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ABSTRACT
Various radio observations have shown that the hot atmospheres of galaxy clusters are mag-
netized. However, our understanding of the origin of these magnetic fields, their implications
on structure formation and their interplay with the dynamics of the cluster atmosphere, espe-
cially in the centers of galaxy clusters, is still very limited. In preparation for the upcoming
new generation of radio telescopes (like EVLA, LWA, LOFAR and SKA), a huge effort is
being made to learn more about cosmological magnetic fields from the observational perspec-
tive. Here we present the implementation of magneto-hydrodynamics in the cosmological
SPH code GADGET (Springel et al. 2001; Springel 2005). We discuss the details of the im-
plementation and various schemes to suppress numerical instabilities as well as regularization
schemes, in the context of cosmological simulations. The performance of the SPH-MHD code
is demonstrated in various one and two dimensional test problems, which we performed with
a fully, three dimensional setup to test the code under realistic circumstances. Comparing so-
lutions obtained using ATHENA (Stone et al. 2008), we find excellent agreement with our
SPH-MHD implementation. Finally we apply our SPH-MHD implementation to galaxy clus-
ter formation within a large, cosmological box. Performinga resolution study we demonstrate
the robustness of the predicted shape of the magnetic field profiles in galaxy clusters, which
is in good agreement with previous studies.

Key words: (magnetohydrodynamics)MHD - magnetic fields - methods: numerical - galax-
ies: clusters

1 INTRODUCTION

Magnetic fields have been detected in galaxy clusters by radio ob-
servations, via the Faraday Rotation Signal of the magnetized clus-
ter atmosphere towards polarized radio sources in or behindclus-
ters (see Carilli & Taylor 2002; Govoni & Feretti 2004,for recent
reviews) and from diffuse synchrotron emission of the cluster atmo-
sphere (see Govoni & Feretti 2004; Ferrari et al. 2008, for recent
reviews). Our understanding of the origin of cosmological magnetic
fields is particularly limited. But their evolution and possible im-
plications for structure formation are also not yet fully understood.
In addition their interplay with the large-scale structureformation
processes, as well as their link to additional dynamics within the
cluster atmosphere is unclear, especially their role in thecool core
regions and the influence of these regions on the evolution ofthe
magnetic fields.

The upcoming, new generation of radio telescopes (like
EVLA, LWA, LOFAR and SKA) will dramatically increase the
volume of observational data relevant for our understanding of
cosmological seed magnetic fields in the near future. To investi-
gate the general characteristics of the magnetic fields in and be-
yond galaxy clusters at the level required for a meaningful com-
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parison to current and forthcoming observations, numerical simu-
lations are mandatory. Non-radiative simulations of galaxy clus-
ters within a cosmological environment which follow the evo-
lution of a primordial magnetic seed field have been performed
using Smooth-Particle-Hydrodynamics (SPH) codes (Dolag et al.
1999, 2002, 2005) as well as Adaptive Mesh Refinement (AMR)
codes (Brüggen et al. 2005; Dubois & Teyssier 2008). Although
these simulations are based on quite different numerical tech-
niques they show good agreement in the predicted propertiesof
the magnetic fields in galaxy clusters. When radiative cooling is
included, strong amplification of the magnetic fields insidethe
cool-core region of clusters is found (Dubois & Teyssier 2008), in
good agreement with previous work (Dolag 2000). Cosmological,
magneto-hydrodynamical simulations were also performed using
finite-volume and finite-difference methods. Such simulations are
used to either follow a primordial magnetic field (Li et al. 2008)
or the creation of magnetic fields in shocks through the so-called
Biermann battery effect (Kulsrud et al. 1997; Ryu et al. 1998), on
which a subsequent turbulent dynamo may operate. The latterpre-
dict magnetic field strength in filaments with somewhat higher val-
ues (e.g. see Sigl et al. 2004) than predicted by simulationswhich
start from a primordial magnetic seed field, but are in line with pre-
dictions of magnetic field values from turbulence (Ryu et al.2008).
Therefore further investigations are needed to clarify thestructure,
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evolution and origin of magnetic fields in the largest structures of
the Universe, their observational signatures, as well as their inter-
play with other processes acting in galaxy clusters and the large
scale structure.

The complexity of galaxy clusters comes principly from their
hierarchical build up within the large-scale structure of the Uni-
verse. In order to study their formation it is necessary, to follow a
large volume of the Universe. However, one must also describe cos-
mic structures down to relatively small scales, thus spanning 5 to 6
orders of magnitudes in size. The complexity of the cluster atmo-
sphere reflects the infall of thousands of smaller objects and their
subsequent destruction or survival within the cluster potential. Be-
ing the source of shocks and turbulence, these processes directly
act on the magnetic field causing re-distribution and amplification.
Therefore realistic modelling of these processes critically depends
on the ability of the simulation to resolve and follow correctly this
dynamics in galaxy clusters.

Starting from a well-established cosmological n-body
smoothed particle hydrodynamic (SPH) code GADGET
(Springel et al. 2001; Springel 2005) we present here the im-
plementation of magneto-hydrodynamics, which allows us to
explore the full size and dynamical range of state of the art
cosmological simulations. GADGET also allows us to turn on
the treatment of many additional physical processes which are of
interest for structure formation and make interesting links with the
treatment of magnetic fields for future studies. This includes ther-
mal conduction (Jubelgas et al. 2004; Dolag et al. 2004), physical
viscosity (Sijacki & Springel 2006), cooling and star-formation
(Springel & Hernquist 2003), detailed modelling of the stellar
population and chemical enrichment (Tornatore et al. 2004,2007)
and a self consistent treatment of cosmic rays (Enßlin et al.2007;
Pfrommer et al. 2007). The MHD implementation presented here
is fully compatible with all these extensions, but here we want
to focus on non-radiative simulations. All such processes are
expected to increased the complexity and lead to interplay with
the evolution of the magnetic field. This would make it impossible
to critically check the numerical effects caused by the different
SPH-MHD implementations and therefore we will ignore such
additional processes in this work.

The paper is structured as follows: In section 2 we present
the details of the numerical implementation, whereas in section
3 we present various code validation tests, all performed infully
three dimensional setups. In section 4 we present the formation of
a galaxy cluster as an example for a cosmological application be-
fore we present our conclusions in section 5. In addition we present
a convergence test for the code in the appendix.

2 SPH-MHD IMPLEMENTATION

We have implemented the MHD equations in the cosmological
SPH codeGADGET (Springel et al. 2001; Springel 2005). In this
section we present the relevant details of this implementation.
While developing the MHD implementation made use ofGADGET-
1 (Springel et al. 2001) andGADGET-2(Springel 2005), all simula-
tions presented in this paper are based on the most recent version
of the code,GADGET-3 (Springel, in prep). Note that the imple-
mentation therefore is fully parallelized and benefits frommany
optimizations within the general parts of the code, especially the
calculation of self gravity and optimization in data structures as
well as work-load balancing. Therefore, this implementation is an
ideal tool to follow the evolution of magnetic fields and allows us

to explore dynamical ranges of more than 5 orders of magnitude
within cosmological simulations.

During the last years, many general improvements in the
implementation of the SPH method have been made. Examples
include are more modern formulations of the artificial viscosity
(Monaghan 1997), the introduction of self-consistent correction
terms from varying smoothing length (Springel & Hernquist 2002;
Monaghan 2002) or the continuous definition of the smoothing
length (Springel & Hernquist 2002). All these improvementsnot
only increased the accuracy and stability of the underlyingSPH
formulation but also improved, directly or indirectly, theaccu-
racy and stability of any MHD implementation. The main, indi-
rect benefits of these improvements are the self-consistenttreat-
ment of the magnetic waves within the formulation of the artifi-
cial viscosity (Price & Monaghan 2004a), the possibility todrop
the viscosity limiter (see equation 10 and discussion in section 2.3)
and the inclusion of the correction terms from varying smoothing
length in both the induction equation and the Lorenz force term
(Price & Monaghan 2004b). In the remaining sections we will dis-
cuss our SPH-MHD implementation in detail.

2.1 SPH implementation in GADGET

The basic idea of SPH is to discretize the fluid in mass ele-
ments (mi), represented by particles at positions~xi (Lucy 1977;
Gingold & Monaghan 1977). To build continuous fluid quanti-
ties, one starts with a general definition of a kernel smoothing
method. The most frequently used kernelW (|~x|, h) is the B2-
Spline (Monaghan & Lattanzio 1985), which can be written as

W (x,h) =
8

πh3
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It is worth stressing that, contrary to other SPH implementation,
GADGET uses the notation in which the kernelW (x, h) reaches
zero atx/h = 1 and not atx/h = 2. The densityρi at each
particle position~xi can be estimated via

〈ρi〉 =
∑

j

mjW (~xi − ~xj , hi), (2)

where the smoothing lengthhi is defined by solving the equation

4π

3
h3

i ρi = Nmi. (3)

A typical value forN is in the range of 32-64, which correspond
to the number of neighbors which are traditionally chosen inSPH
implementations.

In GADGET, the equation of motion for the SPH particles
are implemented based on a derivation from the fluid Lagrangian
(Springel & Hernquist 2002) and take the form

(

d~vi

dt

)(hyd)

= −
N
∑

j=1

mj

[

fco
i

Pi

ρ2
i

~∇iWi + fco
j

Pj

ρ2
j

~∇iWj)

]

. (4)

The coefficientsfi are defined by

fco
i =

[

1 +
hi

3ρi

∂ρi

∂hi

]−1

, (5)

and reflect the full, self-consistent correction terms arising from
varying the particle smoothing length. The abbreviationWi =
W (|~ri − ~rj |, hi) andWj = W (|~ri − ~rj |, hj) are the two kernels
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of the interacting particles. The pressure of each particleis given
by Pi = Aiρ

γ
i , where the entropic functionAi stays constant for

each particle in the absence of shocks or other sources of heat.
To capture shocks properly, artificial viscosity is needed.

