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ABSTRACT

We describe a novel technique for probing the statisticaperties of cosmic magnetic fields
based on radio polarimetry data. Second-order magnetit dtatistics like the power spec-
trum cannot always distinguish between magnetic fields wibkentially dierent spatial
structure. Synchrotron polarimetry naturally allows aart4th-order magnetic field statistics
to be inferred from observational data, which lifts this elegracy and can thereby help us
gain a better picture of the structure of the cosmic fieldstasttheoretical scenarios describ-
ing magnetic turbulence. In this work we show that a 4th-ooderelator of specific physical
interest, the tension-force spectrum, can be recoverex fihe polarized synchrotron emis-
sion data. We develop an estimator for this quantity basqabtarized-emission observations
in the Faraday-rotation-free frequency regime. We comsigie cases: a statistically isotropic
field distribution, and a statistically isotropic field suipgposed on a weak mean field. In both
cases the tension force power spectrum is measurable; lattaecase, the magnetic power
spectrum may also be obtainable. The method is exact in #adizeéd case of a homogeneous
relativistic-electron distribution that has a power-lamesgy spectrum with a spectral index
of p = 3, and assumes statistical isotropy of the turbulent fiele.Céfry out numerical tests
of our method using synthetic polarized-emission data ig¢eé from numerically simulated
magnetic fields. We show that the method is valid, that it isprohibitively sensitive to the
value of the electron spectral indgx and that the observed tension-force spectrum allows
one to distinguish between, e.g., a randomly tangled magfietd (a default assumption in
many studies) and a field organized in folded flux sheets onéfas.

Key words: galaxies: clusters: general; intergalactic medium; ISMgmetic fields; magnetic
fields; methods: data analysis; radio continuum: genarddutence

1 INTRODUCTION

Magnetized plasma is present almost everywhere in the disler
Universe, from stars and accretion disks to the interstalia the
intracluster medium (respectively ISM and ICM). A largectian

of this magnetized plasma is in a turbulent state. Undedstgn
the origin of the cosmic magnetic fields and their evolution t
wards their observed state embedded in magnetized plasa tu
lence, apart from being a tantalizing intellectual chajkerin its
own right (Brandenburg & Subramanian 2005; Subramaniahl et a
12006; | Schekochihin & Cowley 2005, 2005;_Schekochihin &t al.
), is also crucial in the construction of theories ofi¢tascale
dynamics and transport in many astrophysical systems.>&one
ple, magnetic fields are expected to be dynamically impoitan
determlnlng the angular momentum transport in accreticesdi

$ 1972; Shakura & Syunyaev 1973), to contian st

formation and the general structure of the ISM (where magnet
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fields prevent molecular clouds from collapsing and suppfiies-
mentation; see, e.008, and referencesinjeand

to play an important role in galaxy discs as well as galaxgtelts,
where they influence the viscosity and thermal conductieftthe
ISM and ICM [Chandran & Cowley 1998: Narayan & Medvedev
[2001;[ Markevitch et al. 2003) and the propagation of cosmyes r
(e.g.,Strong et al. 2007; Yan & Lazarian 2008). Theoretinatl-
els of all these phenomena require some assumptions to be
about the spatial structure of the tangled magnetic fieldseat-
ing the constituent turbulent plasmas. However, as thebryay-
netized plasma turbulence is in its infancy as a theoretoat
ject, there is no consensus about what this spatial steicsuin
order to make progress both in understanding the turbulande

in modeling its &ect on large-scale dynamics and transport, it is
clearly desirable to be able to extract statistical infaioraabout
the field structure from observational data (EnRlin & Vogdéo
[EnRlin et all 2006).

Diffuse synchrotron emission is observed throughout the
ISM and the ICM, as well as in the lobes of radio galaxies
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Figure 1. Left panel MHD-dynamo-generated magnetic field (Schekochihin k2@04) (saturated state of their Run SRight panel A synthetic divergence-
free Gaussian random field realization with identical posgectrum. These are cross-sections of the field stréBg{dark represents stronger field, white
weaker field). The magnetic-field and tension-force powecsp are shown in Figl 2.

:[Reich et al._2001; Beck et al. 2002; Wolleben &t al. 2006
Haverkorn et dl. | 2006;_Reich_2006: Clarke & EnRlin_2006;
ISchnitzeler et al!_2007; Laing etlal. 2008). The fact that-syn
chrotron emission is readily observable and is a good trafctre
magnetic-field strength and orientation makes it a key sooifc
information that can serve as a reality check for theoriesag-
netized plasma turbulence and magnetogenesis (origireohty-
netic fields).

In this work, we will be focusing on how the synchrotron-
emission data can be used to characterize the structure ¢érh
gled magnetic fields permeating the ISM and the ICM. In this-co
text we refer to previous studies which sought to recovetissta
tical information about the structure of of these fields ia t&M

from the Faraday rotation measure (RM) data (Enlin & No@®0
\Vogt & EnRlin [2003, | 2005;._Govoni et al._2006;_Guidetti et al.

[2008), as well as studies of the 1SM (Haverkorn ét al. 2006820

field (Sec[3.l and Se._8.2) and the observational data[Bzc.
see also Appendix]A) and propose a method of reconstrudtiag t
tension-force power spectrum from the Stokes maps [Sdaril4
Sec[3.h). We then generalize our method slightly for the edsen

a weak mean field is present and show that in this case the power
spectrum of the magnetic field itself may be obtainable from t
Stokes correlators (Sdc. B.6). Most detailed analyticautations
required in this section are exiled to Appen{lix B. In Jdc. 4 we
demonstrate the validity of our method by testing it on sgtith
observational data generated from numerical simulatiénisrief
summary and conclusion is given in SEk. 5.

2 MOTIVATION

Turbulent plasmas exhibit in general very complex magrsgtiec-
tures (see FidL]1), which are best characterized by statistieans.

also based on the RM data, and the work of Spangler {1982))1983 The most widely used quantity for this purpose is the powecsp

and Eilek (19894 b) based on polarized synchrotron enmistite.
In formal terms, all of these papers are concerned with att mos
second-order statistics, namely the magnetic-field popectsum,
or the two-point correlation function of the magnetic fie@ur
work complements those previoufats by drawing on the fact
that polarized-emission data carries information abohtcttler
statistics of the magnetic field. In particular, we preseptatical
method for obtaining the tension-force power spectrum. Alshe
shown in greater detail in the following, this quantity cains sta-
tistical information about the spatial structure of thegled mag-
netic fields that is missing in the second-order statistich anost
importantly, is actually observable with radio telescopegpping
polarized synchrotron emission.

The plan of this paper is as follows. In SEE. 2, we explain why
the tension-force power spectrum is an interesting quatttimea-
sure and how it allows one to diagnose the magnetic-fieldtsire.

In Sec[3, we explain the assumptions we make about the magnet

trum

M(K) = 4nk*(B(K)), @

where B(k) is the Fourier transform of the magnetic field (see
Sec[31). The angle-bracket averaging includes averawjiegall
directions ofk, so the power spectrum measures the amount of
magnetic energy per wavenumber shg|l = k. It is related via
the Fourier transform to the second-order two-point catieh
function (or structure function) of the magnetic field. Itan at-
tractive quantity to measure because phenomenologicatiéseof
turbulence typically produce predictions for charactarifeld in-
crements between two points separated by a distance in time fo
of power laws with respect to that distan941
liroshnikov [1968;[ Kraichnan _1965; Goldreich & Sridhar 1995;
IBoldyre¥|2005; Schekachihin etlal. 2007)—and such preafisti
are most obviously tested by measuring the spectral indethéo
scaling exponent of the structure function). However, kingvihe

© 2008 RAS, MNRASDOO,[THT9
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Figure 2. Left panel Magnetic-field power spectra for the fields shown in ElgRight panel Tension-force power spectra for the same fields.

spectrum is not enough and can, in fact, be very misleadorg, f
reasons having to do both with the physics of magnetic terimé
and with formal aspects of describing it quantitatively.

All scaling predictions for magnetized plasma turbulenae p
posed so far are, implicitly or explicitly, based on the aspu
tion that magnetic fluctuations at fgiently small scales will
look like small Alfvénic perturbations of a larger-scalméan”
field (this is known as the Kraichdan 1965 hypothesis). Numer
ical simulations of MHD turbulence carried out without ingpo
ing such a mean field do not appear to support this hypothe-

sis [Schekochihin et al. 2004), although the currently egible

resolution is not sflicient to state this beyond reasonable doubt '

and the results are to some extent open to alternative netarp
tions (Haugen et al. 2004; Subramanian ét al. 2006). Whansee
to be clear is that the magnetic field has a tendency to or-
ganize itself in long filamentary structures (“folds”) wiffeld-
direction reversals on very small scales (Schekochihir 2084;
Brandenburg & Subramanian 2005). Filamentary magnetiestr
tures are, indeed, observed in galaxy clust wen
[2002; [ Clarke & EnRlin_2006), although the field reversal scal
does not appear to be nearly as small as implied by MHD
turbulence simulations—a theoretical puzzle solving \Whidill
probably require bringing in kinetic physics (see disocnissin

Schekochihin & Cowley 2006).

It is clear that both the current and future theoretical teha
on the structure of magnetic turbulence would benefit gydaim
being constrained observationally in a rigorous way. Ferrés-
sons explained above, in order to do this, we must be ableatp di
nose nontrivial spatial structure, which cannot be doneobkihg
at the magnetic power spectrum alone. Let us explain thisarem
detail.

