution was obtained using Athena (Stone et al. 2008) witlcilty
10-20 resolution elements per unit length, depending orirthie
vidual test. As one criteria of the goodness of the SPH sitiwula
result we use the usual measure for the non-vanishing diveesy
of the magnetic field,

Egp= div(é)i.

(32
|B|

3.1 Shock tube5A

The most commonly used MHD shock-tube test is the one used by
Brio & Wu (1988), e.g. tesbA in IRyu & Jones|[(1995). The rea-
son for this is that it involves a shock and a rarefraction imgv
together. Therefore it allows simultaneous testing of tbdecin
different regimes.

Figure[d1 shows the result for a code implementation similar
to the first implementation used to study galaxy clusters. &e
Dolag et all 1999, 2002). In addition, the instability catren due

—

to subtraction of theliv(B) term was used in the force equation.
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Figure5. As figure2, but including time dependent artificial magneissi-

pation as a regularization scheme. No significance imprewgiis obtained.
Note that here in the lower right panel the artificial distigra constant
(ap) is shown. The effect of suppressing the dissipation isrigleasible,

and the maximum value is only reached in peaks associatédthet re-
gion of strong shocks. However the improvement in the smgaof sharp
features is not very significant.

Various hydro-dynamical variables at the final time (e.g= 7

in this case) are shown. The black lines with error bars shmv t
SPH-MHD result, the red lines are the reference result nbthi
with Athena in a 1D setup. Shown are (from upper left to the bot
tom right panel) the density, total energy and pressuregttend
z-component of the velocity field, thg-component in the veloc-
ity field, the three components of the magnetic field and tha-me
sure of thediv(E) error, obtained from equatiofi (32). Here we
also switched back to the conventional formulation of théieial
viscosity as described by elg. Monaghan (1992), rather tthain
based on signal velocity as used@ADGET-2 Although the SPH-
MHD results in general follow the solution obtained with Atia,
there is a large scatter in the individual particle valuethinithe
3D volume elements, as well as some instability, especialthe
low-density part. But note that although the mean valuesHer
internal energy, as well as the velocity or magnetic fieldh ka
cally show some systematic deviations from the ideal smh,tihe
total energy shows much better, nearly unbiased, behavidis
demonstrates the conservative nature of the symmetricularm
tions in SPH-MHD.

Noticeable reduction of noise is obtained when using the
signal-velocity based artificial viscosity and includitng tmagnetic
waves in the calculation of the signal velocity. Therefohe, mag-
netic waves are directly captured for the time step calmnzand
in the artificial viscosity, needed to capture shocks. Alsitch-
ing off the shear viscosity suppression again leads to fatgnit
reduction in scatter. This can be seen in fiddre 2, where tieeno
in the velocity as well as in the magnetic field componentsgs s
nificantly reduced. Values aiiv(E) are also reduced (by a factor
of &~ 2) compared to before. In general, the SPH-MHD implemen-
tation gains from the new formulation of SPH, including tﬁ%
terms and the new way to determine the SPH smoothing length,
both contributing to a reduction of noise (adﬂ/(ﬁ)) in the gen-
eral treatment of hydro-dynamics. We will refer to this iplen-
tation of SPH-MHD adasic SPH-MHDfurther on in this paper.

3.2 Thegeffect of regularization

As described in sectiof (2.7), there are several suggastiomeg-
ularization of the magnetic field. Here we will show results o
tained by two regularization methods, namely smoothinghg-
netic field in regular intervals and including an artificisdslpation.

For the first method, the magnetic field is smoothed using
the same kernel as used for the normal SPH calculationsidn th
case, there are two numerical parameters one can chooséds One
q in equation [[2b), which quantifies the weight with which the
smoothed component enters into the updated magnetic fiel@él W
ways use; = 1 here, which means that we completely replace the
magnetic field by the smoothed value. The seconfigis, which
is the time interval at which the smoothing is done. Here we us
a value corresponding to a smoothing ever§/’3§lobal time step.
This correspond to the SPH-MHD implementation used to study
the magnetic field in clusters and large scale structureinvitie
local universe, sele Dolag et al. (2004, 2005). Fidure 3 shbes
result for the same shock-tube test as before. Clearly, tiigen
in the individual quantities is strongly reduced. Also theoein
div(B) is reduced by more than one order of magnitude. Note that
the error bars for the SPH-MHD implementation are of the size
of the line width or smaller in most of the cases and therefare
longer clearly visible. However, one can notice some snfidce
of smearing sharp features. Additinalally, some stateke-the re-
gion with the negative:--component of the velocity behind the the
fast rarefaction wave propagating to the right — convergeatoes
which have small but systematic deviations from the exdctiso.

In the second method, the magnetic field can be dissipated in
the same way as atrtificial dissipation works in the hydrodyica.
Here the numerical parameter one has to chose is the strafitpth
artificial, magnetic dissipationp in equation[(ZB) and(27). Fig-
ure[4 shows the result for the same shock-tube test as bedfiorg u
ap = 0.1. Similar to the first regularization method presented, the
noise in the individual quantities is strongly reduced alsd &he
error in div(é) is reduced by one order of magnitude. Again, the
error bars are smaller than the line width nearly everywhélso,
some small effects of smearing sharp features are visibleedls
as some small but systematic deviations from the exactisolut
general, this method works slightly better than the smoatbf the
magnetic field, but the differences are generally small.

