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ABSTRACT

Context. Possible &ects of magnetic fields in core collapse supernovae rely ogffament amplification of the weak pre-collapse
fields. It has been suggested that the magneto-rotatiostability (MRI) leads to a rapid growth for these weak seeld$ieAlthough
plenty of MRI studies exist for accretion disks, the applma of their results to core collapse supernovae is inbibés the physics
of supernova cores is substantiallyfdrent from that of accretion discs.

Aims. We address the problem of growth and saturation of the MRbie collapse supernovae by studying its evolution by means
of semi-global simulations, which combine elements of gland local simulations by taking the presence of globakfamnd
gradients into account and using a local computational §¥el investigate, in particular, the termination of the gitowf the MRI
and the properties of the turbulence in the saturated state.

Methods. We analyze the dispersion relation of the MRI to identifffelient regimes of the instability. This analysis is completed
by semi-global ideal MHD simulations, where we considercaratter in a local computational box (sizel km) rotating at sub-
Keplerian velocity and where we allow for the presence oftgala@ntropy gradient, but neglect neutrino radiation.

Results. We identify six regimes of the MRI depending on the ratio & émtropy and angular velocity gradient. Our numerical riode
confirm the instability criteria and growth rates for all ire@s relevant to core-collapse supernovae. The MRI gropsrentially on
time scales of milliseconds, the flow and magnetic field gedesebeing dominated by channel flows. We find MHD turbuleaice
efficient transport of angular momentum. The MRI growth ceases the channels are disrupted by resistive instabiliigs{ming
from to the finite conductivity of the numerical code), and BHkurbulence sets in. From an analysis of the growth ratefef t
resistive instabilities, we deduce scaling laws for thenieation amplitude of the MRI, which agree well with our nuisal models.
We determine the dependence of the development of larde-scherent flow structures in the saturated state on thetsg® of
the simulation boxes.

Conclusions. The MRI can grow rapidly under the conditions considereehiee., a rapidly rotating core in hydrostatic equilibrium
possibly endowed with a nonvanishing entropy gradientlitegto fields exceeding 10G. More investigations are required to cover
the parameter space more comprehensively and to include phgsical &ects.
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1. Introduction mentum redistribution and for the conversion of rotatiosal

ergy into thermal energy of the gas. Imparting additionarth
The magneto-rotational instability (MRI)_(Balbus & Hawleymal energy into the post-shock stellar matter the MRI might
1991) is a local linear instability of weakly magnetizedieii- thus be important for the currently favored neutrino-dnicere
entially rotating fluids. A large number of analytic, as wa#l collapse supernova explosion mechanism (e.g. Thompsadh et a
numerical studies support the assertion that the MRI is thie mi2005; | Janka et al. 2007), although possibly only for rapidly
agent for exciting turbulence in Keplerian accretion digks and strongly dierentially rotating progenitors. Furthermore,
a review, see, e.d., Balbus & Hawley 1998). The MRI amplifighe growth of the magnetic field resulting from the MRI may
seed perturbations exponentially with time until turbalesets provide the adequate physical conditions in the collapsed c
in. In the turbulent state, the magnetic fiely,gives rise to a to launch bipolar outflows, which result in gamma-ray bursts
non-vanishing (spatial and temporal) mean Maxwell stress t (Aloy & Obergaulinger 2007). As the physical conditions 3y a
sorM;; = bib;. Simulations of accretion disks show a high negeretion disks and starsftiér significantly, and as only a few an-
ative mean value of the componéwt,, (wherew and¢ are the alytic studies of the MRI in stars exist (e.g., Acheson 19#8)
radial and azimuthal coordinate of a cylindrical coordingys- remains unclear whether existing results on the MRI in digks
tem), which gives rise to arflicient outward transport of angularply to stars, and particularly to supernovae, as well.

momentum. Numerical simulations of the MRI face a severe problem,
Akiyama et al. [(2003) pointed out that the layers surroundince the growth rate of MRI-unstable modes depends on the

ing the nascent proto-neutron star quite generically fulié product of the initial field strength and the wave number ef th

MRI instability criteria. Consequently, any (weak) seedgma mode. For a weak field, only fairly short modes grow rapidly.

netic field will be amplified exponentially. In the saturastdte Simulations of astrophysical flows, on the other hand, ofiédin

of the MRI instability, sustained magneto-hydrodynamittit to resolve just those modes, as it would require prohibitive

lence might then provide arfficient means for an angular mo-high computational costs to cover spatial scales rangiog fr
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the global extent of the astrophysical system (which may lgdobal simulations, i.e., if rapid amplification by the MRikes
much larger than the MRI-unstable region) down to the wavptace over many orders of magnitude. However, this can only
lengths of the fastest growing MRI modes. This dependenibe proven by high-resolution local simulations. Enhandhmy
of the growth rate on the wavelength of the mode suggestsnétial magnetic field by a constant factor throughout theneo
twofold approximate numerical approach: one either perfor putational domain, as it is often done in global simulatiaas
simulations which properly cover the global scales of theoas problematic as the MRI is a local instability, i.e. it is not-e
physical system foregoing to resolve the small scales s#idy pected to cause a constant amplification of the field everyavhe
wavelengths of the fastest growing MRI modgtopal simula- The ambiguities regarding fiérences between the topology of
tions), or vice versalpcal simulation$. this artificially enhanced field and that of a field amplified lo

Local simulations evolve only a small part of the entire MRIeally by the MRI add to the uncertainties clouding the inficeen
unstable system, known as tehearing box However, infor- of magnetic fields on the overall dynamics.

mation on the scales exceeding the size of the computational Both the local and the global numerical approach has been
grid has to be provided using suitably chosen boundary eongied for studying the MRI in accretion disks, and this coradin
tions. No unique recipe exists for this procedure, but the Ugffort has led to the rapid development of the field. Simulations
of reflecting and periodic boundaries is a common practicgt the MRI in core collapse supernovae, on the other hand; hav
In most studies of accretion disks, the boundary condit@ns not yet reached this advanced stage, mainly because of tie we
Hawley & Balbus|(1992) are used in radial direction, whicl amess of the initial field of the progenitors. According to reunt
essentially periodic boundary conditions but accountfilsthe  stellar evolution models$ (Heger et al. 2005), the canorpcet
relative shear between the inner and the outer radial edfeof collapse magnetic fields are so weak that they are unabfeetct a
grid. They are often combined_with a Galilei transformatico the dynamics of the explosion unless they are amplified gtyon
a frame of reference co-rotating at the mean angular vglocitorrespondingly, the wavelengths of the fastest growingl MR
of the shearing box, and a linearizion of the angular veJociinodes are approximately a few meters at nfb$hus, the pos-
within the box. Local (shearing box) simulations using #ired  sible importance of MHD féects in core collapse supernovae
of boundary treatment are commonly cali#tearing-sheedim-  depends on the existence of mechanisms which can amplify the
ulations. field efficiently during core collapse and the post-bounce phase.
The general drawback of local simulations obviously lies iihe timescale available for the growth of the magnetic fisld i
their inability to account accurately for large-scale pbr@ena. set by the time required to turn the accretion of matter oo t
In addition, there is only a limited possibility to model b proto-neutron star into an explosion, i.e., a few hundrédsib
gradients other than fierential rotation in shearing-sheet simtiseconds. As already mentioned above Akivama et al. (2003)
ulations. Independent of the boundary treatment only modasggested that the MRI might provide this mechanism. They
with a wavelength less than the size of the grid can be exstimated the saturation field strength to b&°1010'°G, i.e.,
cited, i.e. modes with a wavelength comparable to the dimeglearly in excess of the artificially enhanced initial fiettesigths
sions of the whole system cannot develop. Consequently; MRked in global simulations.
d_riven turbulen(_:e may saturate atalevel dete_rmined (st jrzar- Up to now, there exist only global simulations of MHD core
tially) by numerical rather than (only) by physical paragtetA . 1anse supernovae, which evolve the entire core of a mas-

careful analysis is necessary to disentangle the respeanfiu- ; . ;
ence (see e.d. Pessan étal. 2007: Fromang & Papaloizot 200 Tiotaks et al 2004 Yamada & Sawa 004 Taktwak ot a
Regev & Umurhan 2008). _ [2004] Obergaulinger et/al. 2006H,a; Burrows ét al. 2007¢s€h
Global simulations, on the other hand, follow the evolutiog|oa) simulations fail to find the MRI unless they employsira
of the entire system, albeit with a much coarser resolutiamt 4|y stronger initial fields. Obergaulinger et al. (2&0#), €.g.,
local ones. Thus, they can account.forthe Iarge-sc.alet.armof require a pre-collapse field strength exceedintf G0to resolve
stars and disks, for the back-reaction of the MRI instigdted o \R| in the post-bounce state. The rationale behind ttie ar
bulence on the global flow, and allow one to draw conclusions §eia)ly increased initial field strengths is that, once géged by
how the saturated state depends on global properties ofie she diferential rotation in the proto-neutron star, the MRI will

tem, e.g., the density or pressure stratification. Howeeee- gy onentially amplify a much weaker seed field up to the \@lue
going the ability to resolve short-wavelength modes, ttevtin | <o in the simulations.

of the MRI will be underestimated or suppressed even eptirel Due to the lack of local simulations, the importance of the
In many applications of numerical analys!s, itis pOSSIb-Ie'$e MRI in MHD core collapse models rem’ains unglear As a first
suitable models for the unresolved physics on sub-gridescal Ve this | P h f d hi h SolL]
e.g., sub-grid dfusivity. This requires a good knowledge of theteP Itot' reso \]/ce t 'Sil |ssute, v¥e_ a\ﬁ. pder OrTE \gn-re tu“
physics on these scales, and is facilitated greatly if pees at S'r;unae,:i(;gz %;?Sa V\F/)earhsa\(/)e Sulrsne%l Iae rel?:(;jwt-l 032\‘/:;'0 “Oe% high-
the unresolved scales act merely as a sink for kinetic or m%g-sglution MHD cbde and emploveshearin -%iskboun%ar 9
netic energy cascading down from the integral scale. Dufiag onditions |(Klahr & Bo’denheimeﬁ)r %/003) Thgse boundar )(/:on-
growth of the MRI, however, the power shifts gradually frqnﬁ:itions derive from the shearin ‘-sheet 5oundar conds'tiz/rh
short to long modes. Thus, sub-grid models for global MRI-smE| lev & Balbus (1992) but ”g i 'dy lobal ara-
ulations tend to be complex, and are not used widely. awley & balbus i ), but allow one to consider global gra

As a remedy for this problem, global simulations may bETECH S0 e GO P S SO
performed using unrealistically strong initial fields toagan- adients. and a hi h-’reso.lution local grid, we find it jiistl to
tee that the fastest growing MRI modes are resolved numetls ' 9 gnd,

cally. This approach presumes that the unresolved MRI mod:eaé,I our approackemi-globalfor more details see SeCi.B.2).
are able to amplify the much weaker actual initial fields te th

field strengths used as initial value in global simulatichisis ! Note, however, that these predictions still involve urmiettes, and

assumption can be justified, if the MRI acting on the unreence rare, but much more strongly magnetized progenitomsat be
solved scales saturates at the initial field strengths iegh@s excluded presently.
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Differences in the physical conditions in disks and stars ifi;b’ = 0. (5)
pede the direct application of the MRI results from accretio
disks to supernovae. Most obviously, the geometry of both s
tems difers strongly. Furthermore, while accretion discs are
bilized against gravity by (Keplerian) rotation, stars atg-
ported mainly by pressure gradients, with only a minor dbutr
tion from rotation, i.e. thermal stratification is much morgor-

tant in stars than in disks. Thus, entropy gradients carnlig@b ;4 the gas pressure= P(p, ¢, ...). The electric fieldE, is

an MRI-unstable region or modify the instability in conviee ; ~ - ;
g fy Yy ty given byE = —¥ x b. Here,c = 2.998x 10'%cm st is the speed

unstable regions. Consequently, the problem of the MRI e cog¢ lightin vacuim and Einstein's summation convention &pl

collapse supernovae has to be addressed by simulationsrdeco We use the hybrid equation of state (EOS) due to Keil et al.

ing for their specific properties, which is the goal of thisdst. 1996 X

: ; A 5) as a rough model for neutron-star matter. Follownig) t
We investigate the growth of the MRI _frqm initial fields gompa(EOS’ )the total g%s pressuR, consists of a barotropic paR,
rable to the ones expected from realistic stellar evolutimd- and a thermal parBy,. The two parts are given by

eling, and we seek to probe the possibility of MRI-drivendiel
amplification under typical conditions of supernova cored a
on timescales similar to the dynamic times of the system,, (i.
a few tens of milliseconds). Apart from the restrictionseénh Ptn
ent to local and semi-global simulations, several simglifans

limit our approach: we use simplified initial equilibrium ho Here,I'; and« refer to the barotropic adiabatic index, and the
els, a simplified equation of state, and neglect neutrinditga polytropic constant of the EOS, respectively,= e—Py/(I',—1)
and cooling. The main physical questions that we try to azidrds the thermal part of the internal energy, afig the corre-
are: (i) does the MRI grow on ficiently short time scales to sponding adiabatic index. Please note that we considersoibly
influence the explosion, i.e., within at most 100 msec, giypa nuclear densitieg; < pnuc = 2x 101 g cn? here since the max-
ical post-bounce rotation profiles and magnetic fieldsHgyv  imum density reached in our models is a few time&g@nT.
does an entropy gradienffact the growth of the instability? (iii) We define a pseudo-entrofyfor this equation of state by
How does the saturated state of MRI-driven turbulence d&pen

on these factors? In particular, is the saturation fielchsfite es- P

timated by Akivama et al. (2003), i.e., the conversion of twds = = Py (8)
the rotational energy into magnetic energy, realistic?

Analogous questions are studied by local simulations of th¢ the Schwarzschild criterion for convective stabiliteésbe-
MRI in accretion disks. The answers may lead the way to fog), this quantity appears instead of the entropy of, amideal
mulate a turbulence model to be used in global simulatiohs. Tgas
simplest model would provide a parametrization of the angu- A few quantities used frequently in the remainder of this pa-
lar momentum transport by anviscosity (Shakura & Syunyaev per are:

1973), i.e., a turbulent viscosity proportional to the losaund
speed and the pressure scale height. However, despitee |
number of local simulations, no unique formulation of an

Yerep, p, v, ande, denote the mass density, momentum density,
St9e'locity, total-energy density, of the gas, respectivélys the
magnetic field. The total-energy density and the total pness
P,., are composed of fluid and magnetic contributiags= ¢ +
1pv2 + 1b? andP, = P + 3b? with the internal-energy density

Pp = ko', (6)
(Tth — Letn. (7

%9 the Alfven velocity

model for accretion disks has been found up to now. Lacking ||
similar comprehensive local simulations, a turbulence ehéat CA=—, 9)
the MRI in supernovae is even less conceivable. Our sinuuisti \Gl
intent to provide only a first step towards these highly asbir 2. the (local) magnetic energy density
turbulence models.
The paper is organized as follows: after a discussion of the b2
main properties of the MRI in disks and stars (Sdct.2), we emag = &> (10)
outline our numerical method in Sdckt. 3, discuss our results 2
Sect[4, and summarize our main results and give conclusions and the corresponding volumetric mean value
Sect[b.
v
o €mag= — | dVe 11
2. MRl in discs and stars Wy mee D
2.1. Physical model 3. the (local) Maxwell stress tensor
We work in the limit of ideal magnetohydrodynamics (MHD), M = bib: (12)
solving the the equations of ideal MHD in the presence ofan '~ ™'°)°
external gravitational potential and the corresponding volumetric mean value
dp+Vi|pv'] =0, (1) 1
Mij = $fd(VMij- (13)
op +V; [p'vJ + P, - b'b‘] = pVig, 2)

S , We will use most frequently the componeht,, which
e, +V; [(e* + PV - b'vib‘] = pV'Vje, (3) governs the transport of angular momentum in radial direc-
tion, and we will sometimes refer to this componentfas
otb=-cVxE, 4) Maxwell stresgor short.
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2.2. General properties of the MRI are the gravitational, rotational, and buoyancy termspees
tively, andT'y; = dInP/dInpls. It is convenient for the mode

The stability criteria for the MRI was first discovered byanalysis and if coé # 0 to define the quantity

Velikhov (1959)| Chandrasekhar (1960) and further dised &y
Balbus & Hawley|(1991) in a series of papers. These authersan 72 , 52
alyze wave-like (WKB) perturbations of the form ex{-r+wt)] C c__R
in a background equilibrium of the MHD equations. For con- co i
venience cylindrical coordinatgss, ¢, 2) are used in the fol- = (G.B:tarf 6 — 28,G,tanbk + Go By + Rey)/Q%,  (24)
lowing equations. From the dispersion relation, they detie _ . :

criteria for exponential growth and, if applicable, the o Where the curl of EqL{2), i.e. the vorticity equation, haerbe
rates of WKB modes. Because the main astrophysical conté€d to simplify the expression of Note that this quantity de-
of this series of papers is accretion discs, some assunsptiff§nds on the direction of the perturbatignbut not onk* itself.

are made which considerably simplify the analysis: i) wedk 0S¢ = 0, which corresponds to velocity perturbations par-
magnetic fields wheré/a] < min(cs, [v,|), ii) incompressible allel to the rotation axis, the vaIut_a dfdl\{erges, but all I(_an_gth
gas (Boussinesq approximation), and iii) angular velociiy- scales and growth rates of the _dls_cussmn below are finit, an
stant on cylindersQ(w). The discussion is mostly restricted tof@n P& computed by taking the limit oas— 0. _

thin discs (i.e., to equatorial regions and to a Kepleriaa-ro  In the absence of a magnetic field, il€. = 0, the stabil-
tion law) and 33-polytropes. Under these assumptions the sty condition is simplyC + 4 > 0, which is equivalent to the
bility criterion for a diferentially rotating magnetized fluid is Solberg-Hgiland stability criteria for a non-magnetizetating

(Balbus & Hawle}/ 1991) fluid (Tassoul 1978). _ o . _

) Because we want to study instabilities of magnetized fluids,
Ro = @iz Q" > 0. (14) we consider hereafter only the case+ 0. Then the stability
If the criterion is not fulfilled only modes with (dimensi@ds) condition isC > 0, which corresponds to thatlof Balbus (1995),
wavenumber G- B+R-e, >0 (25)
K < _&w = Rt (15) (Gxey) - (BxR) = 0. (26)

- - . Modes with wave numbers smaller than the (dimensionless) cr

are unstable, wherde= k- Va/Q, Kerit = Keiit - Va/Q andRo = jcal wavenumber
R-/Q2. The (dimensional) growth rate of the fastest growing
mode is|(Balbus & Hawley 1992) Kerit = COSH V—C (27)
Orem = wrem/Q = —Ry /4 (16) are unstable and grow. The critical wavenumber dependseon th

L - angledy in a complicated way involving, in general, the rotation
Wh|ch |s. independent of the magnetic field and correspondséﬁ)f“eﬁy the thermal structure3, and the stratificatiorg.
(dimensionless) wave numbers closéig. Two branches of unstable modes arise from the dispersion

However in.the context of core collapse supernovae Sqmergfation withk # 0 (Urpin[1996): the branch of Alfvén modes
these assumptions do not apply: entropy and CompOs't'aj"graappearing folC < 0, and the branch of buoyant modes which
ents are important, more gener_al rotation |&¥(so, 2) have to nly appear foC + 4’< 0 (Fig).
be considered, and the analysis can no longer be restrmte(?t For a giverdy the fastest growing mode is obtained from the

equatorial regions. In this general case the dispersiatioal of Hi oo A _ ; ; ;
WKB modes is (cf. Balbiis 1955: Urpin 1996), conditiondy® = 0. For-8 < C < 0 it has a (dimensionless)

wavenumber
~2  12)\2 A2 T2\(A2 A2
(a) k ) (ai k )(a)G +wgp+4 co Hk) a7 RFGM _ coshi 7\16‘ (C+78) ’ 28)
— 4k2cogec=0 (18) 4
wherew = w/Q is the dimensionless growth rate of the insta"Zmd a (dimensionless) growth rate
bility, and 6 is the angle betweek and thez-axis. The (dimen- —
sionless) frequencies related to buoyancy terms affdrdntial &gy = coséy (29)
rotation are 4
o 1] (k-B)(k-G) If C < -8, the fastest growing mode correspondew = 0,
“e = o2 G-B- T] (19) j.e. it is dominated by buoyant modes with a (dimensionless)
- growth rate

and

10 (k ) ew)(k ) R) C’Z)FGM = COSHk VC + 4. (30)

02| k2 Thus, there exist two flierent instability regimes depend-

ing on the value ofC. For -4 < C < 0 only Alfvén modes
are possible. Thisnagneto-shear regimavas discussed by
VP Balbus & Hawley|(1991). A mixed regime is found fe8 < C <

respectively, where, is the unit vector inw- direction,

G=— (21) -4, where both Alfvén and buoyant modes compete (Far—8
P ) the buoyant modes completely dominate the growth of theinst
R = @VQ (22)  pility, and this regime is thus calledagneto-convectivegime.