Therefore, inGADGET the viscous force is implemented as

(

dvi

dt

)(visc)

= −
N
∑

j=1

mjΠij∇iW̄ij , (6)

whereΠij > 0 is non-zero only when particles approach each other
in physical space. The viscosity generates entropy at a rate

dAi

dt
=

1

2

γ − 1

ργ−1
i

N
∑

j=1

mjΠij~vij · ∇iW̄ij , (7)

Here, the symbol̄Wij denotes the arithmetic mean of the two ker-
nelsWi andWj .

For the parameterization of the artificial viscosity, starting
with version 2 ofGADGET, a formulation proposed by Monaghan
(1997) based on an analogy with Riemann solutions of compress-
ible gas dynamics, is used. In this case, the resulting viscosity term
can be written as

Πij =
−0.5αvsig

ij µij

ρij
f shear

ij (8)

for ~rij · ~vij 6 0 andΠij = 0 otherwise, i.e. the pair-wise vis-
cosity is only non-zero if the particles are approaching each other.
Hereµij = ~vij ·~rij/|~rij | is the relative velocity projected onto the
separation vector and the signal velocity is estimated as

vsig
ij = ci + cj − βµij , (9)

with ci =
√

γPi/ρi denoting the sound velocity. InGADGET-2the
valuesα = 1 andβ = 3 are commonly used for the dimension-
less parameters within the artificial viscosity. Here we have also
included a viscosity-limiterf shear

ij = (f shear
i + f shear

j )/2, which
is often used to suppress the viscosity locally in regions ofstrong
shear flows, as measured by

f shear
i =

|
〈

~∇ · ~v
〉

i
|

|
〈

~∇ · ~v
〉

i
| + |

〈

~∇× ~v
〉

i
| + σi

, (10)

which can help to avoid spurious angular momentum and vortic-
ity transport in gas disks (Balsara 1995; Steinmetz 1996), with the
common choiceσi = 0.0001ci/hi.

This also leads naturally to a Courant-like hydrodynamical
time-step

∆t
(hyd)
i =

Ccouranthi

maxj(v
sig
ij )

, (11)

whereCcourant is a numerical constant, typically choosen to be in
the range0.15 − 0.2.

2.2 Co-moving variables and integration

The equations of motion are integrated using a leap-frog integra-
tion making use of a kick-drift-kick scheme. Within this scheme,
all the pre-factors due to the cosmological background expansion
are taken into account within the calculation of the kick- and
drift-factors (see Quinn et al. 1997; Springel 2005). For the inte-
gration of the entropy within a cosmological simulation, a factor
(Ha2)−1 = dt

da
is present in equation 7 to take into account that

the internal time variable inGADGET is the expansion parametera.

The formulation of the MHD equations withinGADGET has to be
be adapted accordingly to this choice of variables.

2.3 Magnetic signal velocity

A natural generalization of the signal velocityvsig
ij in the framework

of MHD is to replace the sound velocityci by the fastest magnetic
wave as suggested by Price & Monaghan (2004a). Therefore the
sound velocityci gets replaced by

vi =
1√
2

[(

c2
i +

B2
i

µ0ρa

)

·

√

(

c2
i +

B2
i

µ0ρi

)2

− 4
c2
i (

~B · ~rij/|~rij |)2
µ0ρi





0.5

. (12)

As this new definition of the signal velocity also enters the time-
step criteria (11), no extra time-step criteria due to the magnetic
field has to be defined. We note that we still see improvements in
the solution to the test problems, if we choose more conservative
settings within the Courant condition. Therefore we generally use
Ccourant = 0.075, which is half the value usually used in pure
hydrodynamical problems. Different authors also propose to use
different values forα andβ within the artificial viscosity defini-
tion (8). Whereas typicallyα = 1 is chosen, Monaghan (1997)
proposed to useβ = 3. Price & Monaghan (2004a,b) propose to
useβ = 2 or β = 1 respectively. We find slight improvements in
our test problems when usingα = 2 andβ = 1.5, which we use
throughout this paper. We also note, that the viscosity suppression
switchfshear

ij was introduced based on an earlier realization of the
artificial viscosity and it is not clear if it is still needed.As we note
significant improvements in our test problems when neglecting this
switch we do not use this switch throughout this paper. Also for the
cosmological application presented in the last part of thispaper,
this switch was always turned off.

2.4 Induction equation

The evolution of the magnetic field is given by the induction equa-
tion,

d ~B

dt
= ( ~B · ~∇)~v − ~B(~∇ · ~v), (13)

if ohmic dissipation is neglected and the constraint~∇ · ~B = 0 is
used. The SPH equivalent reads

d ~Bi

dt
=

1

Ha2

fco
i

ρi
·

[

N
∑

j=1

mj

[

~Bi(~vij · ~∇iWi) − ~vij( ~Bi · ~∇iWi)
]

]

−2 ~Bi, (14)

where(Ha2)−1 = dt
da

takes into account that the internal time vari-
able inGADGET is the expansion parametera. Note that here, by
construction, only the kernelWi and its derivative is used. The sec-
ond term−2 ~Bi accounts for the dilution of the frozen in magnetic
field due to cosmic expansion. Both these additions – the(Ha2)−1

factor and the−2 ~Bi term – are only present in the cosmological
simulations and absent for the code evaluation presented insection
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3. In component form the induction equation reads

dBk
i

dt
=

1

Ha2

fco
i

ρi

[

N
∑

j=1

mj(v
k
ijB

l
i − Bk

i vl
ij)

∂Wi

∂u

~rl
ij

|~rij |

]

−2 ~Bk
i . (15)

Note that, as also suggested by Price & Monaghan (2004b), we
wrote down the equations including the correction factorfco

i which
reflects the correction terms (dW

dh
) arising from the variable parti-

cle smoothing length. Unfortunately it is not possibile to directly
infer the exact form of the correction factors from first principles
for the induction equation. However, Price & Monaghan (2004b)
showed that, if not chosen in the same way as for the Lorenz force,
inconsistency between the induction equation and magneticforce
results. The effect of these factors in the induction equation is quite
small, but nevertheless one notices tiny improvements in test prob-
lems when they are included. Therefore, we included them forall
applications presented in this paper.

2.5 Magnetic force

The magnetic field acts on the gas via the Lorenz force, which can
be written in a symmetric, conservative form involving the mag-
netic stress tensor (Phillips & Monaghan 1985)

Mkl
i =

(

~Bk
i

~Bl
i −

1

2
| ~Bi|2δkl

)

. (16)

The magnetic contribution to the acceleration of thei-th particle
can therefore be written as
(

d~vi

dt

)(mag)

=
a3γ

µ0

N
∑

j=1

mj

[

fco
i

Mi

ρ2
i

· ~∇iWi

+ fco
j

Mj

ρ2
j

· ~∇jWj

]

. (17)

Herea3γ = dt
dη

is needed to transform the equations to the internal
variables for cosmological simulations and is set to one in all other
cases. Alsoµ0 has to be chosen properly as

µ0 =
[TIME]2[LENGTH]

4π[MASS]h2
, (18)

with h = 1 for non cosmological runs. The factorsfco
i reflect the

correction terms (dW
dh

) arising from the variable particle smoothing
length as introduced already (see also Price & Monaghan 2004b).
In component form the equation reads
(

d~vk
i

dt

)(visc)

=
a3γ

µ0

N
∑

j=1

mj

[

fco
i

Mkl
i

ρ2
i

∂Wi

∂u

~rl
ij

|~rij |

+ fco
j

Mkl
j

ρ2
j

∂Wj

∂u

~rl
ij

|~rij |

]

. (19)

It is well known that this formulation becomes unstable
for situations, in which the magnetic forces are dominating
(Phillips & Monaghan 1985), The reason for this is that the mag-
netic stress can become negative, leading to the clumping ofparti-
cles. Therefore, some additional measures have to be taken to sup-
press the onset of this instability.

2.6 Instability corrections

There are several methods proposed in the literature to suppress the
onset of the clumping instability which is caused by the implemen-

tation of the magnetic force. However their performance wasfound
to depend on the details of the simulation setup. In the next sections
we will briefly discuss the different possibilities in the context of
building up an implementation for cosmological simulations.

2.6.1 Adding a constant value

One method to remove the instability was pointed out by
Phillips & Monaghan (1985), who suggested to calculate the maxi-
mum of the magnetic stress tensor and to subtract it globaly from all
particles. Or similar, as suggested in Price & Monaghan (2005), to
subtract the contribution of a constant magnetic field. Thisis sim-
ple and straight forward if there is a strong, external magnetic field
contribution from the initial setup, which can be associated with
the term one subtracts. However, with cosmological simulations in
mind, this approach is not very viable. and therefore we did not use
this approach.

2.6.2 Anti clumping term

Monaghan (2000) suggested the introduction of an additional term
in the momentum equation which prevents particles from clump-
ing in the presence of strong magnetic stress. Including this term,
equation (16) reads

Mkl
i =

(

~Bk
i

~Bl
i −

1

2
| ~Bi|2δkl − Ri

~Bk
i

~Bl
i

)

, (20)

whereRi is a steepened kernel which can be defined as

Ri =
ǫ

2

(

Wi

W1

)n

. (21)

The modification of the kernel is made so that contributions are
significant only at distances below the average particle spacingu1,
soW1 is defined asW1 = W (u1). Typical values for the remaining
parameters areǫ = 0.8 andn = 5. This method was also used in
Price & Monaghan (2004a,b) where they foundu1 = 1.5h to be a
good choice for 1D simulations and switched tou1 = 1.1h for 2D
simulations. In agreement with Price & Monaghan (2005) we find
that in 3D and allowing the smoothing length to vary, this approach
does not help to suppress the instabilities efficiently.

