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ABSTRACT

We present a set of global, self-consistent N -body/SPH simulations of the dynamic evo-
lution of galactic discs with gas and including magnetic fields. We have implemented a
description to follow the evolution of magnetic fields with the ideal induction equation
in the SPH part of the Vine code. Results from a direct implementation of the field
equations are compared to a representation by Euler potentials, which pose a ∇·B-free
description, an constraint not fulfilled for the direct implementation. All simulations
are compared to an implementation of magnetic fields in the Gadget code which
includes also cleaning methods for ∇ · B.

Starting with a homogeneous seed field we find that by differential rotation and
spiral structure formation of the disc the field is amplified by one order of magnitude
within five rotation periods of the disc. The amplification is stronger for higher numer-
ical resolution. Moreover, we find a tight connection of the magnetic field structure
to the density pattern of the galaxy in our simulations, with the magnetic field lines
being aligned with the developing spiral pattern of the gas. Our simulations clearly
show the importance of non-axisymmetry for the evolution of the magnetic field.

Key words: methods: N -body simulations – galaxies: spiral – galaxies: evolution –
galaxies: magnetic fields – galaxies: kinematics and dynamics

1 INTRODUCTION

Radio observations have revealed that disc galaxies are per-
meated by large scale magnetic fields ordered on kpc scales
and beyond (Beck & Hoernes 1996, Hummel & Beck 1995,
Beck et al. 1985). The typical field strength, determined
from polarization, Faraday rotation and energy equiparti-
tion is of the order of 10 µG (e.g. Beck 2004). The spa-
tial structure of the B-field reflects the spiral and/or barred
structure of the gas distribution within the galactic discs
(Beck 2008). For example, Fig. 1 shows optical observations
of the spiral galaxy M51 overlayed with contours of total
synchrotron intensity (tracing the total magnetic field) and
magnetic field vectors. It reveals the tight connection of mag-
netic field with the gas distribution in the galactic disc.

The motion of the gas within the gravitational potential
of a galaxy strongly influences the strength and direction
of the magnetic field in the interstellar medium. This can
be seen by inspecting the well known induction equation of
magnetohydrodynamics (MHD), i.e. the temporal evolution

⋆ E-mail: kotarba@usm.lmu.de

equation for the magnetic field,

∂B

∂t
= ∇× (v× B) − (∇× η(∇× B)), (1)

where v denotes the gas velocity and η represents the mag-
netic diffusivity which is inversely proportional to the elec-
trical conductivity.

Apparently, within the frame of MHD, the role of the
galaxy as a whole is simply to provide for the gas velocity
field. Since the conductivity of the interstellar medium is
very high, the magnetic field is closely coupled to the gas
motion. It is this ‘frozen-in’-property of both, the magnetic
field and the gas, which determines the spatial structure of
the magnetic field. In other words, a detailed investigation
of the velocity field of the interstellar gas in disc galaxies is
necessary for a deeper physical understanding of the evolu-
tion of galactic magnetic fields.

The gas in the disc rotates differentially within the
global gravitational potential. Angular momentum trans-
port via spiral arms, bars and gravitational interaction forces
the gas to move towards the central regions, and eventually,
star formation activity in the disc (superbubbles, winds etc.)
drives gas perpendicular to the plane of the disc towards the
galactic halo. In general, the axisymmetric rotation velocity

http://arxiv.org/abs/0905.0351v1
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Figure 1. Optical image of M51 (Hubble) overlayed with con-
tours of total synchrotron intensity as measure for the total
magnetic field (combined observations at Effelsberg and VLA
at 6 cm) and vectors of magnetic field. From A. Fletcher & R.
Beck (MPIfR) and Hubble Heritage Team (STScI), published by
’Sterne und Weltraum‘, September 2006.

is the dominant component, followed by non-axisymmetric
and radial components. The velocity components perpen-
dicular to the disc are typically the smallest. Altogether,
v in Eq. 1 represents a complex three-dimensional non-
axisymmetric velocity field strongly coupled to the global
properties of the galaxy, including the dark matter halo,
stellar component and internal disc activity.

Beside the large scale components of the gas veloc-
ity field there are also small scale velocity fluctuations of
interstellar gas driven by all kinds of local disc activity,
i.e. stellar winds, supernova explosions, cloud-cloud colli-
sions, galactic winds, etc (see e.g. Ferriere 1992, Efstathiou
2000, Johansson & Efstathiou 2006, Kulsrud & Zweibel
2008, Gressel et al. 2008). These unordered velocity com-
ponents generate two effects which are known as helicity
(in terms of a convective turbulent motion perpendicular
to the disc) and turbulent diffusion (magnetic field lines
with antiparallel direction reconnect and annihilate par-
tially). Helicity supports the amplification of the magnetic
field, whereas turbulent diffusion reduces the field strength
(see, e.g. Brandenburg & Subramanian 2005 for a review
of nonlinear dynamo theory). Therefore, an incorporation
of these small scale velocity components into the analy-
sis requires some manipulation of the induction equation
(Eq. 1) in terms of a mean-field theory (Steenbeck & Krause

1969, Wielebinski & Krause 1993, Sur et al. 2007). Within
the frame of the mean-field description the velocity and mag-
netic fields are considered as superpositions of the mean
and fluctuating parts (v = 〈v〉 + v′ and B = 〈B〉 + B′).
The fluctuating velocity components are coupled to small-
scale fluctuations of the magnetic field. The coupling terms
are then given by ∇ × α〈B〉, where α = 1

3
τ 〈v′ · (∇ × v′)〉

(Zeldovich et al. 1983), and by ηT ∆〈B〉, where ηT now de-
scribes the turbulent diffusion coefficient ηT ∝ vturb · lturb,
where vturb and lturb are the typical velocity and length scale
of the turbulent motion, respectively.

This leads to the dynamo equation

∂B

∂t
= ∇× (v× B) + ∇× αB, (2)

where we have neglected the diffusivity and dropped the
mean-brackets for convenience (here, and in the following,
B and v refer to their mean values).

Eq. 2 is the central equation of cosmic mean field dy-
namos. It describes the circle of amplification of the dif-
ferent components. The classical dynamo model describes
the amplification of the magnetic field through the follow-
ing chain of α (convective turbulence) and Ω (differential
rotation) actions: The radial component Br is amplified
through α-action from turbulence; then Bϕ is generated
from Br through Ω-action from the shear of the galactic
differential rotation. Such an αΩ mean field dynamo am-
plifies the magnetic field by repeating the chain of α and
Ω actions (see Widrow 2002 and Stefani et al. 2008 for a
review of dynamo theory). However, the origin of the α-
effect is still under discussion (Cattaneo & Vainshtein 1991,
Vainshtein & Cattaneo 1992, Kulsrud & Anderson 1992).

We emphasize that the described classical dynamo mod-
els use only one velocity component, the differential rotation.
To be more precise the role of any deviation from axisym-
metry is considered to be unimportant for the evolution of
the large-scale magnetic field, which is not necessarily true
in real galaxies.

On this account, there have been three-dimensional
numerical simulations using an analytical turbulent veloc-
ity field, where deviations from axisymmetry were incorpo-
rated in the gas- and turbulence-profiles (Rohde et al. 1997,
Rohde & Elstner 1998). These studies showed, that even ac-
counting for the α-effect calculated out of the analytical ve-
locity field an initial magnetic field cannot survive for more
than 500 Myr.