_Vp VP _ 14InP
h P F]_P_ I'n 0s o

It is similar to the convective regime, but the critical wauen-

Vs (23) ber is determined by the strength of the magnetic field.
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A LA T beit with a vanishing growth rate as their wavelengthp-

proaches infinity. The growth rate peaks for

Stable modes 08

I Avri = 21/Keam ~ V2 dcrit, (33)
k"’A O where the limit|C| <« 8 is used to obtain the second ex-
Q cos@, . - ] pression. It is important to note thayr,, which scales with
Gt Bmugagg ‘ 0.4 the background field strengthy, becomes small for weak

initial fields. Hence, in the limit of a pure shear instalilit
only relatively strong initial fields are accessible by nume
ical simulations due to the restrictive constraint on thie gr
size imposed by the requirement to resaolyg, by at least

DAL a several grid zones.
—100 —10 =1 —0.1 —0.01 — Magneto-buoyantinstability (MBI N? <« R, and-4Q? <
C N? + R, < 0. This regime resembles the magneto-shear

regime, but the instability is not driven by the shear, but

Fig. 1. Imaginary part of the growth rate normalized to the imag- rather by the unstable stratification.
inary part of the maximum growth ratéi(®)/J(wrsm) as a — Magneto-convective instability: N« R, andN? + R, <
function of C and k/ costx = k - Va/(Qcosty). The dashed —40?. This r_egime corre_sponds to magnetized convective
line shows the value df corresponding to the fastest growing flow. The main diference is the stabilization of short modes
mode,J(®)/J(wrem) = 1, the solid line gives the boundary be- (4 < 4cit) due to the magnetic tension. The more important
tween the two branches of unstable modes (Alfvén and Buoyan the negative entropy gradient becomes with respect to the an
modes), and the dash-dotted line corresponds to the sgabili gular velocity gradient, the faster is the growth of infityte
limit (k = keri). For—4 < C < 0 only Alfvén modes appear, with ~ |0ng modes compared to the growth rat@gk:.
2 NAITow s : £ ~ — Hydrodynamic shear instabilityR,, < N? andN? + R,, <

pectrum of fast growing modes close&dg (dash DA , , : 7
dotted line). ForC < -4 buoyant modes appear and become —AQ This case Is not of interest in core (;ollapse S|n2ce for
dominant forC < —8. In the latter case the spectrum of fast (he diferential rotation of PNS we always firkt, > 1.50°.
growing modes is much wider covering the entire region fro

K 10 0 Bore collapse occurs in general imaxed regimewhere Alfvén
rit .

modes and buoyant modes compete. Therefore, none of the
above mentioned pure regimes holds for the MHD instalslitie

Note that for a given fluid element the behavior of the unstaPPearnng during core collapse.

ble modes depends on the an@leThus, diterent regimes can

hold in different directions. To find the absolute fastest growirgg Method

mode of a fluid element, i.e. not considering a fixed adglene -

has to determine the zeros @b/d6k, which involves the solu- 3 1. coge

tion of a quartic equation. This fact makes a more detailedyst

of the instability dfficult. We use a newly developed three-dimensional Eulerian MHD
To simplify the analysis, we restrict ourselves in the falo code (Obergaulinger et al., in preparation) to solve the MHD

ing discussion to regions near the equator, where it is rease equations, EqLI1)H(5). The code is based on a flux-cortaerva

to assume only a radial dependence of the hydrodynamic quéifite-volume formulation of the MHD equations and the

tities and a vertical magnetic field. Therefore, constrained-transport scheme to maintain a divergerase-fr
magnetic field (Evans & Hawley 1988). Using high-resolution
Coo = (N? + R,,)/Q2, (31) shock capturing methods (e.g., LeVeque 1992), it employs va

ious optional high-order reconstruction algorithms inlthg a
whereN? = 8- G is the square of the Brunt-Vaisala or buoyanciotal-variation diminishing piecewise-linear (TVD-PL$aon-
frequency. Becaus@y does not depend o, all modes of the struction of second-order accuracy, a fifth-order monaioyi
considered fluid element belong to the same branch of modggserving (MP5) scheme (Suresh & Huynh 1997), and a fourth-
i.e. they are either buoyant modes or Alfvén modes. All nsoderder weighted essentially non-oscillatory (WENO4) schem

with wavelengths shorter than (Levy et al.[2002), and approximate Riemann solvers based on
the multi-stage (MUSTA) method (Toro & Titatev 2006). The
Aot = 2n _ 2|Vl i (32) Simulations reported here are performed with the MP5 scheme
Kerit V=(N2 +R,) and a)MUSTA solver based on the HLL Riemann solver (Harten
1983).

are stabilized by magnetic tension. It is easy to show that th The simulations are performed using cylindrical coordisat
modes grow faster whek is parallel to thez-axis ¢k = 0), and include both three-dimensional and two-dimensional, (i
i.e. velocity and magnetic field perturbations grow in direcaxisymmetric) models. The computational grid covers aaegi
tion perpendicular to the rotation axis. The stability @ribn, of a few (typically one or two) kilometers aside resolved by a
N? + R, > 0, can easily be interpreted according to the relativeast 26 and at most 800 zones per dimension, corresporaing t
size of the buoyancy ternlN?, and the shear ternR,,. Several 3 resolution between 40 and 0.625 m.

different regimes result (Figl. 2):

] - 2 The reader should not confuse this instability with the negign
— Magneto-shear instability (MSIYR, < N2 and-4Q? < buoyancy or Parker instability (Parker 1966), related ® ragnetic
N? + R, < 0. All modes longer than; are unstable al- field strength gradients.
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Stable :

3.0 /575

P13
’

25 > ~6.00 ¢
2.0 / Sa1-6.25

145 150 155 16.0 165
Fig. 2. Stability regions in the plan®,/Q? vs N?/Q2. The w [km]
solid thick line separating the stable region from the magne
rotational instabilities (MSI and MBI) corresponds@c= 0, and
the solid thick line separating the magneto-rotationasibgities  Fig. 3. Hydrostatic structure of the initial models. The diagram
from the hydrodynamic instabilities (convection and shiesia- Shows the gravitational potentials = ¢/(10' erg cnm) (solid
bility) corresponds to th€ = —4. The mixed zone is arbitrarily lines, righty axis), the densityi13 = p/(10*3 g cnm3) (dashed
defined by|R,,/Q2 — N2/Q?| < 2. line, left y axis), and the angular veloci®; = Q/(10° s™3)
(dash-dotted line, left axis). The entropy profile of this specific
model is assumed to be flat.

3.2. Boundary conditions
] ] } - ] In contrast to accretion disks, thermodynamic variables in

In local simulations, the choice of boundary conditions @@ stars may have global gradients both in the direction per-
cial issue, with possibly subtléfects on the flow geometry. Thependicular and parallel to the gradient @f Thus, standard
standard technique for local simulations of the MRI in aecrgnearing-sheet boundaries cannot be used. Instead, voev foll
tion disks is theshearing-sheanhethod due to Hawley & Balbus [Kjahr & Bodenheimér (2003) and emplsfearing-disbound-
(1992). This approach consists of two importantingredigia ary conditions. We abandon the transformation into the co-
transformation into a frame of reference co-rotating ati®&an  rotating frame and assume radial periodicity of the dewiati
of the rotation profile arounty; (i) the use of shearing-sheetq instead of periodicity ofj itself. We define the background
boundaries in the radial direction, and (in most casespg@ri istributionqo by its distribution at the initial time: = 0, i.e.
boundary conditions in the perpendicular directions. O = q(w;t = 0). This recipe is applied to density, momen-

Periodic boundary conditions are often used in simulationgm, and entropy. As Klahr & Bodenheimer (2003), we observe
of a small, representative sub-volume of a larger systeras&h the development of resonant radial oscillations which ae s
boundary conditions are based on the idea that the entire Sy&ssed, however, by damping the radial velocity in the first
tem is covered by a homogeneous (e.g., cubic) lattice of-idgve usen = 2) computational zones at both radial boundaries.
tical sub-volumes. Consequently, the, e.g., left boundéthe We point out that shearing-disc simulations allow for lasgale
simulated sub-volume is identified with the right bounddrgmm  modifications of global gradients. In particular, angulamen-
identical sub-volume translated by one lattice width. tum transport may modify the global rotation profile, andrue

A shearing box represents only a small part of the entitke angular momentum and rotational energy of the matter in
system. The influence of larger scales is considered by siite computational volume. This process can eliminate the di
able boundary conditions, the most natural choice beiniggier ferential rotation causing the instability, and thus, tierate the
ones. These boundary conditions, however, do not allow @negrowth of the MRI.
impose global gradients throughout the shearing box, fag., As we will show later, the evolution of our models depends
differential rotation §»Q # 0). This shortcoming is eliminated crucially on whether we do or do not apply this damping term.
by the linearization of the rotation profile and the transfation However, we note here that the artificial oscillations préged
into the co-rotating frame since, in this case, the deuigtiom by the damping do not have a strong influence on the evolu-
the background profiléQ, is the dynamical variable rather thartion of the MRI. We use, if at all, a damping &f, by 1.25%
Q itself. Thus, it is possible to use periodic boundary candi& in the innermost and outermost two zones of the grid, which
in the radial direction accounting forféérential rotation by an is a considerably weaker damping than in the simulations of
offsetdg(t) = t (Qout — Qinn), as described by (Hawley & BalbusKlahr & Bodenheimer (2003). Despite its relative weaknéss,
1992), whereQqtinn are the angular velocities at the outer andamping term is able to suppress weak radial motions across
inner radial surface of the shearing box, respectively. the boundary. Thus, it introduces a preferred length sdhke (
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radial size of the box) into the otherwise shear-periodinga- atwy = 15.5 km. The structure of an initial model, characterized

tion. Comparing simulations with and without damping (wé wi by the set of parametefk = 1900s?, ag = -1.25,S, = 0, and

refer to these boundary conditions #yandp, respectively), we S; = 0, is shown in Fid.3. This model has a radial density scale

can study the influence of a preferred scale on the MRI. height ofH, = amip ~ 3.8km, i.e., our computational grid covers
The box size of standard shearing-sheet simulations ddes agignificant fraction of a density scale height. The rotatiate

define a preferred length scale, i.e., these simulations@e of ~ 2000s? corresponds to that of a rapidly rotating proto-

free and entirely local. In shearing-disc simulations,antcast, neutron star with a rotational period of3 ms.

the scale height of the thermodynamic variables introd@ces Assuming that the background gravitational potential is a

physical length scale into the simulation. If this prefertength  function of @ only, we construct cylindrically symmetric ini-

scale is smaller than the entire size of the star or disk,ithe-s tial models. This approximation is justified by the smallesof

lations can be characterized as being semi-global. the simulation box ire-direction (1 km) compared to its radial
The semi-global approach falls in between a purely local ap@sition (15 km).

a global one sharing merits and drawbacks with both methods. We added three fierent types of initial magnetic fields to

Similar to local simulations, semi-global simulationsoalione the initial hydrostatic model:

to resolve a small part of the entire system better. Becdese t

rely on a fixed lab frame and do not eliminate the mean rotatio@odel UZ: a uniform B-field inz-direction,b = (0, 0, b(Z))T.

the basic time scales are the same as in a global simulation\Q§qe|vz: a B-field inz direction with vanishing net flux =

the same resolution. In a Keplerian disk dominated by roati , . T

this might add a major dliculty to the numerical treatment of (O’ 0, bg sin (2 (w - WO)/AU)) :

the problem. On the other hand, with pressure dominating ove e e . .
kinetic energy, the time step of our simulations is goverbgd n all models, the initial field is weak, both in compaisoniwtiie

the sound speed rather than the rotational velocity. Agtisaro thermal and the rotational energy of the models. The weaknes

way of eliminating the sound speed, we do not feel a need to (eln€ associated Lorentz force justifies the uséydrostatic
a shearing-sheet transformation ' Instead ofhydromagnetiequilibria as initial conditions.

We expect the MRI in core collapse to grow and reac From Eq.[[38) and the values of typical model parameters we

saturation within several tens of milliseconds. The timepst ©Pt@in the following estimate for the MRI wavelength

ot < 6x/cs, on the other hand, is much smaller because of the b -1 Q 1

high value of the sound speed in a post-collapse coge~ ..., ~ 6.9 km( )( P ) ( ) (38
101%cm 1), wheresx is the width of the computational zone. FeM 1015G/\251088gcm3 1900s1? (38)

Thus, we have to perform a large number (typically severél mil_o properly simulate the evolution of the MRiygs should be

lions) of time steps, which implies a limit on the grid redain X X . .
we can #ord in the simulations, although the resolution is stif€S0lved by at least a few grid zones. Using a grid resolution
much better than that of a global simulation. of 10m or 20m, we thus can follow the growth of the MRI for
magnetic fields exceeding several!dG (Obergaulinger et al.
2006h,8). To trigger the instability, we impose a small @nd
3.3. Initial conditions radial velocity perturbation with an amplitude of a few tisne

e 10-%~2 of the rotational velocity.
We use equilibrium initial models based on post-bouncesore Y

from|Obergaulinger et al. (2006b). Several tens of millisets

after the core bounce, the shock wave has reached distahces Results

a few hundred kilometers, the post-shock region exhibiing . ]
series of damped oscillations as the proto-neutron staxes| 4.1. General considerations

into a nearly hydrostatic configuration. We extract the radig, 5yisymmetry, the growth of the MRI requires a non-vanighi
profile of the gravitational potential along the eqL_Jatothé_n_ poloidal initial field. Axisymmetry restricts the dynamickthe
model A1B3GH, and construct from that the density straUﬂcaMRL suppressing a class of instabilities thditeat the evolu-

tion within our shearing box solving the equation of hydaist ;o1 of MRI-unstable modes (see below). Consequently, the p

equilibrium dictive power of axisymmetric simulations for the evolutiof
0 = pOug — Do P + TPQ2 (34) the MRl is !imited, and we cannot rely on them in determining
the saturation amplitude of the instability in supernoveeso
for a given rotation profile The growth of the instability does, however, noffei strongly
N from full 3D models. Thus, we can use 2D models to determine
Aw) = Qow™, (35) growth rates, while detailed conclusions can only be draamf

B models.
In axisymmetry, the flow is dominated lhannel modes
a pattern of predominantly radiéiflows of alternating direc-

whereQg andag are constants. The pressure is determined usin
the hybrid equation of state in the form

P=(S+1)’, (36) tion stacked irzdirection (Balbus & Hawley 1991). As the MRI

, i grows, the channels start to merge and their charactdestigh
assuming an entropy profile of the form scales increase, but they survive as coherent flow striscture
S(w) = So + Si(@ - @) (37) throughout the entire evolution and, particularly, do nesdlve

into turbulence.
with constant$, andS;. Eq. [34) is solved in aradial domain of ~ The analysis of Goodman & Xu (1994) shows that channel
size,Aw, which is either one or two kilometers large, centereghodes are an exact nonlinear solution of the axisymmetri©vH

3 This model experiences a core collapse that is halted bytitfiers 4 In general, the channels are oriented parallel to the gnadieQ,
ing of the equation of state above nuclear matter density. wherever it points to.
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equations, which explains their stability observed in many The growth of the MRI proceeds via channel flows, whose
merical simulations. They are, on the other hand, unstablevertical extent and number depends on the initial magnedid. fi
genuinely 3Dparasitic instabilities of, e.g., Kelvin-Helmholtz Two typical channel flows are shown in Hig. 5. During the early
type. Consequently, in 3D, the channel modes appearingglurphase of the instabilityt (= 10.6 ms; upper panel) eight distinct
the early growth phase of the MRI, do not persist until saturahannels are present each one consisting of a pair of up- and
tion. Instead, the channels decay due to the growing parasdown-flows in radial direction. The magnetic field is orgamiz
instabilities, and turbulence develops. into eight elongated radial sheets, and this pattern is ialso
h%rinted onto the distribution d2, as the magnetic field enforces
co-rotation along field lines.