2.6.3 div( ~B) force subtraction

Børve et al. (2001) suggested explicitly subtracting the effect of
any numerically non-vanishing divergence of~B. Therefore, one
can explicitly subtract the term

(

d~vk
i

dt

)(corr)

= −a3γ 1

µ0
β̂ ~Bi

N
∑

j=1

mj

[

fco
i

~Bi

ρ2
i

· ~∇iWi

+ fco
j

~Bj

ρ2
j

· ~∇jWj

]

(22)

from the momentum equation. Here again,a3γ = dt
dη

andµ0 are
introduced to transform the equation to the internal units used. To
be consistent with the other formulations, we includedfco

i , which
are thedW

dh
terms. In the original work (Børve et al. 2001),β̂ = 1

was choosen. In component form this equation reads

(

d~vk
i

dt

)(corr)

= −a3γ 1

µ0
β̂ ~Bk

i

N
∑

j=1

mj

[

fco
i

~Bl
i

ρ2
i

∂Wi

∂u

~rl
ij

|~rij |
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+ fco
j

~Bl
j

ρ2
j

∂Wj

∂u

~rl
ij

|~rij |

]

. (23)

In principle, this term breaks the momentum conserving formof
the MHD formulation. However, in practice, this seems to be ami-
nor effect. Børve et al. (2004) argued that stability for linear waves
in 2D can be safely reached even when not subtracting the fullterm
but choosingβ̂ < 1; e.g. they suggested̂β = 0.5 to further min-
imizing the non-conservative contribution. However, it isnot clear
if this stays true for 3D setups and in the non-linear regime.Addi-
tional we do not use a higher order kernel as done in Børve et al.
(2004), therefore it is not clear if their conclusions stillhold in our
case. As the results in our test problems seem unharmed by thepos-
sible violation of momentum conservation due to the formulation
of the correction factor in the Lorenz force, we keep it in theform
suggested in earlier work (e.g. Børve et al. 2001) i.e.β̂ = 1.

In Børve et al. (2006) a more general formalism to obtainβ̂
for each particle was introduced with the aim to further minimize
the violation of momentum conservation in the formulation of the
correction terms in the Lorenz force. Unfortunately, in thelight of
cosmological simulation, this seems not to be very practical as it
contains a scan for a maximum value over all particles, whichin
a cosmological context makes no sense as there is not a specific
single object to which such characteristics can be tuned to.

In general we find that this correction term significantly im-
proves all results in our test simulations and effectively suppresses
the onset of the clumping instability. It was also already success-
fully used in previous, cosmological applications (e.g. Dolag et al.
2004; Rordorf et al. 2004; Dolag et al. 2005).

2.7 Regularization schemes

Beside instabilities, noise (e.g. fluctuations of the magnetic field
imprinted by numerical effects when integrating the induction
equation) is a source of errors in SPH-MHD implementations.The
goal of a regularization scheme is to obtain a magnetic field which
does not show strong fluctuations below the smoothing length. This
can be achieved indirectly through improvements in the underlying
SPH formalism and by reformulation of the the interactions to re-
duce the creation of small irregularities from numerical effects (e.g.
through particle splitting). Alternative approaches are to directly
suppress the magnetic field or to dissipate small irregularities by
introducing artificial dissipation.

2.7.1 Improvements in the underlying SPH formalism

Here, the entropy conserving formalism (Springel & Hernquist
2002) of the underlying SPH implementation contributes to asig-
nificant improvement of the MHD formalism compared to previous
MHD implementations in SPH by generally improving the den-
sity estimate and the calculation of derivatives. It has to be noted,
that this is not only due to thedW

dh
terms, but in large part also

from the new formalism for calculation of the smoothing length.
As described before, the smoothing lengthhi for each particle is
no longer calculated by counting neighbors within the sphere, but
by solving equation (3) for each formal number of neighborsN ,
there exists only one unambiguous value ofhi. Note that, as this
equation is solved iteratively, it is usual to give some allowed range
of N , however in our case we can choose the range smaller than 1
and typically we useN = 64 ± 0.1.

2.7.2 Particle splitting

Børve et al. (2001) developed a scheme to regularize the interac-
tion of particles in SPH based on a discretization of the smooth-
ing lengthhi by factors of 2. In such cases, interactions between
two particles with different smoothing length can be realized by
splitting the one with the larger smoothing length into2n (where
n is the dimensionality) particles, placed on a2n sub-grid. Such
split particles then have the same smoothing length as the particles
with which they interact. Originally this scheme was invented to
avoid the problems induced by a variable smoothing length (before
the correction terms where properly introduced in SPH) and gave
good results in 1D and 2D (see Børve et al. 2001, 2004, 2006).
However, in 3D the resulting change in the number of neighbors
is quite large when the smoothing length is quantized in factors
of 2. Therefore the additional sampling noise for particlescan be
large. This is especially problematic when the lower density is ap-
proaching – but still above – the threshold for doubling the particle
smoothing lengths. Here particles have a particularly small smooth-
ing length (relative to the optimal, unquantized one) and therefore
have only small numbers of neighbors. Unfortunately, this effect is
much larger than the gain in accuracy by the regularization,at least
when based on standard SPH formalism, (see Del Pra 2003). Also,
as thedW

dh
terms formally take care of all correction terms induced

in the formalism when allowing a variable smoothing length,this
splitting – and specifically the quantization of the smoothing length
– is no longer needed. This might be different when further improv-
ing the SPH (and specially the MHD) method. For example when
re-mapping techniqes based on Voronoi tessellation are used (e.g.
Børve et al. 2006), or special coordinates like spherical orcylindi-
cal are used (e.g. Omang et al. 2006).

2.7.3 Smoothing the magnetic field

Another method to remove small scale fluctuations and to regular-
ize the magnetic field is to smooth the magnetic field periodicly.
As suggested by Børve et al. (2001), one can calculate a smoothed
magnetic field

〈

~Bi

〉

for each particle,

〈

~Bi

〉

=

∑

j

mj

ρj

~BiWi
∑

j

mj

ρj
Wi

. (24)

Then, in periodic intervals, one can calculate a new, regularized
magnetic field by

~Bnew
i = q

〈

~Bi

〉

+ (1 − q) ~Bi. (25)

Note that this, in principal, acts similar to the mixing process on
resolution scale present in Eulerian schemes. However, introduced
in this way, the amount of mixing (e.g. dissipation) of magnetic
field depends on the frequency with which this procedure is ap-
plied and the value ofq chosen. Typically, we setq to one and per-
form the smoothing at every 15th-20th main time-step. It is worth
while to mention that implemented in this form, total energyis not
conserved (as magnetic field fluctuations on scales smaller than the
smoothing length are just removed) and, as the time-steps depend
on the chosen resolution, this method is even resolution dependent.
Never the less it leads to improvements in the results of our test
problems, without strongly smoothing sharp features. It also works
without problem in 3D and has already been used in cosmological
simulations (Dolag et al. 2004, 2005).
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Figure 1. Test5A at timet = 7 with the MHD implementation similar to
that used in Dolag et al. (1999, 2002), but already includingthe instability
correction due to subtraction of thediv( ~B) term in the force equation and in
a fully three-dimensional setup. Shown in the first row are the density (left
panel), total energy and pressure (middle panel) and thex,z component of
the velocity field (right panel). The second row shows they-component in
the velocity field (left panel), the three components of the magnetic field
(middle panel) and the measure of thediv( ~B) error, see equation (32), in
the right panel. The black lines with error bars show the SPH results, the
red lines are the reference results obtained with Athena in a1D setup.

2.7.4 Artificial magnetic dissipation

Another possibility to regularize the magnetic field was presented
by Price & Monaghan (2004a), who suggested including an artifi-
cial dissipation for the magnetic field, analogous to the artificial vis-
cosity used in SPH. In Price & Monaghan (2004a) it was suggested
that the dissipation terms be constructed based on the magnetic
field component perpendicular to the line joining the interacting
particles. However, to better suppress the small scale fluctuations
within the magnetic field which appear due to numerical effects
especially in multi-dimensional tests, Price & Monaghan (2004b)
suggested basing the artificial dissipation on the change ofthe total
magnetic field rather than on the perpendicular field components
only. We also found this to work significantly better in our test
cases and therefore only use the later implementation throughout
this paper. Such an artificial dissipation term can be included in the
induction equation as
(

d ~Bi

dt

)(diss)

=
1

Ha2

ρiαB

2

N
∑

j=1

mjv
sig
ij

ρ̂2
ij

(

~Bi − ~Bj

) ~rij

|~rij |
· ~∇iWi. (26)

The parameterαB is used to control the strength of the effect, typ-
ical values are suggested to be aroundαB ∼ 0.5. Similar to the
artificial viscosity, this will create entropy at the rate
(

dAi

dt

)(diss)

= −γ − 1

ργ−1
i

αB

4µ0

N
∑

j=1

mjv
sig
ij

ρ̂2
ij

(

~Bi − ~Bj

)2 ~rij

|~rij |
· ~∇iW̄ij . (27)

The pre-factor(γ − 1)/(ργ−1
i ) properly converts the dissipation

term to a change in entropy.
This method reduces noise significantly. However, depending

on the choice ofαB , it can also lead to smearing of sharp features.

Figure 2. As figure 1, but including the magnetic waves in the signal ve-
locity and turning off the shear viscosity suppression as explained in the
code description. The main advantage is a significant reduction in the noise,
specifically in the velocity, but also in the magnetic field. Also thediv( ~B)
errors are reduced by a factor of≈ 2.

