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ABSTRACT
We describe a novel technique for probing the statistical properties of cosmic magnetic fields
based on radio polarimetry data. Second-order magnetic field statistics like the power spec-
trum cannot always distinguish between magnetic fields withessentially different spatial
structure. Synchrotron polarimetry naturally allows certain 4th-order magnetic field statistics
to be inferred from observational data, which lifts this degeneracy and can thereby help us
gain a better picture of the structure of the cosmic fields andtest theoretical scenarios describ-
ing magnetic turbulence. In this work we show that a 4th-order correlator of specific physical
interest, the tension-force spectrum, can be recovered from the polarized synchrotron emis-
sion data. We develop an estimator for this quantity based onpolarized-emission observations
in the Faraday-rotation-free frequency regime. We consider two cases: a statistically isotropic
field distribution, and a statistically isotropic field superimposed on a weak mean field. In both
cases the tension force power spectrum is measurable; in thelatter case, the magnetic power
spectrum may also be obtainable. The method is exact in the idealized case of a homogeneous
relativistic-electron distribution that has a power-law energy spectrum with a spectral index
of p = 3, and assumes statistical isotropy of the turbulent field. We carry out numerical tests
of our method using synthetic polarized-emission data generated from numerically simulated
magnetic fields. We show that the method is valid, that it is not prohibitively sensitive to the
value of the electron spectral indexp, and that the observed tension-force spectrum allows
one to distinguish between, e.g., a randomly tangled magnetic field (a default assumption in
many studies) and a field organized in folded flux sheets or filaments.

Key words: galaxies: clusters: general; intergalactic medium; ISM: magnetic fields; magnetic
fields; methods: data analysis; radio continuum: general; turbulence

1 INTRODUCTION

Magnetized plasma is present almost everywhere in the observable
Universe, from stars and accretion disks to the interstellar and the
intracluster medium (respectively ISM and ICM). A large fraction
of this magnetized plasma is in a turbulent state. Understanding
the origin of the cosmic magnetic fields and their evolution to-
wards their observed state embedded in magnetized plasma turbu-
lence, apart from being a tantalizing intellectual challenge in its
own right (Brandenburg & Subramanian 2005; Subramanian et al.
2006; Schekochihin & Cowley 2005, 2006; Schekochihin et al.
2007), is also crucial in the construction of theories of large-scale
dynamics and transport in many astrophysical systems. For exam-
ple, magnetic fields are expected to be dynamically important in
determining the angular momentum transport in accretion discs
(Pringle & Rees 1972; Shakura & Syunyaev 1973), to control star
formation and the general structure of the ISM (where magnetic

⋆ E-mail: waelkens@mpa-garching.mpg.de

fields prevent molecular clouds from collapsing and suppress frag-
mentation; see, e.g., Price et al. 2008, and references therein), and
to play an important role in galaxy discs as well as galaxy clusters,
where they influence the viscosity and thermal conductivityof the
ISM and ICM (Chandran & Cowley 1998; Narayan & Medvedev
2001; Markevitch et al. 2003) and the propagation of cosmic rays
(e.g., Strong et al. 2007; Yan & Lazarian 2008). Theoreticalmod-
els of all these phenomena require some assumptions to be made
about the spatial structure of the tangled magnetic fields permeat-
ing the constituent turbulent plasmas. However, as theory of mag-
netized plasma turbulence is in its infancy as a theoreticalsub-
ject, there is no consensus about what this spatial structure is. In
order to make progress both in understanding the turbulenceand
in modeling its effect on large-scale dynamics and transport, it is
clearly desirable to be able to extract statistical information about
the field structure from observational data (Enßlin & Vogt 2006;
Enßlin et al. 2006).

Diffuse synchrotron emission is observed throughout the
ISM and the ICM, as well as in the lobes of radio galaxies
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MHD Synthetic Gaussian

Figure 1. Left panel: MHD-dynamo-generated magnetic field (Schekochihin et al.2004) (saturated state of their Run S4).Right panel: A synthetic divergence-
free Gaussian random field realization with identical powerspectrum. These are cross-sections of the field strength|B| (dark represents stronger field, white
weaker field). The magnetic-field and tension-force power spectra are shown in Fig. 2.

(e.g. Westerhout et al. 1962; Wielebinski et al. 1962; Carilli et al.
1994; Reich et al. 2001; Beck et al. 2002; Wolleben et al. 2006;
Haverkorn et al. 2006; Reich 2006; Clarke & Enßlin 2006;
Schnitzeler et al. 2007; Laing et al. 2008). The fact that syn-
chrotron emission is readily observable and is a good tracerof the
magnetic-field strength and orientation makes it a key source of
information that can serve as a reality check for theories ofmag-
netized plasma turbulence and magnetogenesis (origin of the mag-
netic fields).

In this work, we will be focusing on how the synchrotron-
emission data can be used to characterize the structure of the tan-
gled magnetic fields permeating the ISM and the ICM. In this con-
text we refer to previous studies which sought to recover statis-
tical information about the structure of of these fields in the ICM
from the Faraday rotation measure (RM) data (Enßlin & Vogt 2003;
Vogt & Enßlin 2003, 2005; Govoni et al. 2006; Guidetti et al.
2008), as well as studies of the ISM (Haverkorn et al. 2006, 2008),
also based on the RM data, and the work of Spangler (1982, 1983)
and Eilek (1989a,b) based on polarized synchrotron emission data.
In formal terms, all of these papers are concerned with at most
second-order statistics, namely the magnetic-field power spectrum,
or the two-point correlation function of the magnetic field.Our
work complements those previous efforts by drawing on the fact
that polarized-emission data carries information about 4th-order
statistics of the magnetic field. In particular, we present apractical
method for obtaining the tension-force power spectrum. As will be
shown in greater detail in the following, this quantity contains sta-
tistical information about the spatial structure of the tangled mag-
netic fields that is missing in the second-order statistics and, most
importantly, is actually observable with radio telescopesmapping
polarized synchrotron emission.

The plan of this paper is as follows. In Sec. 2, we explain why
the tension-force power spectrum is an interesting quantity to mea-
sure and how it allows one to diagnose the magnetic-field structure.
In Sec. 3, we explain the assumptions we make about the magnetic

field (Sec. 3.1 and Sec. 3.2) and the observational data (Sec.3.3;
see also Appendix A) and propose a method of reconstructing the
tension-force power spectrum from the Stokes maps (Sec. 3.4and
Sec. 3.5). We then generalize our method slightly for the case when
a weak mean field is present and show that in this case the power
spectrum of the magnetic field itself may be obtainable from the
Stokes correlators (Sec. 3.6). Most detailed analytical calculations
required in this section are exiled to Appendix B. In Sec. 4 we
demonstrate the validity of our method by testing it on synthetic
observational data generated from numerical simulations.A brief
summary and conclusion is given in Sec. 5.

2 MOTIVATION

Turbulent plasmas exhibit in general very complex magneticstruc-
tures (see Fig. 1), which are best characterized by statistical means.
The most widely used quantity for this purpose is the power spec-
trum

M(k) = 4πk2〈|B(k)|2〉, (1)

where B(k) is the Fourier transform of the magnetic field (see
Sec. 3.1). The angle-bracket averaging includes averagingover all
directions of k, so the power spectrum measures the amount of
magnetic energy per wavenumber shell|k| = k. It is related via
the Fourier transform to the second-order two-point correlation
function (or structure function) of the magnetic field. It isan at-
tractive quantity to measure because phenomenological theories of
turbulence typically produce predictions for characteristic field in-
crements between two points separated by a distance in the form
of power laws with respect to that distance (Kolmogorov 1941;
Iroshnikov 1963; Kraichnan 1965; Goldreich & Sridhar 1995;
Boldyrev 2006; Schekochihin et al. 2007)—and such predictions
are most obviously tested by measuring the spectral index (or the
scaling exponent of the structure function). However, knowing the
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Figure 2. Left panel: Magnetic-field power spectra for the fields shown in Fig. 1.Right panel: Tension-force power spectra for the same fields.

spectrum is not enough and can, in fact, be very misleading, for
reasons having to do both with the physics of magnetic turbulence
and with formal aspects of describing it quantitatively.

All scaling predictions for magnetized plasma turbulence pro-
posed so far are, implicitly or explicitly, based on the assump-
tion that magnetic fluctuations at sufficiently small scales will
look like small Alfvénic perturbations of a larger-scale “mean”
field (this is known as the Kraichnan 1965 hypothesis). Numer-
ical simulations of MHD turbulence carried out without impos-
ing such a mean field do not appear to support this hypothe-
sis (Schekochihin et al. 2004), although the currently achievable
resolution is not sufficient to state this beyond reasonable doubt
and the results are to some extent open to alternative interpreta-
tions (Haugen et al. 2004; Subramanian et al. 2006). What seems
to be clear is that the magnetic field has a tendency to or-
ganize itself in long filamentary structures (“folds”) withfield-
direction reversals on very small scales (Schekochihin et al. 2004;
Brandenburg & Subramanian 2005). Filamentary magnetic struc-
tures are, indeed, observed in galaxy clusters (Eilek & Owen
2002; Clarke & Enßlin 2006), although the field reversal scale
does not appear to be nearly as small as implied by MHD
turbulence simulations—a theoretical puzzle solving which will
probably require bringing in kinetic physics (see discussion in
Schekochihin & Cowley 2006).

It is clear that both the current and future theoretical debates
on the structure of magnetic turbulence would benefit greatly from
being constrained observationally in a rigorous way. For the rea-
sons explained above, in order to do this, we must be able to diag-
nose nontrivial spatial structure, which cannot be done by looking
at the magnetic power spectrum alone. Let us explain this in more
detail.

Consider a divergence-free, helicity-free, statistically homo-
geneous and isotropic field as a minimal model for the fluctuating
component of the magnetic field in galaxies and clusters. If this
field also obeyed Gaussian statistics exactly or, at least, approxi-
mately, its power spectrum would be sufficient to completely de-
scribe its statistical properties because all higher-order multi-point
statistics could be expressed in terms of the second-order two-point
correlators and, therefore, the power spectrum. Assuming such
Gaussian statistics, Spangler (1982, 1983) and Eilek (1989a) pro-
posed to calculate the magnetic power spectrum using the observed
total and polarized synchrotron radiation intensity, quantified by
the Stokes parametersI , Q andU (see Appendix A). Computing

two-point correlation functions of the Stokes parameters,hence-
forth referred to as Stokes correlators, one essentially obtains two-
point, 4th-order correlation functions of the magnetic field in the
plane perpendicular to the line of sight (Sec. 3.4). If the statistics
are Gaussian or if Gaussianity is adopted as a closure assumption,
the 4th-order correlators can be split into second-order correlators,
so the power spectrum follows.