A flow topology dominated by channel modes implies a
phase of exponential growth of the magnetic field, which ends
when the channel modes are disrupted and a less organizesl, mo
turbulent state ensues (in Hig. 4 this happensatll ms). In
most axisymmetric models, the turbulent state is only afi-tra
sient nature, because after some time coherent channel flows
form again leading to a secondary phase of exponential growt
e Fig ¥4 at ~ 23 ms).

Very late in the evolutiont( = 30.7 ms; lower panel of
Fig.[H) we find only one large-scale channel flow which ex-
tends across the entire domain in radial direction. The mag-
netic field is now predominantly radial and is concentratedrn

1900s? andaq = -1.25 (see EG35). The evolution of theséhe channel boundary. This coherent flow pattern is the tresul

models is characterized by an exponential growth of the ma;l‘{—a strong transport of mean angular momentum by Maxwell
netic field, see e.g.. Figl 4 for a model with = 2 x 103G, The Stresses. The stresses enforce co-rotation along fiels), lamel

fastest growing MRI mode is well resolved in this model, angg?:eqfigﬂgugn tgg éce)tartéc;r; psrgf'lglt?éztlEg?g%%%?ﬁﬂ%ggg_of
its growth rateryr = 1.08 mstis found to be close to the the- w = » Oy 9 !

oretical predictionrue = 5w ~ leaOn/2l = 114 ms?t ;on!y. We can dist_inguish two regions of slqw and f_ast rota-

(see Eq FE(Z]9)) Thewrlr?;gneti(c 'f:igll\?j) realcﬁ)esoz/;\ lnaximum valuetion inside and outsidee [-0.15; 025], respectively. Inside the

about 1é5G a.tt ~ 15ms. and the mean Maxwell stress con® owly rotating channel matter is accreting towards theteren
" ’ ith v, ~ 4 x 108cm~1, while the rapidly rotating gas outside

ponentMg, (see EqI(I3)) becomes large enough to alter tt e channel has much slower, random velocities.

rotation profile considerably within a few tens of millisewts. i .
Consequently, the angular momentum of the gas drops dragti- 1°. investigate the dependence of the channel geometry on
cally att ~ 25 ms. e ||_'1|t|al magnetic field a_nd the grid resolution we compute
Fourier spectra of the radial component of the magnetic,field
b, for models withQy = 1900s! andag = -1.25, and an
initial field strength of 4, 10, and 20 10*?G, respectively. The
simulations are performed in a box of eithetZkn? or 2x2 kn?
R R AR using a 408 grid (Fig[8). At each radius we Fourier-transform
il b,(2), and the resulting spectia,(k;) (wherek; is the vertical
wave number) are then averaged over radius. We applied this
procedure to the models during the growth phase of the iitstab
ity att ~ 7.5ms. The first set of models (1 Kndomain, 2.5m
spatial resolution) exhibits growth rates close to the tatcal
values, while this only partially holds for the models of dez-
ond set of models (4 kindomain, 5m spatial resolution). Due
to insuficient spatial resolution the MRI in the model with the
i ; ] weakest initial field 5 = 4 x 10'>G) grows slower than theoret-
¢ ically predicted. However, for the two more strongly maggzed
24 ; models of this sethf = 10, and 2x 10*3G) the fastest growing
i | modes are well resolved, and the MRI growth rates agree with
i the theoretical ones.
220 For each model the spectrum shows a distinct maximum cor-
10 ¢ zn?s 30 40 responding to a dominant vertical length scale given by tiokhw
[ms] of one channel mode. The position of this maximum is a func-
. . . - tion of the initial magnetic field onlykmax o bgl, and thus does
Fig. 4. Evolution of the mean magnetic energy dens#{9 ither depend on the size of the computational domain nor on
(solid black line), the mean energy densities corresp@thn e resolution. A dependence on the last quantities is oply o
thew (dotted red)¢ (dashed brown), anzl(dash-dotted green) seryeq, if the fastest growing mode is under-resolved. is th
component of the magnetic field, and the absolute value of e, we recover the lokwing of the spectral peak, but find
mean Maxwell stress componelt ; (dashed blue line) for , {rncated spectral distribution at higher wave nunfberaller
an aX|symmet3r|c modellwnh_ an initially umfolrm magngtldcﬂe length scales.
by = 2x 10°G in z-direction, and a rotation law given by "MRI theory predicts that the growth rate is independent of
Qo = 1900s" andaq = —1.25. The model was computed inthe initial field strength. Neglecting magneto-convectivedes,
aboxofL; x L, = 1kmx 1km with a grid resolution of 5m. e can expect to observe this behavior in numerical simarati

This basic picture emerged from many simulations of t
MRI in accretion disks. As we will discuss in the followingyio
simulations confirm this result for the MRI in supernova core

4.2. Axisymmetric models with no entropy gradient
4.2.1. Uniform initial magnetic fields

Our models having no entropy gradient show the same dyna‘?\Q
ics as that observed in previous simulations of the MRI irr@&cc
tion discs (see, e.g., Balbus & Hawley 1998). We discusstfiest
models with a uniform initial fieldy in z-direction (model series
UZ2) focusing on models with a rotational law given @y =

30

28

26

109 (€nag Mo, [COS])
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Qs = Fig. 6.Radially averaged Fourier spectra of the radial component
419 1053 1687 2320 of the magnetic fieldb,(2), for different uniform-field models

att ~» 7.5ms. Models withhy = 4 x 102G, 102G, and 2x
10" G are shown by the red dash-dotted, the blue dashed, and
the black solid line, respectively. Thick and thin linesareto a
computational domain of 1 kfrand 2 kn?, respectively. For all
models a grid of 400zones is used.

£
5
growth rate is smaller thamegy, because the MRI wavelength,
o i.e., the wavelength of the fastest growing mode, exceexisak
e G size. Thus, we can only properly simulate the slower groviith o
R shorter modes.
15 152 154 156 158 16
G [km]

Fig. 5. The channel mod i 10f T ¢ 8F R

g.5. The channel modes present in two snapshots taken from %m b K
the model for which Fid.J4 shows the time evolution. The snap- i % B ’
shots are taken dat= 10.6 ms (upper panel) and= 30.7 ms 0.8 —~—
(lower panel), respectively. The panels show the color daae i # 1
gular velocityQ, the magnetic field lines (white), and the flow L & 1
field. The colors of the velocity vectors indicate the magahé . 06 g
and the direction of the flow: up- and down-flows are represgbnt & i Iy i
by blue and red vectors, respectively, their color intgnsitrre- S - .
sponding to the absolute value of the (poloiodal) velodihe ( 0.4
darker the larger). The maximum velocities aré:2 10’ cm st [ |
(upper panel), and.8 x 10° cm s (lower panel), respectively. 0. 8
only if the grid is suficiently fine to resolve the fastest grow- 0.0 L L
ing modes close tayr,. Otherwise, if the grid is too coarse the 1 10
growth rate should be much smaller. Our simulations repredu Cal (3% Q)

this behavior. We show a comparison of the maximum growth

rates from linear analysisrtom = J(wrem) = I%anol) and Fig.7. Growth ratec of the MRI for axisymmetric mod-
the numerical ones for models with@irent initial rotation laws els with uniform initial field as a function of the initial
(Qo ranging from 9503 to 1900s?, andeg from -1 to -1.25) Alfvén speed normalized to the rotational velocity and the
in Fig.[2. If Aur is under resolved for a given initial fielty, the grid resolution,ca/(6xQ0). The colored symbols distinguish
growth rate increases withy, but once the MRI wavelength is different initial rotational laws, wheréQo,aq) are equal to
well resolved, the growth rate becomes constant as theallgti (1900s?, -1.25) [black plus signs], (19005 -1) [red di-
predicted. Fid.l7 implies the following criterion for affigient amonds], (950, -1.25) [green squares], and (950s-1)
resolution of the MRIAw 3 2Qg/ca. The growth rate of the [brown triangles], respectively.

instability does not depend on the size of the computatidaal

main. For models with strong initial fields the computed MRI
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4.2.2. Channel disruption and MRI termination

1000' T T T T \é\\\\\
As long as the dynamics of the model is dominated by channel

modes, the MRI grows exponentially. We observe a terminatio
of its initial exponential growth — henceforth call&tR| termi- o
nation— as soon as the coherent channels are disrupted. Further 100.
MRI growth occurs after an eventual reformation of the clenn
flows. To understand these processes better, we study MRitter
nation in a large number of axisymmetric models witfetient
initial magnetic fields, boxes of flerent size and grid resolution,
and diferent boundary conditions.

Fig.[8 shows the value of the mean Maxwell stress compo-
nentME7" at MRI termination as a function of the initial mag- 1.0
netic field strengthpy for models with a rotational lav2 =
1900 s'w 125 and a vanishing entropy gradient. We can dis-
tinguish two classes of models according to the boundarglieon
tions applied in the simulations (see seclion 3.2), theitgiaie 10
difference between the models with and without velocity damp- by [10* G]
ing near the boundaries being quite remarkable given th& wea
damping we apply. In models with dampimg‘;’fg‘ grows with  Fig. 8. Volume-averaged Maxwell stress componemg)m at
increasing initial field strength until it levelsfoat a grid size MRI termination as a function of the initial magnetic field
dependent value (colored bands in Eig. 8). For the same modstrength, by, for axisymmetric models with uniform initial
when simulated without damping, we find theife™ o bié7 magnetic field inzdirection , a rotational profileQ =

— : 1 i e 1900s! w12 and a vanishing entropy gradient for a set of
(gray band in Fig.8) independent of the grid size. The “eusl : 9 Py 9

in the upper part of the figure correspond to models comput@§Symmetric models. Blue, green, orange, and red symbois c

with a higher grid resolution than most other models. We wilfSPond to models computed in a square box having an edge size
discuss this fact below. of 0.5, 1, 2, and 4 km, respectively. Models computed with and

To determine whether the radial or the vertical size of tHiithoutvelocity damping at the radial boundaries are dediby
computational grid is responsible for the leveling of the asterisks and diamonds, respectively. The latter models sh

Maxwell stress in the runs with radial damping we simulate twP® Size independent scaling{Z ~ (b5)™®” (gray band), while
models with a grid of & kmx 2 km (for short callechighmodels in models with dampindV5/™ saturates at high field strengths
in the following), and 2 knx 0.5 km (ong models), respectively. the saturation value depending on the box size (colored biori
Our results show that the determining factor for the growthri- tal bands).
marily the radial rather than the vertical box size, as bodlets
follow the behavior ofM, 4 as a function oby for the respec-
tive radial grid sizes. The two classes of models also ekhgbi neglecting resistivity, the presence miimericalresistivity en-
markably diferent post-growth dynamics. In the high models, ables the growth of these instabilities, leading to a reeatian
few channel modes reappear from the turbulent state, anct a s anti-parallel field lines. As a consequence, the elordyetr-
ondary phase of exponential growthMdf, , sets in. Eventually, rent sheet dissolves into a configurationofind O points (lo-
two of the newly formed channel modes merge. By this processited atw ~ 15.25 km and~ 15.5 km, respectively; see middle
which occurs repeatedly, the number of channels decremases, panel of Figl®). When field lines reconnect near the X polrg, t
the final state of the flow is dominated by one short but widtuid is accelerated away from the reconnection point tow#rd
channel mode. In the long models, on the other hand, no s€cpoint. This causes the intense gas flow in positive radiatei
ondary exponential growth is observed, and the Maxwelkstretion at @@, 2) ~ (15.35,0.1) km. The change of the topology of
remains approximately constant, albeit oscillating cdesably the magnetic field and of the flow continues shortly afterward
due to the temporary presence of coherent flow patterns. (att = 16.078 ms; right panel of Fi]9). The O point has grown
To interpret these results, one has to analyze the mechanisrmaize, and the fluid is in vortical motion. As the vortex gsw
responsible for the disruption of the channel modes. Weaudisc field lines in the vortex are advected towards field lines gf@mp
this mechanism for an undamped model with = 1900s?, site polarity belonging to an adjacent channel flow (centate
aq = —1.25, and an initial magnetic field strendifi= 4x10*G  z ~ -0.15km), where reconnection occurs. Note the formation
using a box of ®kmx 0.5km and a resolution of 100 100 of a second X point atdf, 2) ~ (15.38,—0.03) km (Fig[9, right
zones. During the growth of the instability a few large charpanel).
nels are present, which are disrupted at MRI termination (at To demonstrate the growth of the tearing-mode instability
~ 159 ms). and to support its importance for MRI termination, we conepar
Fig.[d illustrates the disruption of one of the channel flowthe evolution of the mean Maxwell stress comporip and of
in some detail. At = 15.850 ms, the channel flow is still in- the magnetic energy density of the z-component of the magnet
tact (left panel), and one recognizes two broad streams-of field, €., of the model (see Fif. 10). Before the tearing mode
flowing and out-flowing gas both permeated by a strong radglows Mg, and€/,.4 increase, their growth rates being similar
magnetic field of opposite polarity. A broad current shegk seto that of the MRI. Att = 15850 ms, the growth rate @,
arates the two flow regions. Owing to small-scale fluctuatiomecomes larger than that of the MRI by one order of magni-
in the flow, the field lines are not perfectly (anti-)parali@hd tude within less than 0.2 ms, wherelsls,, approaches a maxi-
the current sheet is slightly deformed. These deformatamis mum. Once the tearing mode is fully operatite=(15.983 ms),
as seed perturbations for resistive instabilities of tibaring- the growth ofe,,, becomes slower but still continues due to the
modetype. Although we evolve the equations iodkal MHD appearance of more tearing modes (see, e.g., the right panel

T T T
&
O

Lo

*
T SR

10.

KK

Mg [10%° G
o

T T
<O

XX IO O
X

KX

R

0.1 [ [
100




M. Obergaulinger et al.: MRI in core collapse supernovae 11

by [ 104G ] by [ 104G ] by [ 104G ]

154 155 156 157 153 154 155 156 157 153 154 155 156 157

@ [ km ] @ [ km ] @ [ km ]
o [10®Gicm ] o [10®Gicm ] o [10®Gicm ]
- -3 3 o - -3 3 o - -3 3 o

Fig. 9. The disruption of a channel mode in an axisymmetric unifdietd model. We show a section of a model with an initial field
bo = 4 x 10 G computed on a grid of.B x 0.5 kn?. The left, middle, and right panels display the color-codstial component
of the magnetic field,, (top) and the current densify = (V x b), (bottom) beforet(= 15.850 ms), duringt(= 15.983 ms), and
after ¢ = 16.078 ms) the violent disruption of the channel flow, respetyivAdditionally, magnetic field lines (black lines), ariget
velocity field (arrows; top only) are shown. The arrows aecooded according to the magnitude and direction of the.floflows
and outflows are shown by gray and green vectors, respectie longest vector corresponds to a velocitywpt 7 x 10° cnys.

Fig.[10 at ¢z, 2) ~ (15.38,-0.03) km). Subsequentlg;,. begins bilities in more detail, we have performed a set of simuleio

to decrease as the tearing modes saturate. (see AppA) using simplified models of channel flows. We reca-
pitulate our results, summarized in Hq. (A.11), here:
or o< (ca)"* (cs) ¥4 (@) (6%)*, (39)
31F T T T L T T T T T T4
E P whereor, Ca, Cs, @, anddx are the growth rate of the instabil-
/ ity, the Alfvén velocity corresponding to the channel megm
field, the sound speed, the width of the channel, and the grid
_ 30; resolution, respectively. because the instability is rastdal on a
@ physical resistivity, but is of purely numerical origin, pbysi-
s | cal transport coéicient appears in EJ.(B9). However, our results
28 29} can be interpreted in terms of afiextive resistivitycadx, as de-
5t tailed in App[A. In our models the width of the channel flaw,
& f is set by the MRI wavelength corresponding to the initiaticet
> | magnetic field:
o 28E v E|
E Amri o b5/ VR oc b/ (VaaQo) (40)
- (see Eql(32), EG.(33), and EQ.135)). The width remains con-
15 1550 16 16.50 17 stant during the growth, as only mergers of adjacent channel

occurring as a result of resistive instabilities can chahgdield
topology.
Our basic proposition for MRI termination is that channel

Fig. 10. Temporal evolution of the _ab;olute va_lue .Of the ME3bws are disrupted once the growth rate of the resistivabilst
Maxwell stress componem, (solid line; the line is colored ity exceeds the MRI growth rate:

black whereMg4 < 0, and green otherwise), and of the mag
netic energy density of the z-component of the magnetic,field, > oyri = MRI termination. (41)
€hag (dashed red line) of the model shown in Fig. 9. The vertical
yellow lines mark the times of the snapshots shown in[Fig. 9.

t[ms]

Using in addition the functional dependencee{Eq. (39)),

we can establish scaling laws for MRI termination for a given

hydrodynamic background model. As the channel width scales
According to the previous discussion the dynamics of theith the MRI wavelengtha « Ayr;, and as the MRI growth rate

channel flows is dominated by the interplay between thég given byour = J(wrem) x aaQo (see Eql(Z9)), we find for

growth due to the MRI and their destruction by resistivednstthe Alfvén speed at MRI termination

bilities. Channel flows are unstable against tearing-mygge- 8/7

instabilities at any point in their evolution. To study thdssta- ce™ o« (cs)*/’ (bé) (Qo)™ 7 (6x)~47, (42)
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Fig. 11. Average Alfvén velocity — of models with uniform initial ngaetic field and without velocity damping near the radial
boundaries — corresponding to the radial magnetic field at tRnination normalized tos)~/" (left) and ©F)%/ (right) as a
function of the initial magnetic field strengthy (left), and the grid resolutiodx (right). The dashed lines represent the power
laws expected from our analysis of resistive instabilifese Eq[{4R2)). Note that we only consider well-resolved e®@ryr >
0.95ms?) here.

and for the corresponding Maxwell stress provides a good approximation to the behavior of the models.
Due to the small number of models the results should be taken

(43) Wwith care, but a strong anti-correlation M‘;;m with Qg is sug-
gested. The data also do not support any dependenlvé;@

The latter equation implies thM5/™ decreases with faster rota-on ag,. Finally, in Fig[8 we noticed earlier some outliers at large
tion. Two dfects play a role in explaining this behavior. Firstlyyalues ofM;e;m which correspond to models computed on a fine
slower rotation leads to slower MRI growthriri o« Qo), and grid. However, considering that MRI termination depends on
hence weaker magnetic fields are required for the tearingemogrid resolution, all models lie within a narrow band which-co
to overcome the MRI growth. Secondly, slower rotation i@l roborates our scaling laws and provides more evidence of the
wider channel flowsg o« (Q0) ™), i.e., resistive instabilities grow importance of resistive instabilities in understanding MRI.
slower agr; o a2 o< (Q0)” (see Eq[(39)). Consequently, physical (instead of numerical) transpoeffe

The qualitative features of these scaling relations are:  cients should be used in MRI simulations, which may give rise

L . , . to different scaling laws considering the growth rate of tearing
1. Stronger initial vertical fields and correspondingly,qges.

wider channels tend to suppress resistive instabilities.
Consequently, MRI termination requires more strongly
magnetized channel flows.