Consider a divergence-free, helicity-free, statistichlbmo-
geneous and isotropic field as a minimal model for the fluoigat
component of the magnetic field in galaxies and clustershi#f t
field also obeyed Gaussian statistics exactly or, at lepgroai-
mately, its power spectrum would befBcient to completely de-
scribe its statistical properties because all higherfomaddti-point
statistics could be expressed in terms of the second-onaepoint
correlators and, therefore, the power spectrum. Assumia s
Gaussian statistics, Spangler (1982, 1983)[and|Eilek Aope-
posed to calculate the magnetic power spectrum using thez\adts
total and polarized synchrotron radiation intensity, difiad by
the Stokes parametets Q andU (see AppendiX_A). Computing

© 2008 RAS, MNRASD00,[THT9

two-point correlation functions of the Stokes parametbes)ce-
forth referred to as Stokes correlators, one essentiathimb two-
point, 4th-order correlation functions of the magneticdiel the
plane perpendicular to the line of sight (SEc] 3.4). If traistics
are Gaussian or if Gaussianity is adopted as a closure aisamp
the 4th-order correlators can be split into second-ordenetaiors,
so the power spectrum follows.

The problem with this approach to magnetic turbulence is tha
the Gaussian closure essentially assumes a structurelessnn-
phased magnetic field, which then is, indeed, fully charamd
by its power spectrum. It is evident in E] (1) that all phase i
formation, which could tell us about the field structure, aostl
in the power spectrum. As we explained above, both numerical
and observational evidence (and, indeed, intuitive reagorsee
Schekochihin et &l. 2004; Schekochihin & Covilley 2005) shiust t
magnetic fields do have structure and are very far from being a
collection of Gaussian random-phased waves. Their spttinas
little about this structure. This rather simple point isigitrated in
Fig.[: the right panel depicts an instantaneous crossoseofia
3D magnetic field obtained in a typical MHD dynamo simulation
taken from Schekochihin etlal. (2004), while the left pareives a
synthetically generated divergence-free Gaussian rarfigdehwith
exactly the same power spectrum (shown in Elig. 2, left paiiék
folded structure discussed above is manifest in the simdlfeld
but absent in the Gaussian one: in the former case, the fipid ty
cally varies across itself on a much shorter scale than atsetf
and the regions of strongest bending are well localizedredsein
the latter case, the field is uniformly tangled and has simvéaia-
tion along and across itself.

So how can one dierentiate between suchfi@rent fields in a
systematic and quantitative way (i.e., other than by singbking
at visualizations)? As was pointed out by Schekochihin 2802,
), this can be done by looking at the statistics of theiten
force

B-VB
4

= @

As a formal diagnostic, the tension force is a measure notojus
the field strength but also of the gradient of the field alosglft

thus it is strong if a field line is curved, and weak if the figlukel

is mostly straight. The tension-force field associated witblded
magnetic field (strong, straight direction-alternatingdein the
“folds”, weak curved fields in the “bends”) will obviously hery
different from the one associated with a random Gaussian field. As
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shown in Fig[® (right panel), their power spectra
T(K) = 4rk*(|F(K)[%) ©)

do, indeed, turn out to be veryftérent: flat for the folded field,
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to have depth in this direction. The magnetic field can be decom-
posed into two parts:

B=B+h, (5)

peaked at the smallest scales for the Gaussian field. Why a flatwhereB = (B) is the regular (mean) field throughout the volume

tension-force spectrum is expected for a folded field isudised in
Schekochihin et al. 2004, the$r3.2.2, where numerical measure-
ments of the tension-force statistics can also be foundomtrast,
for the Gaussian field, one obviously gai) « k*M?2, hence the
peak at the small scales.

In physical terms, the tension force is one of the two compo-
nents of the Lorentz force
1 B2 B-VB
EJXB__V§+ o R (4)
where the first term on the right-hand side is the magnetissure
force, and the second term is the magnetic tension forcesfazed
in Eqg. [2). In subsonic turbulence, the tension force esagntle-
termines the dynamical back reaction of the magnetic fielthen
plasma motions because regions with higher magnetic peesan
be expected to have correspondingly weaker thermal pessar
that the magnetic pressure forces are mostly balanced lnstply
directed thermal pressure forces.

Thus, measuring tension-force power spectra not only germi
one to discriminate quantitatively betweerifeient magnetic tur-
bulence scenarios but also provides a detailed insightfet®&HD
physics occurring in space, because it quantifies the piepesf
the dynamically relevant force in the magnetic turbuletids.per-
haps worth stressing this last point. In principle, many-ditther
statistical quantities that one might construct out of thek&s cor-
relators should be able to discern betwesdfedént magnetic-field
structures, but the tension-force power spectrum also hasaa
physical meaning.

Itis a stroke of luck that not only the tension-force powesesp
trum is the diagnostic that we would ideally like to know frahe
theoretical point of view, but it turns out that, under miichpli-
fying assumptions, it can be fully recovered from the stiati$in-
formation contained in the Stokes correlators and, theeefib is
observable! This will be demonstrated in detail in the foilag
sections. Such an outcome is not automatic: other potbniral
teresting statistical quantities such as the magnetioggngower
spectrum or the magnetic pressure-force statistics aresmati-
rectly imprinted into the Stokes correlators and requirghier as-
sumptions in order to be extractable from the same data.

3 METHOD

In this section, we outline a formal theoretical framewank ¢on-
verting polarized-emission observables into the phyfidalerest-
ing statistical characteristics of the magnetic field urmleumber
of simplifying assumptions.

3.1 Magnetic Field

Let us assume some volurieof interstellar or intracluster plasma
to be filled with a magnetic fiel@(x) and a magnetized relativistic
electron population giving rise to the synchrotron emissi@ ob-
serve (FigB). We use a Cartesian coordinate syskeyn), where
zis the line of sight. The volume under consideration is agzlim

under consideration arlis the fluctuating (“turbulent”) field. The
former is assumed to be known and the latter is what we aim to
study. We will work out its various correlation functionsdatheir
relationship to observable quantities—this can be donle inopo-
sition space and in Fourier space in largely analogous weys.
Fourier transform of the field is defined according to
b(k) = 1 f dBxe™®*b(x),  b(x) = Zé%(k), (6)
v K
wherex = (X,¥,2). In what follows we will drop the hats on the
Fourier transformed quantities. Note that discrete andioous
wave-vector spaces are related via a simple mnemonic:

%
zk:@ (Zﬂ)3fd3k.

3.2 Assumptions: Homogeneity and Isotropy

@)

We will make two key assumption about the fluctuating magneti
field: statistical homogeneity and isotropy. The first ofsthés not a
serious restriction of generality as, essentially, we ddilk to cal-
culate statistical information based on data from subvelsimithin
which system-size spatial variation of the bulk propertiethe as-
trophysical plasma under consideration can be ignoreds&bend
assumption, the isotropy, is more problematic becauseedribwn
property of magnetized turbulence to be strongly anisatreth
respect to the direction of the mean figidovided the mean field

is dynamically strongsee discussion and exhaustive reference lists
inSchekochihin & Cowléely 2005; Schekochihin ell al. 2007ilt,
therefore, only be sensible to apply our method to astrdaphys
cal situations where the mean field is either absent or weak, i
B < (|bj?). This should be a very good approximation for the
ICM and may also be reasonable in parts of the ISM (e.g., in the
spiral arms; see Haverkorn et lal. 2006, 2008).

In what follows, we will first consider the case Bf= 0 and
then provide a generalization of our results to the case oakw
mean field (Sed_316). In both cases, we will first show how far
one can get without the isotropy assumption and then fincbiirgt
assuming isotropy are we able to calculate the tensiorefpoaver
spectrum. It will also turn out that, in the case of a non-aeeak
mean field, additional information can be gleaned from podal-
emission data, including the power spectrum of the fluatggtteld
(normally not available without the Gaussian closure, asudised
in Sec[2).

Physically, we might argue that a weak mean field does not
modify the turbulent dynamics and, therefore, does notlbtea
statistical isotropy of the small-scale turbulent field vidoisly, if
the bulk of the magnetic energy turns out to reside above or at
some characteristic scalg, the statistically isotropic fluctuating
field at that scale will look like a (strong) mean field to fluations
at scales smaller thdpand assuming isotropy of those fluctuations
will almost certainly be wrong. Thus, our method can only ke e
pected to handle successfully magnetic fluctuations aesdatger
thanlg. This, however, is diicient to make the outcome interest-
ing because the key question in the theoretical discussibost
the nature of the cosmic magnetic turbulence referred temn[3
is precisely what determinés (is it the reversal scale of the folded

© 2008 RAS, MNRASD0O,[THT9
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fields? what is that scale?) and how diagnosing the spatisitate

of the field at scales abovg might help us answer this question.
Note that a field organized in folds or filaments, as in Elg. 1

(left panel), is statistically isotropic because, while folds extend

over long distances, their orientation is random.

3.3 Observables: Stokers Parameters

Our direct observable is the partially linearly polarizgdhrotron
emission of the relativistic electrons gyrating in the metgmfield.
This emission is measured by radio telescopes in projectita
the sky in terms of the Stokes parameter® andU. Let us briefly
recapitulate the relevant physics.
We assume a relativistic electron population that is sihatia

homogeneous, has an isotropic pitch-angle distributiod a
power-law energy distribution:

N(y)dy = CyPdy, (8)

wherey is the Lorentz factor antll the number of electrons per

per unit volume. The observed emission will then be paytitat-
early polarized|(Rybicki & Lightmah 1979) and, thereforeaay
given observed (radio) frequeneyit is fully characterized by the
Stokes parametells Q andU as functions of the sky coordinate
X, = (X Y) (the spatial coordinate in the plane perpendicular to the

A RSN

2 TSN VR

LR
"5'—"<.\¢‘,

synchrotron em ssi on

Y

-+

Figure 3. Magnetic field and the observables: artist's impression.

as the following line-of-sight integrals

line of sight). This is explained in somewhat more detail ip-A 1 rt 5 5
pendixa. ) = © [ B0+ B,

We further assumep = 3 in Eqg. [8) (corresponding to OL
the frequency distributionc v~!). This is a convenient choice Q(x)) = Ef dz[BZ(x) _ Bz(x)]

' L X y >

because then all Stokes parameters are quadratic in the mag- 0
netic field, which means that their two-point correlatiomdu 1 L
tions will give us 4th-order statistics. We stress that thisver Ui = Ej; dz2B,(x)By(x). ©)

law, although expected by theoretical shock acceleratiau-m
els ), is, of course, a simplification of realise¢,
e.g.?). However, it is usually dhisiently good
approximation over fairly wide frequency ranges for many-sy
chrotron sources. Thug,= 3 is reasonably close to the values ob-
served for our own Galaxy (Reich & Reich 1988; Tateyamalet al.
M), the values obtained by CMB foreground subtractiah-te
niques (e.gl Teamark & Efstathlou 1996; liveira- e
[2008] Dunkley et dl. 2008; Bottino et|al, 2008), and foundxra
galactic observations of radio-galaxiés (Beck éf al. 1998hile
the theoretical developments that follow do depend on tagia 3,
the numerical tests of the resulting method reported ini&&owill
show that it is not essential thpt= 3 be satisfied particularly pre-
cisely. Deviations fromp = 3 can be addressed analytically in a
more quantitative way by a Taylor expansion aroymne 3, which
we leave for further work.