The problem with this approach to magnetic turbulence is that
the Gaussian closure essentially assumes a structureless random-
phased magnetic field, which then is, indeed, fully characterized
by its power spectrum. It is evident in Eq. (1) that all phase in-
formation, which could tell us about the field structure, is lost
in the power spectrum. As we explained above, both numerical
and observational evidence (and, indeed, intuitive reasoning; see
Schekochihin et al. 2004; Schekochihin & Cowley 2005) show that
magnetic fields do have structure and are very far from being a
collection of Gaussian random-phased waves. Their spectratell us
little about this structure. This rather simple point is illustrated in
Fig. 1: the right panel depicts an instantaneous cross section of a
3D magnetic field obtained in a typical MHD dynamo simulation
taken from Schekochihin et al. (2004), while the left panel shows a
synthetically generated divergence-free Gaussian randomfield with
exactly the same power spectrum (shown in Fig. 2, left panel). The
folded structure discussed above is manifest in the simulated field
but absent in the Gaussian one: in the former case, the field typi-
cally varies across itself on a much shorter scale than alongitself
and the regions of strongest bending are well localized, whereas in
the latter case, the field is uniformly tangled and has similar varia-
tion along and across itself.

So how can one differentiate between such different fields in a
systematic and quantitative way (i.e., other than by simplylooking
at visualizations)? As was pointed out by Schekochihin et al. (2002,
2004), this can be done by looking at the statistics of the tension
force

F =
B · ∇B

4π
. (2)

As a formal diagnostic, the tension force is a measure not just of
the field strength but also of the gradient of the field along itself,
thus it is strong if a field line is curved, and weak if the field line
is mostly straight. The tension-force field associated witha folded
magnetic field (strong, straight direction-alternating fields in the
“folds”, weak curved fields in the “bends”) will obviously bevery
different from the one associated with a random Gaussian field. As
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shown in Fig. 2 (right panel), their power spectra

T(k) = 4πk2〈|F(k)|2〉 (3)

do, indeed, turn out to be very different: flat for the folded field,
peaked at the smallest scales for the Gaussian field. Why a flat
tension-force spectrum is expected for a folded field is discussed in
Schekochihin et al. 2004, their§ 3.2.2, where numerical measure-
ments of the tension-force statistics can also be found. In contrast,
for the Gaussian field, one obviously getsT(k) ∝ k2M2, hence the
peak at the small scales.

In physical terms, the tension force is one of the two compo-
nents of the Lorentz force

1
c

J × B = −∇B2

8π
+

B · ∇B
4π

, (4)

where the first term on the right-hand side is the magnetic pressure
force, and the second term is the magnetic tension force, as defined
in Eq. (2). In subsonic turbulence, the tension force essentially de-
termines the dynamical back reaction of the magnetic field onthe
plasma motions because regions with higher magnetic pressure can
be expected to have correspondingly weaker thermal pressure, so
that the magnetic pressure forces are mostly balanced by oppositely
directed thermal pressure forces.

Thus, measuring tension-force power spectra not only permits
one to discriminate quantitatively between different magnetic tur-
bulence scenarios but also provides a detailed insight intothe MHD
physics occurring in space, because it quantifies the properties of
the dynamically relevant force in the magnetic turbulence.It is per-
haps worth stressing this last point. In principle, many 4th-order
statistical quantities that one might construct out of the Stokes cor-
relators should be able to discern between different magnetic-field
structures, but the tension-force power spectrum also has aclear
physical meaning.

It is a stroke of luck that not only the tension-force power spec-
trum is the diagnostic that we would ideally like to know fromthe
theoretical point of view, but it turns out that, under mild simpli-
fying assumptions, it can be fully recovered from the statistical in-
formation contained in the Stokes correlators and, therefore, it is
observable! This will be demonstrated in detail in the following
sections. Such an outcome is not automatic: other potentially in-
teresting statistical quantities such as the magnetic-energy power
spectrum or the magnetic pressure-force statistics are notso di-
rectly imprinted into the Stokes correlators and require further as-
sumptions in order to be extractable from the same data.

3 METHOD

In this section, we outline a formal theoretical framework for con-
verting polarized-emission observables into the physically interest-
ing statistical characteristics of the magnetic field undera number
of simplifying assumptions.

3.1 Magnetic Field

Let us assume some volumeV of interstellar or intracluster plasma
to be filled with a magnetic fieldB(x) and a magnetized relativistic
electron population giving rise to the synchrotron emission we ob-
serve (Fig. 3). We use a Cartesian coordinate system (x, y, z), where
z is the line of sight. The volume under consideration is assumed

to have depthL in this direction. The magnetic field can be decom-
posed into two parts:

B = B + b, (5)

whereB = 〈B〉 is the regular (mean) field throughout the volume
under consideration andb is the fluctuating (“turbulent”) field. The
former is assumed to be known and the latter is what we aim to
study. We will work out its various correlation functions and their
relationship to observable quantities—this can be done both in po-
sition space and in Fourier space in largely analogous ways.The
Fourier transform of the field is defined according to

b̂(k) =
1
V

∫

d3x e−i k·x b(x), b(x) =
∑

k

ei k·x b̂(k), (6)

wherex = (x, y, z). In what follows we will drop the hats on the
Fourier transformed quantities. Note that discrete and continuous
wave-vector spaces are related via a simple mnemonic:
∑

k

⇔ V
(2π)3

∫

d3k. (7)

3.2 Assumptions: Homogeneity and Isotropy

We will make two key assumption about the fluctuating magnetic
field: statistical homogeneity and isotropy. The first of these is not a
serious restriction of generality as, essentially, we would like to cal-
culate statistical information based on data from subvolumes within
which system-size spatial variation of the bulk propertiesof the as-
trophysical plasma under consideration can be ignored. Thesecond
assumption, the isotropy, is more problematic because of the known
property of magnetized turbulence to be strongly anisotropic with
respect to the direction of the mean field,provided the mean field
is dynamically strong(see discussion and exhaustive reference lists
in Schekochihin & Cowley 2005; Schekochihin et al. 2007). Itwill,
therefore, only be sensible to apply our method to astrophysi-
cal situations where the mean field is either absent or weak, i.e.,
B

2
≪ 〈|b|2〉. This should be a very good approximation for the

ICM and may also be reasonable in parts of the ISM (e.g., in the
spiral arms; see Haverkorn et al. 2006, 2008).

In what follows, we will first consider the case ofB = 0 and
then provide a generalization of our results to the case of a weak
mean field (Sec. 3.6). In both cases, we will first show how far
one can get without the isotropy assumption and then find thatonly
assuming isotropy are we able to calculate the tension-force power
spectrum. It will also turn out that, in the case of a non-zeroweak
mean field, additional information can be gleaned from polarized-
emission data, including the power spectrum of the fluctuating field
(normally not available without the Gaussian closure, as discussed
in Sec. 2).

Physically, we might argue that a weak mean field does not
modify the turbulent dynamics and, therefore, does not break the
statistical isotropy of the small-scale turbulent field. Obviously, if
the bulk of the magnetic energy turns out to reside above or at
some characteristic scalelB, the statistically isotropic fluctuating
field at that scale will look like a (strong) mean field to fluctuations
at scales smaller thanlB and assuming isotropy of those fluctuations
will almost certainly be wrong. Thus, our method can only be ex-
pected to handle successfully magnetic fluctuations at scales larger
than lB. This, however, is sufficient to make the outcome interest-
ing because the key question in the theoretical discussionsabout
the nature of the cosmic magnetic turbulence referred to in Sec. 2
is precisely what determineslB (is it the reversal scale of the folded
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fields? what is that scale?) and how diagnosing the spatial structure
of the field at scales abovelB might help us answer this question.

Note that a field organized in folds or filaments, as in Fig. 1
(left panel), is statistically isotropic because, while the folds extend
over long distances, their orientation is random.

3.3 Observables: Stokers Parameters

Our direct observable is the partially linearly polarized synchrotron
emission of the relativistic electrons gyrating in the magnetic field.
This emission is measured by radio telescopes in projectiononto
the sky in terms of the Stokes parametersI , Q andU. Let us briefly
recapitulate the relevant physics.

We assume a relativistic electron population that is spatially
homogeneous, has an isotropic pitch-angle distribution, and a
power-law energy distribution:

N(γ)dγ = Cγ−pdγ, (8)

whereγ is the Lorentz factor andN the number of electrons perγ
per unit volume. The observed emission will then be partially lin-
early polarized (Rybicki & Lightman 1979) and, therefore, at any
given observed (radio) frequencyν, it is fully characterized by the
Stokes parametersI , Q andU as functions of the sky coordinate
x⊥ = (x, y) (the spatial coordinate in the plane perpendicular to the
line of sight). This is explained in somewhat more detail in Ap-
pendix A.

We further assumep = 3 in Eq. (8) (corresponding to
the frequency distribution∝ ν−1). This is a convenient choice
because then all Stokes parameters are quadratic in the mag-
netic field, which means that their two-point correlation func-
tions will give us 4th-order statistics. We stress that thispower
law, although expected by theoretical shock acceleration mod-
els (Drury 1983), is, of course, a simplification of reality (see,
e.g. Strong et al. 2007). However, it is usually a sufficiently good
approximation over fairly wide frequency ranges for many syn-
chrotron sources. Thus,p = 3 is reasonably close to the values ob-
served for our own Galaxy (Reich & Reich 1988; Tateyama et al.
1986), the values obtained by CMB foreground subtraction tech-
niques (e.g. Tegmark & Efstathiou 1996; de Oliveira-Costa et al.
2008; Dunkley et al. 2008; Bottino et al. 2008), and found in extra-
galactic observations of radio-galaxies (Beck et al. 1996). While
the theoretical developments that follow do depend on taking p = 3,
the numerical tests of the resulting method reported in Sec.4.2 will
show that it is not essential thatp = 3 be satisfied particularly pre-
cisely. Deviations fromp = 3 can be addressed analytically in a
more quantitative way by a Taylor expansion aroundp = 3, which
we leave for further work.

Finally, we assume the observed volume to be optically thin
and its Faraday depth to be negligible at the observation frequency
ν. At high frequencies, both conditions tend to be satisfied, Fara-
day rotation being in most cases the greater constraint. Forexam-
ple, in our Galaxy, Faraday rotation is a relevant phenomenon at
frequencies below a few GHz, while the medium remains mostly
optically thin down to frequencies of a few hundred MHz, where
free-free absorption starts being relevant (see Sun et al. 2008, and
references therein). In cases where Faraday rotation is present in the
frequency range of the data, we assume that a Faraday de-rotation
has been applied. Even in the case of source-intrinsic Faraday ro-
tation, this can still be achieved using Faraday tomographytech-
niques (Brentjens & de Bruyn 2005).