One idea to reduce the unwanted side effects of such regular-
ization schemes was presented in Price & Monaghan (2005kand
based on a modification of the artificial, magnetic dissgration-
stantas. Whereby every particle evolves its own numerical con-
stant, so that this value can decay where it is not needechanet
fore the effects of the artificial dissipation are supprddsere. Fig-
ure[d shows the same test as before, but this time wherevolves
for each particle, as shown in the lower right panel. Cledhky val-
ues are strongly reduced outside the regions associatbdsharp
features (e.g. shocks), but the effect of smearing shatpriesaand
the small offset of some states are not significantly redutads
is because in the region in which these side effects origjrtae
dissipation is still working with its maximum numerical ual. On
the other hand, due to the suppression of the artificial mapdis-
sipation constant outside the shock region, the regulzoizafter
the shock passes is nearly switched off. Therefore it is s@ft
cient as before in the post shock region, visible as increagee
div(B) error compare to the run with a constant, artificial magnetic
dissipation.
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Left Right
TESTNr. v B P ) v B P
—1A— 1.00 [10.0, 0.0, 0.0] [5.0,5.0,0.0]/(4m)? 200  1.000 [-10.0,0.0,0.0] [5.0,5.0,0.0]/(47)?>  1.00
—1B— 1.00 [0.0,0.0,0.0] [3.0,5.0,0.0]/(47)2 1.0 0.100  [0.0,0.0,0.0] [3.0,2.0,0.0]/(47)2  10.0
—2A— 1.08 [1.2,0.01,0.5] [2.0,3.6,2.0]/(4m)? 0.95  1.000  [0.0,0.0,0.0] [2.0,4.0,2.0]/(4m)%  1.00
—2B— 1.00 [0.0,0.0,0.0] [3.0,6.0,0.0]/(47)2 1.0 0.100  [0.0,2.0,1.0] [3.0,1.0,0.0]/(47)2  10.0
—3A— 1.00 [50.0, 0.0, 0.0] —[0.0,1.0,2.0]/(4m)? 0.4 0.100  [0.0,0.0,0.0] [0.0,1.0,2.0]/(4mw)2  0.20
—3B— 0.10 [~1.0,0.0,0.0] [0.0,1.0,0.0] 1.0 1.000  [1.0,0.0,0.0] [0.0,1.0,0.0] 1.00
—4A — 1.00 [0.00,0.0,0.0] [1.0,1.0,0.0] 1.0 0.200  [0.0,0.0,0.0] [1.0,0.0,0.0] 0.10
—4B— 0.40 [—0.669,0.986,0.0]  [1.3,0.0025293,0.0]  0.5247 1.000  [0.0,0.0,0.0] [1.3,1.0,0.0] 1.00
—4C— 0.65 [0.667,—0.257,0.0] [0.75,0.55,0.0] 0.50  1.000 [0.4,—0.94,0.0] [0.75,0.00001,0.0]  0.75
—4D— 1.00 [0.0,0.0,0.0] [7.0,0.001,0.0] 1.0 0.300  [0.0,0.0,0.0] [7.0,1.0,0.0] 0.20
—BrioWu—  1.00 [0.0,0.0,0.0] [0.75,1.0,0.0] 1.0 0.125  [0.0,0.0,0.0] [0.75,—1.0, 0.0] 0.10

Table 1. Summary table with the initial conditions of the left andhigide of the shock tubes.

3.3 Shock tube problems

As can be seen in figurek 3 dad 4, the side effects of smootbing f
tures by the different regularization methods depend oml¢hails
of the underlying structure of the shock-tube test. Eveneniratier-
esting, the states where one can see small deviations fidehl
solution are different for the two different regularizatimethods.
Therefore we performed the full set of different shock-ttdsts as
presented in Ryu & Jones (1995) to test the overall perfocmaf
the different implementations under different circums&s The
four test families deal with different complexities of veity and
magnetic field structures, leading to different kinds of esprop-
agating. A summary of the results of these tests can be faoufighi
ure[@. Plotted are the total energy (left panels), the valadbng
the z-direction (middle panels) and the magnetic field along the
y-direction (right panels). The red lines reflects the idedlition
obtained with Athena, the black lines with error bars mauk ri-
sults from the SPH-MHD implementation using the magnetic fie
smoothing every 30th main time step. Note that the error tmars
most cases are smaller than the line width. The initial setopthe
shock-tube tests can be found in tddle 1, which lists the stttor
of the left and right states for the different shock tubesest

The first family of tests YA/1B) has no structure in the tan-
gential direction of the propagating shocks in magnetia feahd
velocity, e.g.B. = v. = 0. As we expect, in théAtest, the strong
shock (large jump im,,) leads to some visible noise in the magnetic
field componenB,, also translating into significant noise in the to-
tal energy. The regularization method here suppressesertmafion
of the intermediate state iB, in the SPH-MHD implementation,
as can be seen in figyre §(a). The second casdBhest, the weak
shock is captured well. Again in some regions some smeafing o
sharp features due to the regularization method is cleésigle.