Finally, we assume the observed volume to be optically thin
and its Faraday depth to be negligible at the observatiauéecy
v. At high frequencies, both conditions tend to be satisfieaar
day rotation being in most cases the greater constrainteXamn-
ple, in our Galaxy, Faraday rotation is a relevant phenomeato
frequencies below a few GHz, while the medium remains mostly
optically thin down to frequencies of a few hundred MHz, wer
free-free absorption starts being relevant @i,mnd
references therein). In cases where Faraday rotationssipren the
frequency range of the data, we assume that a Faraday diexnota
has been applied. Even in the case of source-intrinsic Bgraw
tation, this can still be achieved using Faraday tomographiz-

niques(Brentjens & de Bruln 2d05).

Under these conditions the Stokes parameters can be writtenCijmn(r) =

© 2008 RAS, MNRASD00,[THT9

whereL is the depth of the emission region. The dimensional pref-
actors converting the magnetic-field strength to radio sivity
have been suppressed (see Appehdix A).

3.4 From Stokes Correlators to Magnetic-Field Statistics

Thus, observed polarized emission provides us with thrakisc
fields related quadratically to the magnetic field projecietb the
plane perpendicular to the line of sight. We can construat/d@- t
point correlators of these fields, which we will refer to as 8tokes
correlators:

xy(r) = (X(X) Y(Xo + 1)), (10)

where X, Y € {I,Q,U} and(...) denote a statistical average per-
formed over the observational maps, which usually meanswel
averaging with respect to the sky coordinate

Are the Stokes correlators fiicient to reconstruct the statis-
tics of the magnetic field?

In formal terms, the statistical properties of a stochafgtic
are fully described by its-point distribution function, or, equiva-
lently, by the full set of it$1-point,m-th order correlation tensors. In
practice, this is too much information, most of it is not alvsble
in any realistic situation, and in any event, only a few otneorre-
lators can be interpreted in simple physical terms and leeegfore,
useful for a qualitative understanding of the field struetus the
Stokes correlators are 4th order in the magnetic field anduanea
its correlations between two points in space, it is the twiop
4th-order correlation tensor that will be relevant to thiscdssion:

(Bi(X)B;j(X)Bm(X + 1)Bn(X + 1))
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(Hij () Hmn(X + 1)),

where, for notational convenience, we have introduced ¢he: tien-
sorH;; = B;B;. The angle brackets denote statistical average, un-
derstood ideally as an ensemble (or time) average and itiggac

if we are dealing with one observed realization of the fiekltre
volume average...) = (1/V)fd3x(. ..)- Implicitly, performing a
volume average relies on the assumption of statistical lyeme-

ity (Sec[3.2), i.e., independence of the statistical pridge of the
field of the reference point where they are calculated. In terms of
Fourier-space quantities, we have

Cimr() = Y €“"Cijmn(K),  Cijmn(K) = (H;; (OHme(K)),  (12)
k

(11)

where the Fourier transforms of all quantities are definadlaily
to Eq. [8).

In general, the tenso€i;n» depends on very many inde-
pendent scalar functions, so the 6 available Stokes ctwrsla
[Eq. (Z0)] cannot provide all the required information neszary to
recover the magnetic-field statistics. Indeed, let us vihiéeStokes
correlators in terms of the correlation ten&hfm,. It is particularly
easy to do this in Fourier space because the line-of-sitgmiation
in Eqg. [@) amounts simply to picking tHe = 0 component of the
field:

I(k)) = Hx(ky) + Hyy(ky),
Q(ki) = Hxx(kL) - Hyy(ki),
U(ki) = ZHXY(ki)v (13)

wherek, = (ky,ky,0). Therefore, the Fourier transforms of the
Stokes correlators [E]_{ILO)] are

2:II (kL) = CXX,XX(kL) + CXX,W(kL) + C:x,yy(kL) + ny,yy(kL)a
ZQQ(kL) = Cxx,xx(kL) - CXX,YY(kL) - C:x,yy(kL) + ny,yy(kL),
Zuu (kL) = 4ny,xy(kL)s
Zio(ky) = Cuox(ki) = Cuxyy(ky) + C;xw(kL) = Cyyyy(kL),
Tu(k) = 2[Cooy(Ki) + Cpul(ky)|,

ZQU(kL) = 2 [Cxx,xy(kL) - ny,xy(ki)] . (14)
This immediately implies that

Coonk) = 7 [Z(k.) + Zaq(k,) + 2ReXig(K.)],

Comks) = 71%n(K) + Zoa(ks) - 2Resig(k.)],

Com(k) = FIZ(k) - Zgo(ky) - i2mg(k.)].
Cam(k) = FRuu(ko)

Coonlk) = 7 1Z0(K)+ Squ(k.)].

Comk) = 5 [B(k) ~Sau(k.)]. (15)

These are the only components of the correlation tensorE). (
that are observable directly and it is only their dependencéhe
wave vector perpendicular to the line of sight that can bégdo
No correlators that involve the projection of the field on lihe of
sight (B,) can be known.

The number of independent scalar functions that determine

EnRlin

know 7 independent scalar functionskof |k| to reconstrucCij mn
fully (see Appendi{ BII3). It also turns out that, if no meagldi

is present B = 0), only 4 of the Stokes correlators of an isotropic
field contain independent informatioB;;, two of Xqq, Zuu, Zou
and one off g, Xjy. For example, if we keep, g0, Zuu and
%,q, the other two Stokes correlators are

Z|Q tan 2,0,

1
3 (Zqq = Zuu)tandp,

iy

(16)

ZQU

where ¢ is the angle betweerk, and the x axis of the
frame in which the Stokes parameters are measured ki.e~
k. (cosy, sing, 0). These relations are useful in constructing well
behaved expressions for the observables (see[Sdc. 3.5 and Ap
pendiXB2.2). They could also be useful in practical sitragiwhen
the Stokes maps might not be perfect, so one might have more (o
higher-quality) data on some Stokes correlators than oersth

We see that, even with isotropy, we do not have enough ob-
servables to measure the general 4th-order statistics ofidignetic
field (7 independent scalar functions needed, 4 availablejv-
ever, the information carried by the Stokes correlatorsduaffice
to reconstruct some of the correlation functions of the fieldw
to determine whether any particular 4th-order correla@tiserv-
able is explained in Appendix B2.2. In a stroke of luck, we find
that we can reconstruct the tension-force power spectrurchas
a physically interesting quantity because it diagnosegéumnet-
rical structure of the magnetic field and its dynamical atba the
plasma motions (Sec] 2). Although it follows from the gehpra-
cedure given in Appendix B2.2 (see Appendix B2.3), it is p@h
illuminating to provide an individual derivation for thisigntity.

3.5 Tension-Force Power Spectrum

The tension force [Eq[12)] i6i = B;jd;Bi = 9;Hij, where we have
omitted the factor of 14r). Therefore, its spectrum [EQ(3)] is

T(K) = 47k2D(K), (17)
where
O(K) = (F/(K)Fi(K)) = kikCijin(K). (18)

We do not have any directly observable information abiqut O,

so let us sek = k, =k (cosgp, sing,0). Then
O(k.) = 1 + Dy, (19)

where®; is the part that is directly recoverable from the Stokes
correlators [using EqC(15)]:

K [Coon(s) + Cy (k)| + K [Coa(Ks) + Cypp(K)]
+ 2kxkyR9[Cxx,xy(kJ.) + C;y,xy(kl)]

@,

1 .
Z— k2 [Z” + EQQ +2Zyu + 2Re(2|Q C0520 + 2y Sin 2,0)] s

(20)
whereas®, is the part that contains magnetic-field components

parallel to the line of sight and, therefore, not picked upthy
polarized-emission observations:

D, = kicxzxz( k) + kﬁcyzyz( K.) + 2kekyReCyzyo(K.). (21)

Cijmn is reduced and becomes closer to the number of observableslt is to reconstruct this missing information that we havaseume

if we make some symmetry assumptions and, in particularogp
(Sec[32). Under this assumption, it turns out that we oeldto

isotropy, because it gives us a symmetry relationship betvike
unobservable correlators and the observable ones. If na fiedd

© 2008 RAS, MNRASDOO [THT9
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is presentB = 0), it is possible to show (see Appenfix B2.3) that,
for a statistically isotropic magnetic-field distribution

ek,
-k
= % k2 Euy - Zqutan 2).

Assembling the directly observable [EG.]20)] and the irger
[Eq. (22)] part of the tension-force power spectrum, wevarst an
expression fod(k) solely in terms of the Stokes correlators. There
are two further steps that need to be taken to bring this ezme
into a practically computable form.