Moreover, Elstner et al. 2000 performed N -body sim-
ulations of two component (collisionless stars and gaseous
clouds moving in the gravitational potential of the stellar
population), self-gravitating discs embedded in an analytical
bulge- and halo-potential. These simulated clouds provided
an already very good approximation of the gas velocity field.
However, full hydrodynamics was not incorporated. The ob-
tained velocity field was used in an αΩ-dynamo description.
Without including the α-effect, the non-azimuthal 3D gas
flow alone did not provide an amplification of the magnetic
field. The field got amplified by several orders of magnitude
within 0.7 Myr only when the α-effect was included. In ad-
dition, they found an alignment of the magnetic field with
the developed spiral pattern of the disc.

Recently, Dobbs & Price (2008) performed three di-
mensional, full MHD, single and two-component (cold and
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hot gas) simulations using smooth particle hydrodynamic
(SPH) methods to treat MHD. They applied a spiral po-
tential to the gas, thus, the self-induced formation of spi-
ral structure was not included. Their work concentrated on
structure formation in the disc, like molecular clouds and
inter-arm spurs. They found that the main effect of adding
a magnetic field to these calculations was to inhibit the for-
mation of structure in the disc. They did not consider global
enhancement and structure formation of the magnetic field,
but nevertheless, they found that the global magnetic field
was following the large scale velocity field.

It is the aim of this paper to present further steps to-
wards a more complete dynamo model. We perform for the
first time a set of self-consistent N -body calculations of a
spiral galaxy including hydrodynamics as well as the induc-
tion equation via the SPH method to obtain the complex
three dimensional velocity field. Compared to all previous
work, we use no analytical potential for any component of
the galaxy. All components (disc, gas, bulge and halo) are
represented by particles which are treated as self-gravitating
N -body-particles, while hydrodynamics is applied to the gas
component only. We use more than one order of magni-
tude more particles than Elstner et al. (2000). We follow
the evolution of the magnetic field according to the induc-
tion equation (eq. 1). Thus, we have implemented the SPH
variant of the induction equation as well as the representa-
tion of the magnetic fields by Euler potentials in the SPH
code Vine and compare the results with simulations per-
formed using the SPH code Gadget. N -body/SPH methods
are well adapted for simulating whole galactic discs as the
simulated discs stay stable for at least 15 dynamical times
(where we define the dynamical time for a disc galaxy as its
half mass rotation period). As we will show in section 4, our
discs are forming spiral structure without applying a spiral
potential or any other mechanism to provide extraordinary
flows.

In summary, we investigate here the kinematic reac-
tion of a large-scale magnetic field on the complete three-
dimensional, large-scale velocity field of a disc galaxy ob-
tained from the N -body SPH simulations, using two differ-
ent numerical codes.

The paper is organized as follows: Section 2 gives shortly
the theory of magnetic field evolution in differentially ro-
tating systems. A summary of the SPH method and the
treatment of magnetic fields including the method based on
Euler potentials is given in section 3. The simulations to-
gether with a comparison of the performance of the Vine

and Gadget codes are presented in section 4. The results
are discussed in section 5, where we also analyse the terms
of the induction equation in detail. Finally, we summarise
and conclude in section 6.

2 THEORETICAL EXPECTATIONS

When only studying the effect of the gas velocity on the evo-
lution of the magnetic field, we can neglect the diffusive term
in eq. 1. Keeping this term, one would physically except the
magnetic field to dissipate depending on the value of η and
reconnect when converse magnetic field lines come together.
Technically, η is not always assumed to be spatially depen-
dent, so that the diffusive term reads −η∇2B. However, this

formulation leads only to an effective smoothing, and not a
real diffusion of the magnetic field. Neglecting the diffusive
term thus corresponds to considering an upper limit of field
amplification. Additionally, η is assumed to be small except
within strong shocks.

The induction equation 1 then yields

∂B

∂t
= (B · ∇)v + v (∇ · B)

| {z }

=0

−B(∇ · v) − (v · ∇)B, (3)

and applying cylindrical coordinates eq. 3 reads:

∂Br

∂t
= −Br

vr

r
− 1

r
Br

∂vϕ

∂ϕ
− Br

∂vz

∂z
+

1

r
Bϕ

∂vr

∂ϕ

+Bz
∂vr

∂z
− vr

∂Br

∂r
− vϕ

r

∂Br

∂ϕ
− vz

∂Br

∂z
, (4)

∂Bϕ

∂t
= −Bϕ

∂vr

∂r
− Bϕ

∂vz

∂z
+ Br

∂vϕ

∂r
+ Bz

∂vϕ

∂z

−vr
∂Bϕ

∂r
− vϕ

r

∂Bϕ

∂ϕ
− vz

∂Bϕ

∂z
− vϕBr

r
, (5)

∂Bz

∂t
= −Bz

vr

r
− Bz

∂vr

∂r
− 1

r
Bz

∂vϕ

∂ϕ
+ Br

∂vz

∂r

+
1

r
Bϕ

∂vz

∂ϕ
− vr

∂Bz

∂r
− vϕ

r

∂Bz

∂ϕ
− vz

∂Bz

∂z
. (6)

These equations can be simplified to get a first idea of how
magnetic fields will evolve in a galactic disc. For a differen-
tially rotating disc (∂vϕ/∂r ≈ 0) with a perfectly axisym-
metric velocity field, v does not depend on ϕ. The same
holds for an axisymmetric magnetic field. If we also assume
that changes of all quantities in the z direction are small
compared with those in the radial direction and Bz ≃ 0, the
equations for the regular field, i.e. the field in the plane of
the disc, read:

∂Br

∂t
= −Br

vr

r
, (7)

∂Bϕ

∂t
= −Bϕ

∂vr

∂r
− vϕBr

r
= −Bϕ

∂vr

∂r
+ Brr

∂Ω

∂r
, (8)

where Ω is the angular velocity.
In the absence of radial flows, the last term of eq. 8

describes the generation of a toroidal magnetic field from
the radial component of the already present magnetic field
by differential rotation. This effect is the so called Ω-effect
already mentioned above. Since vϕ ≫ (vr, vz) this term is
dominant and one would expect any initial magnetic field
to be first wound up by differential rotation. However, this
effect alone cannot be responsible for a significant amplifi-
cation of the magnetic field, as the amplification stops when
all of the radial field is wound up. However, if a gas flow in
the negative radial direction (i.e. towards the centre of the
disc) is present the radial field can be amplified and then be
converted into a toroidal field. These radial gas flows occur
when angular momentum is transported in the gas out of
the disc, e.g. by spiral arms or bars. The toroidal magnetic
field can be amplified further if the radial gas flow velocity
decreases with increasing galactocentric radius.

Therefore, a good understanding of the evolution of
magnetic fields in galactic discs requires full information of
the three-dimensional velocity field of the gas which is natu-
rally provided by self-consistent numerical simulations. We
will discuss the velocity field in our simulations and the re-
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sulting values of the different terms of the induction equation
in section 5.

3 NUMERICAL METHODS

3.1 Vine

The equations presented below are implemented within the
OpenMP parallel N -body/SPH evolution code Vine. For
all details we refer the reader to Wetzstein et al. (2008) and
Nelson et al. (2008).