Under these conditions the Stokes parameters can be written

B

synchrotron emission

X
Z

Y

Observation(I,Q,U)

Figure 3. Magnetic field and the observables: artist’s impression.

as the following line-of-sight integrals

I (x⊥) =
1
L

∫ L

0
dz

[

B2
x(x) + B2

y(x)
]

,

Q(x⊥) =
1
L

∫ L

0
dz

[

B2
x(x) − B2

y(x)
]

,

U(x⊥) =
1
L

∫ L

0
dz2Bx(x)By(x), (9)

whereL is the depth of the emission region. The dimensional pref-
actors converting the magnetic-field strength to radio emissivity
have been suppressed (see Appendix A).

3.4 From Stokes Correlators to Magnetic-Field Statistics

Thus, observed polarized emission provides us with three scalar
fields related quadratically to the magnetic field projectedonto the
plane perpendicular to the line of sight. We can construct 6 two-
point correlators of these fields, which we will refer to as the Stokes
correlators:

ΣXY(r⊥) = 〈X(x⊥) Y(x⊥ + r⊥)〉, (10)

whereX,Y ∈ {I ,Q,U} and 〈...〉 denote a statistical average per-
formed over the observational maps, which usually means volume
averaging with respect to the sky coordinatex⊥.

Are the Stokes correlators sufficient to reconstruct the statis-
tics of the magnetic field?

In formal terms, the statistical properties of a stochasticfield
are fully described by itsn-point distribution function, or, equiva-
lently, by the full set of itsn-point,m-th order correlation tensors. In
practice, this is too much information, most of it is not observable
in any realistic situation, and in any event, only a few of these corre-
lators can be interpreted in simple physical terms and are, therefore,
useful for a qualitative understanding of the field structure. As the
Stokes correlators are 4th order in the magnetic field and measure
its correlations between two points in space, it is the two-point,
4th-order correlation tensor that will be relevant to this discussion:

Ci j,mn(r) = 〈Bi(x)Bj(x)Bm(x + r)Bn(x + r)〉

c© 2008 RAS, MNRAS000, 1–19
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= 〈Hi j (x)Hmn(x + r)〉, (11)

where, for notational convenience, we have introduced the field ten-
sor Hi j = Bi Bj. The angle brackets denote statistical average, un-
derstood ideally as an ensemble (or time) average and in practice,
if we are dealing with one observed realization of the field, as the
volume average:〈. . .〉 = (1/V)

∫

d3x(. . .). Implicitly, performing a
volume average relies on the assumption of statistical homogene-
ity (Sec. 3.2), i.e., independence of the statistical properties of the
field of the reference pointx where they are calculated. In terms of
Fourier-space quantities, we have

Ci j,mn(r) =
∑

k

ei k·rCi j,mn(k), Ci j,mn(k) = 〈H∗i j (k)Hmn(k)〉, (12)

where the Fourier transforms of all quantities are defined similarly
to Eq. (6).

In general, the tensorCi j,mn depends on very many inde-
pendent scalar functions, so the 6 available Stokes correlators
[Eq. (10)] cannot provide all the required information necessary to
recover the magnetic-field statistics. Indeed, let us writethe Stokes
correlators in terms of the correlation tensorCi j,mn. It is particularly
easy to do this in Fourier space because the line-of-sight integration
in Eq. (9) amounts simply to picking thekz = 0 component of the
field:

I (k⊥) = Hxx(k⊥) + Hyy(k⊥),

Q(k⊥) = Hxx(k⊥) − Hyy(k⊥),

U(k⊥) = 2Hxy(k⊥), (13)

where k⊥ = (kx, ky,0). Therefore, the Fourier transforms of the
Stokes correlators [Eq. (10)] are

ΣI I (k⊥) = Cxx,xx(k⊥) +Cxx,yy(k⊥) +C∗xx,yy(k⊥) +Cyy,yy(k⊥),

ΣQQ(k⊥) = Cxx,xx(k⊥) −Cxx,yy(k⊥) −C∗xx,yy(k⊥) +Cyy,yy(k⊥),

ΣUU (k⊥) = 4Cxy,xy(k⊥),

ΣIQ(k⊥) = Cxx,xx(k⊥) −Cxx,yy(k⊥) +C∗xx,yy(k⊥) −Cyy,yy(k⊥),

ΣIU (k⊥) = 2
[

Cxx,xy(k⊥) +Cyy,xy(k⊥)
]

,

ΣQU(k⊥) = 2
[

Cxx,xy(k⊥) −Cyy,xy(k⊥)
]

. (14)

This immediately implies that

Cxx,xx(k⊥) =
1
4

[

ΣI I (k⊥) + ΣQQ(k⊥) + 2ReΣIQ(k⊥)
]

,

Cyy,yy(k⊥) =
1
4

[

ΣI I (k⊥) + ΣQQ(k⊥) − 2ReΣIQ(k⊥)
]

,

Cxx,yy(k⊥) =
1
4

[

ΣI I (k⊥) − ΣQQ(k⊥) − i2ImΣIQ(k⊥)
]

,

Cxy,xy(k⊥) =
1
4
ΣUU (k⊥),

Cxx,xy(k⊥) =
1
4

[

ΣIU (k⊥) + ΣQU(k⊥)
]

,

Cyy,xy(k⊥) =
1
4

[

ΣIU (k⊥) − ΣQU(k⊥)
]

. (15)

These are the only components of the correlation tensor Eq. (12)
that are observable directly and it is only their dependenceon the
wave vector perpendicular to the line of sight that can be probed.
No correlators that involve the projection of the field on theline of
sight (Bz) can be known.

The number of independent scalar functions that determine
Ci j,mn is reduced and becomes closer to the number of observables
if we make some symmetry assumptions and, in particular, isotropy
(Sec. 3.2). Under this assumption, it turns out that we only need to

know 7 independent scalar functions ofk = |k| to reconstructCi j,mn

fully (see Appendix B1.3). It also turns out that, if no mean field
is present (B = 0), only 4 of the Stokes correlators of an isotropic
field contain independent information:ΣI I , two of ΣQQ, ΣUU , ΣQU

and one ofΣIQ, ΣIU . For example, if we keepΣI I , ΣQQ, ΣUU and
ΣIQ, the other two Stokes correlators are

ΣIU = ΣIQ tan 2ϕ,

ΣQU =
1
2

(

ΣQQ − ΣUU
)

tan 4ϕ, (16)

where ϕ is the angle betweenk⊥ and the x axis of the
frame in which the Stokes parameters are measured, i.e.,k⊥ =
k⊥(cosϕ, sinϕ,0). These relations are useful in constructing well
behaved expressions for the observables (see Sec. 3.5 and Ap-
pendix B2.2). They could also be useful in practical situations when
the Stokes maps might not be perfect, so one might have more (or
higher-quality) data on some Stokes correlators than on others.

We see that, even with isotropy, we do not have enough ob-
servables to measure the general 4th-order statistics of the magnetic
field (7 independent scalar functions needed, 4 available).How-
ever, the information carried by the Stokes correlators does suffice
to reconstruct some of the correlation functions of the field. How
to determine whether any particular 4th-order correlator is observ-
able is explained in Appendix B2.2. In a stroke of luck, we find
that we can reconstruct the tension-force power spectrum, which is
a physically interesting quantity because it diagnoses thegeomet-
rical structure of the magnetic field and its dynamical action on the
plasma motions (Sec. 2). Although it follows from the general pro-
cedure given in Appendix B2.2 (see Appendix B2.3), it is perhaps
illuminating to provide an individual derivation for this quantity.

3.5 Tension-Force Power Spectrum

The tension force [Eq. (2)] isFi = Bj∂ j Bi = ∂ j Hi j , where we have
omitted the factor of 1/4π). Therefore, its spectrum [Eq. (3)] is

T(k) = 4πk2Φ(k), (17)

where

Φ(k) = 〈F∗i (k)Fi (k)〉 = kjknCi j,in(k). (18)

We do not have any directly observable information aboutkz , 0,
so let us setk = k⊥ = k⊥(cosϕ, sinϕ,0). Then

Φ(k⊥) = Φ1 + Φ2, (19)

whereΦ1 is the part that is directly recoverable from the Stokes
correlators [using Eq. (15)]:

Φ1 = k2
x

[

Cxx,xx(k⊥) +Cxy,xy(k⊥)
]

+ k2
y

[

Cxy,xy(k⊥) +Cyy,yy(k⊥)
]

+ 2kxkyRe
[

Cxx,xy(k⊥) +C∗yy,xy(k⊥)
]

=
1
4

k2 [

ΣI I + ΣQQ + ΣUU + 2Re
(

ΣIQ cos 2ϕ + ΣIU sin 2ϕ
)]

,

(20)

whereasΦ2 is the part that contains magnetic-field components
parallel to the line of sight and, therefore, not picked up bythe
polarized-emission observations:

Φ2 = k2
xCxz,xz(k⊥) + k2

yCyz,yz(k⊥) + 2kxkyReCxz,yz(k⊥). (21)

It is to reconstruct this missing information that we have toassume
isotropy, because it gives us a symmetry relationship between the
unobservable correlators and the observable ones. If no mean field
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is present (B = 0), it is possible to show (see Appendix B2.3) that,
for a statistically isotropic magnetic-field distribution,

Φ2 = k2

{

Cxy,xy(k⊥) −
kxky

k2
x − k2

y

[

Cxx,xy(k⊥) −Cyy,xy(k⊥)
]

}

=
1
4

k2 (

ΣUU − ΣQU tan 2ϕ
)

. (22)

Assembling the directly observable [Eq. (20)] and the inferred
[Eq. (22)] part of the tension-force power spectrum, we arrive at an
expression forΦ(k) solely in terms of the Stokes correlators. There
are two further steps that need to be taken to bring this expression
into a practically computable form.

Firstly, let us recall that, while the Stokes correlators in
Eq. (20) and Eq. (22) depend on the vectork⊥, the tension-force
spectrumΦ must depend only onk = |k⊥ |. It is, therefore, permis-
sible (and, in fact, increases the quality of the statistics) to average
our expression forΦ over the angleϕ (i.e., over a shell|k⊥ | = k in
the wavenumber space).

Secondly, the fact that, for an isotropic field, only 4 of the
6 available Stokes correlators are independent [see Eq. (16)] can
be used to construct many theoretically equivalent expressions for
Φ(k). Additional freedom comes from the angle independence of
Φ(k) and, therefore, the possibility of doing weighted angle aver-
ages (see Appendix B2.2). The strategy for choosing a particular
formula for practical computations is to avoid having singularities
in the coefficients: such as the factor of tan 2ϕ in Eq. (22). How to
do this systematically is explained in Appendix B2.2, but here we
simply give the result:

T(k) =
1
2

k4

∫ 2π

0
dϕ













ΣI I + 2
(

ΣIQ cos 2ϕ + ΣIU sin 2ϕ
)

− ΣQU sin 4ϕ

+
1
2

(3− cos 4ϕ)ΣQQ +
1
2

(3+ cos 4ϕ)ΣUU













. (23)

This formula is derived in Appendix B2.3 from our general method,
but can also be easily seen to follow directly from Eq. (20) and
Eq. (22) via Eq. (16), angle averaging and multiplication bythe
wave-number-space volume factor of 4πk2 [see definition ofT(k),
Eq. (17)]. Eq. (23) is our final expression for the tension-force
power spectrum.

