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ABSTRACT
We study predictions for dark matter phase-space structurenear the Sun based on high-
resolution simulations of six galaxy halos taken from the Aquarius Project. The local DM den-
sity distribution is predicted to be remarkably smooth; thedensity at the Sun differs from the
mean over a best-fit ellipsoidal equidensity contour by lessthan15% at the99.9% confidence
level. The local velocity distribution is also very smooth,but it differs systematically from a
(multivariate) Gaussian distribution. This is not due to the presence of individual clumps or
streams, but to broad features in the velocity modulus and energy distributions that are stable
both in space and time and reflect the detailed assembly history of each halo. These features
have a significant impact on the signals predicted for WIMP and axion searches. For example,
WIMP recoil rates can deviate by∼ 10% from those expected from the best-fit multivariate
Gaussian models. The axion spectra in our simulations typically peak at lower frequencies
than in the case of multivariate Gaussian velocity distributions. Also in this case, the spec-
tra show significant imprints of the formation of the halo. This implies that once direct DM
detection has become routine, features in the detector signal will allow us to study the dark
matter assembly history of the Milky Way. A new field, “dark matter astronomy”, will then
emerge.
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1 INTRODUCTION

In the 75 years since Zwicky (1933) first pointed out the need
for substantial amounts of unseen material in the Coma cluster,
the case for a gravitationally dominant component of non-baryonic
dark matter has become overwhelmingly strong. It seemed a long
shot when Peebles (1982) first suggested that the dark mattermight
be an entirely new, weakly interacting, neutral particle with very
low thermal velocities in the early universe, but such Cold Dark
Matter (CDM) is now generally regarded as the most plausible
and consistent identification for the dark matter. Particlephysics
has suggested many possible CDM particles beyond the standard
model. Two promising candidates are WIMPs (weakly interact-
ing massive particles, see Lee & Weinberg 1977; Gunn et al. 1978;
Ellis et al. 1984) and axions (Peccei & Quinn 1977b,a; Weinberg
1978; Wilczek 1978). Among the WIMPs, the lightest supersym-
metric particle, the neutralino, is currently favoured as the most
likely CDM particle, and the case will be enormously strength-
ened if the LHC confirms supersymmetry. However, ultimate con-

firmation of the CDM paradigm can only come through the di-
rect or indirect detection of the CDM particles themselves.Neu-
tralinos, for example, are their own antiparticles and can annihi-
late to produceγ-rays and other particles. One goal of the recently
launched Fermi Gamma-ray space telescope is to detect this radia-
tion (Gehrels & Michelson 1999; Springel et al. 2008).

Direct detection experiments, on the other hand, search for
the interaction of CDM particles with laboratory apparatus. For
WIMPs, detection is based on nuclear recoil events in mas-
sive, cryogenically cooled bolometers in underground laboratories
(Jungman et al. 1996); for axions, resonant microwave cavities in
strong magnetic fields exploit the axion-photon conversionpro-
cess (Sikivie 1985). Despite intensive searches, the only experiment
which has so far reported a signal is DAMA (Bernabei et al. 2007)
which has clear evidence for an annual modulation of their event
rate of the kind expected from the Earth’s motion around the Sun.
The interpretation of this result is controversial, since it appears
to require dark matter properties which are in conflict with up-
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per limits established by other experiments (see Savage et al. 2004;
Gondolo & Gelmini 2005; Gelmini 2006, for a discussion and pos-
sible solutions). Regardless of this, recent improvementsin detector
technology may enable a detection of “standard model” WIMPSor
axions within a few years.