2. Finer grid resolution implies less numerical viscoséw,

16/7
Misg™ o (cs)®” (bF)

(Q0)™7 (6x) 77

d Models with velocity damping In models with uniform initial
ic fields where the radial velocity is damped nearrthe i
hence larger values fat™ andMs/™. magnetic : 1 veloclty pedne
, term et - ner and outer radial boundary, i.e., in models located irhtire
3. The scaling oM 7™ with the sound speed implies & proy,gntal hands in Figl8, MRI termination happens earlientha
portionality be;ween the Maxwell gtgess and the backgrouRgedicted by our scaling laws, and the Maxwell stressesat@tu
pressureP o cg, and thusMZim o P37, This scaling is rem- for strong initial magnetic fields, the saturation valuendif!™
iniscent of theo-law in accretion discs according to whichheing smaller for slower rotation (see lower panel of Fig. 12
the (MRI-generated) viscosity is proportional to the g&spr This is due to the reconnection instability occurring claséhe
sure. radial boundaries well before the theoretically predictiece
MRI termination. This premature reconnection is causgd b
e field geometry: due to the suppressed motion acrossthe in
ner and outer radial boundary field lines must bent there in
direction. Consequently, field lines of opposite polaritpeoach
each other much earlier than in models without velocity damp
fAg, and dicient reconnection ensues. In this case, the onset of
reconnection is determined by the field geometry rather liyan
the initial field strength. With reconnection occurring iretbent
flux sheets near the radial boundaries instead betweerlgaral
flow sheets in the bulk volume as for non-damping boundaries,
the width of a flux sheet is less important in determining the
resistive growth rates. Thus, a slower MRI growth and smalle
Maxwell stresses are found for slower rotating models wheen v

Fig.[11 shows that the average Alfvén velocity corresponﬁ:f
ing to the radia magnetic field at MRI termination is well de-
scribed by the scaling law given in EQ.{42). Similarly, Band
Fig.12 (upper panel) confirm that the data 5" obey the
corresponding scaling law (E@.(43)), too. The upper paiiel
the latter figure showag(;m as a function of the initial magnetic
field strength for models with fferent initial rotational laws.

Obviously, the proportionalityl®/™ oc (b(z))m/7 (light gray lines)

5 The radial field is typical for all three components. ThusAlfeén
velocity corresponding to the total magnetic field showsshme de-
pendence.
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the newly formed channels are also unstable against resisti

1000 an ] stabilities, but due to their larger width their disrupti@guires
% ] much higher Alfvén velocities, i.e., the MRI can lead to rhuc
i % < higher Maxwell stresses in the second generation of channel
100: ® S In principle, this process of formation and merger of chasne
— g s can continue until only one single channel flow remains cover
2 i £ il ing the entire box. We note that in later growth phases, ttiara
‘g 10k W § : velocity and the magnetic field strength are typically s@dar
Es P i 2 ] that damping at the radial boundaries, if applied, doeseu |
S bx 4 ] to early saturation.
* ¥
1 E
¢ ] Q5]
0.107 L 1 1736 1792 1848 1904
10
b [102 G] i
10F T .
g 1 0.2
o] —
¢ s g o
3 4 . =
Fol * * . B
g 3 0.2
S * -
= 1 : ¥ % 1
e 1
E’SB 0 * & ! E ] 0.4
L % »; 4 x A S5 '
. 7 15 152 154 156 158 16
i 1 ®©[km]
0.10 L Fig.13. An early statet(= 12.1 ms) in the evolution of a model
bllo[lolze] with by = 2 x 103G computed in a box ok, x L, = 1 km?
0

covered by 20 200 grid zones. Shown are the same variables
. o ~as in Fig[®. The maximum velocity isllx 10’cm s'2.

Fig. 12. Maxwell stressMi™ at MRI termination as a function

of the initial magnetic field strengtibg for models with difer-

ent initial rotational profiles. The upper and lower panéievg

models with non-damping and damping boundary condition, g 2 3. Models with non-uniform initial magnetic fields

spectively. The colored symbols distinguislfeient initial ro- ) _ o o o
tational laws wheréQo, o) are equal to (1900, —1.25) [blue Models having a non-uniform initial magnetic field exhibit a
diamonds], (1900%,-1) [green diamonds], (950%-1.25) different evolution (see also Balbus & Hawley 1998). To study
[orown asterisks], and (950% —1) [red asterisks], respectively.this evolution we simulated a set of models varying the ahiti
Note that only models with a box site, x L, = 1x 1 kn? anda Mmagnetic field configuration and the boundary condition fapp
resolution of 50, 100, or 200 zones (per dimension) are densing velocity damping or not; see previous subsection). Adtm
ered here. The light gray lines in the upper panel illustpatger €ls rotate initially according to the law given in E.(35)thvi
16/7 Qo = 1900 st andag = -1.25.

) : We considered three types of non-uniform initial magnetic
fields all of which have only @component. The first one

locity damping is imposed. Apart from the dependencb’@gﬁm , - ol @

on Q, we also find a dependence og. Both dependences to-Pzne = g S'”(/l_b) X puy (44)

gether give rise to a monotone relation between the strahg-fi v

limit of M®'™ and the MRI growth rategvri, which qualita- varies sinusoidally with radius and scales in additioncas to

tively agrees with the above reasoning. guarantee that the net magnetic flux through the surfacdseof t
Once the initial channel flows are disrupted and the field ggomputational box at = zy; vanishes. This is the standard zero

ometry is changed by reconnection, the mean magnetic andfkix field used in most MRI simulations. The second type of a

netic energies, and the absolute value of the Maxwell stes§on-uniforminitial field considered by us is given by

begin to fluctuate strongly around roughly constant valses ( .

the phase between 11 ms and 23 ms in[Hig. 4). Subsequentl%& = |bZNF| : (45)

se(;or)d phase o_f expor_1ent|a_l MRI growth is possible, exhipit Finally, the third type also has a vanishing net magnetic, #sx

a similar dynamics but involving less channel flows than tlee p | , but a step-like dependence ani.e

vious growth phase. The reduced number of channels is pipbalZNF’ T

due to the strong increase in the vertical magnetic fieldnduri , . w

the growth of the tearing modes. Similarly to their predeoces, biep= 050 (@ — @) o’ (46)
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where® andw. denote the Heaviside step function and the ra-
dial coordinate of the center of the box, respectively. 1000

For the first type of models the MRI starts growing via a oL
multitude of channel modes giving rise to less amplificatién 1000
the magnetic field than in models with a uniform initial field.

Separate channels develop in the two radial regions of ivegat 100 .
and positiveb? (see FigIB), whereas the channels span the full
radial extent if the initial field is uniform. The channel flow
do not merge to form a few large-scale channels, but are de-
stroyed by turbulence. After reaching a transient maximilna,
magnetic energy and the Maxwell stress levébd values much
less than for uniform-field models. The magnetic field become
strongest right after MRI terminatior (L0*® G). After 60 ms the 0.10
maximum field strengths are abou2.0**G, and decrease to '
10" G until the end of the simulation. Fields of this strength can 0.0100

change the profile significantly only on time scales of many ' — ”10 — ‘1‘00
tens of milliseconds, i.e., at the end of the simulation tiation b [102 G]
profile is basically unchanged.

Fig [14 shows a comparison of the maximum Maxwell streggg 14 Maxwell stressM'®/™ at MRI termination as a function
at MRI termination for the models with a non-uniform |n|t|al0 the initial magnetic field strengtb(z) for models with non-

magnetic field. When velocity damping is applied the value niform initial fields. Models with and without velocity dgm

M;Ue;m does not depend on the initial field geometry, and is det(?ﬁ'g are shown by asterisks and diamonds, respectively. Itiee b
mined by reconnection of anti-parallel field lines occugratose green and red symbols denote models wheret@mponent of
to the boundaries. If no velocity damping is applied, thel@vo the jnjtial magnetic field is given b (see Eq @A), (see

tion is similar to that of uniform field models, but dependgios 7 ; :
field geometry. This finding can be understood in the lightwof o Ba.(48)), andb, (see Eq.[@])E;)G% respectively. The light gray

previous discussion of re-connective instabilities, apthie fact lines illustrate power laws: (b(z)
thatMi™is determined by reconnection in the bulk volume, and
not by reconnection near the boundaries.

Models without velocity damping and the initial fieldfy, . netic field. The non-magnetic models are stable due to thie pos
develop large Maxwell stresses which increase with theainit tive entropy gradient, i.e. initial perturbations do nat\gr
field strength. The evolution of these models and the gegroétr ~ The models with a magnetic field belong to the MSI regime
their channel flows are similar to those of models with umifor (cf. Fig.[2), their MRI growth rates being reduced compared t
initial fields, i.e., the growth rates of tearing-modes a@nailar models with no entropy gradient. We simulated models with di
for both classes of models. For models in which the net magneferent entropy gradient®4S = 0.02,0.04,0.08 kn't) and dif-
flux vanishes initially we find thanUe;m is roughly constant for ferent adiabatic index of the equation of stdfg € 1.31,5/3).
sufficiently strong initial fields, the stress being slightlydar Generally, we find a good agreement between the analytic pre-
for sinusoidal b3, ) than for step-like initial fieldsi,,). The dictions and the numerical results. F&S < 0.08 the mod-
models develop a more complex field morphology with mols are unstable belonging to the MSI regime, whereas an en-
intense current sheets and more potential sites for rectione tropy gradientot,S = 0.08 sufices to stabilize the model. The
than uniform field models. Thus, the growth rates of the tiesis growth rates agree well with the analytic ones, and the numer
instabilities are comparable to those of the MRI for muchkeea ical models show the typical dependence of the growth rate of

fields than in the uniform-field models. MRI termination alséhe MRI on the initial magnetic field strength. However, ther
occurs at smaller values Mte‘;m, exists one interesting flerenceo- increases from small values
W

for weak initial fields for whichyg, is under resolved and con-
verges to the correct growth rate for strong fields for whigh;
4.3. Axisymmetric models with entropy gradients exceeds the grid resolution significantly. Unlike for madeith-
_ ) ) ) _ out entropy gradient, the growth rate becomes largest fg-ma
We also simulated some axisymmetric models imposing an afktic fields for which the MRI wavelength is similar to thedyri
ditional entropy gradient. In this case, the instabilititesion resolution, and at these field strengths the numerical droates
is more complicated and various instability regimes exse( can exceed the theoretical ones.
Sect[2): (magnetic) shear instability, convection, andgjme#o- Dynamically the models behave similarly as models without
buoyant instability. Otherwise unstable modes may bels&teldi an entropy gradient. Channel flows develop during the growth
by a stable thermal stratification or by fast (not necessdiffer- phase of the MRI, their width being set by the MRI wavelength.
ential) rotation. TabldsBl1 (models with a positive enyrgpa- MR termination occurs due to the growth of tearing-mode-li
dient) andB.2 (models with a negative entropy gradientyioi® resistive instabilities. When velocity damping is appligde
a list of the simulated models. Note that all models discdigse maximum Maxwell stress at MRI terminatiomfs(;m, is deter-
this subsection have a uniform initial magnetic field. mined by the box size. Comparing models with a positive en-
tropy gradient and with no entropy gradient we find a common
linear relation betweem/ljg‘;m andowri, indicating a common
reason for MRI termination (see Fig]15).
We first discuss dierentially rotating models having a stabiliz-  According to Eq.[(ZB), the channels are wider in models with
ing entropy gradient comparing models with and without madgrger entropy gradients. As wider channels are less pore t
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4.3.1. Positive entropy gradients
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these boundary conditions suppresses the growth of the MRI,
and that both give similar results.

Let us first consider a non-magnetic model which rotates
rigidly with an angular velocity2y = 1000s* and has an en-
tropy profile given bySy = 0.2 andd,S = —0.075km* (see
Eq. (37)). WithN?/Q3 ~ —-14 andR,/Q3 = 0, the model be-
longs to the convective regime. Buoyant modes are unstable
and grow at a theoretical ratg, = 3.4ms?. Simulated on a
grid with 25 m spatial resolution, the model is unstable with
a numerical growth rate- = 2.7 ms!, and convection sets in
quickly. The flow is dominated by a few (one or two) fairly cir-
cular convective rolls. Due to the transport of entropy and a
gular momentum by the overturning fluid, the model develops

complementary entropy and rotation profiles charactertzed
. “cold” (i.e., low-entropy), rapidly rotating matter in dewflows
020 040 060 080 1 1.20 and “hot” (i.e., high-entropy), slowly rotating matter ip-flows.
Oyrs [MSY The redistribution of angular momentum and entropy lead@sito
average (with respect to thecoordinate) rotational profile of
: C e _ the formQ « @2, i.e., constant specific angular momentum
Fig. 15. Maxwell stress at MRI termlnatlom_(lm, ,as a_funct|0n (see FigIB), and a flat entropy profile.
of the MRI growth rategyri, for models with zero (diamonds) = For a faster rotation rate 63, = 1500 s, corresponding to
and positive (plus signs) entropy gradients. N2/Q2 ~ -5.7, i.e., still in the convective regime, the evolution

is similar except for a reduced growth rate£ 1.6 ms!) due to

rotational stabilization. The model developféiential rotation
sistive instabilities, they can support stronger fieldsobefe- With_ the samep-deperjdence as in the case of slower rotation. If
ing disrupted (see discussion above), ME™ is larger in mod- We increase the rotation rate @ = 1900 st (N2/Qj ~ -3.2)
els with larger entropy gradients. The MRI growth rate, oa tPuoyant modes are stabilized by rotation. _ _
other hand, is smaller for larger entropy gradients (se¢Z)) __The above results also hold if the initial model is rotating
implying thatM©™ decreases with increasing entropy gradierdlifferentially. In particular, convection (i.e., the negatiutial
Both efects taken together suggest a weak anti-correlation trop}/zgrad|ent) gives also rise to a rotation law of therfor
M™ with the size of the (positive) entropy gradient. An anti=* < @ = and a flat entropy profile.
correlation is also suggested by our numerical resultspatih
more models are needed to confirm it. It is unclear, for exam-
ple, whether the growth rates of resistive instabilitiegvesl in
Sect[4.2.P also hold for stably stratified media, and whettree
boundary conditions have an influence in models with large en j
tropy gradients. Small perturbations of the quasi-peddbie- 1550..
cause of global gradients) radial entropy distribution reaye “
their imprint on MRI termination by enforcing a preferreddgh
scale, thus cloudingfiects due to a variation @f,S. —

We have also simulated a few of the models using an ideal-

gas equation of stat® = (' — 1)e, instead of the hybrid EOS
finding, however, nofect on the evolution of the models.
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4.3.2. Negative entropy gradients

Convection can develop in models having a negative entropy g
dient, but it can be suppressed by rapid rigid dfedential rota- 14000 v o i b b
tion. If a magnetic field is added to a convectively unstapte s 15 152 154 156 158 16
tem which cannot be stabilized by rotation, the system iatteat w[km]

in the “convection” regime of Fi§]2. In a situation whereaot Fig. 16. Q, averaged ovez, as a function ofs for non-magnetic

tion sufices to suppress the convective instability, the additiqy . ective models dt= 519 ms (green dashed), with an initial

of a weak magnetic field puts thg syslter.n into the “MBI” regimqnagnetic fielcb(z) = 102G att = 51.9 ms (red dash-dotted), and
and a magneto-buoyant instability similar to the standaed, (. uiia fieldb = 10*3G (blue solid lines), respectively. For the

95S = 0) MRI develops. Whew,,S < 0 the equivalent of the latter model the dferent symbols indicate fierent epochg =

standard MRI corresponds to the “MSI” regime in . 2. ; _ ; -
Before discussing our results (see B.2 for a list of ti%ll'S ms (plus signs)t = 208 ms (diamonds), antl= 41.7 ms

. gquares). The dotted black lines show the initial rotatam
s[mulated moplels), we n_eed to comment on the boun_dary OB, = 1500s?, and a power-law profil@ o 2.
ditions. Allowing for radial transport of energy shearidigc
boundaries can, in principle, lead to a transport of entexppss
the pseudo-periodic boundaries, thus modifying the inédia Next, we add a magnetic field bf = 10'3G to a convective
tropy profile. By comparing shearing-disc models and modaisodel, i.e., to a model with a negative entropy gradienttirga
with reflecting boundary conditions, we verified that none dbo slowly (in our case, for rigid rotation, witfy < 1500s?)
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the evolution of the model with an initial field of 390G differs

29[ T only slightly from that of the non-magnetic model. The magne
A field increases exponentially as the instability growsgleguer-
28 T — sistent convective rolls form, andftérential rotation develops.
/: g T After an initial exponential growth the mean magnetic egeeg
< 27 o TSI ' mains large, but the contribution of the radial componerihef
~ /f“ T magnetic field and the mean Maxwell stress compohgptde-
s 264,,}) crease almost by four and two orders of magnitude, resgbgtiv
2 f Consequently, no significant angular momentum transpeort oc
g 25 ] curs due to magnetic stresses, and similar to the non-magdet
8 ! model aQ « @~ rotation law develops. Fif.16).
241 We now consider th&BI regime (see Fidl2) and discuss
q” models rotating initially rigidly withQ, = 1900s?! and hav-
23— ing an initial entropy gradien,S = -0.1 km* (see Tali. BI2),
- : which impliesN?/Q3 ~ —3.6. Without magnetic field, the insta-
Y T T T T T T A T T T

bility of the buoyant modes is suppressed by the fast ratatio
0 10 tz[%s] 30 40 However, if a weak magnetic field is added, an instabilityhef t
MBI type develops, i.e., the Alfvén modes become unstéfile.