To avoid this outside of strong shocks (e.g. where this is needed),
Price & Monaghan (2005) proposed evolvingαB for each parti-
cle, similar to the handling of the time dependent viscosityas sug-
gested by Morris & Monaghan (1997). Such, evolution ofαB for
each particle will be followed by integrating

dαB

dt
= − (αB − αmin

B )

τ
+ S, (28)

where the source termS can be chosen as

S = S0 max

(

|~∇× ~B|√
µ0ρ

,
|~∇ · ~B|√

µ0ρ

)

(29)

(see Price & Monaghan 2005). The time-scaleτ defines how fast
the dissipation constant decays. Taking the signal velocity, one can
translate this directly into a distance to the shock over which the
dissipation constant decays. A useful choice ofτ can be written as

τ =
hi

C vsig
, (30)

where the constantC typically is chosen to be around 0.2, allowing
the dissipation constant to decay within a time that corresponds
to the shock travelling 5 kernel lengths (see Price & Monaghan
2004a),

2.8 Euler potential

A very elegant way to implement the MHD equations in La-
grangian codes is the usage of so calledEuler potentials(see
Rosswog & Price 2007, and references therein). Two independent
variablesα and β are constructed to correspond to an implicit
gauge for the vector potential. They can be thought of as labels
of magnetic field lines and will be advected with the flow. In this
formulation, the magnetic field at any time can be represented as

~B = ~∇α × ~∇β. (31)

In principle, having obtained the magnetic field, one could also use
this magnetic field in the equation of motion as before. However,
this would mean that the magnetic force is based on the second
derivative of a variable. This is usually quite noisy and notrecom-
mendable unless regularization schemes are implemented asdone
by e.g. Rosswog & Price (2007). In addition, due to its form, an
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Figure 3. As figure 2, but including the regular smoothing of the magnetic
field as a regularization scheme. This SPH-MHD implementation basically
reflects the one used in Dolag et al. (2004, 2005). The main advantages are
a further, significant reduction in the noise as well as a strong reduction of
thediv( ~B) errors by a factor of≈ 10.

implementation based on the Euler potential cannot be easily inves-
tigated in 3D test problems with periodic boundary conditions for
the resulting magnetic field as can be done for the other implemen-
tations. A simple example here is constant magnetic field, which
can be represented by a linear function of theEuler potentials.

Therefore we use this simple description only as a check in
cosmological simulations, to investigate the influence ofdiv( ~B)
driven errors. Applied to cosmological simulations the evolution of
the magnetic field predicted when using Euler potentialsis an upper
bound on the amplification processes in the absence of any dynamo
action. Therefore Euler potentials are a useful tool to check the
influence of numerics on the results of cosmological simulations
where we have no other means to verify the results.

3 TEST PROBLEMS

To test performance of the code and to infer the optimal nu-
merical settings for the regularization schemes, we performed
the series of shock-tube problems as presented by Ryu & Jones
(1995). In particular test5A, which is also used in Brio & Wu
(1988), was used to show the effects of different numerical treat-
ments. Additionally we performed several 2D test cases includ-
ing theFast Rotortest (Tóth 2000; Londrillo & Del Zanna 2000;
Balsara & Spicer 1999), aStrong Blast(Londrillo & Del Zanna
2000; Balsara & Spicer 1999) and theOrzang-Tang Vortex
(Orzang & Tang 1979; Dai & Woodward 1994; Picone & Dahlburg
1991; Londrillo & Del Zanna 2000). To obtain results under realis-
tic circumstances, we performed all the tests by setting up afully
three-dimensional particle distribution. We also avoid starting from
regular grids but used glass-like (White 1996) initial particle dis-
tributions instead. To obtain such a configuration, the particles are
originally distributed in an random fashion within the volume and
then allowed to relax until they settle in a equilibrium distribution
which is quasi force-free and homogeneous in density. This is simi-
lar to the distribution of atoms in an amorphous structure like glass.
Compared to a distribution of the particles based on a grid, this
guarantees that all the kernel averages in the SPH formalismsam-
ple the kernel in a uniform way rather than multiple times at the
same distances (which furthermore would be fractions of theunder-
lying grid spacing). For all tests we used the same particle masses,

Figure 4. As figure 2, but including artificial magnetic dissipation asa reg-
ularization scheme. Similar to the smoothing of the magnetic field, signif-
icant reduction in the noise as well as a strong reduction of the div( ~B)
errors by a factor of≈ 10 is obtained compared to thebasic SPH-MHD
implementation.

independent of the initial density. Therefore, typical initial particle
distributions for the shock-tube tests where based on53 particles
in low density and103 particles in high density regions within unit
volume. Usually, these unit volumes are then replicated 35 times
along thex-direction each. For some test cases with strong (and
therefore fast) shocks, we evolved the simulations longer.In such
cases we doubled the simulation setup size in thex-direction.

We assume ideal gas (e.g.γ = 5/3) and, as described before,
use an equivalent of 64 neighbors for calculating the SPH smooth-
ing length. This ensures that, in the low density regions, the SPH
particles get smoothed over a region corresponding to a unitlength.
The number of resolution elements corresponding to a unit length
therefore ranges from 1 to 4, depending whether one associates the
smoothed region or the mean inter-particle distance with the effec-
tive resolution in SPH. In general, SPH converges somewhat slower
compared to grid codes when comparing simulations with the same
number of grid cells as SPH particles (see Appendix A for an ex-
ample).

For the SPH results we usually plot the mean within a 3D slab
corresponding to the smoothing length and (as error bars) the RMS
over the individual particles within this volume. The reference so-
lution was obtained using Athena (Stone et al. 2008) with typically
10-20 resolution elements per unit length, depending on theindi-
vidual test. As one criteria of the goodness of the SPH simulation
result we use the usual measure for the non-vanishing divergence
of the magnetic field,

E
∇~B = div( ~B)

h

| ~B|
. (32)

3.1 Shock tube 5A

The most commonly used MHD shock-tube test is the one used by
Brio & Wu (1988), e.g. test5A in Ryu & Jones (1995). The rea-
son for this is that it involves a shock and a rarefraction moving
together. Therefore it allows simultaneous testing of the code in
different regimes.

Figure 1 shows the result for a code implementation similar
to the first implementation used to study galaxy clusters (e.g. see
Dolag et al. 1999, 2002). In addition, the instability correction due
to subtraction of thediv( ~B) term was used in the force equation.
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Figure 5. As figure 2, but including time dependent artificial magneticdissi-
pation as a regularization scheme. No significance improvement is obtained.
Note that here in the lower right panel the artificial dissipation constant
(αB ) is shown. The effect of suppressing the dissipation is clearly visible,
and the maximum value is only reached in peaks associated with the re-
gion of strong shocks. However the improvement in the smearing of sharp
features is not very significant.

Various hydro-dynamical variables at the final time (e.g.t = 7
in this case) are shown. The black lines with error bars show the
SPH-MHD result, the red lines are the reference result obtained
with Athena in a 1D setup. Shown are (from upper left to the bot-
tom right panel) the density, total energy and pressure, thex- and
z-component of the velocity field, they-component in the veloc-
ity field, the three components of the magnetic field and the mea-
sure of thediv( ~B) error, obtained from equation (32). Here we
also switched back to the conventional formulation of the artificial
viscosity as described by e.g. Monaghan (1992), rather thanthat
based on signal velocity as used inGADGET-2. Although the SPH-
MHD results in general follow the solution obtained with Athena,
there is a large scatter in the individual particle values within the
3D volume elements, as well as some instability, especiallyin the
low-density part. But note that although the mean values forthe
internal energy, as well as the velocity or magnetic field, can lo-
cally show some systematic deviations from the ideal solution, the
total energy shows much better, nearly unbiased, behaviour. This
demonstrates the conservative nature of the symmetric formula-
tions in SPH-MHD.

Noticeable reduction of noise is obtained when using the
signal-velocity based artificial viscosity and including the magnetic
waves in the calculation of the signal velocity. Therefore,the mag-
netic waves are directly captured for the time step calculation and
in the artificial viscosity, needed to capture shocks. Also switch-
ing off the shear viscosity suppression again leads to significant
reduction in scatter. This can be seen in figure 2, where the noise
in the velocity as well as in the magnetic field components is sig-
nificantly reduced. Values ofdiv( ~B) are also reduced (by a factor
of ≈ 2) compared to before. In general, the SPH-MHD implemen-
tation gains from the new formulation of SPH, including thedW

dh

terms and the new way to determine the SPH smoothing length,
both contributing to a reduction of noise (anddiv( ~B)) in the gen-
eral treatment of hydro-dynamics. We will refer to this implemen-
tation of SPH-MHD asbasic SPH-MHDfurther on in this paper.

3.2 The effect of regularization

As described in section (2.7), there are several suggestions for reg-
ularization of the magnetic field. Here we will show results ob-
tained by two regularization methods, namely smoothing themag-
netic field in regular intervals and including an artificial dissipation.

For the first method, the magnetic field is smoothed using
the same kernel as used for the normal SPH calculations. In this
case, there are two numerical parameters one can choose. Oneis
q in equation (25), which quantifies the weight with which the
smoothed component enters into the updated magnetic field. We al-
ways useq = 1 here, which means that we completely replace the
magnetic field by the smoothed value. The second isTBS, which
is the time interval at which the smoothing is done. Here we use
a value corresponding to a smoothing every 30th global time step.
This correspond to the SPH-MHD implementation used to study
the magnetic field in clusters and large scale structure within the
local universe, see Dolag et al. (2004, 2005). Figure 3 showsthe
result for the same shock-tube test as before. Clearly, the noise
in the individual quantities is strongly reduced. Also the error in
div( ~B) is reduced by more than one order of magnitude. Note that
the error bars for the SPH-MHD implementation are of the size
of the line width or smaller in most of the cases and thereforeno
longer clearly visible. However, one can notice some small effect
of smearing sharp features. Additinalally, some states – like the re-
gion with the negativex-component of the velocity behind the the
fast rarefaction wave propagating to the right – converge tovalues
which have small but systematic deviations from the exact solution.