Thus, we have accomplished our goal of showing that, despite
the scarcity of the observable information, the tension-force power
spectrum can be fully reconstructed from the available Stokes cor-
relators (in Appendix B2.2, we also show how to construct allother
observable 4th-order quantities). In Sec. 4, we will test our method
of doing this, but first, we generalize it slightly to the caseof weak
mean field.

3.6 Case of Weak Mean Field: Observing the Magnetic-Field
Power Spectrum

We now relax the assumption thatB = 0 in Eq. (5). Then the 4th-
order correlation tensorCi j,mn [Eq. (11)] can be written in terms of
the mean field and of the correlation tensors of the fluctuating field:

Ci j,mn(r) = Bi Bj BmBn + Bi Bj〈b′mb′n〉 + BmBn〈bibj〉
+ Bi Bm〈bjb

′
n〉 + Bi Bn〈bjb

′
m〉

+ Bj Bm〈bib
′
n〉 + Bj Bn〈bjb

′
m〉

+ Bi〈bjb′mb′n〉 + Bj〈bib′mb′n〉
+ Bm〈bibjb

′
n〉 + Bn〈bibjb

′
m〉

+ 〈bibjb
′
mb′n〉, (24)

where unprimed quantities are evaluated atx and the primed ones at
x+ r. Due to homogeneity, correlation tensors depend only onr and
not onx (and the statistical average can be interpreted as a volume
average overx). This means that the first three terms in Eq. (24)
have no spatial dependence at all, while the rest of the tensor can
be written in Fourier space as follows:

Ci j,mn(k) =
1
V

∫

d3r e−i k·rCi j,mn(r)

= Bi Bmcj,n(k) + Bi Bncj,m(k)

+ Bj Bmci,n(k) + Bj Bnci,m(k)

+ Bic∗mn, j (k) + Bjc∗mn,i (k)

+ Bmci j,n(k) + Bnci j,m(k)

+ ci j,mn(k). (25)

This is the Fourier-space correlation tensor introduced inEq. (12),
which has now been expressed in terms of the mean field and the
second-, 3rd- and 4th-order correlation tensors of the fluctuating
field:

ci,m(k) = 〈b∗i (k)bm(k)〉 = 1
V

∫

d3r e−i k·r〈bib
′
m〉, (26)

ci j,m(k) = 〈h∗i j (k)bm(k)〉 = 1
V

∫

d3r e−i k·r〈bibjb′m〉, (27)

ci j,mn(k) = 〈h∗i j (k)hmn(k)〉,=
1
V

∫

d3r e−i k·r〈bibjb
′
mb′n〉, (28)

wherehi j (k) = (1/V)
∫

d3x e−i k·xbi (x)bj(x).
Thus, the presence of the mean field leads to second- and 3rd-

order statistics of the fluctuating field appearing alongside the 4th-
order ones in the tensorCi j,mn. Since the Stokes correlators probe
the total field, this means that some information about the second-
and 3rd-order statistics could be extracted from them, provided the
mean field itself can be independently determined and thus used
as a “probe” (in fact, it turns out that only its orientation generally
has to be known and even that knowledge is not always necessary,
although easily obtainable; see Appendix B3).

As before, we need additional symmetry assumptions about
the fluctuating field in order to make a transition from the Stokes
correlators to theoretically/physically interesting quantities. The
technically rigorous choice would be to assume that the statistics of
b will depend on one special direction, that of the mean field, and
be isotropic in the plane perpendicular to it. This, however, leads to
a very large number of independent scalar functions appearing in
the general form ofCi j,mn and while it is probably worth working
them all out, it is quite unlikely that the 6 available Stokescorre-
lators will be sufficient to reconstruct anything of value. Therefore,
we make a simplifying assumption (the physical grounds for which

are discussed in Sec. 3.2) that the mean field is so weak (B
2 ≪ 〈b2〉)

that the fluctuating field remains statistically isotropic.Under this
assumption, the case of a weak mean field becomes a straightfor-
ward generalization of the zero-mean-field case consideredabove.
The main gain is that a weak mean field allows us to use the Stokes
correlators to determine not just the power spectrum of the tension
force but also the power spectrum of the magnetic field itself: as
M(k) = 4πk2ci,i [Eq. (1)], it is recovered from the second-order
terms in Eq. (25).

The mathematical details of reconstructing the magnetic-field
power spectrum are relegated to Appendix B3.2. There are many
equivalent expressions that can be derived for it; here we display
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MHD Synthetic Gaussian

I , p = 3 I , p = 3

Q, p = 3 Q, p = 3

U, p = 3 U, p = 3

Figure 4. Examples of syntheticI , Q andU maps generated from an MHD-simulated magnetic field (left panels) and a synthetic Gaussian field (right panels).
The same data cubes were used as in Fig. 1.

c© 2008 RAS, MNRAS000, 1–19



Probing magnetic turbulence by synchrotron polarimetry9

Figure 5. Left panel:The bold solid red line shows the tension-force power spectrum reconstructed via Eq. (23) from the synthetic Stokes maps(Fig. 4) based
on an MHD-simulated field (saturated state of the Run S4 of Schekochihin et al. 2004). The bold dotted black line is the samespectrum computed directly
from the full three-dimensional data (same as Fig. 2, right panel). The errors bars on the estimated spectrum are obtained by comparing results from synthetic
Stokes maps obtained by integrating along three orthogonal“lines of sight” (the three axes of the data cube). The thin solid blue line with error bars and the
thin dotted black line represent analogous information fora synthetic Gaussian field.Right panel:Similar to the left panel, but the reconstructed tension-force
spectra are based not on the estimate Eq. (23) but on the full information about the projected (line-of-sight integrated) spectra, i.e., they are given by the sum
of Φ1 [Eq. (20)] andΦ2 [Eq. (21)] calculated in terms ofCi j,mn(k⊥) (including its unobservable line-of-sight components).

three of them:

M(k) =
2k2

B
2
⊥ cos 2Θ

∫ 2π

0
dϕReΣIQ

=
2k2

B
2
⊥ sin 2Θ

∫ 2π

0
dϕReΣIU

=
k2

2B
2
⊥ sin 2Θ

∫ 2π

0
dϕ

(

ΣQQ − ΣUU
)

, (29)

whereΘ is the angle between thex axis and the projection of the
mean field onto the plane perpendicular to the line of sight,B⊥ is
the magnitude of this perpendicular projection. Although these are
easy to measure (Appendix B3.3), they are manifestly not neces-
sary to determine the functional shape of the spectrum. Thus, we
have three independent expressions from which we can deducethis
functional shape. That the results should be consistent with one
another is a good test of our assumptions (most importantly,the
statistical isotropy of the fluctuating part of the field).

The calculation of the tension-force power spectrum is entirely
analogous to the zero-mean-field case (see Appendix B3.5). The
result is that Eq. (23) still holds subject to two modifications: real
part has to be taken of all Stokes correlators and a term proportional
to M(k) has to be subtracted, namely

TB,0(k) = ReTB=0(k) − 1
8

k2B
2
⊥M(k), (30)

whereTB=0(k) is given by Eq. (23).
Finally, a disclaimer is in order with regard to the practical ap-

plicability of the results obtained for the case of a weak mean field.
Since we assumed the mean field to be small compared to the fluc-

tuating field,B
2
≪ 〈b2〉, the terms in Eq. (24) that containBi are

small compared to〈bibjb′mb′n〉. Thus, in order for the second-order
statistical information in Eq. (24) to be recoverable, the errors as-
sociated with the imperfect isotropy of the fluctuating fieldmust be

very small—smaller thanO(B
2
). It is not guaranteed that this is ei-

ther justified physically or achievable in practice and the verdict on
the usefulness of the results of this section will depend on extensive

numerical tests, which will not be undertaken in this paper and are
left for future work.

4 NUMERICAL TESTS

Having presented the analytical derivation of our method, we now
present a proof-of-concept numerical test by analyzing twodata
cubes containing randomly tangled magnetic fields: a saturated
magnetic field generated by fluctuation dynamo in an MHD simu-
lation (Run S4 of Schekochihin et al. 2004) and a divergence-free,
random-phased Gaussian field synthetically generated to have the
same spectrum as the MHD field (Fig. 2; snapshots of the two fields
are shown in Fig. 1). Both fields have zero mean, so the resultsof
Sec. 3.6 are not tested here.

4.1 Case ofp = 3

We first test the validity of our method for the case of the electron
spectral indexp = 3, assumed throughout the analytical develop-
ments presented above. For each data cube, we designate one of
its axes as the “line of sight” and integrate the field along itac-
cording to Eq. (9). This produces three synthetic two-dimensional
Stokes maps (Fig. 3; examples of suchI , Q andU maps are shown
in Fig. 4). Since we have the full three-dimensional information
for both fields, we can compute the tension-force power spectra di-
rectly and then compare them to the spectra obtained by applying
our estimator, Eq. (23), to the synthetic Stokes maps.

In Fig. 5 (left panel) we plot the tension-force power spectra
reconstructed using our estimator, Eq. (23), for a realization of an
MHD simulated field and for a synthetic Gaussian field. They are
compared to the same spectra directly computed from the three-
dimensional data cubes [according to Eq. (3)]. The reconstructed
spectra are obtained as an average over three synthetic Stokes maps,
each obtained by choosing as the “line of sight” one of the three
orthogonal axes of the data cube. This allows us to estimate the
accuracy of the reconstruction, represented in Fig. 5 by theerror
bars.
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I , p = 1.5 I , p = 4.5

Q, p = 1.5 Q, p = 4.5

U, p = 1.5 U, p = 4.5

Figure 6. The Stokes maps calculated according to Eq. (31) for two extreme values of the electron spectral index,p = 1.5 (left panels) and p = 4.5 (right
panels). These are to be compared with the Stokes maps forp = 3 shown in the left panel of Fig. 4.
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For both types of field, the performance of our estimator is
clearly excellent. The relative error bars for the Gaussianrandom
field are substantially smaller than for the MHD field, which makes
sense in view of the former’s more small-scale and less structured
character. The salient point that emerges from the comparison of
the two fields is that the tension-force spectrum can be recovered
from the synthetic observations with an accuracy easily permitting
to discriminate between the structured (folded) MHD field and the
structureless Gaussian one. This suggests that the proposed estima-
tor is a robust tool for diagnosing magnetic turbulence frompo-
larized emission data and for discriminating between different sce-
narios of magnetic-field evolution and saturation (see discussion in
Sec. 2).