: . . ) numerical growth rates show a similar dependence on the mag-
Fig.17. Evolution of the mean magnetic energy denssy® qiic fig|q £s;trength as in case of the staﬁdard @gS = 0) k
(solid black line), the mean energy densities corresp@\n \ g hecauselyr is resolved. The instability grows rapidly
thew (dotted red)¢ (dashe_d brown), and(dash-dotted green) o ~ 1.4ms?, similar to the theoretical valueg ~ 1.7 ms™).
component of the magnetic field, and the absolute value of Biring the growth phase channel modes appear, which lead to a
mean Maxwell stress componet,, (dashed blue line) for the 501t of both angular momentum and entropy. After amexp
model whose rotational profiles atfrent times are shown in hengia| injtial growth and some decrease after MRI ternimat
Fig [I6, i.e., a rigidly rotating gnode[(o = 1500 s7) with an - the mean magnetic energies contained in the total magreitic fi
initial magnetic field obj = 10°° G. and all three field components remain large (corresponding t

field strengths o~ 10'*G), but the mean Maxwell stress com-

ponentMg, drops to zero within ten milliseconds oscillating af-
for convection to be stabilised by rotation. The temporal-evterward with decreasing amplitude between positive andneg
lution of the magnetic energy and the Maxwell stress of tht&ve values. Hence, large-scale angular momentum trahgpor
model is shown in Fig. 17, while Fig. L8 gives the spatial didimited. At the end of the simulation, the model shows consid
tribution of the entropy of the model at twofflrent times. erable variations i, but there is no clear indication of a mean
Initial perturbations are amplified rapidly, but saturati&ets in differential rotation of the forn® = Q(w). The entropy profile
within 6 milliseconds the growth rate being slightly higllean in the saturated state is almost flat.
in the non-magnetic models. WiﬂNZ/Qg ~ -5.7, the model Finally, we summarize a few common features of the mod-
is dominated by buoyant modes, but there still exists some kls having a negative entropy gradient (see[Tab. B.2). AHeo
fluence of the Alfvén modes. In particular, although inBhit develop instabilities in accordance with the flow regime & b
long modes grow rapidly, the fastest growing modes areeXfvexpected from their model parameters. The growth ratesl of al
modes of finite wavenumber which dependstn For sufi- models are, within the uncertainties, similar to the thécaé
ciently strong initial fields (or sfticiently fine resolution), these predictions. As for the dynamics, we have to distinguish mod
modes are numerically resolved, and have a growth rate dxceels in the convective regime from those in the mixed and MBI
ing that of the corresponding non-magnetic model. The miégneregimes. The former class of models shows convective mush-
field strength increases exponentially as the instabiléyett rooms and large-scale overturns with only little influentéhe
ops, and at the onset of saturation large convective rollsldp magnetic field, whereas the last class is dominated by clhanne
(left panel of FiglIB). In the saturation phase (right pawfel flows. Consequently, angular momentum transport by hydrody
Fig.[18) the flow geometry ffiers considerably from that of thenamic flow leads to a rotational profi® = @2 for models in
corresponding non-magnetic model. It consists of dowrftsirathe convective regime, while models in the mixed-type regim
of cold material and up-flows of hot gas forming small-scalends towards rigid rotation the angular momentum trarispor
structures rather than large circular convective roll&elin the being dominated by magnetic fields. Termination of the insta
non-magnetic model, cold and hot regions correspond tonagi bility growth occurs for models both in the MBI and mixed-&/p
of low and high angular velocity, respectively.fidrential rota- regime analogously to that of models in the MSI regime withou
tion with constant specific angular momentui,«c w2, de- entropy gradient, i.e., by reconnection in resistive ibgities al-
velops due to hydrodynamic transport of angular momentumtigring the topology of the channel flows. Consequently, we fin
convective overturns. The magnetic energy related to ttialra similar dependencies on the initial field strength, the geisb-
component of the magnetic field and the Maxwell stress comgdation, and the type of boundary conditions. The instapiiit
nentMg,4 remain high during saturation, i.e. angular momentugonvective models, on the other hand, saturates when e ini
transport converts the~2 rotation law prevailing at early epochsentropy gradient is removed by vigorous entropy transpoet d
into nearly rigid rotation (Fid.16). to overturning fluid motions.

If for the same initially rigidly rotating model the initiahag-

netic field is too weak to resolvéyr, (we simulated two mod- : :
els withby = 10* and 162, respectiv(ely) convection develops.4'4' Three-dimensional models
The growth rates are similar to those of non-magnetic modelhe results of the axisymmetric simulations discussederptie-
The weakest initial fieldb] = 10* G, has no impact at all, andvious section demonstrate the possibility of MRI-driveridie
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0.13 0.15 0.13 021 0.14 0.17 0.19 21

152 154 156 158 152 154 156 138
[km] [km]
t= 7.341 ms t=20.797 ms

Fig. 18. The entropy distribution (color coded), the poloidal véipdield (arrows), and the magnetic field lines of the model
displayed in Fid_1I7 at = 7.3 ms (left panel) and = 20.8 ms (right panel), respectively, i.e., at the begin of thersdion phase
and during saturation.

amplification in core collapse supernovae, and provide soregy is more tangled and twisted, and less isotropic thaleear

insight into the evolution of MRI unstable layers in the cordn the evolution (see middle panel of Hig] 19).

However, to address the MRI problem in full generality, oas h

to consider three-dimensional models, because the assumpt An evolution from coherent channel flows to a more tur-

of axisymmetry implies severe restrictions for the dynat bulent state is characteristic for all three-dimensionateis

the magnetic and kinetic fields. The most important limitasi  With a uniform initial magnetic field. However, as pointedtou

are that, in axisymmetry, a toroidal field cannot be coneirtee by [Sano & Inutsukal (2001), channel flows can develop again

a poloidal one, and that the disruption of the channel flows rgom the turbulent state. Consequently, the magnetic fiall ¢

quires non-axisymmetric parasitic instabilities (Goodn8aXul continue growing, and the angular momentum transport will

). b_e e_nha_mqed strongly. In the most extreme cases,.the evolu-

As 3D simulations are computationally much more expefion iS similar to that of a corresponding axisymmetric mode

sive than 2D ones, we could not perform a comprehensive stud§is is exactly what we observe for some models at late times,

but had to focus on a few selected models. We simulated mdd 30 MS (see right panel of Fg.119), when a dominant chan-

els with diferent field geometries and varied the initial field'€! flow forms. These model enter again a state of exponential

strength, the entropy profile, and the grid size (see[TabaBd growth, and a large part_of the angular momentum is extrdmted
Tab[B.3). Maxwell stresses. The field strengths reach severaiGpeak-

ing at 13°G, and the mean Maxwell stress componéiy, ex-
ceeds 18 erg cnt? (see middle panel of Fig. 20), and compare
4.4.1. Uniform initial magnetic fields, no entropy gradient with the corresponding axisymmetric model in the left pjnel
Despite a qualitative similarity between the evolutiontod 8D
$hd axisymmetric models, we note that the secondary exponen
tial growth is slower in three dimensions.

We first discuss models which have a uniform initial magnet
field by in zdirection, no entropy gradient, and rotatéfelien-
tially with Qp = 1900s? andaq = —-1.25 (see Eq[(35)). If the
MRI wavelength is well resolved (e.g., for models with ialiti The emergence of a large-scale structure of the magnetic
field strengths of 10" G and 410" G simulated at a grid res- field from a turbulent state can be seen in Fig. 21 comparing
olution of 6w = 20 m), the growth rate is high and independenhe field structure at = 26.8ms andt = 42.5ms, respectively.
of b} . Under-resolved models (e.g., models with= 10"*G At the earlier time (left panel), we find a small-scale fieldrdo
simulated at the same resolution) exhibit a slower growtihef inated by slender flux tubes. Field lines offdrent polarity (in-
MRI. From the growth rates of the MRI, we infer that in 3D thelicated by dfferent colors) are lying close to each other. After
same resolution criterion applies as in the case of axisyimyme the development of the channel flow (right panel), the field is
During early epochs the evolution is similar to that of the codominated by a large-scale pattern. A smooth surface perme-
responding axisymmetric models: a number of radially ain ating the box at nearly constaricoordinate separates in two
channels appear. Strongdffdirential rotation causes significaniarge regions field lines of éierent polarity from each other. In
wind-up of flow features leading to structures elongate@-in each of the two regions, we find one broad flux sheet where most
direction, i.e., there exists only a modest variation of MidD  of the magnetic energy is concentrated. The separatiom igye
variables with azimuthal angle at this stage. Sheet-likecst filled by gas rotating nearly uniformly at a ow angular veloc-
tures dominate the field geometry. The rotational profildseg ity (Q ~ 1500s'). The surrounding gas rotates uniformly as
to show distortions due to the transport of angular momentusell, but at a much higher velocity ~ 1800s?). The two
by Maxwell stresses (see left panel of [Eig. 19). At later dysocflux sheets form a thin transition region between both rotel
the flow in 3D is more complex than in axisymmetry. Althouglstates. Thus, the dynamics is similar to that of the cornedjpg
coherent structures, i.e., flux sheets, are still presesit, jeom- axisymmetric model.
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Fig. 19. Structure of a 3D model withj = 2 x 10"3G computed on a grid of 1 kirat a resolution of 20 m at= 16.2ms (left),
t = 26.8 ms (middle), and = 42.5 ms (right), respectively. Shown is the volume renderedmatg field strength (blue to green),
and a red-orange is@-surface corresponding @ = 1820 s (left and middle) and2 = 1680 s (right), respectively. The red,
green, and blue axes point inég, ¢, andz direction, respectively. Channel flows can be identifiedragig sheet-like structures.
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Fig. 20. Evolution of the mean magnetic energy dengt#? (solid black line), the mean energy densities correspantiirthe
w (dotted red)¢ (dashed brown), anzl(dash-dotted green) component of the magnetic field, andlbkelute value of the mean
Maxwell stress componeM,, , (dashed blue line) for models with an initially uniform masgie fieldbj = 2x 10'3G in z-direction,

and a rotation law given b, = 1900 st andaq = —1.25. The panels show a 2D model computed in a bdxot L, = 1kmx 1km
(left), a 3D model computed in a box &f, x Ly X L, = 1kmx 1kmx 1km (middle), and a 3D model computed in a box of
L X Lg X L, = 1kmx 2kmx 1km (right), respectively. The grid resolution is 20m inthllee cases.

Because our boundary conditions allow for a loss of angulsiress is strongest. Unlike in the model discussed abogedh
momentum, and thus for the total disruption of th&atiential herent flow is unstable and becomes turbulent within a few mil
rotation profile by transport through the radial boundaries liseconds, and the absolute value of the Maxwell sttMng
stage represents the end of the evolution, just as it did in aecreases.
isymmetry: the instability has used up its free-energymase
Hence, the later evolution consists only of violent ostitlias.

) Channel modes and parasitic instabilities: The appearance

Only a subset of our models show a prominentre-appearanegy stability of single large-scale flows that lead to a sdeon
of single channel_flows, and most of them do not exhibit a Se&xponential growth phase and eventually to the disruptidhe
ondary exponential growth phase. Instead, the mean magngdiation profile depend on the geometry of the simulated doma
energy and the Maxwell stress remain roughly constant dyfs el as on the ratio of the grid resolution and the fastestg
ing saturation, albeit fluctuating strongly (see the righthgl ing mode.
of Fig.[20). Angular momentum transport is lesiaent for
these models, and their initial rotation profiles remainrtyea  Models, which are computed in a box of 1kwith a res-
unchanged. A turbulent flow and magnetic field persist durirgjution of 20m and where velocity damping is applied, depelo
saturation, and coherent, channel-like structures dpviebm- secondary stable channels, if the initial magnetic fieldrzger
siently. The structure of the magnetic field of a model witthan 2x 103G. The MRI growth rates found for these models
b5 = 4 x 103G computed on a grid of 58 100x 50 zones is (o = {0.76,1.03 1.10}ms™ for by = {1,2,4} x 10'°G, respec-
displayed at two diferent epochs in Fif.22. At= 21.5ms (left tively) indicate that the grid resolution is figiently fine to re-
panel) one recognizes a turbulent state, while large-pedterns solve the fastest growing MRI mode for the two most strongly
(right panel; yellow structures) dominate the flowt at 37.2ms magnetized models. However, it is too coarse for the modél wi
when the magnetic field strength is largest, and the Maxwétle weakest initial field, because the theoretical growté far
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Fig. 21.Same as middle and right panel of Figl 19, but showing besidegolume rendered magnetic field strength (blue to green)
also the magnetic field lines, which are obtained by startirggintegration of the magnetic field at two surfaces of camisi-
coordinate (i.e., orthogonal to the green axis) at the left aght hand side of the domain. The field lines originatinanf the

left and right surface are plotted in red and yellow, respebt The right panel shows, in addition, the isosurfage= O (i.e. the
magneto-pause).

Fig. 22. Volume rendered magnetic field strength of a model \lm@hz 4 x 10" G computed in a box of % 2 x 1k with a
resolution of 20m at = 21.5ms (left) and = 37.2ms (right), respectively. The coordinate directions acddated as in Fig. 19.

the fastest growing MRI mode isyr; = 1.14ms? for these smooth evolution without dominant large-scale coheremicst
models (see Set. 4.2.1). tures.

We find that models with a radial aspect ratig/L, = 1

To investigate the stability properties of large-scalencted  and a toroidal aspect ratigy/L, > 2 are unstable against par-
modes as a function of the box geometry, we simulated maakitic instabilities, independent of the grid resolutinridroidal
els with an initially uniform magnetic field using boxes of-di direction. Turbulence develops and leads to a flow strucisre
ferent size and shape. The models were rotating accordingstiown in Figl2R. Models having the same radial aspect ratio,
Qo = 1900s? andag = —1.25, and their initial magnetic field but a smaller toroidal one are stable and evolve similarlgas
washf = 4 x 10"G when applying velocity damping bound-isymmetric models, i.e., parasitic instabilities do noswgrand
aries, and? = 2x 1013G otherwise. We varied both the ratio bea dominant large-scale channel flow develops, which giws ri
tween the radial and verticdl,,/L,, and the radial and toroidal to a morphology of the type presented in Eig. 22. These find-
size,L4/L, size of the box. The grid resolution was 20 m (sei@gs do not depend on how the growth of the MRI ends, i.e.,
Tab[B.3). Plotting the stress rati@aX/Mt;;m (Fig.[Z3; damp- wh_ether velocity damping is a_pplled and reconnection betwe
ing boundaries) antMq;)/M®™ (Fig[22; non-damping bound- adjacent channels occurs inside the box, or whether no damp-
aries) as a function of the asmgect ratio of the computatiooz) ing is imposed and reconnection occurs near the surfacesof th

provides some indication of the range Mk, values prevail- Computational box.

ing during the post-growth phase. The ratios allow one te dis These results can be understood from the analysis of par-
tinguish models with a strong variability due to the dominarasitic instabilities by Goodman & Xu (1994), who argued that
re-appearance of channel modes from those models exlgikitinthree-dimensional flows are unstable against parasitiahils
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ties, but these instabilities can be suppressed by the gepafe log Mze* / Mag' log Mge® / Mgy

the computational box. According to their analysis, thengho e ———

rate of the parasitic instabilities is highest for modeshwiglf 9_97n 1:; 225 ;'9'2‘50'?5‘0;761'25 175225
the wave number of the unstable MRl modes they are feeding
off. Hence, if a channel flow forms at late times with a wave- ‘
length equal to the box size mdirection,L,, unstable parasitic 3
modes must have a toroidal wavelengti?L, to grow rapidly. o o “ o
Thus results in the criterion for the channel flow instapilite 3

have found in our simulations. 4
In accordance with simulations presented recently by J1 a o o a
Bodo et al. |(2008), we find that models with a radial aspect ra- 2 o =]

tio L, /L, < 1 experience a second exponential growth phase as
described in Sedt4.2 (note the large ratiogf3* and M5™ ) o o o
for the corresponding models in FHigl]23), whereas a larger ra

dial aspect ratio appears to favor a less violent post-drpivase 3
where coherent channel modes can appear but are disrupged af d 2,

a short timel_Bodo et al. (2008) obtained this result for ¢&mu 1 1
tions performed with a toroidal aspect ratig/L, = 4. log Lo /L, log Lo /L,

~ We confirm a similar dependence of the dynamics on the rigiy. 23. The left panel shows the ratio of the maximum Maxwell
dial aspect ratio also in axisymmetry and for three-dimemsi stress per unit volumey™ and its value at MRI termina-
boxes with smallet,/L.. In this case, parasitic instabilities are;,, pterm 45 a function gf the toroidal and radial aspect ra-
unable to disrupt the channel modes. Consequently, the wg

| : : ;
experiences a second exponential growth phase dominate 'Bi' Ll¢/r|1_2 andrl;w/Lz_ foogﬂthe models l('jSted m;’a@.& The r'r?ht
just one (two in a few cases) large channel mode of wigth Pane' s ows the ratio ol averaged over the saturation phase
which is determined by the size of the computational box @d the value at MRI termination. Each model is represeryed b
z-direction. The maximum Maxwell stress that can be reachgosymbOI its color refle_ctlng Its maximum MaX\_/veII stress. Al_l
is limited by the onset of resistive instabilities. The degence mpdels are qomputed imposing velocity damping at the radial
on the channel width (Eq.(A.11)) explains why the maximw%rId boundaries.
Maxwell stress varies with,: larger boxes allow for wider chan-
nels for which the resistive instabilities grow slower,shraquir- log Mog" / Moy log Mog® / Mug"
ing higher Alfvén velocities for a growth rate comparatdtie mg% 0500 050 1 150
one of the MRI. Hence, the MRI reaches stronger fields foearg g o oo o
(in zdirection) boxes.

Despite the dferences in the MRI termination process, the
behavior of models with and without velocity damping is quit o o oo o o
similar, because the velocity damping does niééa the sec-
ond generation of vigorous channel flows significantly. T, tius

breakup of these channels and the values of the corresgpndin S 1 a - -
maximum Maxwell stress do not depend strongly on the choice S - y
of the boundary condition. On the other hand, MRI terminatio -
(the termination of the initial exponential growth of the MR
does depend on whether velocity damping is applied or nat, an o oa a o
thus the ratidV75/MSi™, too.
For boxes having a large toroidal aspect raltig/,L, > 2, we o
observe a quiet evolution during the non-linear saturgtioase I a...8
of the MRI when varying the radial aspect ratig,/L,. In par- log le,,_z log le,,_z

ticular, the fluctuations oM, are small after MRI termination
for models where both aspect ratios are large. The moddiein Fig. 24.Same as Fif. 23, but for models where no velocity damp-
upper right corner of Fi§. 23 have values(tMM)/M;e;m close ingis applied at the radial grid boundaries.
to unity.