The second class of shock&/2B) involve three dimensional
velocity structures, where the plane of the magnetic fietdtes.
All features (e.g. fast/slow shocks, rotational discamtiyn and
fast/slow rarefaction wave, for details see Ryu & Johes§)Qare
well captured, see figufe 6[c) apd 8(d). Some of the featues a
clearly smoothed by the regularization method.

The third class of tests3Q\/3B) shows handling of magne-
tosonic structures. The first has a pair of magnetosonicksheith
zero parallel field and the second are magnetosonic ratieinac
Although there is slightly more noise present, all statesaptured
extremely well, except the numerical feature left at thatmosdi-
viding the two states initially, see figure 6(e) and6(f).

The fourth test family4A/4B/4C/4D) deals with the so-called

switch-on and switch-off structures. The tangential maigrfeeld
turns on in the region behind switch-on fast shocks and &witc
slow rarefractions. Conversely, in the switch-off slow ek and
switch-off fast rarefractions the tangential magnetiafieirns off.
Again, all structures are captured well with the exceptibrome
feature in figuré 6(f) as well and maybe B(j) too, where cletim
regularization leads to the washing out of a state. Othenthie
regularization leads to smoothing of some structures amtil the
tests presented before.

In general, figurglé demonstrates that all these differenasi
tions have to be included when trying to measure the perfocma
and quality of different implementations of regularizatimethods.

3.4 Finding optimal numerical parameters

To optimize, we performed all these 11 shock-tube tests veith
ous different settings for the parameters in the regulicizaneth-
ods and evaluated the quality of the result obtained withSiREl-
MHD implementation. To measure this, we used two estimators
First, we have chosen the mean ofdilv () errors within the sim-
ulation region shown in the plots, as defined by

. 3 h
Adiv(s) = <d1V(B)ﬁ> :

Second, we measured the discrepancy of the SPH-MHD result fo
the magnetic field relative to the results obtain by Athertzere-
fore we calculate first

. o 2
(BéPH (ZL’) - B;\thcna (IE))
RMS?,; (z)

(33)

bpi(z) = (34)

for each componentof the magnetic field3 within each 3D slab
corresponding to the smoothing length. The RMBbfreflects the
noise of B; within the chosen slab. We then calculate

Api = <Z Spi (x)) (Z RMSZ, (x)) ,

for each component of the magnetic field. This includes boti ¢
tributions, the deviation of the SPH-MHD from the ideal g@n as
well as the noise within each 3D slab of the SPH-MHD implemen-
tation. To judge the improvement of the regulatization rodthwe
sum up all three components and further relate this measunteim
the value obtained with tHeasic SPH-MHDmplementation, e.g.

(35)
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Figure 6. Representative plots of the additional 10 shock-tube femts Ryu & Jones (1995). Shown for each test are the totabgr(éeft panels), the velocity
along thez-direction (middle panels) and the magnetic field alonguttirection (right panels).
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We will use these two error estimators,;;, 5, and A, to mea-
sure the quality of the individual SPH-MHD implementations

(36)

3.4.1 Regularization by smoothing the magnetic field

Choosing the time interval between smoothing the magnetid fi

is a compromise between reducing the noise in the magneiic fie
components, as well aﬁv(é)) (by smoothing more often) and
preventing sharp features from being smeared out. Theueft t
panels of Figur€l7 show a summary of the results of the individ

ual shock-tube test computed with different smoothingriraks.
As expected, when using shorter smoothing intervals thar @nr

div(B) reduces. For the quality measure of the SPH-MHD imple-
mentation the situation changes. Short smoothing interyaher-
ally increase the discrepancy, many of them even to largeesa
than thebasic SPH-MHDrun. SpecificallydB and4C show strong
deviations due to smearing of sharp features. Note that ¢ime n
monotonic behavior shown in some tests usually relates neeso
residual resonances between the magnetic waves and théhsmoo
ing intervals in the noise. Some tests show a minimum in tfiereli
ences at smoothing intervals around 20. The3ésteems to prefer
even shorter smoothing intervals. In general is not clear o op-
timal decision between such quality measure and the remugti
div(B) can be reached, given the different nature and amplitude
of the two measures. However, ignoridB which strongly suffers
from smearing sharp features when smoothing the magndticdie
good compromise seems to be for values around 20-30, where pr
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and con in the quality measure are small and compensatitgnwit

—

the different tests butiv(B) is still drastically reduced in all tests. 157
We will refer to this as th&smooth SPH-MHDmplementation in
the rest of the paper. [
—~Athena Run
- 10 [ Noissipotion B
% L %B-smooth
3.4.2 Artificial dissipation S bosic SPH-\HD
2 I
As before, choosing the value for the artificial magneticsigia- 5r 7]
tion constaninp is a compromise between reducing the noise in H
the magnetic field components (as well as redu@i‘ngé)) and [ — ] | =
preventing sharp features from smearing out due to theteffebe 0 : :
dissipation. The right two panels of Figurk 7 show a summéry o 0.0 0.5 1.0 1.5

the results of the individual shock-tube tests computed diifer-
ent values for the artificial magnetic dissipation. As expdcus-
ing larger values reduces the errordiv(B) significantly. Similar

glarg (B) sig Y Figure 10. Diagonal ¢ = y) cut through theé=ast Rotorat¢ = 0.1 show-

tc; tquef%r.e' using Iartg)er Valuei also general!y rTSUItS lm.areasegj h ing the density. In black result obtained with ATHENA. Thalpline with
of the discrepancy between the SPH MHD implementation aed t the red error bars show the GADGET solution using lthsic SPH-MHD

true solution, again usually to even larger values than érbtsic implementation. Also here the red error bars reflect theedispn of the
SPH-MHDrun. As before, especially the shock-tube #@8Btand values among individual particles within a slab correspogdo the lo-
4C show strong deviations due to smearing of sharp featuret® No cal smoothing length. In general, the SPH-MHD result shawssaellent
that here less non-monotonic behavior is visible (excepttdst agreement in all the features (peaks, valleys and edgesgveo there is a