The test that we have presented only allows us to assess the
quality of our method under idealized conditions, namely, assum-
ing that the observation is noiseless, that no observational-window
effects are present, that the relativistic-electron energy distribution
is homogeneous and has the spectral indexp = 3, and that the Fara-
day rotation is either negligible or has been effectively subtracted
(Sec. 3.3). Thus, the errors in our reconstructed spectra are due to
two factors: firstly, a certain amount of information is lostin the
projection of the three-dimensional data onto a two-dimensional
Stokes map (the line-of-sight integration); secondly, theassump-
tions of statistical homogeneity and isotropy (Sec. 3.2), upon which
our estimator depends, are imperfectly satisfied by any particular
realization of the field. It is interesting to ask what is the relative
contribution of these two sources of inaccuracy to the errors of re-
construction represented by the error bars in the left panelof Fig. 5.
This is addressed the right panel of the same figure, which is anal-
ogous to the left panel, but instead of the spectra reconstructed via
Eq. (23), it shows the spectra resulting just from the line-of-sight
integration (settingkz = 0) of the full tensorCi j,mn, i.e, they use
the unobservablez components of this tensor that enter in Eq. (21)
rather than infer them from the observable components and the
isotropy assumption. Comparing the right and left panels ofFig. 5
suggests that much of the reconstruction error (especiallyat large
wave numbers) is due to the loss of information associated with the
line-of-sight integration, not to imperfect isotropy—andthis is de-
spite the fact that the MHD field contains magnetic structures with
virtually box-size parallel coherence lengths (see the left panel of
Fig. 1).

4.2 Case ofp , 3

Assuming that the electron spectral indexp = 3 was an idealization
of the real observational situation that we needed for the theoretical
justification of our method because Stokes parameters are strictly
quadratic in the magnetic field only ifp = 3 (see Appendix A).
While p = 3 is not a bad approximation of reality, one cannot ex-
pect it to be satisfied very precisely (see discussion and references
in Sec. 3.3), so in order for our method to be practically useful
for real observations, it must be reasonably insensitive tothe exact
value ofp. This sensitivity is very easy to test.

Let us generalize our definition of the Stokes parameters
[Eq. (9)] to the case ofp , 3: suppressing the dimensional pref-
actors as before, we get (see Appendix A)

I (x⊥) =
1
L

∫ L

0
dz

[

B2
x(x) + B2

y(x)
](p−3)/4 [

B2
x(x) + B2

y(x)
]

,

Q(x⊥) =
1
L

∫ L

0
dz

[

B2
x(x) + B2

y(x)
](p−3)/4 [

B2
x(x) − B2

y(x)
]

,

U(x⊥) =
1
L

∫ L

0
dz

[

B2
x(x) + B2

y(x)
](p−3)/4

2Bx(x)By(x). (31)

Clearly, for p > 3, the extra factor of (B2
x + B2

y)
(p−3)/4 causes the

statistics to be effectively weighted towards regions where the field
is stronger, forp < 3, towards those where it is weaker. This point
is illustrated by Fig. 6, which shows that increasing/decreasingp
roughly corresponds to increasing/decreasing the contrast in the
Stokes maps.

The range of values thatp can realistically be expected to
take is roughlyp ∈ [1.5,3.5] (see references in Sec. 3.3). Since
this implies that (p − 3)/4 ∈ [−0.375, 0.125] are not very large
powers, there isa priori a hope that the effect of deviations from
p = 3 might not be catastrophic for our estimator. This, indeed,
proves to be correct. In Fig. 7, we show the tension-force spectra
reconstructed from Stokes maps generated using Eq. (31) with a
number of values ofp and compare them to the true spectra. Even
for values ofp significantly different from 3 (roughly in the range
p ∈ [2.5, 3.5]), our estimator works extremely well, except at the
highest wave numbers.

Note that the extra factor of (B2
x+B2

y)
(p−3)/4 in Eq. (31) changes

the overall amplitude of the Stokes parameters in comparison to
what it would have been withp = 3, so we can only hope to
recover the functional shape of the tension-force power spectrum,
not its overall magnitude. In the numerical data used above this
potential source of reconstruction error is not very visible because
values of the magnetic field are close to unity in code units, but
in any realistic observational situation, the shift in amplitude of
the Stokes parameters may be significant. Importantly, however,
we see in Fig. 7 that in all cases we have tested, the shape of
the reconstructed tension-force power spectrum still makes it
unambiguously possible to discriminate between qualitatively
different field structures as represented by the MHD and Gaussian
fields.

The numerical tests presented above are meant to demonstrate
in principle that the approach taken in this paper is a valid one. We
did not attempt to test the robustness of our approach by including
into our synthetic data model all of the complications that will arise
in handling real observational data. A known caveat is that obser-
vational window functions, due to the finite size of the radiosource
of the telescope beam, will lead to a redistribution of powerin the
recovered spectrum, so that the large-scale power may swampthe
signal at high wave numbers (Vogt & Enßlin 2003). Both further
tests and applications of our method to real data are left to future
work.

5 CONCLUSION

We have demonstrated that it is possible to reconstruct the power
spectrum of the tension force associated with tangled astrophysical
magnetic fields as a linear combination of the radio synchrotron
observables, the Stokes correlators. This was done under a set
of simplifying assumptions about the synchrotron emissiondata
(Sec. 3.3) and also by assuming a statistically homogeneousand
isotropic stochastic magnetic field (Sec. 3.2). The tension-force
power spectrum emerges as a particular case from a subset of ob-
servable 4th-order statistics (Sec. 3.5 and Appendix B2.3)—a non-
trivial fact because in general, the Stokes maps do not carrysuffi-
cient information to reconstruct all of the 4th-order correlators of
the magnetic field (see Sec. 3.4 and Appendix B2.2).

The observability of the tension-force power spectrum is a
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Figure 7. These plots show the same comparisons as the left panel of Fig. 5, but for a number of values of the electron spectral indexp , 3. The Stokes maps
were calculated according to Eq. (31). Some of these Stokes maps are shown in Fig. 6.
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stroke of good fortune because this quantity plays an important
role in diagnosing the spatial structure of the magnetic turbulence
(Schekochihin et al. 2004) and allows one to distinguish between
different theoretical scenarios for the evolution and saturation of
the cosmic magnetic field, which was not possible to do on the ba-
sis of lower-order statistics such as the magnetic power spectrum;
it also reveals physically interpretable dynamical properties of the
system under observation, namely the force exerted by the field on
the ambient plasma (see discussion in Sec. 2).

Furthermore, we have shown that if the observed magnetic
field possesses a small regular component that does not affect the
isotropy of the fluctuating part of the field, it may be possible to
obtain from the Stokes maps the power spectrum of the fluctuating
field itself, as well as that of its tension force (Sec. 3.6).

Thus, physically relevant information about the spatial struc-
ture and dynamical properties of the magnetic turbulence iscon-
tained in the polarized emission maps and can be extracted. This
work is an attempt to pave the way towards analyzing the large
amount of existing and upcoming radio-synchrotron observational
data (see, e.g., Gaensler 2006; Enßlin et al. 2006; Beck 2008) with
the aim of achieving a better understanding of the nature of magne-
tized turbulence in cosmic plasmas.
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APPENDIX A: SYNCHROTRON EMISSION AND THE
STOKES PARAMETERS

A spatially homogeneous, pitch-angle-isotropic and power-law
distributed in energy relativistic-electron population is assumed
[Eq. (8)], The resulting synchrotron emission is partiallylinearly
polarized. Its intensity and polarization depend solely onthe mag-
nitude and orientation of the magnetic fieldB⊥ projected onto the
plane perpendicular to the line of sight and on the electron distri-
bution [Eq. (8)].

The synchrotron emissivity (i.e., power per unit volume per
frequency per solid angle) is usually subdivided into two com-
ponents, respectively perpendicular and parallel toB⊥: following
Rybicki & Lightman (1979),

j⊥(ω, x) =
[

F(p) +G(p)
]

ω(1−p)/2|B⊥(x)|(p+1)/2

j‖(ω, x) =
[

F(p) −G(p)
]

ω(1−p)/2|B⊥(x)|(p+1)/2, (A1)

whereω = 2πν, ν is the observation frequency,x is the spatial
position,p is the spectral index of the electron distribution [Eq. (8)]
and

F(p) =

√
3e3

32π2mec2

(

2mec
3e

)(1−p)/2

C

× Γ
(

p
4
− 1

12

)

2(p+1)/2

p+ 1
Γ

(

p
4
+

19
12

)

,

G(p) =

√
3e3

32π2mec2

(

2mec
3e

)(1−p)/2

C

× Γ
(

p
4
−

1
12

)

2(p−3)/2Γ

(

p
4
+

7
12

)

, (A2)

whereme is the electron mass,e is its charge,c is the speed of light,
andC is the prefactor of the electron distribution [Eq. (8)].

The specific intensity I and the polarized specific intensityPI
are given by the following line-of-sight integrals (see Burn 1966):

I(ω, x⊥) =

∫ here

there
dz

[

j⊥(ω, x) + j‖(ω, x)
]

,

PI(ω, x⊥) =

∫ here

there
dz

[

j⊥(ω, x) − j‖(ω, x)
]

e−2iχ(x), (A3)

wherez is the line-of-sight coordinate,x⊥ = (x, y) is the position
vector in the plane of the sky (perpendicular to the line of sight)
and the polarization angle is given by

χ(x) = χ0(x) + λ2RM(x), (A4)

whereλ = c/ν is wavelength of the observed emission, the intrinsic
polarization angle is

χ0(x) = tan−1 By

Bx
, (A5)

and the Faraday rotation measure

RM(x) =
e3

2πm2
ec4

∫ here

there
dz nthe(x)Bz(x), (A6)

wherenthe is the density of thermal electrons andBz the projection
of the magnetic field on the line of sight.

The Stokes parameters are now defined as follows

I =
∫

dΩ I, Q− iU =
∫

dΩPI, (A7)

where the integration is over the solid angle of the angular resolu-
tion element (the observational beam). If the spectral index is taken
to be p = 3 and the Faraday rotation in Eq. (A4) is assumed to be
negligible (as discussed in Sec. 3.3), the Stokes parameters depend
quadratically on the components of the magnetic field perpendicu-
lar to the line of sight,Bx = B⊥ cosχ0 andBy = B⊥ sinχ0. Indeed,
using the above definitions, we get

I = 2F(3)ω−1

∫

dΩ
∫ here

there
dz

(

B2
x + B2

y

)

,

Q = 2G(3)ω−1

∫

dΩ
∫ here

there
dz

(

B2
x − B2

y

)

,

U = 2G(3)ω−1

∫

dΩ
∫ here

there
dz2BxBy. (A8)

From these formulae, we recover the analytically convenient defi-
nitions of the Stokes parameters, Eq. (9), by dropping the dimen-
sional prefactors and the integration over the angular resolution el-
ement and normalizing the integrals by the depth of the emission
region.