In the second method, the magnetic field can be dissipated in
the same way as artificial dissipation works in the hydrodynamics.
Here the numerical parameter one has to chose is the strengthof this
artificial, magnetic dissipationαB in equation (26) and (27). Fig-
ure 4 shows the result for the same shock-tube test as before using
αB = 0.1. Similar to the first regularization method presented, the
noise in the individual quantities is strongly reduced and also the
error indiv( ~B) is reduced by one order of magnitude. Again, the
error bars are smaller than the line width nearly everywhere. Also,
some small effects of smearing sharp features are visible aswell
as some small but systematic deviations from the exact solution. In
general, this method works slightly better than the smoothing of the
magnetic field, but the differences are generally small.

One idea to reduce the unwanted side effects of such regular-
ization schemes was presented in Price & Monaghan (2005) andis
based on a modification of the artificial, magnetic dissipation con-
stantαB . Whereby every particle evolves its own numerical con-
stant, so that this value can decay where it is not needed and there-
fore the effects of the artificial dissipation are suppressed here. Fig-
ure 5 shows the same test as before, but this time whereαB evolves
for each particle, as shown in the lower right panel. Clearly, the val-
ues are strongly reduced outside the regions associated with sharp
features (e.g. shocks), but the effect of smearing sharp features and
the small offset of some states are not significantly reduced. This
is because in the region in which these side effects originate, the
dissipation is still working with its maximum numerical value. On
the other hand, due to the suppression of the artificial magnetic dis-
sipation constant outside the shock region, the regularization after
the shock passes is nearly switched off. Therefore it is not as effi-
cient as before in the post shock region, visible as increasein the
div( ~B) error compare to the run with a constant, artificial magnetic
dissipation.
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TEST Nr.
Left Right

ρ V B P ρ V B P

— 1A — 1.00 [10.0, 0.0, 0.0] [5.0, 5.0, 0.0]/(4π)2 20.0 1.000 [−10.0, 0.0, 0.0] [5.0, 5.0, 0.0]/(4π)2 1.00
— 1B — 1.00 [0.0, 0.0, 0.0] [3.0, 5.0, 0.0]/(4π)2 1.0 0.100 [0.0, 0.0, 0.0] [3.0, 2.0, 0.0]/(4π)2 10.0
— 2A — 1.08 [1.2, 0.01, 0.5] [2.0, 3.6, 2.0]/(4π)2 0.95 1.000 [0.0, 0.0, 0.0] [2.0, 4.0, 2.0]/(4π)2 1.00
— 2B — 1.00 [0.0, 0.0, 0.0] [3.0, 6.0, 0.0]/(4π)2 1.0 0.100 [0.0, 2.0, 1.0] [3.0, 1.0, 0.0]/(4π)2 10.0
— 3A — 1.00 [50.0, 0.0, 0.0] −[0.0, 1.0, 2.0]/(4π)2 0.4 0.100 [0.0, 0.0, 0.0] [0.0, 1.0, 2.0]/(4π)2 0.20
— 3B — 0.10 [−1.0, 0.0, 0.0] [0.0, 1.0, 0.0] 1.0 1.000 [1.0, 0.0, 0.0] [0.0, 1.0, 0.0] 1.00
— 4A — 1.00 [0.00, 0.0, 0.0] [1.0, 1.0, 0.0] 1.0 0.200 [0.0, 0.0, 0.0] [1.0, 0.0, 0.0] 0.10
— 4B — 0.40 [−0.669, 0.986, 0.0] [1.3, 0.0025293, 0.0] 0.5247 1.000 [0.0, 0.0, 0.0] [1.3, 1.0, 0.0] 1.00
— 4C — 0.65 [0.667,−0.257, 0.0] [0.75, 0.55, 0.0] 0.50 1.000 [0.4,−0.94, 0.0] [0.75, 0.00001, 0.0] 0.75
— 4D — 1.00 [0.0, 0.0, 0.0] [7.0, 0.001, 0.0] 1.0 0.300 [0.0, 0.0, 0.0] [7.0, 1.0, 0.0] 0.20

— Brio Wu — 1.00 [0.0, 0.0, 0.0] [0.75, 1.0, 0.0] 1.0 0.125 [0.0, 0.0, 0.0] [0.75,−1.0, 0.0] 0.10

Table 1. Summary table with the initial conditions of the left and right side of the shock tubes.

3.3 Shock tube problems

As can be seen in figures 3 and 4, the side effects of smoothing fea-
tures by the different regularization methods depend on thedetails
of the underlying structure of the shock-tube test. Even more inter-
esting, the states where one can see small deviations from the ideal
solution are different for the two different regularization methods.
Therefore we performed the full set of different shock-tubetests as
presented in Ryu & Jones (1995) to test the overall performance of
the different implementations under different circumstances. The
four test families deal with different complexities of velocity and
magnetic field structures, leading to different kinds of waves prop-
agating. A summary of the results of these tests can be found in fig-
ure 6. Plotted are the total energy (left panels), the velocity along
the x-direction (middle panels) and the magnetic field along the
y-direction (right panels). The red lines reflects the ideal solution
obtained with Athena, the black lines with error bars mark the re-
sults from the SPH-MHD implementation using the magnetic field
smoothing every 30th main time step. Note that the error barsin
most cases are smaller than the line width. The initial setups for the
shock-tube tests can be found in table 1, which lists the state vector
of the left and right states for the different shock tube tests.

The first family of tests (1A/1B) has no structure in the tan-
gential direction of the propagating shocks in magnetic field and
velocity, e.g.Bz = vz = 0. As we expect, in the1A test, the strong
shock (large jump invx) leads to some visible noise in the magnetic
field componentBy, also translating into significant noise in the to-
tal energy. The regularization method here suppresses the formation
of the intermediate state inBy in the SPH-MHD implementation,
as can be seen in figure 6(a). The second case, the1B test, the weak
shock is captured well. Again in some regions some smearing of
sharp features due to the regularization method is clearly visible.

The second class of shocks (2A/2B) involve three dimensional
velocity structures, where the plane of the magnetic field rotates.
All features (e.g. fast/slow shocks, rotational discontinuity and
fast/slow rarefaction wave, for details see Ryu & Jones (1995)), are
well captured, see figure 6(c) and 6(d). Some of the features are
clearly smoothed by the regularization method.

The third class of tests (3A/3B) shows handling of magne-
tosonic structures. The first has a pair of magnetosonic shocks with
zero parallel field and the second are magnetosonic rarefractions.
Although there is slightly more noise present, all states are captured
extremely well, except the numerical feature left at the position di-
viding the two states initially, see figure 6(e) and 6(f).

The fourth test family (4A/4B/4C/4D) deals with the so-called

switch-on and switch-off structures. The tangential magnetic field
turns on in the region behind switch-on fast shocks and switch-on
slow rarefractions. Conversely, in the switch-off slow shocks and
switch-off fast rarefractions the tangential magnetic field turns off.
Again, all structures are captured well with the exception of one
feature in figure 6(h) as well and maybe 6(j) too, where clearly the
regularization leads to the washing out of a state. Otherwise the
regularization leads to smoothing of some structures similar to the
tests presented before.

In general, figure 6 demonstrates that all these different situa-
tions have to be included when trying to measure the performance
and quality of different implementations of regularization methods.

3.4 Finding optimal numerical parameters

To optimize, we performed all these 11 shock-tube tests withvari-
ous different settings for the parameters in the regularization meth-
ods and evaluated the quality of the result obtained with theSPH-
MHD implementation. To measure this, we used two estimators.
First, we have chosen the mean of alldiv( ~B) errors within the sim-
ulation region shown in the plots, as defined by

∆div(~B) =

〈

div( ~B)
h

| ~B|

〉

x

. (33)

Second, we measured the discrepancy of the SPH-MHD result for
the magnetic field relative to the results obtain by Athena. There-
fore we calculate first

δBi(x) =

(

~Bi
SPH(x) − ~Bi

Athena(x)
)2

RMS2
Bi(x)

(34)

for each componenti of the magnetic field~B within each 3D slab
corresponding to the smoothing length. The RMS ofBi reflects the
noise ofBi within the chosen slab. We then calculate

∆̂Bi =

(

∑

x

δBi(x)

)(

∑

x

RMS2
Bi(x)

)

, (35)

for each component of the magnetic field. This includes both con-
tributions, the deviation of the SPH-MHD from the ideal solution as
well as the noise within each 3D slab of the SPH-MHD implemen-
tation. To judge the improvement of the regulatization methods we
sum up all three components and further relate this measurement to
the value obtained with thebasic SPH-MHDimplementation, e.g.
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(a) Test 1A (b) Test 1B

(c) Test 2A (d) Test 2B

(e) Test 3A (f) Test 3B

(g) Test 4A (h) Test 4B

(i) Test 4C (j) Test 4D

Figure 6. Representative plots of the additional 10 shock-tube testsfrom Ryu & Jones (1995). Shown for each test are the total energy (left panels), the velocity
along thex-direction (middle panels) and the magnetic field along they-direction (right panels).

∆B =

∑

i
∆̂Bi

∑

i
∆̂std

Bi

− 1. (36)

We will use these two error estimators,∆div( ~B) and∆B , to mea-
sure the quality of the individual SPH-MHD implementations.