We may try to infer some consequences from these results
for the MRI in supernova cores. Close to the core’s equatr thffects of resolution and initial magnetic fields in 3D vs 2D:
region, where the MRI develops, can have to a small radia siAfter having discussed how the aspect ratios of the sinarati
L., ranging from a few to a few hundred kilometers determinddPx determine the Maxwell stress at MRI termination andrayiri

by the gradients of2 andS in the core. The vertical extent of the subsequent saturation phase, we will now compare whethe
the unstable regiorLz, can be expected to be of similar Sizethe behavior of 3D models filers from that of 2D models. The

The azimuthal extent of the MRI unstable regiap, will be models discussed in this paragraph are listed inTab. B.Bahd
significantly larger, leading to a non-violent evolutiortbé sat- First, we note that in 3D, as in axisymmetry, the growth rate
urated state of the MRI. The geometry isfdient close to the Of the instability is not #iected by the choice of the grid provided
pole. However, we cannot apply our results there withoutimodhe fastest growing mode is resolved.

fications as we have considered only cases where the gradfent ~ Fig.[28 demonstrates that in 3D the dependendd$f" on

Q and of all thermodynamic quantities are aligned — a situatiche initial magnetic field strength is well described by thene
which does not apply near the poles. power law as in axisymmetry: models without damping of the
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Fig. 25. Volume-averaged Maxwell stress Compoanﬂﬁgsm at Fig.26. Evolution of the mean magnetic energy densfi??
MRI termination as a function of the initial magnetic field(solid black line), the mean energy densities correspanttn
strength oo, for axisymmetric models with uniform initial mag-the @ (dotted red)¢ (dashed brown), anzi(dash-dotted green)
netic field inz-direction, a rotational profil® = 1900 s w125, component of the magnetic field, and the absolute value of the
and a vanishing entropy gradient for a set of 3D models commean Maxwell stress component, ; (dashed blue line) for a
puted with (asterisks) and without (diamonds) velocity garg 3D model belonging to the mixed regime. The model rotates dif
at the radial boundaries. Models computed in a box with atadferentially withQo = 1900s* andag = —1.25. The initial en-
size of 1 km and @ km are shown with green and blue symboldfopy gradient i), S = ~0.038 km™*, and the initial magnetic
respectively. The colored bands are the same as ifilFig. 8.  field strength ist} = 2 x 10'3G. The model was simulated in
abox of sizeLy x Ly x L, =1x2x1 km3 and on a grid of
50x 100x 50 zones.
radial velocity line up along a band (b3)'%?, and models with
velocity damping are characterized by a roughly constalueva

of Mté;m’ which depends on the size of the radial box (compat® reduce the influence of boundarfjezts, one could employ a
with Fig.[8). This agreement is to be expected as the growdh achnique widely used in simulations of convective layeaxd

the resistive disruption of channel flows are essentiallgya®- a cooling layer on top of and an overshoot layer below the con-
metric processes, which are, thus, not significantly madiifi¢  vection zone. However, exploring this approach was beybed t
three-dimensionalfgects. scope of the present work.

After MRI termination the evolution o, depends on the For models having a negative entropy gradient the growth
aspect ratio of the computational box (see discussion gbovsf the MRI is not influenced by 3Dfects, if the fastest grow-
When averaging the fluctuating Maxwell stresses over the s@gfg mode is resolved. Thus, their behavior is similar to tfat
uration phase, we find values fO¥ ;) which differ consider- models with no entropy gradient. The Maxwell stress at MRI
ably from those oM™ Lacking a thorough understanding oftermination also does not fiér significantly from that of the
the instabilities involved in the MRI saturation procesy] dav- corresponding axisymmetric models, and due to the boundary
ing only a imited set of 3D models at hand, one is not yet in@nditions applied in the models (velocity damping) itsueais
position to formulate a better description of the dependesic set by recombination of field lines close to the inner and oute
the evolution after MRI termination on the aspect ratio &f thradial boundary.
box, and to provide a unified description of MRI saturationram  Contrary to axisymmetric models, the saturated state of the
plitudes. 3D models does not show any sign of a late exponential growth
phase characterized by the re-appearance of channel naodks,
the saturated MRI stresses are smaller in magnitudeMigff,

i.e., the maximum Maxwell stress is reached at MRI termanati
Mixed regime: Let us first consider models from the mixedsee Fig. 26 and compare with Higj. 4). The evolution of the av-
regime having an initial rotation law given Y, = 1900s! erage radial entropy profile profile, computed as the aveséige
andagq = —1.25, and an entropy distribution given I8¢ = 0.2  S(w, ¢, 2) at constantz, is shown in Fig.2l7. Until the saturation
andd,S = —0.038 (i.e, with a negative entropy gradient). In axef the instability (att ~ 11ms), the initial linear profil&S(w)
isymmetry the MRI grows in these models with a rategk ~ is basically unchanged. However, afterward the entropyilpro
1.7ms?, i.e., close to the theoretical value ©f2.0ms?. The flattens S becoming nearly constant for Zkm < @ < 15.8km.

3D models show the same growth rate provided the spatial g@itbse to both radial boundaries, the entropy profile dewetop
resolution is sfficiently high. trema, which are most likely an artifact of our boundary dend

The long-term evolution (i.e., many rotational periodinttions. The flat entropy profile is stable and does not varyngtiso
the non-linear phase) of the models depends strongly on thigh time. TheQ profile flattens after the initial growth phase,
choice of the radial boundary conditions. If the entropyha t too. The velocity field in the saturated state is dominatec by
inner and outer boundary is allowed to change (i.e., usifiga-e rich small-scale structure, while the magnetic field is oiged
tive boundaries), a flat entropy profile develops after atthoe. in a multitude of flux tubes.

4.4.2. Uniform b? field, entropy gradients
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Fig. 27. Average radial entropy profile as a function of time for
the model shown in Fif. 26.

MBI regime: Next we consider a few models that, in axisym-
metry, belong to the MBI regime. Initially, the models ratat
rigidly with Q = 1900s! and possess an entropy gradient
95S = -0.10km? (i.e.,C = —3.6). We computed models for
b = 10G, 16°G, and 2x 10"G, respectively. All models are

simulated in a box of size,, x Ly x L, = 1 x 2x x1km and

onaagrid of 50¢ 100x S0 zones. %5ig.28. Flow structure of a MBI model witho? 10G at
Contrary to their axi tri t t $edr, 4.2'°- <% 0o =
ontrary to their axisymmelric counterparts (see = 4.86ms (upper panel), and= 14.4ms (lower panel), re-

these models develop convective modes even when no mtglg

netic field is present. As described, e.g./ by Tasdoul (1988) ectively. The solid black lines are stream lines of theciey
tation can stabilize axisymmetric modes in a convectivedy s field computed in a frame co-rotating with the mean angular ve

ble environment, but non-axisymmetric modes can nevessisel [0City, and regions of positive and negative radial velpeite

grow in that situation. The model with the weakest initialdie polored in red and green, r_espe_ctwely. _The colored arrawsstp

(b2 = 10G) shows a growth of non-axisymmetric MBI modes!"© the same coordinate directions as in Fig. 19.

but these modes cannot be resolved due to the extremely weak

initial field. Thus, the model behaves essentially simibeart un-

magnetized one, but can serve as a reference model fotlinitiaus paragraph). MBI growth is mediated by non-axisymmetric

more strongly magnetized models where we can resblyg. modes having the same elongated geometry as those in the es-

The growing convective modes eventually extend over the esentially unmagnetized model. After saturation, a feweargr-

tire domain in radial and-direction, while having a small wave- tices of approximately cubic shape form, which later decdy i

length in¢ direction (see Fid. 28, upper panel). The exponesmall-scale structures again. An intermediate stage sfdhi

tial growth of the convective instability saturatestat 7ms. cay process is displayed in Fig]29, when one large vortelis s

During this growth phase the mean magnetic energy incredisepresent in the right half of the box, while its left half is dom

the same rate as does the kinetic energy. After MRI termanatiinated by spatially less coherent fields. At even later tithes

the structure of the model is characterized by two largegihtu  vortex disappears and the structure of the whole model is sim

cubic convective cells with a size of about 1kinstead of a lar to that shown in the left half of the box. The mean magnetic

multitude of elongated structures (see (Eig. 28, lower pamed energy and Maxwell stress are small compared to typical MSI

an essentially flat entropy profile. The magnetic field is sabj or mixed models. Compared to afféirentially rotating model

to kinematic amplification at a smaller growth rate than befo(Qo = 1900s?, aq = —1.25) with a vanishing entropy gradient,

MRI termination due to stretching in the convective vorgicat the maximum magnetic fields are reduced by a factar 8f and

much later epochs the typical size of structures in the wiglocthe mean magnetic energies and Maxwell stresses by a fdctor o

field decreases again, leading to more turbulent fields. Tdge m~ 10, but we still find a slow growth at the end of the simulation.

netic field, which is too weak tofBect the dynamics, is passively  Finally, we add a few comments on a model where we cannot

advected with the flow. resolvedyrs (b = 10'9G), but where the magnetic field satu-
For the model having the strongest initial magnetic fielthtes within~ 60ms after the onset of convection. The model

by = 2x 103G we can resolvelygr,. The axisymmetric ver- evolves similarly to the essentially unmagnetized one, diut

sion of this model showed a MBI growth a rate close to thex~ 60ms the energy of the kinematically amplified magnetic

theoretical onedyr; ~ 1.7 ms?). For the 3D model we find field becomes almost as high as the convective kinetic energy

oeonv ~ 2.6 ms?), i.e., its evolution is dominated by convectiorThe amplification process ceases, and the magnetic energy le

(although we are able to resolve the MBI), and the MBI growtbls df. Close to the end of the simulation convective transport

rate is similar to that of a weakly magnetized model (seeipregives rise to a rotation laf ~ const.
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Fig. 29.Structure of a rigidly rotating model withf = 2x 103G

att = 19.3ms. The figure shows a volume rendering of the mag; : o
L ig. 30. Evolution of large-scale coherent patterns exhibited b
netic field strength (blue — green), the value of the angudéoos thg mean (i.e., averaggd over a plane atpconstm)brdinate) y

ity, Q, at three slices parallel to the coordinate axes (red — e,

low), and stream lines of the velocity field in a co-rotatingnhe n er'fi) édf?élgeé? ; é)rngrfﬁ?(e;r: (;) fstar‘ e?;]Dt:g "_dg'xhi“é'ﬂg a_:_1h|2 'tr'nacl) drgf\g-
(black lines). In the right half of the figure, one can identhe 9t = '

large convective cell, whereas the features of, e.g., thecirg  Was simulated in a box of 1kincovered by 58 zones with

field in the left half are of considerably smaller scale. Thegm N0 velocity damping applied. This figure is similar to Fig.fl o
netic field is comparably weak inside the convective celf a :

strongest in the flux tubes both at the boundaries of the @anve

tive cell and in the left part. The colored arrows point inte t

same coordinate directions as in Fig. 19 remain stable for a few rotational period3¢ ~ 0.53ms). Thus,

we make similar observationslas Lesur & Ogilvie (2008) do for
their models.

We also simulated a few 3D models with zero-flux fields
in the mixed regime. The results are analogous to those ob-
Many results discussed above also apply analogously to Isiodeined if the initial fields are uniform(see, e.g., [Figl 3The
where the initial magnetic field has a vanishing net flux tigtou MRI growth rates are similar to those of the corresponding 2D
the surface of the computational box. We simulated modets wimodels, and the mean Maxwell stress in the saturated state is
Q = 1900 st andaq = -1.25, and find a basically axisymmetricsomewhat smaller. In the saturated state, both the entrgpy (
growth of channel flows, which decay due to resistive inditabiper panel) and the angular velocity profiles become flat fapid
ties at a level consistent with axisymmetric models. Thedab- The spatially and temporally coherent large-scale strestin
lution of the models is dominated by turbulent fields. Comntrathe magnetic field are even more pronounced than in MSI mod-
to uniform-field models, there is no second phase of charmel @ls (compare the lower panel of Hig] 31 with Figl 30). They-con
tivity. Hence, the mean magnetic energies and Maxwell sées sist of two large regions characterized by an opposite sfgn o
do not fluctuate violently in the saturated state, and - eMeenw b?, which persist for the entire simulation of the saturatedest
no velocity damping is applied - the maximum values of, e.gs 140ms), subject only to a slow drift in vertical directiorh&
LMWL, are reached at MRI termination. Later|¢mr,¢| decreases implications of this behavior for the presence and propertif

y a factor of a few, and stays roughly constant subsequentlya nonlinear dynamo of the type proposed.by Lesur & Ogilvie

Performing similar simulatioris Lesur & Oqilvie (2008) pro{2008) remain to be explored.
posed a non-linear dynamo that balances the dissipatiameof t
magnetic energy in MRI models with zero net flux. In the tur- .
bulent saturated state, they identified large-scale djyataver - Summary and conclusions
a sizable fraction of the box) and temporally (over sevestd+
tional periods) coherent patterns of the toroidal magrfetid.
To study this process, we looked for similar patterns in oadm

els. , N , milliseconds), it can lead to MHD turbulence arfi@ent trans-

An example is shown in Fif.80 for a model wit§ = ot of angular momentum. Because the growth of the magnetic
2 x 101G simulated in a box of 1kfon a grid of 56 zones field and the associated Maxwell stresses is exponentiahi t
applying no velocity damping. The figure shows the mean valtge MR is one of the most promising mechanisms to amplify the
of the toroidal field componeit,, (i.e. b? averaged ovetr and — most likely weak — magnetic field of the supernova progenito
¢) as a function ok and time. Fott < 14ms the early channelsup to dynamically relevant strengths.
flows can be identified in which the magnetic field grows. At As pointed out by Akivama et al. (2003), the conditions for
t ~ 14ms, the channels are disrupted, and the growth of the fige instability are fulfilled in typical post-collapse supeva
seizes. In the saturated state that follows, the mean ¢ersize cores. Under the assumption that the MRI converts most of
of the structures is larger: at any time, we find only a fewiftypthe energy contained in fiierential rotation into magnetic en-
cally two) regions of opposite field polarity (blue and reghich ergy, these authors predicted saturation fields of appratein

4.4.3. Magnetic fields with zero net flux

We have studied the possible amplification of seed pertiontost
in supernova cores by the magneto-rotational instablfitthe
MRI grows on dynamically relevant time scales (a few tens of
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S [egs] Buoyant modes are unstable only in systems dominated by a
] negative entropy gradient, whereas Alfvén modes prefdif-

ferential rotation is the main agent of the instability. kénees
Alfvén modes are rapidly amplified only for a small range of
wave numbers, buoyant modes grow at essentially the same rat
for a wide range of wave numbeksg Kmax-

We have identified six regimes of the MRI depending on the
ratio of the entropy and angular velocity gradient. Thesel MR
regimes and their properties can be summarized as follows:

1. Suficiently large positive gradients of the angular velocity or
of the entropy define th&table regimevith oscillatory rather
than growing modes.

2. For stficiently strong diferential rotation and small entropy
gradients (or small buoyancy frequencies), we findsthear
regime corresponding to the hydrodynamic shear instability.

3. If negative entropy gradients dominate the system, ib-s |
cated in theconvective regimewhich resembles ordinary
hydrodynamic convection potentially modified in the non-

b}, [G] linear phase by the presence of a magnetic field.
-970a0™ ‘ _Lopac™ 4. A small degree of diierential rotation (e.g., Keplerian) and a
AN ’ small entropy gradient (if present at all) are the conddifmn
&t ’ J the magneto-shear (MSI) regimevell studied for accretion
- i discs.
0.2} i IaE W iR 5. When fast (nearly) rigid rotation suppresses convectten

B L stabilizing éfect can be overridden by a weak magnetic field,
AN A ' i | giving rise tomagneto-buoyant (MBnodes. This regime is
2 oo} o W only encountered in axisymmetric flows as rotation can sta-
A L WL | bilize only axisymmetric modes of convection, i.e., in thre
F dimensions convection may grow faster than the MBI.
R 6. Finally, amixed regimeexists which shares properties of all
unstable regimes listed above.

‘ i To substantiate our stability analysis, we performed a set
5 Wn @ W5 G BE 6 of more than 200 models of semi-global high-resolution simu
t [ms] lations of the MRI in simplified models of post-bounce cores.
Our novel semi-global simulations combine elements of both
) ) ) ) . lobal and local simulations by taking into account the pres
Fig. 312- EVO"H'O”S of a mixed-regime 3D model with Zero neénce of global background gradients and by providing highllo
flux (b5 = 2 x 10G), an entropy gradiert, S = —0.038km™, spatial resolution. In particular, we employed the shegdisc
and a rotation law given b2 = 1900s* andaq = —-125. poundary conditions proposed|by Klahr & Bodenhelrher (2003)
The upper panel shows the entropy of the model averaged oygiich allow for the treatment of global gradients of, e.gnd
planes of constant as a function of radius and time. The lowesity or entropy, and studied the influence of a thermal $icati
panel shows, similarly to Fig80, the averagebbiover planes  tion on the MRI assuming various (radial) entropy profilelse T
of constant as a function oz and time. presence of gradients constitutes an importaffiedince of our
setting from that of accretion discs. We used a newly deezlop
Eulerian high-resolution MHD code to evolve the flow in a com-
10"G. This prediction derived from a semi-analytic analysigutational box having an edge length of a few kilometers. The
and 1D simulations can only be confirmed by detailed multbox was located in the equatorial plane of the core at a distan
dimensional numerical simulations. The reliability of lgé&d of 15km. The initial data were computed assuming hydrastati
simulations of the entire core, however, is limited due ®1tke- equilibrium of diterentially rotating matter described by a sim-
cessity to resolve accurately small length scales (a feverset plified equation of state. The gas in the box was endowed with a
at most) leading to impracticable computational costs. weak initial magnetic field of dierent topology and strength. In
Traditionally, the MRI is studied in great detail in accogti most of the simulations, the magnetic field of the progertitut
discs, i.e., in systems dominated by Keplerian rotatioaBee a strength of approximately 18G. We neglected thefkects of
typical post-collapse supernova corefeti from these systems neutrino radiation and assumed an ideal MHD flow.
in many respects, e.g., by the importance of the thermai-stra Computed under the assumption of rotational equilibrium,
fication and the sub-Keplerian rotation, we investigatedlith our background models fiier from realistic supernova cores
stability under more general physical conditions. Anaigzihe in many respects. One of the most important shortcomings is
MRI dispersion relation of Balbus (1995); Urpin (1996), wehe neglect of the large-scale accretion flow through the-pos
identified the regimes of the instability relevant to supeen shock region onto the proto-neutron star. From a physiciak po
cores. of view, such flows, whose influence on the MRI has not been
We distinguish betweeRAlfvén and buoyantmodes of the studied previously, add to the already considerable caxitple
MRI. The former ones are generalizations of the standard MBfithe problem considered here, possibly allowing for addil
modes, and the latter ones resemble standard convectivesnoregimes and modifying growth and saturation of the insiigbil
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Technically, the proper treatment of the boundary conadgtiie-
quired for a correct modeling of such flows in non-global simu
lations is rather involved. Thus, we have decided to posbe
study of the MRI in the presence of a large-scale accretion flo
and focus on systems without overall radial motions.