3.1.1 SPH basics

Within the SPH formulation a hydrodynamic quantity A is
interpolated by a kernel function W (r−r′, h) with

R

Wdr =
1 and limh→0 W = δ(r− r′), where the so called smoothing
length h defines the spatial extent of the function W . This
interpolation is then discretised, so that

Ai =
X

j

mj
Aj

ρj

W (ri − rj , h), (9)

where i (j) is the index of the particle at position ri (rj)
and Ai (Aj) the value of the quantity A at the position of
particle i (j). ρj and mj denote the density and mass at
position of particle j, respectively.

The Vine code uses the common W4 kernel defined by
Monaghan & Lattanzio (1985) as

Wij = W (rij , h) =
σ

h̄ν
ij

8

<

:

1 − 3
2
̺2 + 3

4
̺3 0 6 ̺ < 1

1
4
(2 − ̺)3 1 6 ̺ < 2

0 else
, (10)

where values with index ij denote differences (e.g. rij =
ri − rj) and arithmetic means (e.g. h̄ij = 0.5 · (hi + hj)),
respectively, ̺ = |r − r′|/h, ν is the number of spatial di-
mensions of the system and σ is a constant of order unity.
See Monaghan (1992), Monaghan (2001) or Price (2005) for
more details.

3.1.2 Continuity equation

As long as the kernel itself is differentiable, every function
A can be interpolated to a differentiable function by the
procedure described above. The most common formulation
of derivatives in SPH is (see e.g. Monaghan 1992, Price 2005)

(∇A)i =
1

ρi

X

j

mj(Aj − Ai)∇iWij . (11)

Using the continuity equation, the total time derivative of
the density thus reads

dρi

dt
= −ρi(∇ · v)i =

X

j

mj(vi − vj) · ∇iWij . (12)

3.1.3 Momentum and Energy equation

A natural ansatz to derive a conservative form of the mo-
mentum equation comprising the force due to pressure gra-
dients (in addition to the force due to the gravitational po-
tential) is to use the Lagrange formalism together with the

first law of thermodynamics. This leads to the following SPH
variant of its ideal form ( dv

dt
= −∇P

ρ
):

dvi

dt
= −∇Pi

ρi
= −

X

j

mj

„

Pi

ρ2
i

+
Pj

ρ2
j

«

∇iWij . (13)

In this formulation momentum is conserved exactly, since
the contribution of particle j to the momentum of particle i
is equal and negative to the contribution of particle i to the
momentum of particle j.

The change in the thermodynamical state of the gas
requires an evolution equation for a state variable corre-
sponding to the internal energy or entropy of the gas. Vine

employs an equation for the specific internal energy (u) of
the gas. Without external heating or cooling terms, only
compressional heating and cooling are important and the
SPH variant of the ideal form ( du

dt
= −P

ρ
∇ · v) reads:

dui

dt
=

Pi

ρ2
i

X

j

mjvij · ∇iWij . (14)

To close the set of equations, an isothermal equation of state
is used throughout this paper.

3.1.4 Artificial viscosity

Artificial viscosity is required to model shocks and angular
momentum transport properly, where the latter is important
to be able to simulate spiral arm formation. The Vine code
uses the most common form of the artificial viscosity. It is
described by the tensor Πij as in Monaghan (1992).

Since the value of Πij depends on the difference in ve-
locity between the considered particles (i.e. the velocity gra-
dient) the viscosity increases with increasing velocity gradi-
ent. Moreover, the viscosity is only applied if particles are
approaching each other.

Balsara (1995) suggested a viscosity limiter to avoid
spurious angular momentum and vorticity transport in gas
disks. However, a lower viscosity leads to a higher velocity
dispersion of the gas and therefore to higher divergence of
the velocity and magnetic field. As will be shown and dis-
cussed in section 5, this higher divergence causes a more
violent magnetic field amplification.

The viscous terms within the momentum and energy
equations read:

„

dvi

dt

«

diss

= −
X

j

mjΠij∇iWij (15)

„

dui

dt

«

diss

=
1

2

X

j

mjΠijvij · ∇iWij (16)

This treatment of viscous forces allows for a sensible
description of the behaviour of gas in a spiral galaxy. How-
ever, eqs. 14 and 16 are not applied when using isothermal
equation of state.
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3.1.5 Induction equation

In order to follow the evolution of the magnetic field we have
additionally implemented equation 3 discretised as

dBµ
i

dt
=

1

ρi

X

j

mj [B
µ
i (vij · ∇iWij)

| {z }

=̂−B(∇·v)

−vµ
ij(Bi · ∇iWij)

| {z }

=̂(B·∇)v

]

=
1

ρi

X

j

mj(B
µ
i vij − vµ

ijBi)∇iWij . (17)

with µ, ν denoting the spatial directions.

3.1.6 Euler potentials

A well known problem related to magnetic fields within SPH
is the maintenance of ∇ · B = 0 throughout the simulation.
Different attempts to solve this problem have been made
(see Price & Monaghan 2005), examples include source term
approaches (Powell et al. 1999) and projection methods.

Theoretically, the problem can be avoided if the mag-
netic field is represented by Euler potentials (Stern 1970,
Price & Bate 2007, Rosswog & Price 2007), an approach we
have also implemented into the Vine code.

The magnetic field is expressed as a function of two
scalar potentials αE and βE as:

B = ∇αE ×∇βE . (18)

Taking the divergence of B we get:

∇ · B = ∇ · (∇αE ×∇βE)

= ∇βE (∇×∇αE)
| {z }

=0

−∇αE (∇×∇βE)
| {z }

=0

= 0. (19)

Thus, the divergence constraint is fulfilled by construction.
Moreover, for the ideal case (η = 0) the Euler potentials

for each particle (i.e. the convective values of the potentials)
are direct tracers of the magnetic field and stay constant
with time,

dαE

dt
= 0, (20)

dβE

dt
= 0, (21)

thus one does not need to perform an additional integration
when following magnetic fields, leading to a higher accuracy
of the calculation. The variation of magnetic field is only
due to the motion of the particles, which corresponds to
the advection of magnetic field lines by Lagrangian particles
(frozen flow) (Stern 1970).

Moreover, the formulation by Euler potentials guaran-
tees conservation of magnetic helicity,

H =

Z

V

A · Bd3
x, (22)

which is again reasonable for ideal treatment. Actually, the
magnetic helicity is zero, since for A = αE∇βE and equiv-
alently A = −βE∇αE , respectively, B = ∇αE × ∇βE =
∇× A and therefore A · B = 0.

The gradients of αE and βE can be expressed as

χµν
i (∇αE)µ

i = −
X

j

mj(αE,i − αE,j)(∇iWij(hi))
ν , (23)

χµν
i (∇βE)µ

i = −
X

j

mj(βE,i − βE,j)(∇iWij(hi))
ν , (24)

where

χµν
i =

X

j

mj(rj − ri)
µ(∇iWij(hi))

ν , (25)

which is exact for linear functions (Price & Bate 2007), i.e.
for initial conditions with an uniform field. However, the
difference in using this exact-linear interpolation compared
to the usual gradient operator is marginal (D. Price, private
communication).