Event rates in all direct detection experiments are determined
by the local DM phase-space distribution at the Earth’s position.
The relevant scales are those of the apparatus and so are extremely
small from an astronomical point of view. As a result, interpret-
ing null results as excluding specific regions of candidate param-
eter space must rely on (strong) assumptions about the fine-scale
structure of phase-space in the inner Galaxy. In most analyses the
dark matter has been assumed to be smoothly and spherically dis-
tributed about the Galactic Centre with an isotropic Maxwellian ve-
locity distribution (e.g. Freese et al. 1988) or a multivariate Gaus-
sian distribution (e.g. Ullio & Kamionkowski 2001; Green 2001;
Helmi et al. 2002). The theoretical justification for these assump-
tions is weak, and when numerical simulations of halo formation
reached sufficiently high resolution, it became clear that the phase-
space of CDM halos contains considerable substructure, both grav-
itationally bound subhalos and unbound streams. As numerical res-
olution has improved it has become possible to see structurecloser
and closer to the centre, and this has led some investigatorsto sug-
gest that the CDM distribution near the Sun could, in fact, bealmost
fractal, with large density variations over short length-scales (e.g.
Kamionkowski & Koushiappas 2008). This would have substantial
consequences for the ability of direct detection experiments to con-
strain particle properties.

Until very recently, simulation studies were unable to resolve
any substructure in regions as close to the Galactic Centre as the
Sun (see Moore et al. 2001; Helmi et al. 2002, 2003, for example).
This prevented realistic evaluation of the likelihood thatmassive
streams, clumps or holes in the dark matter distribution could af-
fect event rates in Earth-bound detectors and so weaken the par-
ticle physics conclusions that can be drawn from null detections
(see Savage et al. 2006; Kamionkowski & Koushiappas 2008, for
recent discussions). As we shall show in this paper, a new agehas
dawned. As part of its Aquarius Project (Springel et al. 2008) the
Virgo Consortium has carried out a suite of ultra-high resolution
simulations of a series of Milky Way-sized CDM halos. Simula-
tions of individual Milky Way halos of similar scale have been car-
ried out by Diemand et al. (2008) and Stadel et al. (2008). Here we
use the Aquarius simulations to provide the first reliable character-
isations of the local dark matter phase-space distributionand of the
detector signals which should be anticipated in WIMP and axion
searches.

2 THE NUMERICAL SIMULATIONS

The cosmological parameters for the Aquarius simulation set are
Ωm = 0.25, ΩΛ = 0.75, σ8 = 0.9, ns = 1 and H0 =
100 h km s−1 Mpc−1 with h = 0.73, where all quantities have
their standard definitions. These parameters are consistent with cur-
rent cosmological constraints within their uncertainties, in partic-
ular, with the parameters inferred from the WMAP 1-year and
5-year data analyses (Spergel et al. 2003; Komatsu et al. 2008).
Milky Way-like halos were selected for resimulation from a par-
ent cosmological simulation which used9003 particles to follow
the dark matter distribution in a100h−1Mpc periodic box. Se-
lection was based primarily on halo mass (∼ 1012M⊙) but also
required that there should be no close and massive neighbourat
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Figure 1. Top panel: Density probability distribution function (DPDF) for
all resimulations of halo Aq-A measured within a thick ellipsoidal shell
between equidensity surfaces with major axes of6 and 12 kpc. The lo-
cal dark matter density at the position of each particle, estimated using an
SPH smoothing technique, is divided by the density of the best-fit, ellip-
soidally stratified, power-law model. The DPDF gives the distribution of
the local density in units of that predicted by the smooth model at random
points within the ellipsoidal shell. At these radii only resolution levels 1
and 2 are sufficient to follow substructure. As a result, the characteristic
power-law tail due to subhalos is not visible at lower resolution. The fluc-
tuation distribution of the smooth component is dominated by noise in our
64-particle SPH density estimates. The density distribution measured for
a uniform (Poisson) particle distribution is indicated by the black dashed
line. Bottom panel: As above, but for all level-2 halos afterrescaling to
Vmax = 208.49 km/s. In all cases the core of the DPDF is dominated by
measurement noise and the fraction of points in the power lawtail due to
subhalos is very small. The chance that the Sun lies within a subhalo is
∼ 10−4. With high probability the local density is close to the meanvalue
averaged over the Sun’s ellipsoidal shell.