4B). The main reason is that dissipation is a continuous psyces visible over-smoothing at the outer edges in the GADGETItesu
resonances between dissipation and the magnetic wavestdaan

very pronounced. As before, it is difficult to infer the bekbice

of parameter for all the tests. Again, once ignor#t a compro- 3.5.1 Fast Rotor

mise for choosingvs seems to be between 0.02 and 0.1. Choosing

agp close to the upper value of 0.1 might lead to a significant re- This test problem was introduced by Balsara & Spicer (1989),
duction indiv(5) without to strong signature from smearing out  Study star formation scenarios, in particular the strongitnal

sharp features. We will refer to this as thissipation SPH-MHD ~ Alfvén waves, and is also commonly used to validate MHD im-
implementation in the rest of the paper. plementations (for example see Tbth 2000; Londrillo & DehAa

2000;! Price & Monaghan 2005; Bgrve etlal. 2006). The test con-

sists of a fast rotating dense disk embedded in a low demssétiic
3.4.3 Time dependent artificial dissipation and uniform media, with a initial constant magnetic fieldrgdhe
x-direction (e.gB, = 2.57~/2). Inthe initial conditions, the disk
with radiusr = 0.1, densityp = 10 and pressuré = 1 is spin-
ning with an angular velocity = 20. It is embedded in a uniform
background wittp = P = 1. Again we setup the initial conditions
by distributing the particles on a glass like distributiar8D, using
700 x 700 x 5 particles and periodic boundaries in all directions for
the background particles. The disk is created by removingpafi-

d velv. Fi h h It . cles which fall inside the radius of the disk and replacirig pace
and 0.5 respectively. Figuiie 8 shows the result for varyiiege two with a denser representation of particles of the same masanA

parameters. As before, generally, the larger the dissipasi (€.g. ideal solution to compare with, we again used the result dfra s
large source term or small decay time) the smaller the naise a 0 4yq dimensional ATHENA run with00 x 400 cells. A visual
the error indiv(B) becomes. However, as soon as these parametersimpression of the results can be obtained from the maps mese
have values which driva  in the shocks to the maximum allowed in figure[9.

value, there is marginally no gain in quality, although th&res for Figure[ID presents another quantitative comparison. Skown

ap outside the shocks can s_tiII be quite small. Th_ere_fpre,ithe t a diagonal cut through thigast Rotorat ¢ — 0.1 showing the den-
dependent method does notimprove the results significautihe sity. The different lines show the result obtained with ATRIE

regions in which the artificial dissipation constant is s@sged do (black line) and for the three different SPH-MHD impleméiutas
not significantly contribute to the smearing of sharp fesgur in GADGET (colored lines). The very small, red error barseetfl
the RMS of the values held by the individual particles witttie
3D slab through the three dimensional simulations corneding

to the local smoothing length. The results show remarkadpleea
Besides the one dimensional shock tube test described jpréhe ment between the simulations and also compare well withiteesu

One idea to reduce the effect of the artificial dissipatioi isake
the artificial magnetic dissipation constant time dependent. The
idea here is that, if the evolution ofg is properly controlled, dissi-
pation will happen only at the places where it is needed awilit
be suppressed in all other parts of the simulation volume. &vo-
lution of o is controlled by the two parametef (source term)
andC (decay term) where we have chosef™ anda’s™ as 0.01

3.5 Multi dimensional Tests- Planar Tests

vious section, two dimensional (e.g. planar) test problemssa quoted in the literature (elg. Londrillo & Del Zanna 2000¢rE the
good test-bed to check code performance. Such higher diomahs smoothing of sharp features in the two implementations véigu-
tests include additional interaction between the evoléngipo- larization is quite clear visible and leads to a less goocchm#tan
nents with non-trivial solution. These can be quite comgieith thebasic SPH-MHDmplementation.

several classes of waves propagating in several diregtiuch as Note that although we perform our calculations in three di-

the Orszang-Tang Vortex or simple (but with strong MHD disco ~ mensions and without a regularization scheme, the impléatien
tinuities) such as Strong Blast or Fast Rotor. produce a result, which has the same quality as other schieames
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Figure 8. Similar to figure[Y but for different values of the source tesp(left panels) and the decay tert (right panel) of the time dependent, artificial
magnetic dissipation.

two dimensions with regularization (elg. Price & Monagh@0%,
Barve et all 2006).