The main results of our simulations are agree well with both
our mode analysis and with local simulations of the MRI in ac-
cretion discs. They also confirm the estimates of Akivamdlet a
(2003), and they are consistent with the results of globalMH

simulations of core collapse (e.g.. Obergaulinger bt £0651). 6.

We summarize our results as follows:

1. Under the physical conditions considered in this study, i
in a background rotating in hydrostatic equilibrium, the MR
can act in supernova cores amplifying an initial magnetic
field strongly. The growth times are approximately equal to
the rotational period of the core, which for rapidly rotatin
cores is sfiiciently fast to influence the dynamics.

2. Due to our relatively fine numerical grids, we were able
to resolve the fastest growing MRI modes for initial field
strengths higher than a few ¥. This threshold is con-

siderably lower than the one of previous global simulation8-

(e.g.,Obergaulinger et al. 200€b,a), enabling us to priobe t
MRI in a parameter range inaccessible to global simulations

3. The growth of the instability is accompanied by the devel-
opment of channel flows, predominantly radial flows of al-
ternating direction stacked up in tlzedirection. This flow
pattern is characteristic of both axisymmetric and three-
dimensional simulations. The width of the channels is set
by the wave length of the fastest growing MRI modes.

4. At MRI termination (i.e., at the end of the first exponehtia
growth phase of the instability) the channels dissolve into
a turbulent flow having a complex magnetic field topology.

ideal plasmas. Nevertheless, our results provide some qual
itative insight into the basic processes of MRI saturation,
highlighting the importance of tearing-mode-like instabi
ties. Quantitative conclusions, as e.g., the scaling lawthe

field strengths and the Maxwell stresses at MRI termination
as a function of the initial magnetic field strength, should
be taken with a grain of salt. These depend on the dissipa-
tive properties of the numerical scheme employed, which are
likely to change when physical resistivity is considerd.

The saturation phase of the MRIfidirs considerably be-
tween axisymmetric and unrestricted 3D models, and be-
tween models having afilérent initial field configuration.

In 2D the flow does not break down into small-scale turbu-
lence, instead the channel flows merge until they form one
pair of large-scale coherent up- and down-flows. When the
strength of the magnetic field exceed$®), the rotational
profile is modified within a few tens of milliseconds.

7. Axisymmetric models having an initial magnetic field with

a vanishing net flux through the computational box become
turbulent after a growth phase dominated by channel flows.
The saturation fields are considerably smaller thaiG0

The previous finding also holds for 3D models. Turbulence
develops, but a spontaneous reorganization of the flow may
lead to a re-appearance of channel modes, resulting in
Maxwell stresses comparable to those found for axisymmet-
ric models. In models which do not develop late-stage chan-
nel flows, field strengths up to several'4@ are encoun-
tered. The field is predominantely toroidal. The extent of
the late-time channel activity depends on the development
of secondary (parasitic) instabilities, both flow-drivend.,
Kelvin-Helmholtz) and current-driven (e.g., tearing msge
which feed df the channel flows. The presence of these insta-
bilities is determined to a large degree by the the aspedot rat

During the subsequent evolution secondary generations of of the computational box, i.e., we observe a strong depen-
channel flows can (re-) appear which characterize Secondarydence of the saturated state on the aspect ratio. For magneto

phases of exponential growth.

rotational core collapse, our results suggest that secpnda

5. We identified the mechanism responsible for the breakup of instabilities are fairly #icient in suppressing coherent chan-

the channel flows and MRI termination in our simulations.

Despite the absence of a physical resistivity in our modé&-

equations, we find that resistive MRI instabilities of the

nel flows during saturation.
For models having an initial entropy gradient, we find an im
portant influence of convective stabilization or destabi

tearing-mode type deve|0p due to the finite numerical resis- tion on the evolution of the MRI. We confirm the instabil-

tivity of our MHD code. A main characteristic of the channel

ity regimes predicted by our linear analysis with numerical

flows is the presence of prominent current sheets immersed Simulations, the numerical growth rates being in accordanc

between layers of opposite magnetic polarity, which are un-
stable against current-driven instabilities. Using a difiejol
model of this kind of flows, we investigated the growth rates,
o, Of the resistive instabilities, and derived an approxanat
law for the scaling ofo, with the magnetic field strength

with the theoretical ones. The MRI is suppressed in con-
vectively stable regions, the growth rates are reduced, and
the geometry of the flow changes favoring radially less ex-
tended patterns. In the mixed regime, convectively unstabl
regions with comparably large entropy gradients are domi-

present in the channels, the channel width, and the grid res- nated by flows similar to volume-filling hydrodynamic con-

olution. Comparing these growth rates with the MRI ones,

vection. The magnetic field is expelled from convectivesell

we find that the MRI ceases to grow once the tearing modes and accumulates near the box boundaries. We note that the

grow faster than the MRI. Using this criterion, we are able to
explain the dependence of the conditions (i.e., field stfeng
Maxwell stresses) at MRI termination on, e.g., the initial
field strength, the grid resolution, and the initial rotatfro-

file. 10.

Strictly speaking, there should be no reconnection without
physical resistivity, and the behavior of a magnetizedlidea
fluid subject to numerical resistivity may be quitefdi-

ent from that of a fluid having a large but finite conductiv-
ity. Consequently, our results and their implications ann
replace a rigorous treatment of MRI growth in supernova
cores with a non-ideal MHD model. In particular, we have
to be careful when drawing conclusions for the MRI in non-

entropy gradients required for thed®eets are fairly shallow

~ 0.1km™. We confirm the existence of the MBI regime for
axisymmetric models, whereas the same models, computed
in 3D, experience the growth of non-axisymmetric modes.

In 3D models having a zero net magnetic flux we observe
the development of large-scale coherent field patterngagimi
those seen by Lesur & Ogilvie (2008), despite the turbulent
nature of the velocity and magnetic fields. We also find dif-
ferences in the flow patterns between MSI and mixed regime
models. The tentative connection to a non-linear dynamo op-
erating in the models remains to investigated further.
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These results allow us to draw a few conclusions. Firstihppendix A: Growth rates of resistive instabilities

the MRI has the potential to play an important role for the dy- . : - S
namics of supernova explosions, at least for relativelyriast- Our simulations of the MRI indicate that the termination fod t

ing progenitors. The details of the evolution of the MRI degbe growth of the instability is determined, at least partighy resis-

crucially on the properties of the core, in particular iterthal tive instabilities of the tearing-mode type. Although thexist

e ; . detailed investigations of this kind of resistive instélab (see

stratification. This makes the study of the MRI in superncvae - A | '

subject of its own, related to the MRI in accretion discs s a €.9. Biskamjp 2000), the appllcat!on of the resqlts_ to oudyst
hampered by the completelyfidirent type of dissipative ef-

uite diferent from it. Hence, there is a need for more inveg: : ) o
?igations focusing on MRI properties specific to core caliap icts we are facing here: all previous results hold for inisitees
due tophysicalresistivity, whereas oudeal MHD simulations

supernovae. . here
are dfected bynumericalresistivity, only. Hence, we had to de-
While local (or semi-global) simulations can yield interes termine the growth rates of resistive instabilities fronmmarical
ing results regarding the physics of the MRI, several imairt experiments without referring to analytic results — altilouas
aspects can only be addressed by global modeling. Theeftaile will see, there exist certain similarities.
dependence of the geometry of the magnetic field at satntatio e simulated the evolution of two-dimensional currentethe
e.g., may depend strongly on the global dynamics and on the pgodels on a Cartesian grielgf, x1] x [yo, y1] with my x m, zones
sition of the box inside the core. Our simulations did notact imposing periodic boundary conditions. The fluid is dessdib
for any of these factors: the background was in hydrostgtit-e by an ideal-gas equation of state with an adiabatic iftlex/ 3.
librium, and we simulated models only in the equatorialoegi We used initial data mimicking MRI-generated channel flows:

Since the field geometry is of crucial importance for the globthe initial magnetic field varies sinusoidally in a gas of stamt
dynamics, e.g., for the generation of jet-like outflows ifia®  densityp, and pressur®,

sars, conclusions on the dynamic influence of the MRI based on o
local simulations cannot be drawn easily. They require @lobp* = b sin M, (A.1)
a

models. . b

Additional investigations are also required to study ttierin - (A-2)
play of large-scale flows, e.g., the accretion of matter aheo and having a velocity ix-direction given by
proto-neutron star and the influence of neutrino radiatiqrart o . 2n(y—Yo) - /2
from modifying the regimes of the instability discussedei¢ne V" =V, SIn — a2
former process may allow for new instability regimes; intjuar- o .
lar the combination of the MRI and the standing accretiorckhoH€re.a denotes the initial width of the flux sheet, avjds equal
instability may have interesting consequences for the ajeg 0 0ne half of the Alfvéen velocit, corresponding td;. The
of the explosion. While neutrino heating and cooling maye diPresence of the (shear-free!) initiaielocity is not essential, as
to a net transport of entropy, lead to a stratification qaaviely It changes the growth rates of the instability only littleowever,
similar to that of some models in this study with non-vanighi &S We observe this kind of a velocity in channel flows, we have

entropy gradients, it is too early to speculate on how neatriincluded itin our simulations. , 5
radiation dfects the MRI. We perturbed the sheet by a small randgmrelocity (10 x

] ] ) ) ) c,)- The parameters of the model are chosen to mimic the situa-
~ The inclusion of the MRI and itsfiects in global simula- jons encountered in MRI simulations (see TablA.1). Todtsl
tions requires a considerably careful treatment. The atlre {he gependence of the growth rates on the physical and numeri
used approach of art_|f|C|aIIy gnhancmg the initial flelcbstyth cal parameters, we varied the initial magnetic field strepigj
by a constant factor is questionable. On the other handnfindipe initial density,po, the width of the current sheed, and the

a better prescription relies on unraveling the dependehsato grid resolutiongx = (x — X)/Mx. We chose the grid resolution

system, as e.g., the rotation law, the thermodynamic comgit nitia pressure i = kp}.
and probably also the neutrino transport. We show one typical result for the evolution of our models

With our current simulations we are unfortunately not yef Fig[Al. After a short initial phase, the transverse neign
able to go beyond the stage of a qualitative proof of prirecipid  energy density (green line) grows roughly exponentialljeas-
to address important open questions of the MRI in core cedlapng modes develop. Initially the growth rate is approxinate
supernovae. This would require additional 3D high-resotut constant, but it increases by a factor-o# towards saturation.
non-ideal MHD simulations covering a large parameter spéceSimultaneously, the-component of the magnetic field decreases
possible rotation profiles, thermal stratifications, andynegic ~ strongly until it is of similar strength as tlyecomponent. At this
field geometries. We are planning to address these issues infoint, the coherent current sheets are completely disdupye
ture work. the resistive instability.

We determined estimates of the growth rates of the resistive
instability using the time derivative of the transverse metie
energy density, i.e., the time derivative of the magnetiergn
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Table A.1.Parameters of the 2D current sheets simulated to de-
termine the growth rates of resistive instabilities. Théuoms
give from left to right the edge length of the square simolati
box, the number of grid zones per dimension, the initial dgns
(in units of 132 g/cm™2), the sound speed (in units of Aeys),

the magnetic field (in units of 6G), the wavelength of the ini-

$C 10 L B O O B
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tial field, and the growth rate, respectively.

E
j=2
L my P0:13 Cs:9 bé;l“ a o % 26

[km] lgenm®] [ems?| [G] | [m] ms!| <
025 50 25 31 8 | 125 | 045 2 |
0.25 50 25 3.1 16 125 1.6 "
0.25 50 2.5 3.1 32 125 6.0
0.25 50 25 3.1 64 125 32
0.25 50 25 3.1 16 62.5 10 ’ i
025 50| 25 3.1 32| 625 | 23 T T
025 100| 25 31 16 | 125 | 0.60 0 1 > 3 4
0.25 100 2.5 3.1 32 125 3.1 t[ms]
0.25 100 25 3.1 64 125 12
0.25 100] 25 31 128| 125 43 Fig. A.1. Evolution of the magnetic energy density of a current-
025 100| 25 31 16 | 625 3.7 sheet model simulated on a square computational grid (edge
0.25 100 2.5 3.1 32 | 625 14 length 0.25km; 200< 200 zones). The model has an initial
g'gg 188 gg g% 16248 gé'g 15100 densitypo = 2.5 x 10%gcenr?, and an initial field strength
02t T00T 0055 17 35T 6o E > by = 1.6 x 10"°G. The wavelength of the initially sinusoidally
025 100! 0.025 31 32| 625 15 varying magnetic field i = 31.25m. The black solid line and
025 100! 0025 6.1 32| 625 8.0 the green dashed line show the magnetic energy density-corre
0.25 100 25 1.4 32| 625 25 sponding to thex and they component of the magnetic field,
0.25 100| 25 3.1 32| 625 14 respectively.
0.25 100 25 14 6.1| 625 7.8
0.25 100 250 6.6 320| 625 7.4
0.25 100| 250 31  320| 625 | 15 ys = -0.75 (A.8)
0.25 100| 25 12.4 64 | 625 16 Ya = =2, (A.9)
0.25 100 2.5 3.1 4 31.25 1.2
025 100| 25 31 8| 3L25| 59 v =1 (A.10)
0.25 100 2.5 3.1 16 | 31.25 20 inh i ; ; ; .
025 100 oo 31 32 | 3198 53 which implies the following scaling law:
0.25 100 2.5 3.1 64 | 31.25 110 Ca 0.75 CAdX
0.25 200| 25 31 32| 125 0.9 o« (—) (—2) (A.11)
0.25 200| 25 31 64 | 125 4.6 Cs a
8'32 388 gg gi 13228 ézz‘ré 513 We demonstrate the quality of the fit parameters in[Eigl A.2
0.95 200 55 31 64 | 625 24 showing fca as a function of the initial Alfvén velocity (left
025 200/ 25 31 128| 62.5 76 panel), andf; as a function of the width of the current sheet
025 2001 25 31 16 | 3125 | 7.0 (middle panel) and of the grid resolution (right panel). Kaf
0.25 200 25 3.1 32 | 31.25 28 the groups of models representing the variation of one peteam
0.25 200 2.5 3.1 64 | 31.25 95 (distinguished by a dierent color and symbol in the figure) ex-
0.25 200 2.5 3.1 128| 3125 | 250 hibits a strong trend witlsa, a or 6, i.e., our scaling exponents
0.25 200 2.5 3.1 4 1 15625| 25 provide an adequate fit to the data.
025 200| 25 31 16 | 15.625| 40 Due to a relatively large scatter in the growth rates, thé sca
025 200| 25 3.1 64 | 15.625| 260 ing relation, EqI{A}), should not be taken too literallye Wote,
0.5 100 2.5 3.1 32| 250 12 however, that our computed rates are compatible with thése o
8'2 188 gg gi 16248 ggg 52(? the resis.tive instabillities (for fieldg (_)f similar strenpgth MRI
0510025 31 161158 9 models, i.e., approximately one millisecond fgr~ 10'°G. An
05 100 25 31 32| 125 75 additional dependence ofon the domain sizd,, cannot be ex-
05 100 25 3.1 64 | 125 26 cluded, but we did not examine this possibility any furtfier
05 100 55 31 ] 625 3.0 smalla and coarse grids our scaling formula tends to overesti-
0.5 100 2.5 3.1 16 | 625 10 mate the growth rate for large initial Alfvén velocitiesycafor
0.5 100 2.5 3.1 32| 625 24 sound speeds much larger than the Alfvén velocity the idaes
0.5 100 2.5 3.1 64 | 625 61 pend more strongly on the sound speed than predicted by our

formula. Because both situations do not apply to our MRI mod-
els, we did not pursue these issues any further. Our scalimg |

and adjust the EXPONENtR, s, Ya and'y(s to determine the scal- loses its validity, if the Alfvén VE|QCity exceed_s the sdwpee_d.
ing of o with the respective parameters. Our preferred set dhus, we excluded two respective models in the derivation of
scaling exponents is

ya = 175,

(A7)

our scaling relation.
Bearing in mind the uncertainties regarding the physical
meaning of a purely numerical resistivity and the precise va
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ues of the scaling we may try to interpret our result summasresh, A. & Huynh, H. 1997, J. Comput. Phys., 136, 83
rized in Eq.[[A.I1). As the product of the Alfvén velocitydan Takiwaki, T., Kotake, K., Nagataki, S., & Sato, K. 2004, AB16, 1086

the grid spacinggadx, defines an fective resistivity, we may Taspsr‘i’#(':’e t""o'n.lsgnﬁ\’/eTrgif;g’r;’sfsroltgt;g? stars (Princeton SerieAstrophysics,
conclude that the growth time of the instability is set bytivee  1,,mn50n, T. A., Quataert, E.. & Burrows, A. 2005, ApJ, 6261 8

scale for resistive dliusion across the width of a current sheetioro, E. F. & Titarev, V. A. 2006, J. Comput. Phys., 216, 403
7, = a2/(cadx), modified by the ratio of the sound speed and therpin, V. A. 1996, MNRAS, 280, 149

Alfvén velocity. This interpretation has the nice progetat it Velikhov, E. 1959, Sov. Phys. JETP, 36, 995

is consistent with the fact that the magnetic Reynolds nurisbe Y2Mada: S- & Sawai, H. 2004, ApJ, 608, 907
proportional to the grid resolution.

Appendix B: List of models
In this appendix we provide a list of the models:

Tab[B.1 : This table contains a list of 2D models having a pos-
itive entropy gradient. Their initial rotation profile isvgin
by Qo = 1900 s! andag = —1.25, and their initial magnetic
field is uniform.

Tab[B.2 : This table contains a list of 2D models having a neg-
ative entropy gradient. The models rotate initially rigidir
differentially. The initial magnetic field is uniform.