Firstly, let us recall that, while the Stokes correlators in
Eg. [20) and Eq[{22) depend on the veckgr, the tension-force
spectrum® must depend only ok = |k_|. Itis, therefore, permis-
sible (and, in fact, increases the quality of the statijticsverage
our expression fo over the anglev (i.e., over a shellk,| = kin
the wavenumber space).

Secondly, the fact that, for an isotropic field, only 4 of the
6 available Stokes correlators are independent [see[E}j. ¢a6
be used to construct many theoretically equivalent exjmesgor
®(K). Additional freedom comes from the angle independence of
®(K) and, therefore, the possibility of doing weighted anglerav
ages (see Appendix B2.2). The strategy for choosing a péatic
formula for practical computations is to avoid having silagities
in the codficients: such as the factor of tag ih Eq. [22). How to
do this systematically is explained in Appenflix B2.2, butchee
simply give the result:

1 21
T(k):ék“fo dy

0, = kZ{cxy,xy(kL)— [cxxxy(ki)—cyy,xy(ki)]}

(22)

2+ 2(Z|Q Ccos 2,0 + 2 sin 2(,0) - ZQU sin 4p

+ % (3—cos4p)Zqq + % (3+cosd)Zyy | (23)
This formula is derived in Appendix B2.3 from our general huet,
but can also be easily seen to follow directly from Hg.l (20dl an
Eqg. [22) via Eq.[(Ik), angle averaging and multiplicationtbg
wave-number-space volume factor afkd [see definition ofT (K),
Eqg. (I7)]. Eq. [[2B) is our final expression for the tensioreéo
power spectrum.

where unprimed quantities are evaluateg and the primed ones at
x+r. Due to homogeneity, correlation tensors depend onlyamd

not onx (and the statistical average can be interpreted as a volume
average ovek). This means that the first three terms in Hql (24)
have no spatial dependence at all, while the rest of the terzso

be written in Fourier space as follows:

Ciml) = 5 [ Fre™ Cim(n)
= EiEij,n(k) + EiEan,m(k)
+ EjEmCi,n(k) + EjEnCi,m(k)
+ Ec’;mj(k) + chfmi(k)
+ Emcij,n(k) + EnCij,m(k)

+ Cij,mn( k) (25)

This is the Fourier-space correlation tensor introducegn(12),
which has now been expressed in terms of the mean field and the

second-, 3rd- and 4th-order correlation tensors of the vaiiig
field:

an() = GI9D(K) = [ Fret oy, (26)
1 .

G = (09D = 5 [ Fretipbby. (@)

Gim(K) = (5 (0Pl = 5 [ Fre bbby, (28)

whereh;j (k) = (1/V)fd3x e %Xpy (x)bj(x).

Thus, the presence of the mean field leads to second- and 3rd-
order statistics of the fluctuating field appearing alongskee 4th-
order ones in the tens@;j .. Since the Stokes correlators probe
the total field, this means that some information about ticerse-
and 3rd-order statistics could be extracted from them,igeal/the
mean field itself can be independently determined and thed us
as a “probe” (in fact, it turns out that only its orientatioengrally
has to be known and even that knowledge is not always negessar
although easily obtainable; see ApperdiX B3).

As before, we need additional symmetry assumptions about

Thus, we have accomplished our goal of showing that, despite the fluctuating field in order to make a transition from thek&to

the scarcity of the observable information, the tensiaedgower
spectrum can be fully reconstructed from the available &taor-
relators (in AppendikB2]2, we also show how to construcotier
observable 4th-order quantities). In Jec. 4, we will testroathod
of doing this, but first, we generalize it slightly to the caseveak
mean field.

3.6 Case of Weak Mean Field: Observing the Magnetic-Field
Power Spectrum

We now relax the assumption th&t= 0 in Eq. [3). Then the 4th-
order correlation tensdZi; m, [Eq. (T1)] can be written in terms of
the mean field and of the correlation tensors of the fluctgdieid:

Cijmn(r) =

BiB;BnBy + BiBj(b;,b;) + ByBn(bib;)
+ BiBm(bjb},) + BBn(bjb,)

+ BiBm(bib),) + B;Bn(bjbi,)

+ Bi(bjb,0,) + Bj(bib )

+ Bun(bib;b),) + By(bibjb,)

+ (bib;by,br), (24)

© 2008 RAS, MNRASD00,[THT9

correlators to theoreticallghysically interesting quantities. The
technically rigorous choice would be to assume that théstita of
b will depend on one special direction, that of the mean fietd, a
be isotropic in the plane perpendicular to it. This, howelesds to
a very large number of independent scalar functions appegani
the general form o€;i;»» and while it is probably worth working
them all out, it is quite unlikely that the 6 available Stokesre-
lators will be stficient to reconstruct anything of value. Therefore,
we make a simplifying assumption (the physical grounds floicty
are discussed in Séc. B.2) that the mean field is so mﬁgal«(<b2>)
that the fluctuating field remains statistically isotrogimder this
assumption, the case of a weak mean field becomes a straightfo
ward generalization of the zero-mean-field case considavede.
The main gain is that a weak mean field allows us to use the Stoke
correlators to determine not just the power spectrum ofehsion
force but also the power spectrum of the magnetic field itsedf
M(K) = 4rk?c;; [Eq. ()], it is recovered from the second-order
terms in Eq.[(2b).

The mathematical details of reconstructing the magnegid-fi
power spectrum are relegated to Apperidix B3.2. There arg/ man
equivalent expressions that can be derived for it; here wplaly
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MHD Synthetic Gaussian

U,p=3 U,p=3

Figure 4. Examples of synthetit, Q andU maps generated from an MHD-simulated magnetic filglff panel$ and a synthetic Gaussian fielight panels.
The same data cubes were used as in[Fig. 1.
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10?

10°

Gaussian field, true T(k)
Gaussian field, projected T(k)
MHD field, true T(k)

MHD field, projected T(k)

1

1074 F Gaoussian field, true T(k)
Gaussian field, reconstructed T(k)
"""""""""""""""""" MHD field, true T(k)
MHD field, reconstructed T(k)
107° e
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k/2m

100

1 10 100
k/2m

Figure 5. Left panel:The bold solid red line shows the tension-force power spattieconstructed via Eq._{R3) from the synthetic Stokes r(féigd4) based

on an MHD-simulated field (saturated state of the Run

I|._2_DQ4). The bold dotted black line is the sapectrum computed directly

from the full three-dimensional data (same as Eig. 2, rigimgh). The errors bars on the estimated spectrum are otthjneomparing results from synthetic
Stokes maps obtained by integrating along three orthodtinab of sight” (the three axes of the data cube). The thifdddue line with error bars and the
thin dotted black line represent analogous informatiorafeynthetic Gaussian fielRight panel:Similar to the left panel, but the reconstructed tensiacdo
spectra are based not on the estimate [EG. (23) but on thefoithiation about the projected (line-of-sight integratsplectra, i.e., they are given by the sum
of @1 [Eq. (20)] and®2 [Eq. [Z3)] calculated in terms &;ijmn(k. ) (including its unobservable line-of-sight components).

three of them:

2k2 21
- f d(p R92|Q
B, cos® Jo

2K? o
= =z f de ReZiy
B, sin20 Jo

k2 21
- —— [ de(Ee0- ).
2B, sin2® Jo

M(K)

where® is the angle between theaxis and the projection of the

(29)

mean field onto the plane perpendicular to the line of siBhtjs
the magnitude of this perpendicular projection. Althouiglse are

easy to measure (Appendix BB.3), they are manifestly noesiec

sary to determine the functional shape of the spectrum. , TWes

have three independent expressions from which we can dékigce

functional shape. That the results should be consisterit arne
another is a good test of our assumptions (most importattity,

statistical isotropy of the fluctuating part of the field).

The calculation of the tension-force power spectrum igelyti

analogous to the zero-mean-field case (see Appdndix B3i). T

result is that Eq.[(23) still holds subject to two modificasoreal
part has to be taken of all Stokes correlators and a term piopal

to M(K) has to be subtracted, namely
1 ,=2
Ta:0(k) = ReTgo(K) - 5 KB, M(K).

whereTg_y(K) is given by Eq.[(ZB).

(30)

Finally, a disclaimer is in order with regard to the pradtmya-
plicability of the results obtained for the case of a weak mézld.
Since we assuzmed the mean field to be small compared to the ﬂuc'MHD simulated field and for a synthetic Gaussian field. They ar
tuating field,B~ < (b?), the terms in Eql{24) that contal) are

small compared t@b;b;b;,by,). Thus, in order for the second-order

statistical information in Eq[{24) to be recoverable, th®es as-
sociated with the imperfect isotropy of the fluctuating fieldst be

very small—smaller tha@(Ez). It is not guaranteed that this is ei-

ther justified physically or achievable in practice and teedict on
the usefulness of the results of this section will dependxbtersive

© 2008 RAS, MNRASD00,[THT9

numerical tests, which will not be undertaken in this papet are
left for future work.

4 NUMERICAL TESTS

Having presented the analytical derivation of our methog naw
present a proof-of-concept numerical test by analyzing data
cubes containing randomly tangled magnetic fields: a swdira
magnetic field generated by fluctuation dynamo in an MHD simu-
lation (Run S4 of Schekochihin et/al. 2004) and a divergdree:
random-phased Gaussian field synthetically generatedvi the
same spectrum as the MHD field (Hig. 2; snapshots of the twdsfiel
are shown in Fid.]1). Both fields have zero mean, so the restilts
Sec[3.6 are not tested here.

41 Caseofp=3

We first test the validity of our method for the case of the ®tat
spectral indexp = 3, assumed throughout the analytical develop-
ments presented above. For each data cube, we designaté one o
its axes as the “line of sight” and integrate the field alongadt
cording to Eq.[(P). This produces three synthetic two-disiamal
Stokes maps (Fifl] 3; examples of su¢k) andU maps are shown
in Fig.[). Since we have the full three-dimensional infotioa
for both fields, we can compute the tension-force power speiét
rectly and then compare them to the spectra obtained by iagply
our estimator, Eq[{23), to the synthetic Stokes maps.