Unfortunately, not all magnetic field configurations can
be expressed in terms of Euler potentials easily as they enter
eq. 18 in a nonlinear way, and they are not unique for certain
field configurations (Stern 1970, Yahalom & Lynden-Bell
2006). The former problem restricts only the choice of the
initial magnetic field, whereas the latter can be crucial. If
there are field configurations which can be expressed by dif-
ferent sets of Euler potentials, then this implies, that some
other field configurations cannot be expressed at all using
Euler potentials. However, since the fields considered in this
work are topologically ‘simple’, we do not expect to en-
counter these problems.

Furthermore, Euler potentials do not allow to follow the
winding of magnetic fields beyond a certain point. This con-
straint is due to the fact that using the Euler potentials, the
magnetic field is essentially mapped on the initial particle
arrangement. If the initial arrangement evolves too much
during the simulation, particles carrying conflicting values
of Euler potentials (i.e. values, which do no longer allow
for a finite and unambiguous calculation of their gradients)
can come close. Then, the ability of the Euler potentials to
represent the magnetic field correctly is lost. This conflict
is expected to occur when the magnetic field is wound up
more than once, which poses a problem especially towards
the central region of a simulated galaxy.

3.1.7 Timestepping

In Vine, there are basically three different time step criteria,
based on changes in the acceleration of a particle,

∆tn+1
a = τacc

r

ǫ

|a| , (26)

its velocity,

∆tn+1
v = τacc

ǫ

|v| , (27)

or both in combination,

∆tn+1
va = τacc

|v|
|a| , (28)

where ǫ, a and v are the gravitational softening length, the
acceleration and velocity of a particle in the previous time
step (n), respectively, and τacc is an accuracy parameter.
Two additional time step criteria are applied in SPH simu-
lations: First, the Courant-Friedrichs-Lewy criterion as sug-
gested by Monaghan (1989),

∆tn+1
CFL = τCFL

hi

cs + 1.2(αics + βihimaxjµij)
, (29)

where αi and βi are artificial viscosity parameters, cs is the
sound speed, hi the SPH softening length for gas particle i,
and µij corresponds to the velocity divergence between par-
ticles i and j with the maximum taken over all neighboring
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particles j of particle i (see Wetzstein et al. 2008 for more
details). Secondly, there is a limit on how much the SPH
softening lengths are allowed to change during one timestep:

∆tn+1
h = τh

hi

ḣi

, (30)

where τh is again an accuracy parameter. Usually, we apply
τacc = 1, τCFL = 0.5 and τh = 0.15. The timestep actually
employed in the simulation is the minimum of the timesteps
in eqs. 26-30.

3.2 Gadget

A somewhat different treatment of hydrodynamics and
magnetic fields is realised within the MPI parallel N -
body/SPH code Gadget (Springel et al. 2001, Springel
2005, Dolag & Stasyszyn 2008). There are two significant
differences in the implementation relevant even for non-
radiative simulations:

First, Vine follows a classical implementation which is
integrating the internal energy, whereas Gadget utilises
what is generally called the entropy conserving formula-
tion. The important difference thereby is not the fact that
Gadget integrates the entropy instead of the internal en-
ergy. The crucial differences are rather the way in which the
smoothing length hi is defined (in Gadget, hi is defined
based on the mass within the kernel instead of the number
of particles) and the inclusion of correction terms arising
from the varying smoothing length. Also, the entropy con-
serving formulation uses a way of symmetrizing the kernel
given by the derivation of the SPH equations, which in sum
leads to conservation of energy and entropy at the same time
(Springel & Hernquist 2002).

The second difference originates in an alternative for-
mulation of the artificial viscosity. In Gadget, artificial vis-
cosity is based on the signal velocity instead of sound speed
(Monaghan 1997) and apt to incorporate magnetic waves in
a natural way (Price & Monaghan 2004).

This different implementation was shown to bring
measurable improvements specially for MHD applications
(Dolag & Stasyszyn 2008), but should not make too much
of a difference for passive magnetic fields. The implemen-
tation of the induction equation and the Euler potentials
formalism is the same in both codes.

The integration in Gadget is also performed using
the leapfrog integration scheme, but Gadget utilises a
kick-drift-kick-scheme whereas Vine uses a drift-kick-drift-
scheme.

The timestep is given by

∆tn+1 =

s

2ηǫ

|a| , (31)

where η translates to the accuracy parameter τacc in eq.
26 via τacc =

√
2η. For SPH particles, also a Courant-like

condition in the form

∆tn+1
cour =

Ccourhi

maxjv
sig
ij

(32)

is applied, where hi is the SPH softening length for gas par-
ticle i and vsig

ij the signal velocity between particles i and j
as defined in Price & Monaghan (2004) with the maximum
taken over all neighboring particles j of particle i. Ccour

total mass Mtot = 1.34 · 1012M⊙

disc mass Mdisc = 0.041 · Mtot

bulge mass Mbulge = 0.01367 · Mtot

mass of the extended gas disc Mgas = 0.2 · Mdisc

exponential disc scale length lD = 3.5 kpc
scale height of the disc h = 0.2 · lD
bulge scale length lB = 0.2 · lD
extent of flat gas disc lG = 6 · lD
spin parameter λ = 0.033
virial velocity of the halo vvir = 160 km s−1

half mass circular velocity vhalf ≈ 200 km s−1

half mass rotation period Thalf ≈ 150 Myr
isothermal sound speed cs ≈ 15 km s−1

initial magnetic field B0 = 10−9 G

Table 1. Parameters of initial disc setup

is an accuracy parameter which does not translate one-to-
one to τCFL in eq. 29 due to the different definition of the
Courant criterion. We commonly use values of η = 0.02 and
Ccour = 0.15 to ensure that the timestep ∆t in Gadget does
not get too large compared to Vine. However, changing the
accuracy parameters by a factor of two does not affect the
overall evolution and amplification of the magnetic field in
the simulated systems (not shown).

Beside that, the codes differ in details of the tree
construction for calculating gravitational forces. For more
details we refer the reader to the code papers for Vine

(Wetzstein et al. 2008, Nelson et al. 2008) and Gadget

(Springel 2005, Dolag & Stasyszyn 2008).

4 SIMULATIONS

4.1 Setup

The initial conditions for our Milky Way like galaxy are re-
alised using the method described by Springel et al. (2005)
which is based on Hernquist (1993) (see also Johansson et al.
2009). The galaxy consists of an exponential stellar disc and
a flat extended gas disc, a stellar bulge and a dark matter
halo of collisionless particles. The gas is represented by SPH
particles adopting an isothermal equation of state with a
fixed sound speed of cs ≈ 15 km s−1, which corresponds
to a temperature of T ≈ 2 · 104 K for a molecular weight of
1.4/1.1·mproton . We briefly note that by using an isothermal
equation of state only one component of the ISM is modeled,
typically this is a reasonably good approximation for the
warm gas phase in disc galaxies (e.g. Barnes 2002, Li et al.
2005, Naab et al. 2006). Assuming an isothermal equation of
state implies that additional heat created in shocks by adi-
abatic compression and feedback processes (e.g. by SNII) is
radiated away immediately. In addition, substantial heating
processes prevent the gas from cooling below its effective
temperature predefined by its sound speed.

The parameters describing the initial conditions can be
found in Table 1. The particle numbers and the gravitational
and SPH softening lengths used in the different runs can be
found in Table 2.