z = 0. The Aquarius Project resimulated six such halos at a series
of higher resolutions. The naming convention uses the tags Aq-A
through Aq-F to refer to these six halos. An additional suffix1 to
5 denotes the resolution level. Aq-A-1 is the highest resolution cal-
culation, with a particle mass of1.712×103 M⊙ and a virial mass
of 1.839 × 1012 M⊙ it has more than a billion particles within the
virial radiusR200 which we define as the radius containing a mean
density 200 times the critical value. The Plummer equivalent soft-
ening length of this run is20.5 pc. Level-2 simulations are available
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for all six halos with about200 million particles withinR200. Fur-
ther details of the halos and their characteristics can be found in
Springel et al. (2008).

In the following analysis we will often compare the six level-2
resolution halos, Aq-A-2 to Aq-F-2. To facilitate this comparison,
we scale the halos in mass and radius by the constant requiredto
give each a maximum circular velocity ofVmax = 208.49 km/s,
the value for Aq-A-2. We will also sometimes refer to a coordi-
nate system that is aligned with the principal axes of the inner halo,
and which labels particles by an ellipsoidal radiusrell defined as
the semi-major axis length of the ellipsoidal equidensity surface on
which the particle sits. We determine the orientation and shape of
these ellipsoids as follows. For each halo we begin by diagonal-
ising the moment of inertia tensor of the dark matter within the
spherical shell6 kpc < r < 12 kpc (after scaling to a com-
mon Vmax). This gives us a first estimate of the orientation and
shape of the best fitting ellipsoid. We then reselect particles with
6 kpc < rell < 12 kpc, recalculate the moment of inertia tensor
and repeat until convergence. The resulting ellipsoids have minor-
to-major axis ratios which vary from0.39 for Aq-B-2 to 0.59 for
Aq-D-2. The radius restriction reflects our desire to probe the dark
matter distribution near the Sun.

3 SPATIAL DISTRIBUTIONS

The density of DM particles at the Earth determines the flux of
DM particles passing through laboratory detectors. It is important,
therefore, to determine not only the mean value of the DM density
8 kpc from the Galactic Centre, but also the fluctuations around this
mean which may result from small-scale structure.

We estimate the local DM distribution at each point in our
simulations using an SPH smoothing kernel adapted to the 64
nearest neighbours. We then fit a power law to the resulting dis-
tribution of ln ρ againstln rell over the ellipsoidal radius range
6 kpc < rell < 12 kpc. This defines a smooth model density
field ρmodel(rell). We then construct a density probability distribu-
tion function (DPDF) as the histogram ofρ/ρmodel for all particles
in 6 kpc < rell < 12 kpc, where each is weighted byρ−1 so that
the resulting distribution refers to random points within our ellip-
soidal shell rather than to random mass elements. We normalise the
resulting DPDFs to have unit integral. They then provide a prob-
ability distribution for the local dark matter density at a random
point in units of that predicted by the best fitting smooth ellipsoidal
model.

In Fig. 1 we show the DPDFs measured in this way for all
resimulations of Aq-A (top panel) and for all level-2 halos after
scaling to a commonVmax (bottom panel). Two distinct compo-
nents are evident in both plots. One is smoothly and log-normally
distributed aroundρ = ρmodel, the other is a power-law tail to high
densities which contains less than10−4 of all points. The power-
law tail is not present in the lower resolution halos (Aq-A-3, Aq-
A-4, Aq-A-5) because they are unable to resolve subhalos in these
inner regions. However, Aq-A-2 and Aq-A-1 give quite similar re-
sults, suggesting that resolution level 2 is sufficient to get a reason-
able estimate of the overall level of the tail. A comparison of the six
level 2 simulations then demonstrates that this tail has similar shape
in different halos, but a normalisation which can vary by a factor
of several. In none of our halos does the fraction of the distribu-
tion in this tail rise above5× 10−5. Furthermore, the arguments of
Springel et al (2008) suggest that the total mass fraction inthe in-
ner halo (and thus also the total volume fraction) in subhalos below

0 150 300 450 600
v [km s-1]

0

1

2

3

4

f(
v)