In Fig.[3 (left panel) we plot the tension-force power spactr
reconstructed using our estimator, Hq.l(23), for a reatinatf an

compared to the same spectra directly computed from the-thre
dimensional data cubes [according to Hg. (3)]. The recoostd
spectra are obtained as an average over three synthetesStaips,
each obtained by choosing as the “line of sight” one of theahr
orthogonal axes of the data cube. This allows us to estinmate t
accuracy of the reconstruction, represented in [Hig. 5 byethar
bars.
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W 4

.

g |

I,p=15 I,p=45

Qp=15 Q,p=45

U p=15 U,p=45

Figure 6. The Stokes maps calculated according to Eqg} (31) for twemervalues of the electron spectral indpx= 1.5 (left panel$ andp = 4.5 (right
paneld. These are to be compared with the Stokes mapp fo8 shown in the left panel of Fifll 4.
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For both types of field, the performance of our estimator is
clearly excellent. The relative error bars for the Gausseardom
field are substantially smaller than for the MHD field, whichkas
sense in view of the former's more small-scale and less tstred
character. The salient point that emerges from the congran$
the two fields is that the tension-force spectrum can be eredv
from the synthetic observations with an accuracy easilynjteng
to discriminate between the structured (folded) MHD field &me
structureless Gaussian one. This suggests that the prbpstma-
tor is a robust tool for diagnosing magnetic turbulence fiooa
larized emission data and for discriminating betweedfedént sce-
narios of magnetic-field evolution and saturation (seeudision in

Sec[2).

The test that we have presented only allows us to assess the

quality of our method under idealized conditions, namebgumn-
ing that the observation is noiseless, that no observatigimalow
effects are present, that the relativistic-electron energlyibution
is homogeneous and has the spectral inglex3, and that the Fara-
day rotation is either negligible or has bedfeetively subtracted
(Sec[3:B). Thus, the errors in our reconstructed speatrdw to
two factors: firstly, a certain amount of information is lastthe
projection of the three-dimensional data onto a two-dirtara
Stokes map (the line-of-sight integration); secondly, dssump-
tions of statistical homogeneity and isotropy ($ed. 3.@pruwhich
our estimator depends, are imperfectly satisfied by anycpdat
realization of the field. It is interesting to ask what is tledative
contribution of these two sources of inaccuracy to the srobire-
construction represented by the error bars in the left pafiéig.[3.
This is addressed the right panel of the same figure, whichabk a
ogous to the left panel, but instead of the spectra recartetiwvia
Eqg. [23), it shows the spectra resulting just from the lifisight
integration (setting, = 0) of the full tensorCjjn, i.e, they use
the unobservable components of this tensor that enter in Eqgl (21)
rather than infer them from the observable components aad th
isotropy assumption. Comparing the right and left paneBigfi3
suggests that much of the reconstruction error (espeaaligrge
wave numbers) is due to the loss of information associatéutive
line-of-sight integration, not to imperfect isotropy—atfis is de-
spite the fact that the MHD field contains magnetic structuvih
virtually box-size parallel coherence lengths (see thegahel of

Fig.[).

4.2 Caseofp#3

Assuming that the electron spectral index 3 was an idealization
of the real observational situation that we needed for therttical
justification of our method because Stokes parameters @cdyst
guadratic in the magnetic field only § = 3 (see AppendikR).
While p = 3 is not a bad approximation of reality, one cannot ex-
pect it to be satisfied very precisely (see discussion arstaetes

in Sec.[3.B), so in order for our method to be practically uisef
for real observations, it must be reasonably insensitiitbeexact
value of p. This sensitivity is very easy to test.

L
= % fo dz[B2(x) + B(x)

Clearly, for p > 3, the extra factor of & + B2)"3/* causes the
statistics to be féectively weighted towards regions where the field
is stronger, foip < 3, towards those where it is weaker. This point
is illustrated by Fig[6, which shows that increagiegreasingp
roughly corresponds to increasjdgcreasing the contrast in the
Stokes maps.

The range of values thgt can realistically be expected to
take is roughlyp € [1.5,3.5] (see references in Sdc. 3.3). Since
this implies that p — 3)/4 € [-0.3750.125] are not very large
powers, there is priori a hope that thefiect of deviations from
p = 3 might not be catastrophic for our estimator. This, indeed,
proves to be correct. In Fifl] 7, we show the tension-forcetspe
reconstructed from Stokes maps generated using[Eh. (3t)awit
number of values op and compare them to the true spectra. Even
for values ofp significantly diferent from 3 (roughly in the range
p € [2.5,3.5]), our estimator works extremely well, except at the
highest wave numbers.

Note that the extra factor 0B+ BZ)*-®/*in Eq. [31) changes
the overall amplitude of the Stokes parameters in compariso
what it would have been witlp = 3, so we can only hope to
recover the functional shape of the tension-force powectspe,
not its overall magnitude. In the numerical data used abbige t
potential source of reconstruction error is not very visibecause
values of the magnetic field are close to unity in code unigs, b
in any realistic observational situation, the shift in aitygle of
the Stokes parameters may be significant. Importantly, hexe
we see in Fig[J7 that in all cases we have tested, the shape of
the reconstructed tension-force power spectrum still maike
unambiguously possible to discriminate between qualiti
different field structures as represented by the MHD and Gaussian
fields.

](9-3)/4

U(x,)

2B, (x)By(X). (31)

The numerical tests presented above are meant to demenstrat
in principle that the approach taken in this paper is a vatiel. &Ve
did not attempt to test the robustness of our approach bydira
into our synthetic data model all of the complications thidtavise
in handling real observational data. A known caveat is thseo
vational window functions, due to the finite size of the restborce
of the telescope beam, will lead to a redistribution of poimethe
recovered spectrum, so that the large-scale power may s\@np
signal at high wave numbers_(Vogt & Enlin 2003). Both furthe
tests and applications of our method to real data are lefutioré
work.

5 CONCLUSION

We have demonstrated that it is possible to reconstruct alaep
spectrum of the tension force associated with tangled @isysical
magnetic fields as a linear combination of the radio syncbnot
observables, the Stokes correlators. This was done undet a s
of simplifying assumptions about the synchrotron emissiata

Let us generalize our definition of the Stokes parameters (Sec[3.B) and also by assuming a statistically homogenaods

[Eqg. (9)] to the case op # 3: suppressing the dimensional pref-
actors as before, we get (see Apperidix A)

) = [ " a8 + B0] " 8200 + B0

L

1

L —
Q) = [ dzfiog+ B

B2(x) - B(¥)].
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isotropic stochastic magnetic field (S€c.13.2). The tenfioce
power spectrum emerges as a particular case from a subsket of o
servable 4th-order statistics (SEc.]3.5 and Appendix]B2a3hon-
trivial fact because in general, the Stokes maps do not caffy
cient information to reconstruct all of the 4th-order ctaters of
the magnetic field (see S&c.13.4 and AppefdixB2.2).

The observability of the tension-force power spectrum is a
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Figure 7. These plots show the same comparisons as the left panel @, Figt for a number of values of the electron spectral inglex3. The Stokes maps
were calculated according to EG.131). Some of these Stokgs mre shown in Fif] 6.
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stroke of good fortune because this quantity plays an iraport
role in diagnosing the spatial structure of the magnetibuience
(Schekochihin et al. 2004) and allows one to distinguishvben
different theoretical scenarios for the evolution and satmatif
the cosmic magnetic field, which was not possible to do on the b
sis of lower-order statistics such as the magnetic powertape;

it also reveals physically interpretable dynamical prtipsrof the
system under observation, namely the force exerted by tledine
the ambient plasma (see discussion in Ekc. 2).

Furthermore, we have shown that if the observed magnetic

field possesses a small regular component that doesfliect &he
isotropy of the fluctuating part of the field, it may be possits
obtain from the Stokes maps the power spectrum of the fluntyuat
field itself, as well as that of its tension force (Jecl 3.6).

Thus, physically relevant information about the spatiaict
ture and dynamical properties of the magnetic turbulenamis
tained in the polarized emission maps and can be extracted. T

work is an attempt to pave the way towards analyzing the large

amount of existing and upcoming radio-synchrotron obs&mwal
data (see, e.d.. Gaensler 2006; EnRlin kt al.|2006: Beck) 2G@s
the aim of achieving a better understanding of the natureagfima-
tized turbulence in cosmic plasmas.
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APPENDIX A: SYNCHROTRON EMISSION AND THE
STOKES PARAMETERS

A spatially homogeneous, pitch-angle-isotropic and pelaar
distributed in energy relativistic-electron population dssumed
[Eg. (8)], The resulting synchrotron emission is partidihearly
polarized. Its intensity and polarization depend solelff@nmag-
nitude and orientation of the magnetic fiddd projected onto the
plane perpendicular to the line of sight and on the electietrid
bution [Eq. [8)].
The synchrotron emissivity (i.e., power per unit volume per

frequency per solid angle) is usually subdivided into twaneo
ponents, respectively perpendicular and paralleBto following

Rybicki & Lightman\ [1979),

ji@x) = [F(p)+G(p)]w™PB (X))
i) = [F(p) - G(p)]w* P/ZB, (x)[P72,
wherew = 2nv, v is the observation frequency, is the spatial

position, pis the spectral index of the electron distribution [Eq. (8)]
and

(A1)

V3el 2msc (1-p)/2
F(p = W(—) c
MeC’ 3e
p 1\2D2 (p 19
><r(4 12) o1 (27 12)
V3el 2mec (1-p)/2
G(p) = W(—) C
MC! 3e

P_ 1) oeayp (P, 7
XF(4 12)2 r 4+12 , (A2)
wherem is the electron massiis its chargecg is the speed of light,
andC is the prefactor of the electron distribution [Eg} (8)].