3.4.1 Regularization by smoothing the magnetic field

Choosing the time interval between smoothing the magnetic field
is a compromise between reducing the noise in the magnetic field
components, as well asdiv( ~B)) (by smoothing more often) and
preventing sharp features from being smeared out. The left two
panels of Figure 7 show a summary of the results of the individ-
ual shock-tube test computed with different smoothing intervals.
As expected, when using shorter smoothing intervals the error in

div( ~B) reduces. For the quality measure of the SPH-MHD imple-
mentation the situation changes. Short smoothing intervals gener-
ally increase the discrepancy, many of them even to larger values
than thebasic SPH-MHDrun. Specifically4B and4C show strong
deviations due to smearing of sharp features. Note that the non
monotonic behavior shown in some tests usually relates to some
residual resonances between the magnetic waves and the smooth-
ing intervals in the noise. Some tests show a minimum in the differ-
ences at smoothing intervals around 20. The test3Aseems to prefer
even shorter smoothing intervals. In general is not clear how an op-
timal decision between such quality measure and the reduction in
div( ~B) can be reached, given the different nature and amplitude
of the two measures. However, ignoring4B which strongly suffers
from smearing sharp features when smoothing the magnetic field, a
good compromise seems to be for values around 20-30, where pro



An MHD Gadget for cosmological simulations 11

and con in the quality measure are small and compensating within
the different tests butdiv( ~B) is still drastically reduced in all tests.
We will refer to this as theBsmooth SPH-MHDimplementation in
the rest of the paper.

3.4.2 Artificial dissipation

As before, choosing the value for the artificial magnetic dissipa-
tion constantαB is a compromise between reducing the noise in
the magnetic field components (as well as reducingdiv( ~B)) and
preventing sharp features from smearing out due to the effect of the
dissipation. The right two panels of Figure 7 show a summary of
the results of the individual shock-tube tests computed with differ-
ent values for the artificial magnetic dissipation. As expected, us-
ing larger values reduces the error indiv( ~B) significantly. Similar
to before, using larger values also generally results in an increase
of the discrepancy between the SPH MHD implementation and the
true solution, again usually to even larger values than in the basic
SPH-MHD run. As before, especially the shock-tube test4B and
4C show strong deviations due to smearing of sharp features. Note
that here less non-monotonic behavior is visible (except for test
4B). The main reason is that dissipation is a continuous process, so
resonances between dissipation and the magnetic waves cannot be
very pronounced. As before, it is difficult to infer the best choice
of parameter for all the tests. Again, once ignoring4B, a compro-
mise for choosingαB seems to be between 0.02 and 0.1. Choosing
αB close to the upper value of 0.1 might lead to a significant re-
duction indiv( ~B) without to strong signature from smearing out
sharp features. We will refer to this as thedissipation SPH-MHD
implementation in the rest of the paper.

3.4.3 Time dependent artificial dissipation

One idea to reduce the effect of the artificial dissipation isto make
the artificial magnetic dissipation constantαB time dependent. The
idea here is that, if the evolution ofαB is properly controlled, dissi-
pation will happen only at the places where it is needed and itwill
be suppressed in all other parts of the simulation volume. The evo-
lution of αB is controlled by the two parametersS0 (source term)
andC (decay term) where we have chosenαmin

B andαmax
B as 0.01

and 0.5 respectively. Figure 8 shows the result for varying these two
parameters. As before, generally, the larger the dissipation is (e.g.
large source term or small decay time) the smaller the noise and
the error indiv( ~B) becomes. However, as soon as these parameters
have values which driveαB in the shocks to the maximum allowed
value, there is marginally no gain in quality, although the values for
αB outside the shocks can still be quite small. Therefore, the time
dependent method does not improve the results significantly, as the
regions in which the artificial dissipation constant is suppressed do
not significantly contribute to the smearing of sharp features.

3.5 Multi dimensional Tests - Planar Tests

Besides the one dimensional shock tube test described in thepre-
vious section, two dimensional (e.g. planar) test problemsare a
good test-bed to check code performance. Such higher dimensional
tests include additional interaction between the evolvingcompo-
nents with non-trivial solution. These can be quite complex(with
several classes of waves propagating in several directions) such as
the Orszang-Tang Vortex or simple (but with strong MHD discon-
tinuities) such as Strong Blast or Fast Rotor.

Figure 10. Diagonal (x = y) cut through theFast Rotorat t = 0.1 show-
ing the density. In black result obtained with ATHENA. The pink line with
the red error bars show the GADGET solution using thebasic SPH-MHD
implementation. Also here the red error bars reflect the dispersion of the
values among individual particles within a slab corresponding to the lo-
cal smoothing length. In general, the SPH-MHD result shows an excellent
agreement in all the features (peaks, valleys and edges), however there is a
visible over-smoothing at the outer edges in the GADGET result.

3.5.1 Fast Rotor

This test problem was introduced by Balsara & Spicer (1999),to
study star formation scenarios, in particular the strong torsional
Alfvén waves, and is also commonly used to validate MHD im-
plementations (for example see Tóth 2000; Londrillo & Del Zanna
2000; Price & Monaghan 2005; Børve et al. 2006). The test con-
sists of a fast rotating dense disk embedded in a low density,static
and uniform media, with a initial constant magnetic field along the
x-direction (e.g.Bx = 2.5π−1/2). In the initial conditions, the disk
with radiusr = 0.1, densityρ = 10 and pressureP = 1 is spin-
ning with an angular velocityω = 20. It is embedded in a uniform
background withρ = P = 1. Again we setup the initial conditions
by distributing the particles on a glass like distribution in 3D, using
700×700×5 particles and periodic boundaries in all directions for
the background particles. The disk is created by removing all parti-
cles which fall inside the radius of the disk and replacing this space
with a denser representation of particles of the same mass. As an
ideal solution to compare with, we again used the result of a sim-
ple, two dimensional ATHENA run with400 × 400 cells. A visual
impression of the results can be obtained from the maps presented
in figure 9.

Figure 10 presents another quantitative comparison. Shownis
a diagonal cut through theFast Rotorat t = 0.1 showing the den-
sity. The different lines show the result obtained with ATHENA
(black line) and for the three different SPH-MHD implementations
in GADGET (colored lines). The very small, red error bars reflect
the RMS of the values held by the individual particles withinthe
3D slab through the three dimensional simulations corresponding
to the local smoothing length. The results show remarkable agree-
ment between the simulations and also compare well with results
quoted in the literature (e.g. Londrillo & Del Zanna 2000). Here the
smoothing of sharp features in the two implementations withregu-
larization is quite clear visible and leads to a less good match than
thebasic SPH-MHDimplementation.

Note that although we perform our calculations in three di-
mensions and without a regularization scheme, the implementation
produce a result, which has the same quality as other schemesin
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Figure 7. Shown in the two left panels are the mean error in divergence (first panel on the left) and the measure of the quality (secondpanel from left) as
defined in equation (36) obtained by the SPH-MHD implementation for different values of the smoothing interval. The different lines are for the 11 different
shock-tube tests as indicated by the labels. The two right panels show the same quantities but for different values of theartificial magnetic dissipation constant
αB .

Figure 8. Similar to figure 7 but for different values of the source termS0 (left panels) and the decay termC (right panel) of the time dependent, artificial
magnetic dissipation.

two dimensions with regularization (e.g. Price & Monaghan 2005;
Børve et al. 2006).

3.5.2 Strong Blast

The Strong Blasttest consists of the explosion of a circular hot
gas in a static magnetized medium and is also regularly used
for MHD code validation (see for example Londrillo & Del Zanna
2000; Balsara & Spicer 1999). The initial conditions consist of a
constant densityρ = 1 where a hot disk of radiusr0 = 0.125 is
embedded, which is a hundred times over-pressured, e.g the pres-
sure in the disk is set toPd = 100 whereas the pressure outside
the disk is set toPo = 1. In addition there is initially an overall
homogeneous magnetic field in thex-direction, with a strength of
Bx = 10. The system is evolved until timet = 0.02 and an outgo-
ing shock wave is visible which, due to the presence of the magnetic
field, is no longer spherical but propagates preferentiallyalong the
field lines. Figure 11 shows the density at the final time, compar-
ing the ATHENA results with the results from the three different
SPH-MHD implementations in GADGET. Although the setup is a
strong blast wave, there is no visible difference of the SPH-MHD
implementation with the ATHENA results. This is quantitatively
confirmed in figure 12 which shows a horizontal cut (aty = 0.5) of

the density through theStrong Blasttest, comparing the ATHENA
(black line) with the GADGET (colored lines with error bars)re-
sults. Besides very small variations there is no significantdifference
between the two results and all features are well reproducedby the
SPH-MHD implementation. Note that the error bars of the GAD-
GET results again are almost in all cases smaller than the shown
line width.

3.5.3 Orszang-Tang Vortex

This planar test problem, introduced by Orzang & Tang (1979),
is well known to study the interaction between several classes
of shock waves (at different velocities) and the transitionto
MHD turbulence. Also, this test is commonly used to vali-
date MHD implementations (for example see Dai & Woodward
1994; Picone & Dahlburg 1991; Londrillo & Del Zanna 2000;
Price & Monaghan 2005; Børve et al. 2006). The initial conditions
for an ideal gas withγ = 5/3 are constructed within a unit-length
domain (e.g.x = [0, 1], y = [0, 1]) with periodic boundary con-
ditions. The velocity field is defined byvx = − sin(2πy) and
vy = sin(2πx). The initial magnetic field is set to beBx = B0vx

and By = B0sin(4πx). The initial density isρ = γP and
the pressure is set toP = γB2

0 . This system is evolved until
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Figure 9. The magnetic pressure (B2/2) in the Fast Rotortest att = 0.1. The ATHENA solution of the test problem is shown in the upperleft panel. The
upper right panel shows the results obtained with thebasic SPH-MHDimplementation. The lower left and right panels shows the result obtained with the
Bsmooth SPH-MHDand thedissipation SPH-MHDimplementation respectively. All the main features are well reproduced in the GADGET runs. The shape,
positions and amplitudes correspond quite well, although the GADGET runs appear slightly more smoothed, depending on the regularization scheme used
(see also Figure 10).

t = 0.5. Figure 13 shows the final result for the magnetic pres-
sure for the ATHENA run and the three different SPH-MHD imple-
mentations in GADGET. Visually the results are quite comparable,
however the GADGET results look slightly more smeared, which
is the imprint of the underlying SPH and regularization methods.
This impression is confirmed in figure 14, which shows two cuts
(y = 0.3125 andy = 0.4277) through the two simulations. Again,
the black line shows the ATHENA result, the colored lines with the
error bars are showing the GADGET results. In general there is a
reasonable agreement, however the SPH-MHD results clearlyshow
smoothing of features. The adaptive nature of the SPH-MHD im-
plementation should allow the central density peak to be resolved
whereas in ATHENA is can only be resolved by increasing the

number of grid cells. Never-the-less the SPH-MHD implementa-
tion seems to converge slower when increasing the resolution (see
Appendix).