Before we include magnetic fields we allow the galaxy to
evolve for approximately three half mass rotation periods.
For simplicity we choose an initial magnetic field in the x
direction. Its value, B0 = 10−9 G, corresponds to the typical
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low resolution normal resolution high resolution
number of particles

Halo 6 · 104 6 · 105 6 · 106

Disc 3 · 104 3 · 105 3 · 106

Bulge 1 · 104 1 · 105 1 · 106

Gas 3 · 104 3 · 105 3 · 106

Total 13 · 104 13 · 105 13 · 106

fixed gravitational softening lengths ǫ [kpc]

Vine Gadget Vine Gadget Vine Gadget

Halo 0.934/2 0.934 0.434/2 0.434 - 0.199
Disc 0.248/2 0.248 0.114/2 0.114 - 0.052
Bulge 0.269/2 0.269 0.127/2 0.127 - 0.059
Gas 0.248/2 0.248 0.114/2 0.114 - 0.052

minimum SPH softening lengths hmin

Gas 0.01ǫ 0.01ǫ 0.01ǫ 0.01ǫ - 0.01ǫ

Table 2. Particles numbers and softening lengths. The factor two accounts for the different definition of the Kernel extent in Vine

(̺ < 2) and Gadget (̺ < 1).

Figure 2. Surface densities Σgas of the extended gas discs as a
function of radius before the inclusion of the magnetic fields after
0.5 Gyr (red line) and after 2 Gyr (black lines) for simulations
with Gadget (solid line) and Vine (dotted line). The gas discs

are stable for more than ten half mass rotation periods.

value of intergalactic magnetic fields (Kronberg et al. 1999).
To set up the corresponding Euler potentials, we choose

αE = B0 · y, (33)

βE = y + z. (34)

We have checked the stability of our discs in indepen-
dent simulations without magnetic fields. Figs. 2 and 3 show
the surface densities Σgas of the extended gaseous discs and
Σstars of the exponential stellar discs, respectively, as a func-
tion of radius for t = 0.5 Gyr (red), i.e. the time at which the
magnetic field is switched on, and t = 2.0 Gyr (black). Fig.
4 shows the circular velocity curves of the simulated galaxies
at the same times. The discs simulated with Vine (dotted
line) and Gadget (solid line) show similar results and stay
stable over more than ten half mass rotation periods.

4.2 Direct magnetic field simulations

Figs. 5 and 6 show the face on view of the magnetic field
energy and gas density of the simulated galaxy at different

Figure 3. Same as Fig. 2 but for the stellar surface densities
Σstars. Both the stellar and the gas discs are stable for more than
ten half mass rotation periods.

output times. The magnetic field was switched on at t = 510
Myr. The viscosity limiter was not applied. Fig. 5 shows the
simulation performed with Vine and Fig. 6 the same ini-
tial conditions simulated with Gadget. The magnetic field
energy B2/8π is colour coded and normalised to the initial
value of 1

8π
· 10−18 erg cm−3 on a logarithmic scale from 1

(blue) to 1.5 · 108 (red). The contours overplotted indicate
physical densities of 23, 37 and 52 M⊙ pc−3, respectively.
We use a grid with a cell size of 0.3 kpc for the calculation
of the mean values of the densities and the magnetic field
energies, averaging in the vertical direction from -h to h,
where h is the local height of the gas disc.

In both simulations we see that the magnetic field en-
ergy pattern is tightly connected to the density pattern of
the gas. Moreover, both simulated galaxies show a very sim-
ilar morphology in the gas and magnetic field distributions.
The magnetic field energy in the spiral arms is amplified
by up to five orders of magnitude in both codes and even
more in the central region (see also Fig. 13). Furthermore,
the SPH smoothing lengths hgas are similar for both codes
(Fig. 9), indicating that the performance of the hydrody-
namic calculations is concerted. The smoothing lengths in



8 H. Kotarba, H. Lesch, K. Dolag, T. Naab, P. H. Johansson & F. A. Stasyszyn

Figure 5. Face-on magnetic field energy and gas density as a function of time for the simulation performed with Vine using direct
magnetic field description and without applying the viscosity limiter. The colours correspond to the magnetic field energy B2/8π on a
logarithmic scale, normalised to the initial value of 1

8π
· 10−18 erg cm−3. The contour lines indicate physical densities of 23, 37 and 52

M⊙ pc−3, respectively.

Figure 6. Same as Fig. 5 for identical initial conditions simulated with Gadget. The morphology is very similar but the magnetic field
reaches higher values in the spiral arms in the Gadget simulation compared to the simulation with Vine.
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Figure 7. Same as Fig. 5, this time the magnetic field is followed using Euler potentials implemented in Vine. In contrast to the direct
simulation the magnetic field is more strongly amplified in the spiral arms than at the centre. The maximum amplification of the magnetic
field energy is only three orders of magnitude. Note that the colour scaling is different to Figs. 5 and 6.

Figure 8. Same as Fig. 6, this time the magnetic field is followed using Euler potentials implemented in Gadget. The energies and
morphology of the magnetic field is now similar to the Vine simulation.
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Figure 4. Circular velocity curves of the simulated galaxies at
two different times. The colour coding is the same as in Figs. 2
and 3. Again, the circular velocity curves are stable over more
than ten half mass rotation periods.

Figure 9. SPH softening lengths hgas as a function of radius
shortly after the inclusion of the magnetic fields at 0.55 Gyr (red
line), at 1.25 Gyr (green lines) and at 2 Gyr (black lines) for
simulations with Gadget (solid lines) and Vine (dotted lines).
The SPH smoothing lengths are very similar for both codes.

Vine are initially set to a constant value of hgas ≈ 0.3 kpc
at the time of the magnetic field inclusion.

4.3 SPH with Euler Potentials

Figs. 7 and 8 show simulations starting from the same initial
conditions as before. However, this time the evolution of
the magnetic field was followed using the Euler potentials.
Again, we show magnetic field energies and gas densities.
This time the amplification of the magnetic field energy in
the spiral arms is only three orders of magnitude for both
simulations with Vine and Gadget, with both showing a
remarkably similar evolution. The most notable difference to
the simulations with direct magnetic field treatment shown
in Fig. 5 and 6 is at the centre of the galaxies, where in
the direct simulations the field amplification was strongest.
With Euler potentials the magnetic field grows mostly in the
spiral arms of the galaxy (see also Fig. 13).

Since the magnetic fields in our simulations are pas-
sive, the density profiles (Figs. 2 and 3) of the disc are the
same for all runs. Thus, the different profiles of the magnetic

Figure 10. Numerical h · |∇ ·B|/|B| at t ≈ 1.5 Gyr as a function
of radius for simulations without applying the viscosity limiter
using direct magnetic field treatment (blue) and using Euler po-
tentials (black) in Gadget (solid lines) and Vine (dotted lines).
Direct magnetic field simulations for which the viscosity limiter
was applied are also shown (orange). Using direct magnetic field
description, the numerical h · ∇ · B is highest at small radii, and
much larger than in the Euler potentials formalism.

field energy cannot be traced back to the density profiles.
In fact, it is the numerical ∇ · B which presumably causes
the high amplification of the magnetic field at the centre in
simulations with the direct magnetic field treatment. Fig.
10 shows the radial profile of the numerical h · |∇ · B|/|B|
at time t ≈ 1.5 Gyr for simulations using direct magnetic
field treatment (blue for simulations without applying the
viscosity limiter and orange where the limiter was applied)
and Euler potentials (black) performed using Gadget (solid
lines) and Vine (dotted line). Utilising the direct magnetic
field description, the numerical ∇ · B is highest at small
radii, and much larger than for the Euler potential formal-
ism. As will be discussed in the following section, high ∇·B
corresponds to high amplification of the magnetic field.