Tab[B.3 and Tab.Bl4 : This table contains a list of 3D models
having diferent initial magnetic field strengths, entropy gra-
dients, initial rotation laws, and simulated in computa#b
boxes of various size with both types (with and without ve-
locity damping) of radial boundary conditions.
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Fig. A.2. Dependence of the growth rate of resistive instabilitigson various parameters of 2D current sheet models. The panel
show fca as a function of the initial Alfvén velocitycf; left panel), andf, as a function of the width of the current sheat (
middle panel) and of the grid resolutiofix{ right panel). The left panel shows groups of models witfiedénta: 250 m (pink
plus sign), 125 m (blue diamond), 62.5m (green triangle23fn (orange square), and 15.625m (red cross). The othgranels
show groups of models with fierent Alfvén velocity (in units of 1%m s1): 0.8 (black asterisk), 1.6 (pink plus sign), 3.2 (blue
diamond), 6.4 (green triangle), 12.8 (orange square), arl(2ed cross) respectively.
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Table B.1.List of 2D models having a positive entropy gradient and atmairrotation profile given byQy = 1900s* andaq =
—1.25. The columns give (from left to right) the number of grichesm,, x m;, (the box has an edge lendth = L, = 1km), the type
of boundary condition which was applied (d: velocity dantpip: periodic), the adiabatic index of the g&simodels computed
with an ideal-gas equation of state instead of the hybridemaenarked “id”), the initial entropy;o, and the radial entropy gradient,
0-S. The next three columns give the paramételetermining the instability regime (see Hg.l(24)), the teé&oal growth rategp,
and the strength of the initially uniform magnetic field, The last two columns list the numerical growth rateand the value of
the Maxwell stress componekt/™ at MRI termination.

my,xm, | BC| T S .5 C  on B T M
[km™] [msrl] [1012 G] [mgl] [1028 CS;]
100x 100 d 1.31 0.20 0.020 -1.7 0.73 10 0.72 1.1
100x 100 | d 1.31 0.20 0.020 -1.7 0.73 20 0.71 1.3
100x 100 d 1.31 0.20 0.020 -1.7 0.73 40 0.70 1.6
100x 100 | d 1.31 0.20 0.020 -1.7 0.73 80 0.60 1.8
200x200 | d 1.31 0.20 0.020 -1.7 0.73 10 0.71 1.3
400x 400 d 1.31 0.20 0.020 -1.7 0.73 10 0.67 1.2
400x 400 | d 1.31 0.20 0.020 -1.7 0.73 20 0.69 1.5
50x 50 d 5/3 0.20 0.040 -1.1 0.49 10 0.46 0.97
50x 50 d 5/3 0.20 0.040 -1.1 0.49 20 0.61 1.7
50x 50 d 5/3 0.20 0.040 -1.1 0.49 40 0.48 0.87
50x 50 d 5/3 0.20 0.040 -1.1 0.49 80 0.39 0.93
50x 50 d 1.31,id 0.20 0.040 -0.69 0.32 20 0.50 0.53
50x 50 d 1.31,id 0.20 0.040 -0.69 0.32 40 0.30 0.27
50x 50 d 1.31,id 0.20 0.040 -0.69 0.32 80 0.28 0.22
50x 50 d 1.31 0.20 0.040 -0.69 0.32 4 0.25 0.21
50x 50 d 1.31 0.20 0.040 -0.69 0.32 20 0.49 0.50
50x 50 d 1.31 0.20 0.040 -0.69 0.32 40 0.28 0.24
50x 50 d 1.31 0.20 0.040 -0.69 0.32 80 0.28 0.22
100x 100 d 1.31 0.20 0.040 -0.69 0.32 10 0.49 0.55
100x 100 | d 1.31 0.20 0.040 -0.69 0.32 20 0.30 0.29
100x 100 d 1.31 0.20 0.040 -0.69 0.32 40 0.30 0.29
100x 100 | d 1.31 0.20 0.040 -0.69 0.32 80 0.28 0.22
200x 200 | d 1.31 0.20 0.040 -0.69 0.32 4 0.53 0.40
200x 200 d 1.31 0.20 0.040 -0.69 0.32 10 0.30 0.20
200x 200 | d 1.31 0.20 0.040 -0.69 0.32 20 0.30 0.22
200x 200 d 1.31 0.20 0.040 -0.69 0.32 40 0.30 0.30
200x 200 | d 1.31 0.20 0.040 -0.69 0.32 80 0.26 0.18
100x 100 d 1.31 0.20 0.080 1.1 0 20 < 0.01
200x200 | d 1.31 0.20 0.080 1.1 0 10 | <0.05
100x 100 | p | 5/3 0.20 0.020 -1.8 0.82 20 | 0.79 4.9
100x 100 p 1.31 0.20 0.020 -1.7 0.73 10 0.73 1.9
100x 100 p 1.31 0.20 0.020 -1.7 0.73 20 0.71 33
100x 100 p 1.31 0.20 0.020 -1.7 0.73 40 0.72 202
100x 100 p 1.31 0.20 0.020 -1.7 0.73 80 0.62 411
50x 50 p 1.31 0.20 0.040 -0.69 0.32 20 0.51 1.7
50x 50 p 1.31 0.20 0.040 -0.69 0.32 40 0.31 90
50x 50 p 1.31 0.20 0.040 -0.69 0.32 80 0.32 159
100x 100 p 1.31 0.20 0.040 -0.69 0.32 10 0.53 0.64
100x 100 p 1.31 0.20 0.040 -0.69 0.32 20 0.30 6.8
100x 100 p 1.31 0.20 0.040 -0.69 0.32 40 0.30 98
100x 100 p 1.31 0.20 0.040 -0.69 0.32 80 0.31 201
50x 50 p 5/3 0.20 0.040 -1.1 0.49 10 0.45 0.55
50x 50 p 5/3 0.20 0.040 -1.1 0.49 20 0.59 3.1
50x 50 p 5/3 0.20 0.040 -1.1 0.49 40 0.47 201
50x 50 p 5/3 0.20 0.040 -1.1 0.49 80 0.38 139
100x 100 p 5/3 0.20 0.040 -1.1 0.49 4 0.40 0.43
100x 100 p 5/3 0.20 0.040 -1.1 0.49 10 0.63 0.83
100x 100 p 5/3 0.20 0.040 -1.1 0.49 20 0.49 5.0
100x 100 p 5/3 0.20 0.040 -1.1 0.49 40 0.47 262
100x 100 p 5/3 0.20 0.040 -1.1 0.49 80 0.45 978
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Table B.2.List of 2D models having a negative initial entropy gradiéltie columns give (from left to right) the number of grid
zonesm, x m, (the box has an edge length, = L, = 1km), the type of boundary condition which was applied (dowity
damping; p: periodic), the rotation law (“d”: fiérential rotation withy = 1900 s* andaq = —1.25; “r*” rigid rotation with an
angular velocity of2), the adiabatic index of the gds, the initial entropySy, the radial entropy gradierd,,S, and the strength of
the initially uniform magnetic fieldp]. The next columns give the three quantiﬂe,s/Qg, NZ/Q(Z) andC determining the instability
regime (see Eq.(24)), followed by the theoretical growtie rey,, and the type of the instability. The last two columns lis th
numerical growth rater, and the value of the Maxwell stress comporimfg;m at MRI termination.

m,xm, | BC| Rot T So 05S g R./Q5 N?/Q5  C Oth regime o Mf;’“
km?]  [1020] [ms] [ms1]  [107 2]
100x 100 | d d 1.31 0.20 -0.019 0 -2.5 -0.90 -3.4 1.6 mix 0 0
100x 100 d d 1.31 0.20 -0.019 10 -2.5 -0.90 -3.4 1.6 mix 1.2 2.6
100x 100 | d d 1.31 0.20 -0.019 20 -2.5 -0.90 -3.4 1.6 mix 1.3 3.4
100x 100 d d 1.31 0.20 -0.019 40 -2.5 -0.90 -3.4 1.6 mix 1.4 5.7
100x 100 | d d 1.31 0.20 -0.019 80 -2.5 -0.90 -3.4 1.6 mix 1.3 6.0
50x 50 d d 1.31 0.20 -0.038 20 -2.5 -1.8 -4.3 2.0 mix 1.6 4.2
100x 100 d d 1.31 0.20 -0.038 0 -2.5 -1.8 -4.3 2.0 mix 0 0
100x 100 | d d 1.31 0.20 -0.038 10 -2.5 -1.8 -4.3 2.0 mix 1.5 3.3
100x 100 d d 1.31 0.20 -0.038 20 -2.5 -1.8 -4.3 2.0 mix 1.7 5.3
100x 100 | d d 1.31 0.20 -0.038 40 -2.5 -1.8 -4.3 2.0 mix 1.7 7.8
100x 100 d d 1.31 0.20 -0.038 80 -2.5 -1.8 -4.3 2.0 mix 1.7 9.5
100x 100 | d d 1.31 0.20 -0.075 0 -2.5 -3.6 -6.1 2.8 mix 0 0
100x 100 d d 1.31 0.20 -0.075 10 -2.5 -3.6 -6.1 2.8 mix 2.4 1.3
100x 100 | d d 1.31 0.20 -0.075 20 -2.5 -3.6 -6.1 2.8 mix 2.6 4.8
100x 100 d d 1.31 0.20 -0.075 40 -2.5 -3.6 -6.1 2.8 mix 2.5 9.7
100x 100 d d 1.31 0.20 -0.15 0 -2.5 -7.2 -9.7 4.4 conv 3.0 0
100x 100 | d d 1.31 0.20 -0.15 20 -2.5 -7.2 -9.7 4.4 conv 4.0 1.2
100x 100 d d 1.31 0.20 -0.15 40 -2.5 -7.2 -9.7 4.4 conv 3.8 3.7
100x100] p | d 53 020 -0019 20 | 25 070 32 15 mix | 1.3 6.0
100x 100 p d 53 0.20 -0.019 40 -2.5 -0.70 -3.2 1.5 mix 1.4 50
50x50 | p | d 131 020 -0038 20 | 25  -18 -43 20 mix | 1.6 2
50x 50 p d 1.31 0.20 -0.038 40 -2.5 -1.8 -4.3 2.0 mix 1.7 19.5
100x 100 p d 1.31 0.20 -0.038 20 -2.5 -1.8 -4.3 2.0 mix 1.7 27
100x100 | p d 1.31 0.20 -0.038 40 -2.5 -1.8 -4.3 2.0 mix 1.7 22
100x 100 | d (1000 131 0.20 -0.075 0 0 -14 -14 3.4 conv 2.7
100x 100 | d r1500 131 0.20 -0.075 0 0 -5.7 -5.7 2.1 conv 1.6
100x 100 d r1%0 131 0.20 -0.075 0 0 -3.2 -3.2 1.5 MBI 0
100x 100 d (00131 0.20 -0.075 1§ 0 -5.7 -5.7 2.1 conv 1.5 14x 1018
100x 100 | d r1500 131 0.20 -0.075 1 0 -5.7 -5.7 2.1 conv 1.5 0.013
100x 100 d r1500 131 0.20 -0.075 10 0 -5.7 -5.7 2.1 conv 1.8 1.7
100x 100 d (P00 131 0.40 -0.10 4 0 -3.6 -3.6 1.7 MBI 1.1 0.22
100x 100 | d r1%0 131 0.40 -0.10 8 0 -3.6 -3.6 1.7 MBI 1.2 1.6
100x 100 | d r1%0 131 0.40 -0.10 10 0 -3.6 -3.6 1.7 MBI 1.1 1.6
100x 100 d r19%0 131 0.40 -0.10 20 0 -3.6 -3.6 1.7 MBI 1.4 5.2
100x 100 d r1%0 131 0.40 -0.10 40 0 -3.6 -3.6 1.7 MBI
200x 200 d (P00 131 0.40 -0.10 0 0 -3.6 -3.6 1.7 MBI 0 0
200x 200 d r1%0 131 0.40 -0.10 0.01 0 -3.6 -3.6 1.7 MBI | < 0.006
200x 200 | d r1%0 131 0.40 -0.10 4 0 -3.6 -3.6 1.7 MBI 1.0 0.99
200x 200 d r19%0 131 0.40 -0.10 8 0 -3.6 -3.6 1.7 MBI 1.4 1.4
200x 200 d r1%0 131 0.40 -0.10 10 0 -3.6 -3.6 1.7 MBI 1.4 2.1
200x 200 | d r1%0 131 0.40 -0.10 20 0 -3.6 -3.6 1.7 MBI 1.5 5.6
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Table B.3.List of 3D models. The first column (from left to right) giveset geometry of the initial field (“U”: uniform; “V” zero-
flux). The next two columns show the box size,(x L, x L;) and the number of grid zonesig x m, X m,). The next four columns
list the rotation law (“d”: diferential rotation witig = 1900 s andaq = —1.25; “r*” rigid rotation with an angular velocity of
Q), the entropy gradiend,, (So = 0.2), the strength of the initial magnetic fielof, and the type of boundary condition which was
applied (d: velocity damping; p: periodic). The remainiogif columns give the growth rate of the MRt, and the Maxwell stress

componenM;e;m at MRI termination, its maximum value, and its time averagade, respectively.

field grid size resolution | Rot  9,S 53 BC| o  ME™ MM (Mg,)
[kmd] [km™] [10?G] [ms?] [107 G2 cm?]
U3 0.5%x0.25x 0.5 26x 12x 26 d 0 40 d 0.98 0.47 298 47
0.5x0.5x%x0.5 26x 26 x 26 d 0 40 d 0.96 0.45 211 36
0.5x1x0.5 26x 50x 26 d 0 40 d 0.96 0.45 16 29
05x2x0.5 26x 100x 26 d 0 40 d 0.92 0.44 5.0 15
1x05x1 50x 26 x 50 d 0 20 d 1.05 3.1 924 69
1x05x1 50x 26 x 50 d 0 40 d 1.10 3.7 553 68
Ix1x1 50x 50 x 50 d 0 10 d 0.76 1.5 2.7 11
Ix1x1 50x 50 x 50 d 0 20 d 1.03 3.1 347 44
Ix1x1 50x 50 x 50 d 0 40 d 1.09 3.1 482 63
Ix2x1 50x 50 x 50 d 0 10 d 0.75 1.3 1.3 0.47
1x2x1 50x 50 x 50 d 0 20 d 1.03 3.0 6.5 2.9
I1x2x1 50x 50 x 50 d 0 40 d 1.09 29 22 5.8
1x2x1 50x 100x 50 d 0 20 d 1.02 3.1 9.5 3.4
I1x2x1 50x 100x 50 d 0 40 d 1.09 2.8 60 9.2
Ix4x1 50x 200x 50 d 0 20 d 1.03 29 4.4 2.3
1x4x1 50x 200x 50 d 0 40 d 1.08 3.0 10.5 3.4
I1x4x1 50x 200x 50 d 0 80 d 1.01 2.7 45 9.0
Ix4x1 100x 400x 100 | d 0 20 d 1.05 35 6.5 25
I1x4x1 100x 400%x 100 | d 0 40 d 1.09 3.5 28 8.2
05x0.25x 1 26x 12x 50 d 0 40 d 1.04 0.44 325 64
05x05x1 26x 26 x 50 d 0 40 d 1.03 0.52 227 40
05x1x1 26x50x% 50 d 0 40 d 1.00 0.42 298 33
05x2x1 26x 100x 50 d 0 40 d 0.96 0.50 289 38
1x0.25x 0.5 50x 12x 26 d 0 40 d 1.08 2.9 310 59
1x0.38x05 50x 18 x 26 d 0 40 d 1.08 3.0 234 45
1x05x05 50x 26 x 26 d 0 40 d 1.07 2.9 16 6.2
1x1x0.5 50x 50 x 26 d 0 40 d 1.07 3.1 9.0 2.3
1x2x05 50x 100x 26 d 0 40 d 1.06 3.0 3.4 1.8
0.5%x0.25x 0.5 26x 12x 26 d 0 20 p 1.07 97 2940 145
0.5x0.5x%x0.5 26x 26 x 26 d 0 20 p 0.99 64 4196 335
0.5x1x0.5 26x 50x 26 d 0 20 p 1.06 60 535 19
05x2x0.5 26x 100x 26 d 0 20 p 1.08 66 66 8.7
1x025x1 50x 12x 50 d 0 20 p 1.02 13 1316 110
1x05x1 50x 26 x 50 d 0 20 p 1.02 8.8 1424 60
Ix1x1 50x 50x 50 d 0 20 p 0.98 42 2570 128
1x2x1 50x 100x 50 d 0 20 p 1.04 16.5 736 79
1x4x1 50x 200x 50 d 0 20 p 1.05 22.5 59 6.5
I1x4x1 50x 200x 50 d 0 40 p 1.09 40.4 361 18
1x4x1 50x 200x 50 d 0 80 p 1.09 254 254 55
Ix4x1 100x 400x 100 | d 0 20 p 1.08 149 276 6.4
I1x4x1 100x 400%x 100 | d 0 40 p 1.11 88 88 11
05x0.25x 1 26x 12x 50 d 0 20 p 1.04 64 2182 146
05x0.25x%x1 26x 26 x 50 d 0 20 p 1.03 31 1540 170
05x1x1 26x50x% 50 d 0 20 p 1.01 8.9 1735 102
05x2x1 26x 100x 50 d 0 20 p 1.05 30 825 72
05x4x1 26x 200x 50 d 0 20 p 1.04 27 103 15
1x0.25x05 50x 12x 26 d 0 20 p 1.07 32 1654 171
1x05x0.5 50x 26 x 26 d 0 20 p 1.06 8.5 2902 170
1x1x05 50x 50 x 26 d 0 20 p 1.05 14 682 13
1x2x0.5 50x 100x 26 d 0 20 p 1.06 14 14 4.0
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Table B.4. Continuation of Taly. BI3. For the MBI model witi§ = 10G, we do not provide values for the Maxwell stress, because
the magnetic field behaves similar to a purely passive field.

field | grid size resolution | Rot  d,S 3 BC| o MM MTRC (M, )
[kmq] [km™] [102G] [ms?] [1078 G2 cm?]

V3 Ix1x1 50x 50x 50 d 0 10 d 0.66 0.13 0.24 0.16
Ix1x1 50x 50 % 50 d 0 20 d 0.96 0.53 0.53 0.21
Ix1x1 50x 50x 50 d 0 40 d 1.03 15 15 0.27
1x4x1 50x 200x 50 d 0 10 d 0.66 0.13 0.52 0.24
1x4x1 50x 200x 50 d 0 20 d 0.90 0.36 0.80 0.43
1x4x1 100x400x 100 d 0 20 d 1.08 11 11 0.20
1x4x1 100x400x 100 d 0 20 p 1.08 15 15 0.21

U3 1x2x1 26x50x% 26 d -0.038 20 d 15 1.9 5.3 0.83
Ix2x1 26x 50x 26 d -0.038 40 d 1.7 4.1 7.2 1.1
1x2x1 50x 100x 50 d -0.038 20 d 1.7 3.1 3.1 0.16
I1x2x1 50x 100x 50 d -0.038 40 d 1.9 4.4 4.4 0.23
1x2x1 50x 100x 50 [ r®0 _0.10 1018 d 2.6
1x2x1 50x100x50 | r® -010 001 d| 26 23x10° 011 0.040
1x2x1  50x100x50 | r'® 010 20  d| 26 0060 087  0.30

V3 [ 1x2x1 50x100x50 | d 0038 20 d| 16 054 054 0011
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