the density through th8trong Blastest, comparing the ATHENA
(black line) with the GADGET (colored lines with error barg)
sults. Besides very small variations there is no signifidiférence
between the two results and all features are well reprodbgebe
SPH-MHD implementation. Note that the error bars of the GAD-
The Strong Blasttest consists of the explosion of a circular hot GET results again are almost in all cases smaller than thersho
gas in a static magnetized medium and is also regularly used!ine width.

for MHD code validation (see for example Londrillo & Del Zann
2000;| Balsara & Spicer 1999). The initial conditions cohsisa
constant density = 1 where a hot disk of radiug, = 0.125 is
embedded, which is a hundred times over-pressured, e.gaéke p  This planar test problem, introduced by Orzang & Tang (1979)
sure in the disk is set t&; = 100 whereas the pressure outside is well known to study the interaction between several esss
the disk is set taP, = 1. In addition there is initially an overall of shock waves (at different velocities) and the transition
homogeneous magnetic field in thedirection, with a strength of MHD turbulence. Also, this test is commonly used to vali-
B, = 10. The system is evolved until time= 0.02 and an outgo- date MHD implementations (for example see Dai & Woodward
ing shock wave is visible which, due to the presence of theniig 1994; | Picone & Dahlburg 1991; Londrillo & Del Zanna 2000;
field, is no longer spherical but propagates preferentaliiyg the Price & Monaghan 200%; Bgrve et al. 2006). The initial coiodis
field lines. Figuré I shows the density at the final time, camp  for an ideal gas withy = 5/3 are constructed within a unit-length
ing the ATHENA results with the results from the three diéer domain (e.gx = [0,1],y = [0, 1]) with periodic boundary con-
SPH-MHD implementations in GADGET. Although the setup is a ditions. The velocity field is defined by, —sin(27y) and
strong blast wave, there is no visible difference of the SWHD vy = sin(27x). The initial magnetic field is set to B, = Bov,
implementation with the ATHENA results. This is quantiaty and By = Bysin(4rz). The initial density isp = P and
confirmed in figurél2 which shows a horizontal cuty(at 0.5) of the pressure is set t& = ~BZ. This system is evolved until

3.5.2 Strong Blast

3.5.3 Orszang-Tang Vortex
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Figure 9. The magnetic pressurd /2) in the Fast Rotortest att = 0.1. The ATHENA solution of the test problem is shown in the upledrpanel. The
upper right panel shows the results obtained withihsic SPH-MHDimplementation. The lower left and right panels shows tlseilteobtained with the
Bsmooth SPH-MHRnd thedissipation SPH-MHDmplementation respectively. All the main features arel wegiroduced in the GADGET runs. The shape,
positions and amplitudes correspond quite well, altholghGADGET runs appear slightly more smoothed, dependingh@megularization scheme used
(see also Figure10).

t = 0.5. Figure[I3 shows the final result for the magnetic pres- number of grid cells. Never-the-less the SPH-MHD impleraent
sure for the ATHENA run and the three different SPH-MHD imple  tion seems to converge slower when increasing the resol(gee
mentations in GADGET. Visually the results are quite corapée, Appendix).

however the GADGET results look slightly more smeared, Whic

is the imprint of the underlying SPH and regularization noeith

This impression is confirmed in figuke]14, which shows two cuts 36 General performance of SPH-MHD

(y = 0.3125 andy = 0.4277) through the two simulations. Again,  |n summary, as shown in the previous sections, an MHD impteme
the black line shows the ATHENA result, the colored lineshite tation in SPH is able to reliable reproduce the results ofdsed,
error bars are showing the GADGET results. In general trege i one and two dimensional MHD test problems. We want to stress t

reasonable agreement, however the SPH-MHD results clefaoly — point that all tests for the SPH-MHD implementation where-pe
smoothing of features. The adaptive nature of the SPH-MHD im  formed in a fully three dimensional setup to test the codeetne
plementation should allow the central density peak to belved alistic circumstances. Regularization schemes in genegaible to

whereas in ATHENA is can only be resolved by increasing the further suppress the numerical driven growthiof(3). Although
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Figure 11. Shown is the resulting density distribution for tB&rong Blastest att = 0.02. The upper left panel shows the result obtained with ATHENA,
whereas the upper right panel shows the that frombdmwc SPH-MHDimplementation. The lower left and right panels shows tteilte obtained with
the Bsmooth SPH-MHIand thedissipation SPH-MHDmplementation respectively. There are no visible diffiee between the results (see also figuie 12),
indicating that all SPH-MHD implementations are capabladadle such test situation.

some optimal numerical values for the regularization s@senan
be inferred when comparing a suit of different shock tubéstes
such regularization schemes always introduce small diggef-
fects, which lead to a slight smearing of sharp featuress fas to
be kept in mind when applying the different SPH-MHD implemen
tations to cosmological applications.