3.6 General performance of SPH-MHD

In summary, as shown in the previous sections, an MHD implemen-
tation in SPH is able to reliable reproduce the results of standard,
one and two dimensional MHD test problems. We want to stress the
point that all tests for the SPH-MHD implementation where per-
formed in a fully three dimensional setup to test the code under re-
alistic circumstances. Regularization schemes in generalare able to
further suppress the numerical driven growth ofdiv( ~B). Although
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Figure 11. Shown is the resulting density distribution for theStrong Blasttest att = 0.02. The upper left panel shows the result obtained with ATHENA,
whereas the upper right panel shows the that from thebasic SPH-MHDimplementation. The lower left and right panels shows the results obtained with
theBsmooth SPH-MHDand thedissipation SPH-MHDimplementation respectively. There are no visible difference between the results (see also figure 12),
indicating that all SPH-MHD implementations are capable tohandle such test situation.

some optimal numerical values for the regularization schemes can
be inferred when comparing a suit of different shock tube tests,
such regularization schemes always introduce small dissipative ef-
fects, which lead to a slight smearing of sharp features. This has to
be kept in mind when applying the different SPH-MHD implemen-
tations to cosmological applications.

4 COSMOLOGICAL APPLICATION

The cluster used in this work is part of a galaxy cluster sample
(Dolag et al. 2008) extracted from a re-simulation of a Lagrangian
region selected from a cosmological, lower resolution DM-only
simulation (Yoshida et al. 2001). This parent simulation has a box–

size of 684 Mpc, and assumed a flatΛCDM cosmology with
Ωm = 0.3 for the matter density parameter,H0 = 70 for the Hub-
ble constant,fbar = 0.13 for the baryon fraction andσ8 = 0.9
for the normalization of the power spectrum. The cluster hasa final
mass of1.5× 1014M⊙ and was re-simulated at 3 different particle
masses for the high resolution region. Using the “Zoomed Initial
Conditions” (ZIC) technique (Katz & White 1993; Tormen et al.
1997), these regions were re-simulated with higher mass andforce
resolution by populating their Lagrangian volumes with a larger
number of particles, while appropriately adding additional high–
frequency modes drawn from the same power spectrum. To opti-
mize the setup of the initial conditions, the high resolution region
was sampled with a163 grid, where only sub-cells are re-sampled
at high resolution to allow for quasi abritary shapes of the high
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Figure 13. The magnetic pressureB2/2 distribution in theOrszang-Tang Vortexat t = 0.5. The upper left panel shows the result obtained with ATHENA,
while the upper right panel shows those from thebasic SPH-MHDimplementation. The lower left and right panels shows the results obtained with theBsmooth
SPH-MHDand thedissipation SPH-MHDimplementations respectively. Some of the sharp features are more smoothed in the GADGET runs, depending on
the choice of regularization scheme, but overall the results compare very well (see also figure 14)

resolution region. The exact shape of each high–resolutionregion
was iterated by repeatedly running dark-matter only simulations,
until the targeted objects are free of any lower–resolutionbound-
ary particle out to 3-5 virial radii. The initial particle distributions,
before adding any Zeldovich displacement, were taken from are-
laxed glass configuration (White 1996). The three resolutions used
correspond to a mass of the dark matter particles of1.6× 109M⊙,
2.5 × 108M⊙ and1.6 × 108M⊙ for the 1x, 6x and10x simula-
tion. The gravitational softening corresponds to7, 3.9 and3.2 kpc
respectively. For simplicity we assumed an initially homogeneous
magnetic field of10−11 G co-moving as also used in previous work
(Dolag et al. 1999, 2002). Furthermore we applied the regulariza-
tion by smoothing the magnetic field in the same way as we did in

previous work (Dolag et al. 2004, 2005) but also tested the effects
of regularization by artificial dissipation for varying values ofαB .

Figure 15 shows a zoom-in from the full cosmological box
down to the cluster. The structures in the outer parts get less pro-
nounced due to the decrease in resolution, which is designedto
capture only the very largest scales of the simulation volume. Each
panel shows (in clockwise order) a zoom-in by a factor of ten.Fi-
nally the elongated box in the lower left panel marks the sizeof
the observational frame shown on the left. For comparison wepro-
duced a synthetic Faraday Rotation map from the simulation and
clipped it to the shape of the actual observations to give an indi-
cation of the structures resolved by such simulations. We used the
same linear colorscale for both the observed and the simulated RM
map, using the highest resoluton simulation (10x). Note that we
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Figure 14. Two t = 0.5 cuts throught the pressure in theOrszang-Tang Vortexat y = 0.3125 and aty = 0.4277 (left and right panels, respectively). As
before, the black line reflect the results obtained with ATHENA and the pink line with the red error bars is obtained with thebasic SPH-MHDimplementation
in GADGET. The cuts are choosen for comparison with results from the literature, e.g. Børve et al. (2006).

Figure 12. Horizontal cut through theStrong Blasttest (x = [0.0; 1.0], y =
0.5) showing the density. The black line is from the ATHENA simulation,
the pink line with the red error bars (see figure 10) reflects the GADGET
result. The overall behavior is excellent, with only very small differences
between the two solutions.

added a constant, galactic foreground signal to the simulated RM
map to account for the non zero mean in the observed RM map.
The dynamical range of the simulation spans more than five orders
of magnitudes in spatial dimension, and the size of the underlying
box is 6 and 5 times larger than the AMR simulations presentedin
Dubois & Teyssier (2008) and Brüggen et al. (2005), respectively.
Still the resolution of the underlying dark matter distribution is, re-
spectively, 2 and 5 times better than these AMR simulations and the
cluster is resolved with more than one million dark matter particles
within the virial radius at the10x resolution. To perform the sim-
ulation, the10x resolution run needed≈ 730 CPUh on an AMD
Opteron cluster. This again is demonstrating the advantages of the
underlying SPH scheme in making large, cosmological zoomed
simulations possible.

To obtain a more quantitative comparison we calculated the
projected structure functionS(1)(d) from both the observed and
synthetic Faraday Rotation maps.

S(1)(∆x,∆y) = 〈|RM(x, y) − RM(x + ∆x, y + ∆y)|〉 ,(37)

with ∆x and ∆y being the offsets from a pixel at position
(x, y). The resulting matrix is then averaged in radial binsd =

√

∆x2 + ∆y2 to obtain the structure function. Figure 16 shows
a comparison of the obtained structure function from the observa-
tions (black line) and the simulations. For each simulated cluster
we calculated the synthetic rotation measure maps, clippedaccord-
ingly to the shape of the observed map. To obtain different real-
izations of the same simulation we produced nine different maps
where we shifted the clipped region by±20 kpc in both spacial di-
rections within the original, cluster centered maps. The thick lines
mark the mean structure function over these maps, whereas the thin
lines show the RMS scatter between the different maps. It is clear
that, due to the additional resolved turbulent velocity field, when
increasing the resolution the same initial seed fields are amplified
more. For our10x simulation the chosen magnetic seed field gets
amplified to the observed level in our example cluster. Although in-
creasing the resolution resolve smaller scales in the RM maps, the
slope of the structure function at small separations, even the 10x
resolution simulation, gets not as steep as the observed one. This
confirms the visual impression from the lower left panel in Figure
15 which also indicates more structure at small scales in theob-
served than the simulated RM map. Pushing the mass resolution by
one more order of magnitude would probably result in a spacial res-
olution which should be sufficient to reproduce the observedsmall
scale structure in the RM maps, however in such a case we would
expect to have to start from even smaller seed fields to avoid overes-
timating the amplitude of the Rotation Measure in the simulations.
Such a study lies outside of the scope of this paper, as it ultimately
would lead to questions of the role of magnetic dissipation and vis-
cosity within the real intra cluster medium.