Fig. 11 shows the magnetic field vectors for the normal
resolution Vine simulation utilising Euler potentials at the
time t ≈ 0.9 Gyr. This time the colours correspond to the gas
density on a logarithmic scale from 0.3 · 10−3 to 2.3 · 103M⊙

pc−3, overplotted with the field vectors. The length l of the
vectors is normalised to the initial value and displayed log-
arithmically as l = 3 · log(B/B0), i.e. l = 0 corresponds to
B ≈ B0 or smaller, l = 1 to B ≈ 2 · B0, l = 2 to B ≈ 5 · B0

and l = 3 to B = 10 · B0. The magnetic field lines follow
the spiral structure of the gas. They have been amplified by
contraction in regions of higher density and restructured by
differential rotation of the galaxy. Their orientation is caused
by the motion of the gas. These characteristics are very simi-
lar to typical observations of magnetic fields in galactic discs
(e.g. Fig. 1).

Qualitatively, this behaviour is the same for all simu-
lations using both codes. Only the central region in simu-
lations using direct magnetic field treatment shows chaotic
orientation of the magnetic field lines, indicating artificial
amplification of the magnetic field due to high numerical
∇ · B.
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Figure 12. Same as Fig. 6, this time the magnetic field is smoothed every 30 timesteps. The field morphology is similar to the
morphology in Fig. 6 and 5, respectively, but the magnetic field values in the spiral arms are now more similar to the values in the Euler
implementation.

Figure 11. Gas density (colour coded) and magnetic field vec-
tors for the normal resolution simulation with Vine using the
Euler potentials formalism at t ≈ 1 Gyr, i.e. ≈ 500 Myr after the
inclusion of the magnetic field. The length of the vectors is nor-
malised to the initial value and displayed logarithmically. l = 0
corresponds to B ≈ B0 or smaller and l = 3 to B = 10 · B0.

5 EVALUATION

5.1 Magnetic field growth

Figs. 5 (6) and 7 (8), respectively, reveal the differences in
the magnetic field amplification for the direct magnetic field
treatment and the Euler potentials formalism: Using the di-

rect description, the amplification of the magnetic field en-
ergy in the spiral arms is higher by at least two orders of
magnitude, and at the centre even more than six orders of
magnitude compared to the Euler potentials method. This
difference is probably caused by the numerical ∇·B in these
simulations (Fig. 10), but possibly also by the fact that field
winding is not traced beyond a certain evolutionary state
in the Euler potentials formulation (see section 3.1.6). Since
the Euler potentials are free from physical divergence by
construction (i.e. the divergence is zero to measurements
errors), the numerical divergence in simulations using the
Euler potentials is due to the SPH derivative approximation
when calculating the magnetic field from the potentials (Eq.
18). In this sense, the numerical divergence found in sim-
ulations using Euler potentials reflects the ability of SPH
operators to measure the gradient of a curl to zero. Thus,
the fact that ∇ · B is higher by approximately one order
of magnitude in the disc (i.e. within ≈ 5 to 15 kpc) and
by several orders of magnitude at the centre (Fig. 10), pre-
sumably causes the different magnetic field amplification in
these simulations. This is the case at least in the disc re-
gion, where the winding of the field is not strong enough to
constrain the Euler potentials formulation.

To get a better idea of the influence of numerical ∇·B on
the amplification of the magnetic filed, we have performed
simulations applying magnetic field smoothing, a tech-
nique allowing for reduction of small scale fluctuations and
therefore also the numerical divergence (Dolag & Stasyszyn
2008). Within this method, the magnetic field is smoothed
periodically as suggested by Børve et al. (2001). Fig. 12
shows again the magnetic field energies and gas densities
for a Gadget simulation starting from the same initial con-



12 H. Kotarba, H. Lesch, K. Dolag, T. Naab, P. H. Johansson & F. A. Stasyszyn

Figure 13. Total magnetic field (Btot =
q

B2
x + B2

y + B2
z ) at

t ≈ 1.5 Gyr as a function of radius for the normal resolution
Gadget (solid lines) and Vine (dotted lines) simulations with-
out applying the viscosity limiter using Euler potentials (black)
and the direct magnetic field description (blue). Direct magnetic
field simulations for which the viscosity limiter was applied are
also shown (orange). Two direct magnetic field implementations
including field smoothing to reduce the numerical ∇ · B contri-
bution are shown in red and green. The simulations including
smoothing have been run with a smoothing interval of 30 (red)
and 5 timesteps (green), respectively. Increasing the frequency of
smoothing tends to decrease the amplitude of the magnetic field
between 3 and 10 kpc, but has relatively little effect for larger
radii.

ditions as before and without applying the viscosity lim-
iter. This time, the magnetic field was smoothed every 30
timesteps. Applying the smoothing scheme, the amplifica-
tion of the magnetic field energy is reduced to approximately
three orders of magnitude within the spiral arms, which is
the same as the amplification seen in simulations using the
Euler potentials, and it is also lowered towards the centre
of the galaxy. The structure of the magnetic field is despite
the smoothing still very similar to the other runs and again
correlates well with the structure of the gas density, how-
ever, the magnetic field energy is more concentrated within
the spiral arms.

Fig. 13 shows the total magnetic field at t ≈ 1.5 Gyr
as a function of radius for the normal resolution Gadget

(solid line) and Vine (dotted line) simulations using Euler
potentials (black) and the direct magnetic field description
without applying the viscosity limiter (blue) and with the
limiter turned on (orange), respectively. The direct magnetic
field simulations including field smoothing are shown in red
and green. They have been performed with a smoothing in-
terval of 30 (red) and 5 timesteps (green), respectively, and
without applying the viscosity limiter. As discussed before,
the most notable difference between simulations with direct
magnetic field treatment and the Euler implementation is
at the centre of the galaxies. There, the amplification in the
direct simulations is much stronger than in the Euler simu-
lations. This behaviour could be at least partly physical, as
there are high radial velocities and strong in- and outflows of
gas in the central region (fig. 17), resulting according to Eqs.
7 and 8 in an amplification of the magnetic field. In addi-
tion, also the azimuthal derivatives of the radial and toroidal

velocity components are large at the very centre, which also
could account for the violent amplification (see section 5.3).
On the other hand, the second term of eq. 8 does not play
an important role, since dvϕ/dr is large and therefore dΩ/dr
small in the central region (by reason of solid body rotation).
However, the high ∇ · B values at the centre make it diffi-
cult to distinguish between physical growth and numerical
errors. Since the Euler potentials are also unreliable in this
region (see section 3.1.6), it is not easy to decide which for-
malism is the most capable in describing the physics in the
centre of the galaxy correctly. This is also true for the sim-
ulations including smoothing. Increasing the frequency of
smoothing tends to decrease the amplitude of the magnetic
field between 3 and 10 kpc, but has relatively little effect
for larger radii. Interestingly, the large increase of B in the
centre is never smoothed away, which could indicate, that
this behaviour is actually partly physical. For the simula-
tion which applies smoothing every 30 timesteps (red), the
amplification of the field at r > 3 kpc is similar to the sim-
ulations with Euler potentials. Applying smoothing every 5
timesteps (green), the amplification is considerably weaker
than in the Euler potentials simulations, indicating that by
such strong smoothing essential physics is lost, in agreement
with earlier findings by Dolag & Stasyszyn (2008).