The specific intensity | and the polarized specific intenBity
are given by the following line-of-sight integrals ($ee B:966):

I(w, X.)

here
ft dz[j. (. %) + jy@. 9],

here

here )
Plw,x.) = f Az, (0, X) - jy (e, X)] €26, (A3)
tl

here

wherez is the line-of-sight coordinates, = (x,y) is the position
vector in the plane of the sky (perpendicular to the line ghgi
and the polarization angle is given by

X(X) = xo(x) + A*RM(x),

whereA = c¢/v is wavelength of the observed emission, the intrinsic
polarization angle is

(A4)

o) = tan =2, (A5)
Bx
and the Faraday rotation measure
here
RM(x) (A6)

= — dz Nhe(X) BA(X),
2””%04 there h() ()

whereny, is the density of thermal electrons aBgdthe projection
of the magnetic field on the line of sight.

The Stokes parameters are now defined as follows

I:fdQI, Q—iU:fdQPI,

where the integration is over the solid angle of the angudaolu-
tion element (the observational beam). If the spectrabinsieaken

to bep = 3 and the Faraday rotation in Ef.{|A4) is assumed to be
negligible (as discussed in SEC.13.3), the Stokes parasndgeend
quadratically on the components of the magnetic field peticen

lar to the line of sightB, = B, cosyg andB, = B, siny,. Indeed,
using the above definitions, we get

here
2F(3)w-1fo|9ft dz(BZ + B2),

here

here
263wt f dQ ft dz(BZ - B2),

here

here
2G(3)w™t f dQ f dz2B,By.
1l

here

(A7)

Q

U

(A8)

From these formulae, we recover the analytically converdefi-
nitions of the Stokes parameters, Hd. (9), by dropping theedi
sional prefactors and the integration over the angulatuéea el-
ement and normalizing the integrals by the depth of the eamiss
region.

Somewhat more generally, for arbitrapybut still neglecting
the Faraday rotation, we have

here .
2F (p) w(lfF')/Zfde dz(2+8) " (B2+ BY).
tl

here

here .
2G(p) w02 f o f dz(B2+ 8" " (B2 BY).
tl

here

here .
2G(p) w(l—p)/zfdgf dz(B§+ B§)(p 3)/4ZBXBy.
there
(A9)

Q

U

These formulae are the basis for Hq.l(31).

APPENDIX B: FOURTH-ORDER CORRELATION
TENSOR AND ITS REPRESENTATION IN TERMS OF
STOKES CORRELATORS

In this Appendix, we derive the general form of the 4th-orcier
relation tensoCj; m [Eq. (I3)] for a statistically homogeneous and
isotropic magnetic field and show what part of the relevaatisti-
cal information can be recovered using Stokes correlators.

B1 Symmetries and the General Form ofCij mn

In Eq. [25), the tensotijmn is Written in Fourier space in terms of
the mean field; and of the second-, 3rd-, and 4th-order correlation
tensors of the fluctuating fielo, denoted i, Cijm andcijm,. Each
of these correlation tensors depends on a certain numbealzfrs
correlation functions (see, e.940). Thisber can
be constrained if we take into account some intrinsic priagenf
correlation tensors (permutation of indices), of the fidldyt are
constructed from (it is a real, divergence-free field), additonal
symmetries we assume (homogeneity and isotropy). Let ukeimp
ment these constraints. The procedure is least cumbersdree w
applied to the second-order correlation tensor. We will&rgt in
detail on this example and then proceed analogously witl3ittie
and 4th-order correlators. All further calculations widl in Fourier

© 2008 RAS, MNRASDOO [THT9
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space, but exactly analogous calculations can be done itigpos B1.2 Third-Order Correlation Tensor

space if it is necessary to compute position-space coorslat . ,
P y pute p P Analogously to the above, we construct the general isatr8pi-

order tensor as follows

B1.1 Second-Order Correlation Tensor Gim(k) =i (al‘s”km + 20imk; + 830 mk; + 24kik km) * &€ijm
For a statistically isotropic field, the second-order datien ten- *seiipKpkin + &7€impkpk; + B€mpkoki, (B8)
sor depends on three scalar functions—this is shown by eanst whereay, ..., ag are functions ok = |k| only.
ing ¢, out of all possible isotropic second-rank tensors. In three Reality of the fieldsy; andby, implies
dimensigns, the available building blocks for these tens0esin, Gim(=K) = ¢ (K) (B9)
&mp andk;, the unit vector in the direction df. Therefore, R 1 m

1 whenceay, ..., ag are all real.
CGim(K) = > [m15im + rnZK&m] + iMaéimpkps (B1) Permutation symmetry,

Cjim(K) = Cijm(K), (B10)

where the scalar c@igcientsmy, mp, mz can only depend ok = |K|.
Sinceb; (k) is a Fourier transform of a real function, we must  impliesa, = ag, as = ag = 0, anday = ag.

haveb;(-k) = b; (k), whence Solenoidality of the magnetic field implies
Cim(=K) = Cim(K). (B2) kCijm(K) = O, (B11)
It is easy to see that this implies that, m, andms are real (the whencea; = 0 anday = —2a,. . .
factor ofi in front of ms was chosen deliberately to arrange for this Thus, the general form of the 3rd-order correlation tensor i
outcome). (K = iar(K) (5K + 6.k — 2k K

Sincec;, is a correlation tensor, it has a symmetry with re- in(k) A )( m ~ AJmk' If'AJ km)
spect to permutation of its indices: + ar(K) (eimpkpk,- + ejmpkplq). (B12)
Cmi (K) = (brn(K)bi(K)) = ¢ (k). (B3) .

B1.3 Fourth-Order Correlation Tensor

This does not bring any new information beyond the realityngf )
m, andm. In the 4th order, the number of terms in the general tensarbes

Finally, the magnetic field is solenoidabi(k) = 0, so we quite large. Constructing this general form out of the usudtling
must have blocks,di;, ki andejm, we get, via straightforward combinatorics,
kG m = KnGim = O. (B4) Cijmn(K) = €16ij0mn + C20imbjn + C30injm

+

. C45ij’\kml2n + 055mnKlA(j
This givesm, = —my, so the general form of the second-order cor-

relation tensor is + Cs‘si"{(j?"f Crdinkikn + Codjmki ko + Codjnkiken
1 o R + CiokiKjkmkn
Gun(k) = 2 (k) (dim N Kkm) + iMa(K)impk. (B5) +1i (Cnfijmr(n + Clzfijan + C13€imnRj + 014€jmnRi
i.e., it depends only on two scalar functions. If we take taee + C156pKpOmn + Cro€mnpKpdij + Cr7€mpKpGin
of this tensor, we obtain the magnetic-energy power spectru 4 ClgéinplA(p6jm + ClQEjmp&p6in 4 CzoEjnpRp(?im
[Eq. (D): + Cor€ijpKpkenkn + CozemngpkiK; + Cazeimpkokikn
M(K) = 4rkCc(K) = Ark’my (K), (B6) + Coa€inpKokikm + Coseimpkpki Ky + Casejnpkok Rm),
so we do not need to knom if we are only interested in the power (B13)

L Vogt & EnRlin (2003, 20 [ ;
spectrum ¢ ?h t.05) used thls’t properlty to[:t)r wherecy, ..., Cy are functions ok = |k| only. Note that there are
pose a way to measure the magnetic power spectrum so elyns te N0 terms of the forma;, koemngky because
of the scalar correlation function of the Faraday rotaticeasure

associated with a given magnetic-field distribution: aliio only €ijp€mng = OimOjndPY+ Gind jOS pm + igd JMIpn

one scalar function was available this way, assuming ipgtend — 8imigGpn = Gindmd PA— SigSjnd pms (B14)
restricting one’s attention to a particular quantity of picgl inter- )

est made it possible to make do with incomplete informatitie. so such terms are already present in the general form we bave c
follow the same basic philosophy in this paper, primarilapplied structed. , o

to the 4th-order statistics. Reality of the fieldh;; = bib; implies

. Note thatmg is a measure of reflection (pgrity, or mirr.o.r) NON- g (=) = ¢ un(K), (B15)
invariance of the magnetic field. ifiy; # 0, the field has helicity. If

we demand mirror symmetry of the field, whencec;, ..., cys are all real.

There are three permutation symmetries:
Cjimn(K) = Cijmn(K) (B16)

givesc, = Cg, Cg = Cg, C7 = Cy, C11 = C12 = C15 = Cp1 = 0, C13 = Cy4,
C17 = Cig, C18 = Cp0, C23 = C2s, C24 = Czg,

Cim(=K) = cim(K), (B7)

we findmg = 0. We will see that normally we do not have to make
this assumption because in many cases, the mirror-nommar
terms are not present in the quantities of interest (as wasdhke
with the power spectrum). Cijnm(K) = Gijmn(K), (B17)

© 2008 RAS, MNRASD00,[THT9
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gives additionallycs = ¢7, Cg = Cg, C13 = C14 = C15 = C2 = O,
C17 = Cig, C1g9 = C20, C23 = Cp4, C5 = Cg6, @Nd, finally,

Crnij (k) = Ci*j,mn( k)

givesc, = Cs.
Assembling all this information, we find that the general-4th
order correlation tensor only depends on 7 scalar functions

(B18)

Gimn(K) = C1(K)GijOmn + C2(K) (Simbin + Gindjm)
+ Ca(K) (61 kenkn + Srmrkck; )
+ Co(K) (5imkjﬁn + Oinkikn + Ojmkiky + 5jnlA<iRm)
+ ClO(k)Ri Rj lA<mRn
+ 1C17(K) (€impKpOjn + €npKpSim
+ ejmplA(pdin + ejnpkpéim)
+ ic23(K) (mpkokiKn + €inpkoki K