In figure 17, the radial magnetic field profiles are shown for
the three resolutions comparing the results obtained with the nor-
mal configuration for cosmological simulations with results where
we just used theEuler Potential to follow the evolution of the
magnetic field ignoring back reactions. As already noted in ear-
lier work (Dolag et al. 2002), the left panel shows the dependence
of the amplification of magnetic fields with resolution. In addition,
the solution obtained with theEuler Potentialagrees nicely with
the Bsmooth SPH-MHDruns in the outer part of the profiles. It
is important to note that the increase in amplification of themag-
netic field with increasing resolution when using theEuler Poten-
tial clearly demonstrates that this effect originates from resolving
more velocity structure, especially driven by the increased amount
of substructure in the underlying dark matter representation. Thus
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Figure 15. Zoom into the cluster simulated within the cosmological box. Clockwise, each panel displays a factor 10 increase in imaging magnification, starting
from the full box (684 Mpc) down to the cluster center (680 kpc). On the very large scale, the density of the dark matter particles are shown, whereas in the
high resolution region the temperature of the gas is rendered to emphasize the presence and dynamics of the substructure. The last zoom extracts a region of
the same size of an observed radio jet (3C449) with measured rotation measure (Feretti et al. 1999). Both, the simulated and the observed map are displayed
using a linear color-scale based on the minimum and maximum values in the maps. The synthetic RM map is clipped to the shapeof the observations. Clearly,
the simulations are still lacking in resolution, however they do come quite close.

the result reflects the increased complexity of the structures in the
density and velocity fields, once the resolution of a cosmological
simulation is increased. TheEuler Potentialimplementation pro-
vides an unique possibility to study these effects as they reflect
the result of integrating the wind–up of the complex flows within
galaxy clusters, revealing information which can not easily be ob-
tained in Eulerian schemes. In the central parts, theBsmooth SPH-
MHD simulation falls below the solution obtained using theEuler
Potential. This is easy to understand, because theEuler Potential
are free from any numerical magnetic dissipation. Additionally the
magnetic field is strongest in the cluster core and therefore, includ-
ing the magnetic force in the normal runs will lead to a suppression
of the amplification. In general the comparison of the two meth-
ods demonstrate that the amplification of the magnetic field in the
bsmooth SPH-MHDimplementation is not significantly influenced
by the non-zerodiv( ~B). In addition, although the absolute value
of the amplification is not converged with resolution, the shape of
the predicted magnetic field profile appears to be converged.This is

shown in the right panel of figure 17, where the profiles are normal-
ized artificially at large radii to demonstrate the self similar shapes.
Note that this convergence, as usual for all hydro-dynamical quan-
tities, is only reached at radii significant larger than the size of the
gravitational softening, indicated as dashed lines for thelowest (e.g.
1x), medium (e.g.6x) and highest (e.g.10x) resolution runs. In
both panels of Figure 17 we also show the results from a cluster
simulation using RAMSES, taken from Dubois & Teyssier (2008),
and FLASH, taken from Brüggen et al. (2005). This comparison
is over-simplistic, as results are based on simulations of different
objects and can only be compared with some care. Nevertheless,
the shape of the radial profiles obtained with RAMSES indicate
slightly more dissipative effects compared to ourBsmooth SPH-
MHD implementation, whereas the steeper profile obtained with
FLASH resembles our results using theEuler Potentialimplemen-
tation.

The situation changes when using artificial magnetic dissipa-
tion, as shown in figure 18. The left panel shows the magnetic field
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Figure 17. The magnetic field profiles for a resolution study of our cluster. Solid lines are obtained with theBsmooth SPH-MHDimplementation, dashed lines
are for usingEuler Potentials. The different line colors indicating different resolution. Right panel shows the same but normalizing all the profilesin the outer
part of the cluster. Results taken from Dubois & Teyssier (2008) (red line) and Brüggen et al. (2005) (diamonds) are alsoshown.

Figure 18. The magnetic field profiles obtained for the galaxy cluster using different values of the artificial dissipation. In addition the results using theEuler
Potentialsand theBasic MHDimplementation are shown. Right panel shows the same with profiles normalized in the outer part of the cluster.

profiles for several values ofαB compared with the profiles for
the basic SPH-MHDrun and that usingEuler Potentials. Clearly
a normal value for artificial magnetic dissipation leads to alarge
dissipation of magnetic field over the simulation time (e.g.close
to the Hubble time). The right panels show the profiles artificially
normalized at large radius. Clearly the self similarity of the profiles
is lost. Therefore it appears that the use of artificially dissipation
as a regularization scheme is not a good choice for cosmological
simulations. Additionally it points out that true physicaldissipa-
tion might play an important role in determining the shape ofthe
magnetic field profile in galaxy clusters. Here, transport processes,
cosmic rays, turbulence (especially at unresolved scales)and recon-
nection of magnetic field lines are not well understood, especially
within the ICM. As the micro-physical origin of most of them are
far outside the scales which can be ever reached by cosmological
simulations, future work will have to include them as approxima-

tive, sub-grid models, possibly motivated by small scale numerical
experiments.

5 CONCLUSIONS

We presented the implementation of MHD in the cosmological,
SPH code GADGET. We performed various test problems and dis-
cussed several instability correction and regularizationschemes.
We also demonstrated the application to cosmological simulations,
the role of resolution and the role the regularization schemes play
in cosmological simulations.

Our main findings are:

• The combination of many improvements in the SPH im-
plementation, like the correction terms for the variable smooth-
ing length (Springel & Hernquist 2002) as well as the usage of
the signal velocity in the artificial viscosity (Monaghan 1997) to-
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Figure 19. The magnetic field profiles obtained for the galaxy cluster using different time intervals for the smoothing procedure. In Addition the results for
using theEuler Potentialsand theBasic MHDimplementation are shown. Right panel shows the same with profiles normalized in the outer part of the cluster.

Figure 16. Shown is the structure function averaged in radial bins (forde-
tails see text) calculated from the observed (black line) and from the syn-
thetic Faraday Rotation maps (colored lines). The different colors corre-
spond to different resolutions (1x, 6x and10x). The thick lines correspond
to the mean calculated over 9 realizations of the maps, whereas the thin lines
mark the RMS scatter between the different maps (see text fordetails).

gether with its generalization to the MHD case (Price & Monaghan
2004a) improve the handling of magnetic fields in SPH signifi-
cantly.
• Correcting the instability by explicitly subtracting the contri-

bution of a numerical non-zero divergence of the magnetic field
to the Lorenz force from the Maxwell tensor as suggested by
Børve et al. (2001) seems to perform well. Specifically in three di-
mensional setups where it seems to work much better than other
suggestions in the literature.
• The SPH-MHD implementation performs very well on simple

shock tube tests as well as on planar test problems. We performed
all tests in a fully three-dimensional setup and find excellent agree-
ment of the results obtained with the SPH-MHD implementation
compared to the results obtained with ATHENA in one or two di-
mensions.

• With a convergence study we demonstrate that the SPH-MHD
results when increasing the resolution are converging to the true
solution, especially in the sharp features. However, in some regions
it seems that small but systematic differences converge only very
slowly to the correct solution.
• Regularization schemes help to further suppresses noise and

div( ~B) errors in the test simulations, however one has to carefully
select the numerical parameters to avoid too strong smoothing of
sharp features. Performing a full set of individual shock tube tests
allows one to tune the numerical schemes and to determine optimal
values. However they reflect an optimal choice for problems where
the local timescales are mostly similar to the global timescale of the
problem. For cosmological simulations it turns out that regulariza-
tion by artificial dissipation leads to questionable results, whereas
the regularization by smoothing the magnetic field (which isap-
plied on global timescales) produces reasonable results.
• The SPH-MHD implementation allows us to perform chal-

lenging cosmological simulations, covering a large dynamical
range in length-scales. For galaxy clusters, only the shapeof the
predicted magnetic profiles is, (with the exception of the central
part of clusters) converged in resolution and in good agreement
with previous studies. Also the structures obtained in synthetic
Faraday Rotation maps are in good agreement with previous find-
ings and compare well with observations.

The results obtained with artificial dissipation in cosmological
simulations indicate that physical dissipation could playa crucial
role in determining the exact shape of the predicted, magnetic field
profiles in galaxy clusters. Future work, especially when includ-
ing more physical processes at work in galaxy cluster – as canbe
done easily with our SPH-MHD implementation – will reveal an
interesting interplay between dynamics of the cluster atmosphere
and amplification of magnetic fields. Thus having the potential to
shed light on many, currently unknown aspects of cluster magnetic
fields, their structure and their evolution.
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Tóth G., 2000, Journal of Computational Physics, 161, 605
White S. D. M., 1996, in Schaeffer R., Silk J., Spiro M., Zinn-
Justin J., eds, Cosmology and Large Scale Structure Formation
and Evolution of Galaxies. pp 349–+

Yoshida N., Sheth R. K., Diaferio A., 2001, MNRAS, 328, 669

APPENDIX A: CONVERGENCE

Numerical experiments are normally restricted by the resolution
one can technically (in terms of computing/memory requirements)
achieve. Therefore tests as presented in section 3 are usually at
nominally better resolution than can be obtained in relevant (in
this case cosmological) simulations. Never-the-less an interesting
question is, how good do the numerical methods used convergeif
one further increase the resolution? Figure A1 and A2 show this
for Athena and thebasic SPH-MHDimplementation respectively.
We repeated the Orszang-Tang Vortex test problem with Athena on
a 1922, 4002 and8002 grid. Figure A1 shows a cut through the
density of the Orszang-Tang Vortex, comparing with the result ob-
tained with the AMR code Ramses (Teyssier 2002). Clearly, the
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Figure A1. A cut throgh the density for the Orszang-Tang Vortex test (see
Figure 13/14). Shown in black is the result obtained with Ramses, compared
to the results obtained with Athena using 3 different resolutions.

Figure A2. Same than figure A1, but showing the results obtained with the
basic SPH-MHDimplementation at two different resolutions compared to
the results obtained with Ramses.

results obtained with Athena when increasing the resolution ap-
proaches the results obtained with Ramses. Figure A2 shows the
same for setups with3502 × 5, 7002 × 5 and14002 × 5 parti-
cles. The SPH-MHD implementation also converges towards the
Ramses results with increasing resolution. However, although the
central feature is better resolved in the SPH-MHD implementation
than in the Athena run with comparable resolution, some other fea-
tures can be seen to converge slower in the SPH-MHD implemen-
tation when increasing the resolution. Specifically, in some very
smoothed features there are small but systematic differences be-
tween the SPH and the true solution. Here the SPH results seemto
converge only extremely slowly (if at all).
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