In the following, we only consider the disc region (from
5 to 15 kpc), since the high numerical divergence in the
centre makes it difficult to lower it to the value of the
divergence seen in simulations with Euler potentials (i.e.
h · |∇ · B|/|B| ≈ 1), without smoothing the magnetic field
structure too much.

Fig. 14 shows the evolution of the total magnetic field
(Btot =

p

B2
x + B2

y + B2
z) within the disc with time for the

different implementations. The colour coding is the same
as in Fig. 13. As before, for the simulation which applies
smoothing every 30 timesteps (red), the amplification of the
field is similar to the simulation with Euler potentials. How-
ever, the performance of these simulation is not very con-
vincing due to the “jumps” in the evolution caused by the
artificial periodic smoothing. Applying smoothing every 5
timesteps (green), the amplification is as discussed before
lower than in the Euler potentials simulations.

This behaviour can be understood by considering the
corresponding numerical divergence of the magnetic field.
Fig. 15 shows h · |∇ · B|/|B| as a function of time for all
simulations. In all cases, the growth of h · |∇ · B|/|B| be-
haves similar to the amplification of the total magnetic field,
i.e. the higher the divergence, the stronger the amplification
of the field. Though the numerical divergence in the simu-
lation using Euler potentials (black) is higher than in the
simulation with a smoothing interval of 5 timesteps (green),
its value does not directly correlate with the field growth.
That is because the (defective) magnetic field itself is not
used for calculating the magnetic field evolution within the
Euler potential formalism as is the case for the direct mag-
netic field description (compare eqs. 17 and 18). Using the
smoothing scheme lowers the divergence (in case of smooth-
ing every 5 timesteps even below the numerical divergence
of the Euler potential formalism) and lowers also the field
amplification, leading (if applied not too often) to an am-
plification of the total field much more similar to that using
the Euler potentials, which are free from physical divergence
by construction.
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Figure 14. Total magnetic field (Btot =
q

B2
x + B2

y + B2
z )

within the disc (between 5 and 15 kpc) as a function of time
for different implementations. The colour coding is the same as
in Fig. 13. Applying the smoothing scheme reduces the amplifi-
cation of the magnetic field.

Interestingly, for simulations applying the viscosity lim-
iter suggested by Balsara (1995), the magnetic field amplifi-
cation using the direct magnetic field description is in both
codes much higher than without applying this limiter (or-
ange lines in Figs. 13 and 14). The reason for this higher
amplification is the higher velocity dispersion in these simu-
lations. The viscosity limiter lowers the viscosity in regions
of strong shear flows, thus suppressing velocity diffusion and
leading to higher velocity gradients. Consistently, also the
numerical divergence of the magnetic field is higher (and
considerably higher than the “unavoidable” value of approx-
imately one) in these simulations (orange lines in Figs. 10
and 15). Applying the viscosity limiter in simulations using
Euler potentials, however, does not change the evolution
of the magnetic field significantly (not shown). Therefore,
again, it is probable that the higher numerical ∇ · B terms
lead via the induction equation (eq. 3) to an enhanced mag-
netic field growth.

In summary, the field amplification in case of direct
magnetic field description correlates with the non-vanishing,
numerical ∇ ·B. The Euler potential formalism also has its
shortcomings (like the non-uniqueness and the dependence
of the magnetic field on two derivatives (Eq. 18) leading
to lower numerical accuracy). Thus there is a strong need
for simulations with different ∇ ·B cleaning techniques and
even higher resolution in order to be able to distinguish the
best description for simulations of magnetic fields in galactic
discs.

However, since the physical divergence is zero in the
case of the Euler potentials, we believe this method (for the
time being) to be the best one for our studies of magnetic
convection in disc galaxies. The following discussion there-
fore concentrates on simulations using Euler potentials.

5.2 Numerical resolution

Fig. 16 shows the total magnetic field as a function of time
for different resolutions (see Table 2) in simulations with

Figure 15. Total divergence of the magnetic field within the
disc (between 5 and 15 kpc) as a function of time for different
implementations. The colour coding is the same as in Fig. 13.
The higher the divergence, the stronger the amplification of the
magnetic field.

Figure 16. Resolution study: Total magnetic field (Btot =
q

B2
x + B2

y + B2
z ) as a function of time for the Gadget (solid

line) and Vine (dotted line) simulations without applying the
viscosity limiter using Euler potentials. The total numbers of par-
ticles are 1.3 · 105 (blue), 1.3 · 106 (black) and 1.3 · 107 (red).

Gadget (solid lines) and Vine (dashed lines) without ap-
plying the viscosity limiter.

One Gyr after its initialization the magnetic field has
been amplified from 10−9 to approximately 9 · 10−9 G in
the low resolution simulation (blue), whereas the final mag-
netic field strength in the normal resolution simulation is
slightly more than 1.5 times higher (1.5 · 10−8 G). The final
magnetic field strength in the high resolution run is again
approximately 1.5 times higher than in the normal resolu-
tion run (i.e. ≈ 2.5 · 10−8). The numerical h · |∇ · B|/|B|
values are of the same order for all resolutions (not shown).
Thus, we have not yet reached numerical convergence in the
magnetic field evolution.
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5.3 Inspection of the induction equation

By analyzing the velocity and magnetic field in our sim-
ulation we can identify the single terms of the induction
equation responsible for the behaviour of the magnetic
field. Dropping all dependencies on z, the equations for the
evolution of the radial and toroidal magnetic fields read

∂Br

∂t
= −Br

vr

r
−1

r
Br

∂vϕ

∂ϕ
+

1

r
Bϕ

∂vr

∂ϕ
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∂r
−vϕ
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,
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∂vϕ

∂r
−vr

∂Bϕ
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−vϕ

r

∂Bϕ

∂ϕ
−vϕ

r
Br,

(9) (10)

where we have labelled the single terms with numbers
for easier reference.

The radial and toroidal components of the velocity and
the magnetic field and their corresponding derivatives are
shown in Fig. 17 after approximately three half mass rota-
tion periods after the onset of the magnetic field. The radial
velocity (top left) is typically negative, leading to an effective
gas inflow towards the centre of the galaxy. This negative
radial velocity mirrors the angular momentum transport to
large radii of the galaxy by spiral arm formation. The mean
circular velocity (second row, left) is 210 km s−1 at large
radii, and drops to zero towards the centre (see also Fig. 4).
The toroidal magnetic field (bottom left) is wound up by dif-
ferential rotation, leading to a structure of altering positive
and negative magnetic field values from centre to the edge of
the galaxy. Consequently the derivatives with respect to ϕ
(right panel) are smaller than the radial derivatives (middle
panel), mirroring the approximate axial symmetry. However,
since the terms of the induction equation depend always on
a product between a derivative and a velocity or magnetic
field component, one cannot a priori neglect the terms de-
pending on azimuthal derivatives.