Somewhat more generally, for arbitraryp, but still neglecting
the Faraday rotation, we have

I = 2F(p)ω(1−p)/2

∫

dΩ
∫ here

there
dz

(

B2
x + B2

y

)(p−3)/4 (

B2
x + B2

y

)

,

Q = 2G(p)ω(1−p)/2

∫

dΩ
∫ here

there
dz

(

B2
x + B2

y

)(p−3)/4 (

B2
x − B2

y

)

,

U = 2G(p)ω(1−p)/2

∫

dΩ
∫ here

there
dz

(

B2
x + B2

y

)(p−3)/4
2BxBy.

(A9)

These formulae are the basis for Eq. (31).

APPENDIX B: FOURTH-ORDER CORRELATION
TENSOR AND ITS REPRESENTATION IN TERMS OF
STOKES CORRELATORS

In this Appendix, we derive the general form of the 4th-ordercor-
relation tensorCi j,mn [Eq. (11)] for a statistically homogeneous and
isotropic magnetic field and show what part of the relevant statisti-
cal information can be recovered using Stokes correlators.

B1 Symmetries and the General Form ofCi j,mn

In Eq. (25), the tensorCi j,mn is written in Fourier space in terms of
the mean fieldBi and of the second-, 3rd-, and 4th-order correlation
tensors of the fluctuating fieldbi , denotedci,m, ci j,m andci j,mn. Each
of these correlation tensors depends on a certain number of scalar
correlation functions (see, e.g., Robertson 1940). This number can
be constrained if we take into account some intrinsic properties of
correlation tensors (permutation of indices), of the field they are
constructed from (it is a real, divergence-free field), and additional
symmetries we assume (homogeneity and isotropy). Let us imple-
ment these constraints. The procedure is least cumbersome when
applied to the second-order correlation tensor. We will explain it in
detail on this example and then proceed analogously with the3rd-
and 4th-order correlators. All further calculations will be in Fourier
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space, but exactly analogous calculations can be done in position
space if it is necessary to compute position-space correlators.

B1.1 Second-Order Correlation Tensor

For a statistically isotropic field, the second-order correlation ten-
sor depends on three scalar functions—this is shown by construct-
ing ci,m out of all possible isotropic second-rank tensors. In three
dimensions, the available building blocks for these tensors areδim,
ǫimp andk̂i , the unit vector in the direction ofk. Therefore,

ci,m(k) =
1
2

[

m1δim +m2k̂i k̂m

]

+ im3ǫimpk̂p, (B1)

where the scalar coefficientsm1, m2, m3 can only depend onk = |k|.
Sincebi (k) is a Fourier transform of a real function, we must

havebi(−k) = b∗i (k), whence

ci,m(−k) = c∗i,m(k). (B2)

It is easy to see that this implies thatm1, m2 andm3 are real (the
factor of i in front of m3 was chosen deliberately to arrange for this
outcome).

Sinceci,m is a correlation tensor, it has a symmetry with re-
spect to permutation of its indices:

cm,i (k) = 〈b∗m(k)bi(k)〉 = c∗i,m(k). (B3)

This does not bring any new information beyond the reality ofm1,
m2 andm3.

Finally, the magnetic field is solenoidal,kibi (k) = 0, so we
must have

kici,m = kmci,m = 0. (B4)

This givesm2 = −m1, so the general form of the second-order cor-
relation tensor is

ci,m(k) =
1
2

m1(k)
(

δim − k̂i k̂m

)

+ im3(k)ǫimpk̂p, (B5)

i.e., it depends only on two scalar functions. If we take the trace
of this tensor, we obtain the magnetic-energy power spectrum
[Eq. (1)]:

M(k) = 4πk2ci,i (k) = 4πk2m1(k), (B6)

so we do not need to knowm3 if we are only interested in the power
spectrum. Vogt & Enßlin (2003, 2005) used this property to pro-
pose a way to measure the magnetic power spectrum solely in terms
of the scalar correlation function of the Faraday rotation measure
associated with a given magnetic-field distribution: although only
one scalar function was available this way, assuming isotropy and
restricting one’s attention to a particular quantity of physical inter-
est made it possible to make do with incomplete information.We
follow the same basic philosophy in this paper, primarily asapplied
to the 4th-order statistics.

Note thatm3 is a measure of reflection (parity, or mirror) non-
invariance of the magnetic field. Ifm3 , 0, the field has helicity. If
we demand mirror symmetry of the field,

ci,m(−k) = ci,m(k), (B7)

we findm3 = 0. We will see that normally we do not have to make
this assumption because in many cases, the mirror-noninvariant
terms are not present in the quantities of interest (as was the case
with the power spectrum).

B1.2 Third-Order Correlation Tensor

Analogously to the above, we construct the general isotropic 3rd-
order tensor as follows

ci j,m(k) = i
(

a1δi j k̂m + a2δimk̂j + a3δ jmk̂i + a4k̂i k̂j k̂m

)

+ a5ǫi jm

+a6ǫi jp k̂pk̂m + a7ǫimpk̂pk̂j + a8ǫ jmpk̂pk̂i , (B8)

wherea1, . . . ,a8 are functions ofk = |k| only.
Reality of the fieldshi j andbm implies

ci j,m(−k) = c∗i j,m(k), (B9)

whencea1, . . . ,a8 are all real.
Permutation symmetry,

cji ,m(k) = ci j,m(k), (B10)

impliesa2 = a3, a5 = a6 = 0, anda7 = a8.
Solenoidality of the magnetic field implies

kmci j,m(k) = 0, (B11)

whencea1 = 0 anda4 = −2a2.
Thus, the general form of the 3rd-order correlation tensor is

ci j,m(k) = ia2(k)
(

δimk̂j + δ jmk̂i − 2k̂i k̂j k̂m

)

+ a7(k)
(

ǫimpk̂pk̂j + ǫ jmpk̂pk̂i

)

. (B12)

B1.3 Fourth-Order Correlation Tensor

In the 4th order, the number of terms in the general tensor becomes
quite large. Constructing this general form out of the usualbuilding
blocks,δi j , k̂i andǫi jm, we get, via straightforward combinatorics,

ci j,mn(k) = c1δi jδmn+ c2δimδ jn + c3δinδ jm

+ c4δi j k̂mk̂n + c5δmnk̂i k̂j

+ c6δimk̂j k̂n + c7δink̂j k̂m + c8δ jmk̂i k̂n + c9δ jnk̂i k̂m

+ c10k̂i k̂j k̂mk̂n

+ i
(

c11ǫi jmk̂n + c12ǫi jn k̂m + c13ǫimnk̂j + c14ǫ jmnk̂i

+ c15ǫi jp k̂pδmn+ c16ǫmnpk̂pδi j + c17ǫimpk̂pδ jn

+ c18ǫinpk̂pδ jm + c19ǫ jmpk̂pδin + c20ǫ jnpk̂pδim

+ c21ǫi jp k̂pk̂mk̂n + c22ǫmnpk̂pk̂i k̂j + c23ǫimpk̂pk̂j k̂n

+ c24ǫinpk̂pk̂j k̂m + c25ǫ jmpk̂pk̂i k̂n + c26ǫ jnpk̂pk̂i k̂m

)

,

(B13)

wherec1, . . . , c26 are functions ofk = |k| only. Note that there are
no terms of the formǫi jp k̂pǫmnqk̂q because

ǫi jpǫmnq = δimδ jnδpq+ δinδ jqδpm+ δiqδ jmδpn

− δimδ jqδpn − δinδ jmδpq− δiqδ jnδpm, (B14)

so such terms are already present in the general form we have con-
structed.

Reality of the fieldhi j = bibj implies

ci j,mn(−k) = c∗i j,mn(k), (B15)

whencec1, . . . ,c26 are all real.
There are three permutation symmetries:

cji ,mn(k) = ci j,mn(k) (B16)

givesc2 = c3, c6 = c8, c7 = c9, c11 = c12 = c15 = c21 = 0, c13 = c14,
c17 = c19, c18 = c20, c23 = c25, c24 = c26,

ci j,nm(k) = ci j,mn(k), (B17)
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gives additionallyc6 = c7, c8 = c9, c13 = c14 = c16 = c22 = 0,
c17 = c18, c19 = c20, c23 = c24, c25 = c26, and, finally,

cmn,i j (k) = c∗i j,mn(k) (B18)

givesc4 = c5.
Assembling all this information, we find that the general 4th-

order correlation tensor only depends on 7 scalar functions:

ci j,mn(k) = c1(k)δi jδmn+ c2(k)
(

δimδ jn + δinδ jm

)

+ c4(k)
(

δi j k̂mk̂n + δmnk̂i k̂j

)

+ c6(k)
(

δimk̂j k̂n + δink̂j k̂m + δ jmk̂i k̂n + δ jnk̂i k̂m

)

+ c10(k)k̂i k̂j k̂mk̂n

+ ic17(k)
(

ǫimpk̂pδ jn + ǫinpk̂pδ jm

+ ǫ jmpk̂pδin + ǫ jnpk̂pδim
)

+ ic23(k)
(

ǫimpk̂pk̂j k̂n + ǫinpk̂pk̂j k̂m

+ ǫ jmpk̂pk̂i k̂n + ǫ jnpk̂pk̂i k̂m

)

. (B19)

B2 Observables in the Case of Zero Mean Field

Let us first examine the caseB = 0, so we are only concerned
with the 4th-order statistics. We will need explicit expressions for
the coordinate-dependent components of the tensorci j,mn in terms
of the coordinate-invariant functionsc1, c2, c4, c6, c10, c17 andc23

[Eq. (B19)]. As the polarized emission data on the magnetic field
arrives in the form of line-of-sight integrals (Sec. 3.4), we have to
setkz = 0 everywhere—no information on the field variation in this
direction is available. However, because of the assumed isotropy,
the dependence of the invariant scalar functions onk⊥ = |k⊥ | con-
tains the same information as their dependence onk = |k|. Let us
denote byϕ the angle betweenk⊥ and thex axis. This means that
we setk̂ = (cosϕ, sinϕ,0). Then the components perpendicular to
the line of sight are

cxx,xx(k⊥) = c1 + 2c2 + (2c4 + 4c6) cos2 ϕ + c10 cos4 ϕ,

cyy,yy(k⊥) = c1 + 2c2 + (2c4 + 4c6) sin2 ϕ + c10 sin4 ϕ,

cxx,yy(k⊥) = c1 + c4 + c10 sin2 ϕ cos2 ϕ,

cxy,xy(k⊥) = c2 + c6 + c10 sin2 ϕ cos2 ϕ,

cxx,xy(k⊥) = (c4 + 2c6) cosϕ sinϕ + c10 cos3 ϕ sinϕ,

cyy,xy(k⊥) = (c4 + 2c6) cosϕ sinϕ + c10 cosϕ sin3 ϕ. (B20)

These are the only components ofci j,mn that are directly sampled by
the polarized emission. The components parallel to the lineof sight
are

czz,zz(k⊥) = c1 + 2c2,

cxx,zz(k⊥) = c1 + c4 cos2 ϕ,

cyy,zz(k⊥) = c1 + c4 sin2 ϕ,

cxz,xz(k⊥) = c2 + c6 cos2 ϕ,

cyz,yz(k⊥) = c2 + c6 sin2 ϕ,

cxz,yz(k⊥) = c6 sinϕ cosϕ. (B21)

Information about these components can only be obtained by rely-
ing on the isotropy assumption as they are expressed in termsof the
same invariant scalar functions as the perpendicular components.
Note that settingkz = 0 has led to all information being lost about
the mirror-asymmetric part of the tensor, so no quantity involving
c17 or c23 can ever be reconstructed from polarized emission.