4 COSMOLOGICAL APPLICATION

The cluster used in this work is part of a galaxy cluster sampl
(Dolag et all 2008) extracted from a re-simulation of a Lagian
region selected from a cosmological, lower resolution DiMyo
simulation ((Yoshida et al. 2001). This parent simulatios Adox—

size of 684 Mpc, and assumed a flatCDM cosmology with
Q,, = 0.3 for the matter density parametéf, = 70 for the Hub-
ble constantf,,, = 0.13 for the baryon fraction ands = 0.9
for the normalization of the power spectrum. The clusteraitasal
mass ofl.5 x 104 M and was re-simulated at 3 different particle
masses for the high resolution region. Using the “Zoometialni
Conditions” (ZIC) techniquel (Katz & White 1993; Tormen et al
1997), these regions were re-simulated with higher mass$aaod
resolution by populating their Lagrangian volumes with ayéa
number of particles, while appropriately adding additidnigh—
frequency modes drawn from the same power spectrum. To opti-
mize the setup of the initial conditions, the high resolutiegion
was sampled with a6* grid, where only sub-cells are re-sampled
at high resolution to allow for quasi abritary shapes of tighh
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Figure 13. The magnetic pressu@? /2 distribution in theOrszang-Tang Vorteatt = 0.5. The upper left panel shows the result obtained with ATHENA,
while the upper right panel shows those from lasic SPH-MHDmplementation. The lower left and right panels shows tkelts obtained with thBsmooth
SPH-MHDand thedissipation SPH-MHDmplementations respectively. Some of the sharp featureemare smoothed in the GADGET runs, depending on
the choice of regularization scheme, but overall the resudtpare very well (see also figlird 14)

resolution region. The exact shape of each high-resoluégion
was iterated by repeatedly running dark-matter only sitiaia,
until the targeted objects are free of any lower—resolubionnd-
ary particle out to 3-5 virial radii. The initial particle stributions,
before adding any Zeldovich displacement, were taken fraet a
laxed glass configuration (White 1996). The three resahstissed
correspond to a mass of the dark matter particles®f 10° M,
2.5 x 108 Mg and1.6 x 108 M for the 1x, 6x and 10x simula-
tion. The gravitational softening corresponds/13.9 and3.2 kpc
respectively. For simplicity we assumed an initially horangous
magnetic field ol0~!! G co-moving as also used in previous work
(Dolag et al! 1999, 2002). Furthermore we applied the regaa
tion by smoothing the magnetic field in the same way as we did in

previous work|(Dolag et al. 2004, 2005) but also tested tfexef
of regularization by artificial dissipation for varying vas ofas.
Figure[I5 shows a zoom-in from the full cosmological box
down to the cluster. The structures in the outer parts gstpes-
nounced due to the decrease in resolution, which is desigmed
capture only the very largest scales of the simulation velugach
panel shows (in clockwise order) a zoom-in by a factor of En.
nally the elongated box in the lower left panel marks the size
the observational frame shown on the left. For comparisopnoe
duced a synthetic Faraday Rotation map from the simulatich a
clipped it to the shape of the actual observations to givendi i
cation of the structures resolved by such simulations. Vel tise
same linear colorscale for both the observed and the sietuRM
map, using the highest resoluton simulatid®). Note that we
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Figure 14. Two ¢t = 0.5 cuts throught the pressure in trszang-Tang Vorteaty = 0.3125 and aty = 0.4277 (left and right panels, respectively). As
before, the black line reflect the results obtained with ANAENd the pink line with the red error bars is obtained withlthsic SPH-MHDmplementation
in GADGET. The cuts are choosen for comparison with resuttsifthe literature, e.g. Bgrve et al. (2006).

v/ Ax?2 + Ay? to obtain the structure function. Figurel16 shows
4F ] a comparison of the obtained structure function from theenlzs
] tions (black line) and the simulations. For each simulatedter
E we calculated the synthetic rotation measure maps, clippedrd-

~ e ingly to the shape of the observed map. To obtain differeak re
2 >>;;tm ] izations of the same simulation we produced nine differeapsn
é 2F < E where we shifted the clipped region 820 kpc in both spacial di-

rections within the original, cluster centered maps. Thektlhnes
mark the mean structure function over these maps, whereakith
lines show the RMS scatter between the different maps. le&rc

of ‘ ‘ ‘ ‘ ] that, due to the additional resolved turbulent velocitydfiethen
0.0 0.2 0.4 0.6 0.8 10 increasing the resolution the same initial seed fields angified
X more. For ourlOx simulation the chosen magnetic seed field gets

amplified to the observed level in our example cluster. Algitoin-
creasing the resolution resolve smaller scales in the RMspthp

Figure 12. Horizontal cut through th8trong Blastest ¢ = [0.0;1.0],y = slope of the structure function at small separations, elieri®x
0.5) showing the density. The black line is from the ATHENA siition, resolution simulation, gets not as steep as the observedThis
the pink line with the red error bars (see figlré 10) reflectsGADGET  confirms the visual impression from the lower left panel igufe

result. The overall behavior is excellent, with only veryahdifferences

. [I5 which also indicates more structure at small scales irothe
between the two solutions.

served than the simulated RM map. Pushing the mass resohytio
one more order of magnitude would probably resultin a spessa
olution which should be sufficient to reproduce the obsesredll
scale structure in the RM maps, however in such a case we would
expect to have to start from even smaller seed fields to aveices-
timating the amplitude of the Rotation Measure in the sirtioie.
Such a study lies outside of the scope of this paper, asimatély

added a constant, galactic foreground signal to the siedIRM
map to account for the non zero mean in the observed RM map.
The dynamical range of the simulation spans more than fiversrd

of magnitudes in spatial dimension, and the size of the Uyidgr

box is 6 and 5 times larger than the AMR simulations preseinted

Dubois & Teyssier (2008) arld Briiggen et al. (2005), respelgt quld Ie.ad. to questio.ns of the role of magnetic dissipatiooh\as-
Still the resolution of the underlying dark matter disttibn is, re- cosity within the real intra cluster medium.