In order to quantify the influence of the different terms
1-10 during the simulation we calculated their values in
cylindrical bins within the disc (5 to 15 kpc) and their mean
value at different times. We have taken the negative values
of each term in case of negative magnetic field to distin-
guish between amplifying and attenuating terms. The result
of this calculation is shown in Fig. 18. The upper plot shows
the temporal evolution of the terms responsible for ampli-
fication/attenuation of the radial magnetic field (terms 1
to 5) and the lower of the toroidal magnetic field (terms
6 to 10). Positive values imply amplification, and negative
attenuation of the corresponding B-component. The non-
axisymmetric terms are shown in red.

Looking at Fig. 18, the most important term for the evo-
lution of the radial magnetic field is term 5, i.e. − vϕ

r
∂Br

∂ϕ
.

Since the toroidal velocity dominates the velocity field,
this term is most important although ∂Br

∂ϕ
is comparatively

small. This can be seen following the evolution of the circu-
lar velocity and the radial magnetic field more closely: The

radial magnetic field is strongest where the circular veloc-
ity has its highest value, with a delay of roughly 40 Myr.
All other terms lie in the same range and therefore com-
pete with each other. Since their values are positive as well
as negative, one should not expect a significant amplifica-
tion on their account. This analysis shows, that even small
deviations from axial symmetry are very important for the
evolution of the magnetic field in spiral galaxies.

One reaches the same conclusion looking at the terms
of the evolution equation for Bϕ. Except for the beginning
of the simulation, the leading term here is clearly term 9,
− vϕ

r

∂Bϕ

∂ϕ
, i.e. the only non-axisymmetric term in this equa-

tion. Term 10, which was our candidate for the most im-
portant term for axial symmetry, is only the second most
important. Both terms depend on the toroidal velocity com-
ponent, thus demonstrating the importance of the differen-
tial rotation for the evolution of the toroidal component of
the magnetic field.

Neglecting all non-axisymmetric terms (plotted in red)
one finds term 1 (−Br

vr

r
) to be largely dominant over term

term 4 (−vr
∂Br

∂r
), in agreement with the theory for the evo-

lution of Br. Also the term responsible for the evolution of
Bϕ is as expected: Term 10 (− vϕ

r
Br) is the leading term

and followed by term 6 (−Bϕ
∂vr

∂r
). However, term 1 and 6

are both of order 10−13 G Myr−1, thus not being able to
account for any significant amplification of our initial mag-
netic field, and term 10 can only amplify Bϕ effectively if
Br is amplified.

This behaviour is qualitatively the same also for runs
with the direct implementation of the induction equation.
We conclude that the non-axisymmetry of the system is the
driving force for the observed field amplification in our sim-
ulations.

6 CONCLUSION AND OUTLOOK

We have presented a set of self-consistent simulations of the
evolution of magnetic fields in galactic discs performed with
the N -body codes Vine and Gadget. Hydrodynamics was
treated using the SPH method. The evolution of magnetic
fields within the framework of ideal MHD was followed by
both a direct implementation of the induction equation and
a formalism using Euler potentials.

The presented set of simulations shows the importance
of a sensible treatment of ∇ · B when simulating magnetic
fields in spiral galaxies. Since artificial magnetic monopoles
can be responsible for unphysical amplification of the field,
more studies of possibilities to avoid or inhibit numerical
∇ · B terms are still needed. Although the description us-
ing Euler potentials avoids (physical) magnetic monopoles
by construction, the drawback in using them is that they
lead to constraints on magnetic helicity. Since helicity fluxes
can affect the dynamo process within a mean field the-
ory (Brandenburg & Subramanian 2005), Euler potentials
would probably not be suitable for simulations including the
α-effect. Furthermore, Euler potentials do not allow for all
initial field configurations, since they are not necessarily sin-
gle valued and in addition, their derivation can become quite
complex. Nevertheless, using topologically simple initial con-
ditions for the magnetic field, the Euler potential formalism
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Figure 17. Radial and toroidal components of the velocity and the magnetic field and their derivatives at t ≈ 900 Myr for the normal

resolution Gadget simulation. From left to right and top to bottom: vr , ∂vr

∂r
, 1

r
· ∂vr

∂ϕ
, vϕ,
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·
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∂ϕ
.

seems to be the best tool to follow the ideal evolution of
magnetic fields in simulations of spiral galaxies with SPH.

A possible alternative to Euler potentials is the vec-
tor potential A. The disadvantages are the need for a time
integration of A when evolving magnetic fields and the oc-
currence of second derivatives in the force equation when
calculating magnetic forces (Fmag ∝ j×B ∝ (∇×B)×B ∝
(∇× (∇× A)) × (∇× A)), both leading to lower accuracy

in the calculation. On the other hand, the advantages are a
somewhat easier derivation of A for a given magnetic field
and that there are no constraints on magnetic helicity using
a vector potential. It would be definitely interesting to study
the differences between simulations utilizing a vector poten-
tial and the Euler description, although it could be hard
to overcome the problems related to numerical intricacies
within a SPH implementation of the vector potential.
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Figure 18. Values of the different terms of the induction equa-
tion with time for the normal resolution Gadget simulation us-
ing Euler potentials. Upper plot: temporal evolution of the terms
responsible for amplification/attenuation of the radial magnetic
field (terms 1 to 5). Lower plot: Evolution of terms 6-10, responsi-
ble for the evolution of the toroidal magnetic field. Positive values
imply amplification, and negative attenuation of the correspond-
ing B-component. The non-axisymmetric terms are shown in red,
the axisymmetric terms are shown in black.

The analysis of the different terms of the induction
equation applied to our simulations clearly show that the
non-axisymmetry of the velocity and magnetic field cannot
be ignored in any consideration of the kinematic dynamo.
There are two main processes leading to angular momentum
transport and hence non-axisymmetry in spiral galaxies: In-
ternal driving due to spiral structure and bar formation (the
former considered in the presented paper) and external driv-
ing due to interaction with other galaxies. Simulations of
interacting systems would therefore enrich our understand-
ings even further on how large scale magnetic fields evolve
due to large scale velocity fields.

Our simulations show only a weak amplification of the
initial magnetic field. Observations of spirals galaxies at high
redshifts suggest that their magnetic field strengths were at
least as strong as the magnetic fields at the current epoch
within few Gyrs of the Big Bang (Kronberg et al. 2008).
Assuming initial strengths of order BIGM = 10−9 G an am-

plifying process should therefore account for four orders of
magnitude of increase within few Gyrs in order to reach
the observed values of ≈ 10µG. Since our simulations of a
purely kinematic dynamo account at best for one order of
magnitude, there is still need for a more complete scenario
with additional subgrid physics. Such subgrid physics should
comprise the α-effect due to turbulent gas motions below
the resolution limit, estimated from local high-resolution
MHD simulations and observations of turbulent motions
in nearby galaxies. Hereby, potentially the most promising
ansatz is the cosmic ray driven dynamo (Lesch & Hanasz
2003, Hanasz et al. 2005). Given the fact, that the presented
simulations reveal the complete three dimensional velocity
field to fully account for the large-scale structure of the mag-
netic field, we believe that N -body SPH together with sen-
sible subgrid physics will be apt to test our understanding
of the evolution of magnetic fields in spiral galaxies numer-
ically.
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