+ ok + eppkokikn). (B19)

B2 Observables in the Case of Zero Mean Field

Let us first examine the cag® = 0, so we are only concerned
with the 4th-order statistics. We will need explicit expmiess for
the coordinate-dependent components of the teggsaf in terms
of the coordinate-invariant functiorts, c,, Cs, Cs, C1o, C17 andcys
[Eqg. (BI9)]. As the polarized emission data on the magnetic! fi
arrives in the form of line-of-sight integrals (S&c.]3.4k thave to
setk, = 0 everywhere—no information on the field variation in this
direction is available. However, because of the assumebso
the dependence of the invariant scalar function&oe: |k, | con-
tains the same information as their dependencé& en|k|. Let us
denote byp the angle betweek, and thex axis. This means that

we setk = (cosg, sing, 0). Then the components perpendicular to
the line of sight are

Coox(KL) = €1+ 26, + (2¢4 + 4Cs) COS ¢ + C10COS @,

Cyy(KL) = €1+ 2C; + (2C4 + 4cs) Sirf ¢ + Crosin' @,

Coxyy(KL) = €1+ Ca+ CroSitgcog g,

Cyxy(KL) = Co+Cs+ CroSif g cog g,

Cooy(KL) = (Ca+ 2C6) COSpSiNg + C10COS @ Sing,

Cyxy(KL) = (Ca+ 2C5) COSPSINg + C10COSY SIMT . (B20)

These are the only componentsogf,» that are directly sampled by
the polarized emission. The components parallel to theolirséght
are

CzAKi) = C+2c,

CouzdKl) = C1+c4co0,

OyzdKi) = Ci+casiy,

Caxe(K) = C+Gs cos (2

CayKi) = Co+CeSifo,

Cxzy(K1) = Cesingcosg. (B21)

Information about these components can only be obtainedlipy r
ing on the isotropy assumption as they are expressed in tdring
same invariant scalar functions as the perpendicular coes.
Note that settind, = 0 has led to all information being lost about
the mirror-asymmetric part of the tensor, so no quantitpiving
C17 OF Cp3 can ever be reconstructed from polarized emission.

B2.1 Stokes Correlators

Using Eq. [B20) and the expressions for the Stokes corrslato
given by Eq.[T#), we get

Zi(ky) = 4(CyL+Co+ Cq+Co) + Cro,
Zoo(k) = 4(C2+ Cg) + C10COS 2,
Tuu(ky) = 4(C+ Cg) + CioSirt 2o,
Zio(ky) = (2c4 +4cs + C10) COS 2p,
Ziw(ky) = (24 + 4cs + Cro) Sin 2p,
You(ky) = CioSin2pcos 2, (B22)

Note thatz;o andX,y contain the same information and soXig,
andXqq — Xyy. The relations between them follow immediately
from Eq. [B22) and are given by E@.(16).

Thus, only 4 of the Stokes correlators are independgni:
two of Zqq, Zuu, Zqu and one ofq, Xy . We see that in Eq_(B22),
these 4 independent observables are expressed in termevafrb i
ant scalar functions;, ¢, €4, Cg andcyp, which cannot, therefore,
all be reconstructed from polarized emission data eventfapy is
assumed (as we explained earlier, two other functiopysandc,s,
which complete the full set of 7 alluded to in SEC]3.4, carenée
known from polarized-emission data).

The relations between the Stokes correlators and the antari
scalar functions given by Eq_(BP2) contain angular depeoelelt
will be convenient for practical calculations to expredsoakerv-
ables in terms of angle averages (i.e., averages over atitations
of k,):

%k = %fdwE.. =4(Cy + C2 + C4 + Cg) + C1o,

(k) = % fdw (Zoo +2Zuu) = 8(Cy + Cg) + Cio,

(k) = % fd(p [(Zgo — 2Zuu) cos 4 + 25qy Sin 4p] = Cio,
k) = % fd(p (Zig COS 2 + Xyy SiN2p) = 2C4 + 4Cs + Cro.

(B23)

These formulae again give us 4 independent observable eata
tions, but now the quality of the statistics should be impblay the
angle averaging. We will find that it is most convenient faagdical
calculations to us&y, ..., %, as the basic set of observables (see
Sec[BZ.D).

B2.2 General Observable Quantities

Thus, only some 4th-order statistical quantities are oladge. Itis
not hard to work out the condition for them to be so. First, & w
already explained in our discussion of Hg. (B20), Stokesetators
carry no information about anything that involves the meeswf
mirror asymmetry of the field;; andc,s. Let us then restrict our
attention to quantities that contain only the remaining \&ifant
scalar functions that determine the 4th-order two-poiatistics
[Eqg. (BI9)]. In general, we would be looking for a scalar ftioie

that has the form
O(K) = f1ci(K) + f2C2(K) + faca(k) + fsCo(K) + f10C10(K), (B24)

wherefy, ..., fg are some known cdicients, which can be func-
tions of k. Let us try to express this quantity in terms of Stokes
correlators: this amounts to finding dheientsa, 3, v, 6, which

© 2008 RAS, MNRASDOO,[THT9
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can be functions df andy, such that

1 Z|Q
(I)(k) = Z (QZ” +ﬁZQQ + VZUU +0 COS 2‘0) . (825)
Using Eq. [B22), we get
ok) = acl+(a+ﬁ+y)cz+(a+g)c4+(a+ﬂ+y+5)06
+ % (o +Bcos 2¢ + ysir® 20 + 6) ro. (B26)

Comparing this with Eq[{B24), we get
a = f,

_ 1 3f1— f2—4f4+ 8f10
Bo= E(fz_fl+ cos 4 )

_ 1. f_f_3f1—f2—4f4+8f10
Y = Zll27h cos 4 >
6 = 2(fs—f)="fe— T (B27)

The last formula gives two expressions #oin general, they do not
have to be compatible and if they are not, the quarniti) cannot
be expressed in terms of Stokes correlators. Thus, we haivede
a simple criterion: only those quantitidgk) given by Eq. [BZ2H#)
are observable for which

2f1 - fz - 2f4 + fe =0. (828)

If Eq. (B28) is satisfied, Eq[{B27) and Eq._(B25) give us
a practical method for calculating. As any interesting physical
quantity® has to be independent of the anglbetween the wave
vector k, and thex axis of the coordinate system in which the
Stokes parameters are measured, we are allowed to averge ov

1 (% s
O = 5 fo dgW(y) [aE“ +BE0q +¥YZuu + 6 ﬁ , (B29)

where W(yp) is some weight function, which must satisfy
(1/2r) foz" deW(p) = 1. The weighting does not theoretically af-
fect the result, sdV(y) can be chosen arbitrarily.

The possibility of angle averaging with a weight functiordan
a certain redundancy of information available from the 8sokor-
relators, as expressed by Hg.|(16), mean that there arenaraje
many diferent ways of reconstructing observable quantities. In the
ory they are all equivalent, but in practice one has to charse
with the aim of reducing noise andfsetting the potentially detri-
mental €fect of singularities in the cdigcients associated with fac-
tors of 1/ cos 2» and ¥/ cos 4.

One method, which we have found to be quitéeetive, of
avoiding this problem is to pick as our basic set of 4 obsdevab
scalar functions not the Stokes correlators themselvethbutom-
binations of their angle averages given by [Eq. (|B23). Répgéte
procedure we have just followed, we sek{k) in the form

(I)(k) = % (0121 + (1222 + 0.'323 + 0424) N (B30)

where the coficientsas, .. .,a4 are now functions ok only [there
is no longer any angular dependence on either side o Eq)[B30
Using Eq. [B28), this becomes

(D(k) = @1C + ((1’1 + 2&2) Cy + (arl + %)C4 + ((1’1 + 20 + (1’4) Cs
+ % ((ll +ar+az+ (14) Cio0. (le)
Comparing this expression with EG._(B24) as before, we get

a = T

© 2008 RAS, MNRASD00,[THT9

1

@ = 3 (- f1),

@ = % (3f1 — f2 — 414 + 8fy9),

ay = 2(fa-f1)=fo— T2, (B32)
and the observability criterion is again given by Ef._(B28).

Eq. [B30) together with EqL{B23) and Ef._(B32) give another e
pression for a general observaldék), defined by Eq.[{(B24) and
subject to the constraint Eq._(B28).

B2.3 Tension-Force Power Spectrum

In Sec.[3b, we split the tension-force power spectrum ihi® t
directly observable part [Eq[{R0)], which could be receder
from the Stokes correlators without any assumptions, a@chdim-
directly-observable parb, [Eq. (21)], which could only be recon-
structed using some assumed symmetries of the 4th-ordeslaor
tion tensor. Assuming isotropy, we infer from Elg._(B21)

O, = kz(Cz + Cs). (B33)

Using Eq. [B2D) to express; + Cg in terms of the perpendicular
components of the tensay;m, we immediately recover Eq_{R2)
and the rest follows as explained in Jec] 3.5.

This was anad hocderivation specific to the tension-force
power spectrum. Let us now demonstrate how the general ghetho
laid out in Sed_BZJ2 works for this quantity.

Substituting Eq.[{B19) into E¢_(18), we get
D(K) = K2 [cy(K) + 4co(K) + 2¢4(K) + 6C5(K) + Cro(K)] » (B34)

a particular case of EJ_{BP4). The observability critergiven by
Eq. [B28) is satisfied, so, using EQ.(B25) and Eq. (B27), waiab

1, 1 1
el = K| Er 5(3‘ @)EQQ
1 1 2
+ > (3+ _COS@)EUU + _0052,02'()] , (B39)

which can be angle-averaged with some weight function aogr

to Eq. [B29).
An alternative expression in terms of averaged Stokeslearre

tors follows from Eq.[(B3D) and EJ._(BB2):
1 3 1

(D(k) = Zkz (El + EZZ - 523 + 224) .