B2.1 Stokes Correlators

Using Eq. (B20) and the expressions for the Stokes correlators
given by Eq. (14), we get

ΣI I (k⊥) = 4(c1 + c2 + c4 + c6) + c10,

ΣQQ(k⊥) = 4(c2 + c6) + c10 cos2 2ϕ,

ΣUU (k⊥) = 4(c2 + c6) + c10 sin2 2ϕ,

ΣIQ(k⊥) = (2c4 + 4c6 + c10) cos 2ϕ,

ΣIU (k⊥) = (2c4 + 4c6 + c10) sin 2ϕ,

ΣQU(k⊥) = c10 sin 2ϕ cos 2ϕ, (B22)

Note thatΣIQ andΣIU contain the same information and so doΣQU

andΣQQ − ΣUU . The relations between them follow immediately
from Eq. (B22) and are given by Eq. (16).

Thus, only 4 of the Stokes correlators are independent:ΣI I ,
two ofΣQQ, ΣUU , ΣQU and one ofΣIQ,ΣIU . We see that in Eq. (B22),
these 4 independent observables are expressed in terms of 5 invari-
ant scalar functions,c1, c2, c4, c6 andc10, which cannot, therefore,
all be reconstructed from polarized emission data even if isotropy is
assumed (as we explained earlier, two other functions,c17 andc23,
which complete the full set of 7 alluded to in Sec. 3.4, can never be
known from polarized-emission data).

The relations between the Stokes correlators and the invariant
scalar functions given by Eq. (B22) contain angular dependence. It
will be convenient for practical calculations to express all observ-
ables in terms of angle averages (i.e., averages over all orientations
of k⊥):

Σ1(k) =
1
2π

∫

dϕΣI I = 4(c1 + c2 + c4 + c6) + c10,

Σ2(k) =
1
2π

∫

dϕ
(

ΣQQ + ΣUU
)

= 8(c2 + c6) + c10,

Σ3(k) =
1
2π

∫

dϕ
[(

ΣQQ − ΣUU
)

cos 4ϕ + 2ΣQU sin 4ϕ
]

= c10,

Σ4(k) =
1
2π

∫

dϕ
(

ΣIQ cos 2ϕ + ΣIU sin 2ϕ
)

= 2c4 + 4c6 + c10.

(B23)

These formulae again give us 4 independent observable scalar func-
tions, but now the quality of the statistics should be improved by the
angle averaging. We will find that it is most convenient for practical
calculations to useΣ1, . . . ,Σ4 as the basic set of observables (see
Sec. B2.2).

B2.2 General Observable Quantities

Thus, only some 4th-order statistical quantities are observable. It is
not hard to work out the condition for them to be so. First, as we
already explained in our discussion of Eq. (B20), Stokes correlators
carry no information about anything that involves the measures of
mirror asymmetry of the fieldc17 andc23. Let us then restrict our
attention to quantities that contain only the remaining 5 invariant
scalar functions that determine the 4th-order two-point statistics
[Eq. (B19)]. In general, we would be looking for a scalar function
that has the form

Φ(k) = f1c1(k) + f2c2(k) + f4c4(k) + f6c6(k) + f10c10(k), (B24)

where f1, . . . , f10 are some known coefficients, which can be func-
tions of k. Let us try to express this quantity in terms of Stokes
correlators: this amounts to finding coefficientsα, β, γ, δ, which
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can be functions ofk andϕ, such that

Φ(k) =
1
4

(

αΣI I + βΣQQ + γΣUU + δ
ΣIQ

cos 2ϕ

)

. (B25)

Using Eq. (B22), we get

Φ(k) = αc1 + (α + β + γ) c2 +

(

α +
δ

2

)

c4 + (α + β + γ + δ) c6

+
1
4

(

α + β cos2 2ϕ + γ sin2 2ϕ + δ
)

c10. (B26)

Comparing this with Eq. (B24), we get

α = f1,

β =
1
2

(

f2 − f1 +
3 f1 − f2 − 4 f4 + 8 f10

cos 4ϕ

)

,

γ =
1
2

(

f2 − f1 −
3 f1 − f2 − 4 f4 + 8 f10

cos 4ϕ

)

,

δ = 2( f4 − f1) = f6 − f2. (B27)

The last formula gives two expressions forδ. In general, they do not
have to be compatible and if they are not, the quantityΦ(k) cannot
be expressed in terms of Stokes correlators. Thus, we have derived
a simple criterion: only those quantitiesΦ(k) given by Eq. (B24)
are observable for which

2 f1 − f2 − 2 f4 + f6 = 0. (B28)

If Eq. (B28) is satisfied, Eq. (B27) and Eq. (B25) give us
a practical method for calculatingΦ. As any interesting physical
quantityΦ has to be independent of the angleϕ between the wave
vector k⊥ and thex axis of the coordinate system in which the
Stokes parameters are measured, we are allowed to average overϕ:

Φ(k) =
1
8π

∫ 2π

0
dϕW(ϕ)

[

αΣI I + βΣQQ + γΣUU + δ
ΣIQ

cos 2ϕ

]

, (B29)

where W(ϕ) is some weight function, which must satisfy

(1/2π)
∫ 2π

0
dϕW(ϕ) = 1. The weighting does not theoretically af-

fect the result, soW(ϕ) can be chosen arbitrarily.
The possibility of angle averaging with a weight function and

a certain redundancy of information available from the Stokes cor-
relators, as expressed by Eq. (16), mean that there are, in general,
many different ways of reconstructing observable quantities. In the-
ory they are all equivalent, but in practice one has to chooseone
with the aim of reducing noise and offsetting the potentially detri-
mental effect of singularities in the coefficients associated with fac-
tors of 1/ cos 2ϕ and 1/ cos 4ϕ.

One method, which we have found to be quite effective, of
avoiding this problem is to pick as our basic set of 4 observable
scalar functions not the Stokes correlators themselves butthe com-
binations of their angle averages given by Eq. (B23). Repeating the
procedure we have just followed, we seekΦ(k) in the form

Φ(k) =
1
4

(α1Σ1 + α2Σ2 + α3Σ3 + α4Σ4) , (B30)

where the coefficientsα1, . . . ,α4 are now functions ofk only [there
is no longer any angular dependence on either side of Eq. (B30)].
Using Eq. (B23), this becomes

Φ(k) = α1c1 + (α1 + 2α2) c2 +

(

α1 +
α4

2

)

c4 + (α1 + 2α2 + α4) c6

+
1
4

(α1 + α2 + α3 + α4) c10. (B31)

Comparing this expression with Eq. (B24) as before, we get

α1 = f1,

α2 =
1
2

( f2 − f1) ,

α3 =
1
2

(3 f1 − f2 − 4 f4 + 8 f10) ,

α4 = 2( f4 − f1) = f6 − f2, (B32)

and the observability criterion is again given by Eq. (B28).
Eq. (B30) together with Eq. (B23) and Eq. (B32) give another ex-
pression for a general observableΦ(k), defined by Eq. (B24) and
subject to the constraint Eq. (B28).

B2.3 Tension-Force Power Spectrum

In Sec. 3.5, we split the tension-force power spectrum into the
directly observable part [Eq. (20)], which could be recovered
from the Stokes correlators without any assumptions, and the non-
directly-observable partΦ2 [Eq. (21)], which could only be recon-
structed using some assumed symmetries of the 4th-order correla-
tion tensor. Assuming isotropy, we infer from Eq. (B21)

Φ2 = k2(c2 + c6). (B33)

Using Eq. (B20) to expressc2 + c6 in terms of the perpendicular
components of the tensorci j,mn, we immediately recover Eq. (22)
and the rest follows as explained in Sec. 3.5.

This was anad hocderivation specific to the tension-force
power spectrum. Let us now demonstrate how the general method
laid out in Sec. B2.2 works for this quantity.

Substituting Eq. (B19) into Eq. (18), we get

Φ(k) = k2 [c1(k) + 4c2(k) + 2c4(k) + 6c6(k) + c10(k)] , (B34)

a particular case of Eq. (B24). The observability criteriongiven by
Eq. (B28) is satisfied, so, using Eq. (B25) and Eq. (B27), we obtain

Φ(k) =
1
4

k2

[

ΣI I +
1
2

(

3− 1
cos 4ϕ

)

ΣQQ

+
1
2

(

3+
1

cos 4ϕ

)

ΣUU +
2

cos 2ϕ
ΣIQ

]

, (B35)

which can be angle-averaged with some weight function according
to Eq. (B29).

An alternative expression in terms of averaged Stokes correla-
tors follows from Eq. (B30) and Eq. (B32):

Φ(k) =
1
4

k2

(

Σ1 +
3
2
Σ2 −

1
2
Σ3 + 2Σ4

)

. (B36)

Substituting forΣ1, . . . ,Σ4 from Eq. (B23), we arrive at

Φ(k) =
k2

8π

∫ 2π

0
dϕ













ΣI I + 2
(

ΣIQ cos 2ϕ + ΣIU sin 2ϕ
)

− ΣQU sin 4ϕ

+
1
2

(3− cos 4ϕ)ΣQQ +
1
2

(3+ cos 4ϕ)ΣUU













. (B37)

Our final formula for the tension-force power spectrum, Eq. (23),
follows from Eq. (B37) upon multiplication by 4πk2 (the wave-
vector-space volume factor). Note that the integrand in Eq.(B37)
reduces back to Eq. (B35) if we make use of Eq. (16), but the ad-
vantage of Eq. (B37) is that it does not contain any singular coeffi-
cients.