spectively, 2 and 5 times better than these AMR simulatiouistiae In figure[17, the radial magnetic field profiles are shown for
cluster is resolved with more than one million dark mattetiples the three resolutions comparing the results obtained \ihnbr-
within the virial radius at thelOx resolution. To perform the sim- mal Configura’[ion for Cosmologica| simulations with reswthere
ulation, thelOx resolution run needest 730 CPUh on an AMD e just used theEuler Potentialto follow the evolution of the
Opteron cluster. This again is demonstrating the advastafjthe magnetic field ignoring back reactions. As already notedan e
underlying SPH scheme in making large, cosmological zoomed Jier work (Dolag et all 2002), the left panel shows the dejgece
simulations possible. of the amplification of magnetic fields with resolution. Indétébn,

To obtain a more quantitative comparison we calculated the the solution obtained with thEuler Potentialagrees nicely with
projected structure functios™ (d) from both the observed and  the Bsmooth SPH-MHDuns in the outer part of the profiles. It
synthetic Faraday Rotation maps. is important to note that the increase in amplification of rtheg-

(1) _ netic field with increasing resolution when using teler Poten-
S Az Ay) = (|RM(z,y) — RM(x + Az, y + Ay)l) (37) tial clearly demonstrates that this effect originates from Inésg
with Az and Ay being the offsets from a pixel at position more velocity structure, especially driven by the increlasmount
(z,y). The resulting matrix is then averaged in radial béhs= of substructure in the underlying dark matter represesmaflhus
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Figure 15. Zoom into the cluster simulated within the cosmological Holockwise, each panel displays a factor 10 increase inimgagagnification, starting
from the full box (684 Mpc) down to the cluster center (680 ki2n the very large scale, the density of the dark matteighestare shown, whereas in the
high resolution region the temperature of the gas is red@remphasize the presence and dynamics of the substruthedast zoom extracts a region of

the same size of an observed radio jet (3C449) with measotatian measur

@99). Both, the simulatetithe observed map are displayed

using a linear color-scale based on the minimum and maxirmaloes in the maps. The synthetic RM map is clipped to the sbiihe observations. Clearly,

the simulations are still lacking in resolution, howevesyttdo come quite close.

the result reflects the increased complexity of the strestim the
density and velocity fields, once the resolution of a coswgiokd
simulation is increased. Theuler Potentialimplementation pro-
vides an unique possibility to study these effects as thélgate
the result of integrating the wind—up of the complex flowshivit
galaxy clusters, revealing information which can not galséd ob-
tained in Eulerian schemes. In the central partsBsmooth SPH-
MHD simulation falls below the solution obtained using tder
Potential This is easy to understand, because Eléer Potential
are free from any numerical magnetic dissipation. Addibnthe
magnetic field is strongest in the cluster core and thergefioctud-
ing the magnetic force in the normal runs will lead to a suggian
of the amplification. In general the comparison of the twolmet
ods demonstrate that the amplification of the magnetic fiekthé
bsmooth SPH-MHDmplementation is not significantly influenced
by the non-zeraliv(B). In addition, although the absolute value
of the amplification is not converged with resolution, thays of
the predicted magnetic field profile appears to be conveitjad.is

shown in the right panel of figufe1L7, where the profiles aremabr
ized artificially at large radii to demonstrate the self $émghapes.
Note that this convergence, as usual for all hydro-dynangjean-
tities, is only reached at radii significant larger than tize &f the
gravitational softening, indicated as dashed lines folahest (e.g.
1X), medium (e.g.6x) and highest (e.g10x) resolution runs. In
both panels of Figure_17 we also show the results from a cluste
simulation using RAMSES, taken fram Dubois & Teyssier (2008
and FLASH, taken from Briiggen et/al. (2005). This compariso
is over-simplistic, as results are based on simulationsfterdnt
objects and can only be compared with some care. Nevertheles
the shape of the radial profiles obtained with RAMSES indicat
slightly more dissipative effects compared to @&smooth SPH-
MHD implementation, whereas the steeper profile obtained with
FLASH resembles our results using thaler Potentiaimplemen-
tation.

The situation changes when using artificial magnetic dissip
tion, as shown in figule_18. The left panel shows the magnedit fi
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Figure 18. The magnetic field profiles obtained for the galaxy clustémgidifferent values of the artificial dissipation. In adaiit the results using thEuler
Potentialsand theBasic MHDimplementation are shown. Right panel shows the same witfiigs normalized in the outer part of the cluster.

profiles for several values afp compared with the profiles for
the basic SPH-MHDrun and that usindculer Potentials Clearly

a normal value for artificial magnetic dissipation leads targe
dissipation of magnetic field over the simulation time (elpse
to the Hubble time). The right panels show the profiles aidillic
normalized at large radius. Clearly the self similaritytoé profiles
is lost. Therefore it appears that the use of artificiallysigiation
as a regularization scheme is not a good choice for cosnualbgi
simulations. Additionally it points out that true physiadiksipa-
tion might play an important role in determining the shapehef
magnetic field profile in galaxy clusters. Here, transpootpsses,
cosmic rays, turbulence (especially at unresolved scafesjecon-
nection of magnetic field lines are not well understood, eisiig
within the ICM. As the micro-physical origin of most of themea
far outside the scales which can be ever reached by cosmalogi
simulations, future work will have to include them as apmzec

tive, sub-grid models, possibly motivated by small scalmerical
experiments.