Substituting foiX,, ..

k2 21
oK) = o fo dy

+ :—2L(3— cos 4p) Xqq + %(3+ cos@)zuu].

(B36)
., 24 from Eq. [B23), we arrive at

2+ 2(E|Q COSZD + 2y sin 2,0) - EQU sin4<p

(B37)

Our final formula for the tension-force power spectrum, B)(
follows from Eq. [B3T) upon multiplication by=? (the wave-
vector-space volume factor). Note that the integrand in(BgJ)
reduces back to Eq._(BB5) if we make use of [Eq] (16), but the ad-
vantage of Eq[{B37) is that it does not contain any singuaffie
cients.

B3 Observables in the Case of Weak Mean Field

If a weak mean field is present, we proceed analogously tdE&2kc.
Itis understood that the mean field istsciently weak so as not to
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break the isotropy of the fluctuating part of the field. Thesing

Eq. [25), Eq.[[Bll) and Eq{B12) and settikg= 0 to express the
line-of-sight integrals, we find

Coonlks) = Couurlk,) + 2Bysirf oy,
Co(ki) = Cyy(K,) + 2B, cos pmy,
Cuxyy(Ki) = Cuxyy(Ky) — 2B<By singp cospmy
+ 4i (Bcsing + B, cosy) sing cosp a,
Com(K)) = Capy(ks) + 3 (Bucosy ~ By sing) m,
Cuoon(Ki) = Cuoo(Ky) — Besing (B cosy — B, sing) my
2 (EX sing - B, cos<p) sirf ¢ a,
Cyog(KL) = Cyyu(K.) + By cosp (B, cosy — By sing)my
+ 2i (Besing - B, cosp) cos' ¢ a, (B38)
where the components af;my(k,) are given by Eq.[{(B20) and

Eq. (B21).

B3.1 Stokes Correlators

Using Eg. [B38) and Eq[{14), we find that the Stokes correla-
tors are

(k) = Z(Ex sing - By 00590)2 my + 4th order
Zoo(k.) = 2(Bysing+B, 00590)2 my + 4th order
Sou(k) = Z(Ex cosy — Eysinga)2 my + 4th order

To(k) = Z(Eisinzgo—ﬁscoszgo)ml

- A (EX sing - By COS(,D) sin 2p &, + 4th order
Tw(k) = - [(Ei + Eyz) sin2p — ZEXEY] m
+ 4i (B, sing — B, cosy) cos 2 a, + 4th order
[ )z BB coszm
— 4i(Bysing - B, cosy) ap + 4th order

Zqu(ky) =
(B39)

where the 4th-order parts of the correlators are given by{lEzp).

Thus, the Stokes correlators now contain not just the 4dieror
statistics but also some information about the second- efidi@ler
correlation functions of the field, namely, the magnetitdfigower
spectrummy (k) [see Eq.[[BIL)] and the 3rd-order correlation func-
tion ay(k) [Eq. (B12)]. We are not particularly interestedan and
notice that all terms containing it can be eliminated from @&$9)
simply by taking the real part of the Stokes correlatbys, Xy
andXqy. We will now isolate the second- and 4th-order contribu-
tions to the Stokes correlators and calculate the powertrspet
the magnetic field and of the tension force.

B3.2 Magnetic-Field Power Spectrum

There are several formulae that allow one to distil from the
Stokes correlators. They are all derived by assemblingogypipr
ate linear combinations of the correlators and angle augga@he
simplest such formulae are found by noticing that the angée-a
ages of the 4th-order parts B, Xy and of£qq—Xyy vanish [see

Eq. (B22)], so
1 > —2 2
ZL d(pR§|Q :(Bx_ By)ml,
1> —
Z L d(p Rey = ZBXByml,

1 (= _
o f de (Zqq = Zuu) = 8BxBymy,
0

The standard one-dimensional magnetic-field power spectsu
defined with an additional wave-number-space volume facfor
47k? [Eq. (BE)]—the resulting expressions for it are given in
Eq. [29).

It is also possible to construct formulae that formally da no
require angle averaging at all: using the fact that for ¢ercam-
binations of the Stokes correlators the 4th-order contidbg must
vanish [assuming isotropy; see Hg.l(16)], we find

Re(Xg sin2p — Xy €os 2p)

(Ei - Eyz) sin2y - 2B,B,c0s 2

_ (Zq0 — Zuu) sin4p — 2ReEqu cos 4
2[(_i - Eyz) sin2p — 2B,B, cos 2 '

Sincemy, is independent of the orientation of the wave vector, these
expressions can be averaged over the apglith arbitrary weight
functions. Note that in order to compute the shape of thetapac
from Eq. [B41), we do not need to know the magnitude of the mean
field but we do need its orientation (in the plane perpendictd

the line of sight).

In practice, we expect the formulae given by Eg. (B40) to work
better than those given by Efl._(B41) because the latter reéxact
cancellations that are probably not going to happen witl faggh
precision in realistic situations. Even moderate erroisincelling
the 4th-order correlators could then easily overwhelm #wsd-
order ones: indeed, the terms in Hg. (B39) involving the nfidd
are small because the mean field was assumed to be Beak:

(b?, soEzml < Gjmn- In Eq. [B40), the cancellation of the 4th-
order correlators comes from angle averaging and therepis tiat
my(K) could be recovered (but see the caveat at the end of Séc. 3.6)

(B40)

my

m

(B41)

B3.3 Magnitude and Orientation of the Mean Field

The orientation of the mean field (or, rather, its projectionthe
plane perpendicular to the line of sight) can be easily daterd
from the Stokes parameters themselves: the a@dgbetween the
mean field and the axis satisfies

tan 20 = _zszEiyz = % (B42)
B, - B,

Note that tan @ tells us the orientation but not the sign of the mean
field. This angle can also be determined from the Stokesledors

via Eq. [B40):

2r 2r

Jy " de Rezyy B Jy e (Zqq - Zuu)
2r - 2r ’
J(; d(p R§:|Q 41; d(pR@|Q

but the validity of these formulae, unlike that of Eq. (B42)pred-
icated on assuming the statistical isotropy of the fluchggfiield. If
this assumption is well satisfied, the value of ténhdbtained from
Eqg. (B43) should be independentlof

tan 2 =

(B43)
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Probing magnetic turbulence by synchrotron polarimetryl9

The magnitude of the mean field is a slightly more compli-
cated quantity to determine. From the total emission iritgfsee

Eq. ()],

— - 2
1y =B, + (B + (6 = B + 562, (B44)
whereﬁi = Ei +§yz and the last expression follows from assuming
the statistical isotropy of the fluctuating field Thus, from aver-
aging |, we can calculate the total energy density of the magnetic
field but not individually the magnitudes of the mean and flatt
ing fields. On the other hand, once we kn@®ywe can findﬁiml
from Eq. [B40) or Eq.[{B4]1). Let us integrate this quantitgioall
wavenumbers and denote the resultty
= (7 2 B2 /12
B, dk4rk my(k) = B, (b%) = A. (B45)

0
Then(b?) = A/Ei and substituting this into EJ.{BK4), we arrive at
a biquadratic equation fdB, , whose solution is

— 1 / 8 2 A
BL:§(<|>_ <|>2—§A]2§m

We have chosen the-" root because we are assumiﬁa < (b?)
(weak mean field). While we do not really need to knEiv to
disentangle the second- and 4th-order statistics in [EcQ)B8e
can use Eq[{B46) to check that the mean field really is weak:

(B46)

B < (). (B47)

B3.4 Fourth-Order Quantities

Now that we know the mean field amai (k), we can use this infor-
mation in Eq.[(B3D) to isolate the 4th-order statistics ia 8tokes
correlators and then proceed to calculating all observéthblerder
guantities in the same way it was done in §ec. B2.2. In general
this involves subtracting from the (real part of) the Stokese-
lators the terms that contaim, [Eq. (B39)] so that only the 4th-
order contributions [Eq[{B22)] remain. Doing this reqsitaow-

ing Eiml(k) (see Sed._B3]2) and the orientation of the mean field
[Eq. (B42)]. Subtracting the second-order contributiormsf the
the averaged Stokes correlators introduced in[Eq.](B23péstic-
ularly simple operation: substituting from EB.(B39) intq.§B23)
and carrying out the angle averages, we get

k) = Eiml + 4th order

k) = 2§iml + 4th order

¥3(k) = 4th order

%0 = —SBmy+4th order (B48)

4

where the 4th-order parts are given by Eg. (B23) and realqgfart
the Stokes correlators is taken everywhere to eliminatedinéri-
butions from the 3rd-order statistics.

B3.5 Tension-Force Power Spectrum

To find the tension-force power spectrum wHr¢ 0, substitute
Eqg. [28) into Eq.[{IB) and use the solenoidality of the magrietid

[Eq. (B4) and Eq.[(BIN)]:

O = E,-Enkjknci,i + Enknkj (Cij,i + Ci*j,i) + kjknCij’in. (B49)

© 2008 RAS, MNRASD00,[THT9

From Eq. [BI2), we see that the second term vanishes. Using
Eg. [B1) to express the first term in terms of the magnetictiel
power spectrum, setting = k, (cosey, sing, 0) (line-of-sight inte-
gral) and angle-averaging over we get

D(K) = % k2B’ my(K) + 4th order (B50)

where the 4th-order part is given by Ef._(B34) and is caledlat
from Stokes correlators in the same way as in Eec.1B2.3. Namel
using Eq.[(B3b) and Eq._(B#8), we get

3 1 1
522— 523-{-224—5
whereX,, ..., %, are defined in Eq[{B23) (with real parts taken
of the Stokes correlators) arﬁiml is calculated via one of the
formulae given in Se€¢._B3.2. Eq._{30) follows upon multiplion
by the wave-number-space volume factok%

D(K) = %kZ s+ Bm, (B51)

This paper has been typeset fromgXTIATEX file prepared by the
author.
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