B3 Observables in the Case of Weak Mean Field

If a weak mean field is present, we proceed analogously to Sec.B2.
It is understood that the mean field is sufficiently weak so as not to
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break the isotropy of the fluctuating part of the field. Then, using
Eq. (25), Eq. (B1) and Eq. (B12) and settingkz = 0 to express the
line-of-sight integrals, we find

Cxx,xx(k⊥) = cxx,xx(k⊥) + 2B
2
x sin2 ϕm1,

Cyy,yy(k⊥) = cyy,yy(k⊥) + 2B
2
y cos2 ϕm1,

Cxx,yy(k⊥) = cxx,yy(k⊥) − 2BxBy sinϕ cosϕm1

+ 4i
(

Bx sinϕ + By cosϕ
)

sinϕ cosϕ a2,

Cxy,xy(k⊥) = cxy,xy(k⊥) +
1
2

(

Bx cosϕ − By sinϕ
)2

m1,

Cxx,xy(k⊥) = cxx,xy(k⊥) − Bx sinϕ
(

Bx cosϕ − By sinϕ
)

m1

− 2i
(

Bx sinϕ − By cosϕ
)

sin2 ϕ a2,

Cyy,xy(k⊥) = cyy,xy(k⊥) + By cosϕ
(

Bx cosϕ − By sinϕ
)

m1

+ 2i
(

Bx sinϕ − By cosϕ
)

cos2 ϕ a2, (B38)

where the components ofci j,mn(k⊥) are given by Eq. (B20) and
Eq. (B21).

B3.1 Stokes Correlators

Using Eq. (B38) and Eq. (14), we find that the Stokes correla-
tors are

ΣI I (k⊥) = 2
(

Bx sinϕ − By cosϕ
)2

m1 + 4th order,

ΣQQ(k⊥) = 2
(

Bx sinϕ + By cosϕ
)2

m1 + 4th order,

ΣUU (k⊥) = 2
(

Bx cosϕ − By sinϕ
)2

m1 + 4th order,

ΣIQ(k⊥) = 2
(

B
2
x sin2 ϕ − B

2
y cos2 ϕ

)

m1

− 4i
(

Bx sinϕ − By cosϕ
)

sin 2ϕ a2 + 4th order,

ΣIU (k⊥) = −
[(

B
2
x + B

2
y

)

sin 2ϕ − 2BxBy

]

m1

+ 4i
(

Bx sinϕ − By cosϕ
)

cos 2ϕ a2 + 4th order,

ΣQU(k⊥) = −
[(

B
2
x − B

2
y

)

sin 2ϕ + 2BxBy cos 2ϕ
]

m1

− 4i
(

Bx sinϕ − By cosϕ
)

a2 + 4th order, (B39)

where the 4th-order parts of the correlators are given by Eq.(B22).
Thus, the Stokes correlators now contain not just the 4th-order

statistics but also some information about the second- and 3rd-order
correlation functions of the field, namely, the magnetic-field power
spectrumm1(k) [see Eq. (B1)] and the 3rd-order correlation func-
tion a2(k) [Eq. (B12)]. We are not particularly interested ina2 and
notice that all terms containing it can be eliminated from Eq. (B39)
simply by taking the real part of the Stokes correlatorsΣIQ, ΣIU

andΣQU. We will now isolate the second- and 4th-order contribu-
tions to the Stokes correlators and calculate the power spectra of
the magnetic field and of the tension force.

B3.2 Magnetic-Field Power Spectrum

There are several formulae that allow one to distillm1 from the
Stokes correlators. They are all derived by assembling appropri-
ate linear combinations of the correlators and angle averaging. The
simplest such formulae are found by noticing that the angle aver-
ages of the 4th-order parts ofΣIQ, ΣIU and ofΣQQ−ΣUU vanish [see

Eq. (B22)], so

1
2π

∫ 2π

0
dϕReΣIQ =

(

B
2
x − B

2
y

)

m1,

1
2π

∫ 2π

0
dϕReΣIU = 2BxBym1,

1
2π

∫ 2π

0
dϕ

(

ΣQQ − ΣUU
)

= 8BxBym1, (B40)

The standard one-dimensional magnetic-field power spectrum is
defined with an additional wave-number-space volume factorof
4πk2 [Eq. (B6)]—the resulting expressions for it are given in
Eq. (29).

It is also possible to construct formulae that formally do not
require angle averaging at all: using the fact that for certain com-
binations of the Stokes correlators the 4th-order contributions must
vanish [assuming isotropy; see Eq. (16)], we find

m1 =
Re

(

ΣIQ sin 2ϕ − ΣIU cos 2ϕ
)

(

B
2
x − B

2
y

)

sin 2ϕ − 2BxBy cos 2ϕ
,

m1 = −
(

ΣQQ − ΣUU
)

sin 4ϕ − 2ReΣQU cos 4ϕ

2
[(

B
2
x − B

2
y

)

sin 2ϕ − 2BxBy cos 2ϕ
] . (B41)

Sincem1 is independent of the orientation of the wave vector, these
expressions can be averaged over the angleϕ with arbitrary weight
functions. Note that in order to compute the shape of the spectrum
from Eq. (B41), we do not need to know the magnitude of the mean
field but we do need its orientation (in the plane perpendicular to
the line of sight).

In practice, we expect the formulae given by Eq. (B40) to work
better than those given by Eq. (B41) because the latter rely on exact
cancellations that are probably not going to happen with very high
precision in realistic situations. Even moderate errors incancelling
the 4th-order correlators could then easily overwhelm the second-
order ones: indeed, the terms in Eq. (B39) involving the meanfield

are small because the mean field was assumed to be weak:B
2 ≪

〈b2〉, so B
2
m1 ≪ ci j,mn. In Eq. (B40), the cancellation of the 4th-

order correlators comes from angle averaging and there is hope that
m1(k) could be recovered (but see the caveat at the end of Sec. 3.6).

B3.3 Magnitude and Orientation of the Mean Field

The orientation of the mean field (or, rather, its projectionon the
plane perpendicular to the line of sight) can be easily determined
from the Stokes parameters themselves: the angleΘ between the
mean field and thex axis satisfies

tan 2Θ =
2BxBy

B
2
x − B

2
y

=
〈U〉
〈Q〉
. (B42)

Note that tan 2Θ tells us the orientation but not the sign of the mean
field. This angle can also be determined from the Stokes correlators
via Eq. (B40):

tan 2Θ =

∫ 2π

0
dϕReΣIU

∫ 2π

0
dϕReΣIQ

=

∫ 2π

0
dϕ

(

ΣQQ − ΣUU
)

4
∫ 2π

0
dϕReΣIQ

, (B43)

but the validity of these formulae, unlike that of Eq. (B42),is pred-
icated on assuming the statistical isotropy of the fluctuating field. If
this assumption is well satisfied, the value of tan 2Θ obtained from
Eq. (B43) should be independent ofk.

c© 2008 RAS, MNRAS000, 1–19



Probing magnetic turbulence by synchrotron polarimetry19

The magnitude of the mean field is a slightly more compli-
cated quantity to determine. From the total emission intensity [see
Eq. (9)],

〈I 〉 = B
2
⊥ + 〈b2

x〉 + 〈b2
y〉 = B

2
⊥ +

2
3
〈b2〉, (B44)

whereB
2
⊥ = B

2
x+ B

2
y and the last expression follows from assuming

the statistical isotropy of the fluctuating fieldb. Thus, from aver-
aging I , we can calculate the total energy density of the magnetic
field but not individually the magnitudes of the mean and fluctuat-

ing fields. On the other hand, once we knowΘ, we can findB
2
⊥m1

from Eq. (B40) or Eq. (B41). Let us integrate this quantity over all
wavenumbers and denote the result byA:

B
2
⊥

∫ ∞

0
dk4πk2m1(k) = B

2
⊥〈b2〉 = A. (B45)

Then〈b2〉 = A/B
2
⊥ and substituting this into Eq. (B44), we arrive at

a biquadratic equation forB⊥, whose solution is

B
2
⊥ =

1
2















〈I 〉 −
√

〈I 〉2 −
8
3

A















≃
2
3

A
〈I 〉
. (B46)

We have chosen the “−” root because we are assumingB
2 ≪ 〈b2〉

(weak mean field). While we do not really need to knowB
2
⊥ to

disentangle the second- and 4th-order statistics in Eq. (B39), we
can use Eq. (B46) to check that the mean field really is weak:

B
2
⊥ ≪ 〈I 〉. (B47)

B3.4 Fourth-Order Quantities

Now that we know the mean field andm1(k), we can use this infor-
mation in Eq. (B39) to isolate the 4th-order statistics in the Stokes
correlators and then proceed to calculating all observable4th-order
quantities in the same way it was done in Sec. B2.2. In general,
this involves subtracting from the (real part of) the Stokescorre-
lators the terms that containm1 [Eq. (B39)] so that only the 4th-
order contributions [Eq. (B22)] remain. Doing this requires know-

ing B
2
⊥m1(k) (see Sec. B3.2) and the orientation of the mean field

[Eq. (B42)]. Subtracting the second-order contributions from the
the averaged Stokes correlators introduced in Eq. (B23) is apartic-
ularly simple operation: substituting from Eq. (B39) into Eq. (B23)
and carrying out the angle averages, we get

Σ1(k) = B
2
⊥m1 + 4th order,

Σ2(k) = 2B
2
⊥m1 + 4th order,

Σ3(k) = 4th order,

Σ4(k) = −3
4

B
2
⊥m1 + 4th order, (B48)

where the 4th-order parts are given by Eq. (B23) and real partof
the Stokes correlators is taken everywhere to eliminate thecontri-
butions from the 3rd-order statistics.

B3.5 Tension-Force Power Spectrum

To find the tension-force power spectrum whenB , 0, substitute
Eq. (25) into Eq. (18) and use the solenoidality of the magnetic field
[Eq. (B4) and Eq. (B11)]:

Φ = Bj Bnkjknci,i + Bnknkj

(

ci j,i + c∗i j,i
)

+ kjknci j,in. (B49)

From Eq. (B12), we see that the second term vanishes. Using
Eq. (B1) to express the first term in terms of the magnetic-field
power spectrum, settingk = k⊥(cosϕ, sinϕ,0) (line-of-sight inte-
gral) and angle-averaging overϕ, we get

Φ(k) =
1
2

k2B
2
⊥m1(k) + 4th order, (B50)

where the 4th-order part is given by Eq. (B34) and is calculated
from Stokes correlators in the same way as in Sec. B2.3. Namely,
using Eq. (B36) and Eq. (B48), we get

Φ(k) =
1
4

k2

(

Σ1 +
3
2
Σ2 −

1
2
Σ3 + 2Σ4 −

1
2

B
2
⊥m1

)

, (B51)

whereΣ1, . . . , Σ4 are defined in Eq. (B23) (with real parts taken

of the Stokes correlators) andB
2
⊥m1 is calculated via one of the

formulae given in Sec. B3.2. Eq. (30) follows upon multiplication
by the wave-number-space volume factor 4πk2.

This paper has been typeset from a TEX/ LATEX file prepared by the
author.
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