5 CONCLUSIONS

We presented the implementation of MHD in the cosmological,
SPH code GADGET. We performed various test problems and dis-
cussed several instability correction and regularizaohemes.
We also demonstrated the application to cosmological sitimuls,
the role of resolution and the role the regularization saeplay
in cosmological simulations.

Our main findings are:

e The combination of many improvements in the SPH im-
plementation, like the correction terms for the variableosth-
ing length (Springel & Hernquist 2002) as well as the usage of
the signal velocity in the artificial viscosity (Monaghan919 to-
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gether with its generalization to the MHD case (Price & Mdmey
2004a) improve the handling of magnetic fields in SPH signifi-
cantly.

e Correcting the instability by explicitly subtracting thertri-
bution of a numerical non-zero divergence of the magnetid fie
to the Lorenz force from the Maxwell tensor as suggested by
Bgarve et al.|(2001) seems to perform well. Specifically iréhdi-
mensional setups where it seems to work much better tham othe
suggestions in the literature.

e The SPH-MHD implementation performs very well on simple
shock tube tests as well as on planar test problems. We pextbr
all tests in a fully three-dimensional setup and find excelbgree-
ment of the results obtained with the SPH-MHD implementatio
compared to the results obtained with ATHENA in one or two di-
mensions.

e With a convergence study we demonstrate that the SPH-MHD
results when increasing the resolution are converging é¢otrtine
solution, especially in the sharp features. However, inesoegions
it seems that small but systematic differences convergg \atly
slowly to the correct solution.

e Regularization schemes help to further suppresses note an
div(B) errors in the test simulations, however one has to carefully
select the numerical parameters to avoid too strong snptbii
sharp features. Performing a full set of individual shodbettests
allows one to tune the numerical schemes and to determimaalpt
values. However they reflect an optimal choice for problerhene
the local timescales are mostly similar to the global tiraésof the
problem. For cosmological simulations it turns out thautegza-
tion by artificial dissipation leads to questionable resulthereas
the regularization by smoothing the magnetic field (whiclags
plied on global timescales) produces reasonable results.

e The SPH-MHD implementation allows us to perform chal-
lenging cosmological simulations, covering a large dyrzami
range in length-scales. For galaxy clusters, only the sloéjlee
predicted magnetic profiles is, (with the exception of thatce
part of clusters) converged in resolution and in good agez¢m
with previous studies. Also the structures obtained in lsgtit
Faraday Rotation maps are in good agreement with previods fin
ings and compare well with observations.

The results obtained with artificial dissipation in cosngital
simulations indicate that physical dissipation could pdagrucial
role in determining the exact shape of the predicted, mégfield
profiles in galaxy clusters. Future work, especially whectlud-
ing more physical processes at work in galaxy cluster — asean
done easily with our SPH-MHD implementation — will reveal an
interesting interplay between dynamics of the cluster aphere
and amplification of magnetic fields. Thus having the potérit
shed light on many, currently unknown aspects of clusternmagg
fields, their structure and their evolution.
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APPENDIX A: CONVERGENCE

Numerical experiments are normally restricted by the regmh
one can technically (in terms of computing/memory requeats)
achieve. Therefore tests as presented in section 3 arelyusial
nominally better resolution than can be obtained in releyan
this case cosmological) simulations. Never-the-less terésting
guestion is, how good do the numerical methods used convierge
one further increase the resolution? Figurd Al A2 shasv th
for Athena and théasic SPH-MHDimplementation respectively.
We repeated the Orszang-Tang Vortex test problem with Atloen

a 1922, 400? and 800 grid. Figure[A1 shows a cut through the
density of the Orszang-Tang Vortex, comparing with the ltes
tained with the AMR code Ramses (Teyssier 2002). Clearly, th
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Figure Al. A cut throgh the density for the Orszang-Tang Vortex test (se
Figure 13/14). Shown in black is the result obtained with Bespcompared
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Figure A2. Same than figurle A1, but showing the results obtained with the
basic SPH-MHDimplementation at two different resolutions compared to
the results obtained with Ramses.

results obtained with Athena when increasing the resaiusip-
proaches the results obtained with Ramses. Figuile A2 shuavs t
same for setups witB502 x 5, 700% x 5 and 1400% x 5 parti-
cles. The SPH-MHD implementation also converges towards th
Ramses results with increasing resolution. However, atthahe
central feature is better resolved in the SPH-MHD impleragon
than in the Athena run with comparable resolution, somerdéze
tures can be seen to converge slower in the SPH-MHD implemen-
tation when increasing the resolution. Specifically, in sovery
smoothed features there are small but systematic diffesebe-
tween the SPH and the true solution. Here the SPH results teem
converge only extremely slowly (if at all).
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