 ×
 1

0-3

       
-1
0
1

∆ 
× 

10
-3

-450 -225 0 225 450
v1 [km s-1]

0

1

2

3

4

f(
v 1

) 
× 

10
-3

     
-1
0
1

∆ 
× 

10
-3

-450 -225 0 225 450
v2 [km s-1]

0

1

2

3

4

f(
v 2

) 
× 

10
-3

     
-1
0
1

∆ 
× 

10
-3

-450 -225 0 225 450
v3 [km s-1]

0

1

2

3

4

f(
v 3

) 
× 

10
-3

     
-1
0
1

∆ 
× 

10
-3

0 150 300 450 600
v [km s-1]

0

1

2

3

4

5

f(
v)

 ×
 1

0-3

Aq-A-1

Figure 2. Top four panels: Velocity distributions in a2 kpc box at the Solar
Circle for halo Aq-A-1.v1, v2 andv3 are the velocity components parallel
to the major, intermediate and minor axes of the velocity ellipsoid;v is the
modulus of the velocity vector. Red lines show the histograms measured
directly from the simulation, while black dashed lines showa multivari-
ate Gaussian model fit to the individual component distributions. Residuals
from this model are shown in the upper part of each panel. The major axis
velocity distribution is clearly platykurtic, whereas theother two distribu-
tions are leptokurtic. All three are very smooth, showing noevidence for
spikes due to individual streams. In contrast, the distribution of the velocity
modulus, shown in the upper left panel, shows broad bumps anddips with
amplitudes of up to ten percent of the distribution maximum.Lower panel:
Velocity modulus distributions for all2 kpc boxes centred between7 and
9 kpc from the centre of Aq-A-1. At each velocity a thick red line gives the
median of all the measured distributions, while a dashed black line gives
the median of all the fitted multivariate Gaussians. The darkand light blue
contours enclose68% and95% of all the measured distributions at each ve-
locity. The bumps seen in the distribution for a single box are clearly present
with similar amplitude in all boxes, and so also in the mediancurve. The
bin size is5 km/s in all plots.
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Figure 3. Distributions of the velocity modulus in four well separated 2 kpc
boxes about 8 kpc from the centre of Aq-A. Results are shown for each
region from each of the three highest resolution simulations. Error bars are
based on Poisson statistics. The different resolutions agree within their error
bars, and show the same bumps in all four boxes. For the purpose of this
plot, we have chosen a larger bin for our histograms,10 km/s as compared
to 5 km/s in our other velocity plots. For this bin size the statistical noise in
Aq-A-1 is barely visible.

the Aq-A-1 resolution limit is at most about equal to that above this
limit. Hence, the chance that the Sun resides in a bound subhalo of
any mass is of order10−4.

The striking similarity of the smooth log-normal component
in all the distributions of Fig. 1 has nothing to do with actual den-
sity variations in the smooth dark matter distribution. It is, in fact,
simply a reflection of the noise in our local density estimates. We
demonstrate this by setting up a uniform Poisson point distribu-
tion within a periodic box and then using an SPH smoothing kernel
adapted to the 64 nearest neighbours to associate a local density
with each particle in exactly the same way as for our halo simula-
tions. We can then construct a DPDF for these estimates (relative to
their mean) in exactly the same way as before. The result is shown
in the top panel of Fig. 1 as a dashed black line. It is an almostper-
fect fit to the smooth component in the simulations, and it would fit
the other halos equally well if plotted in the lower panel.

The fit is not perfect, however, and it is possible to disentan-
gle the true scatter in density about the smooth model from the
estimation noise. The latter is expected to be asymptotically log-
normal for large neighbour numbers, and Fig. 1 shows that it is
very close to log-normal for our chosen parameters. If we assume
that the scatter in intrinsic density about the smooth modelis also
approximately log-normal, we can estimate its scatter as the square
root of the difference between the variance of the simulation scat-
ter and that of the noise: symbolically,σintr =

p

σ2
obs − σ2

noise.
Indeed, it turns out that the variance inln(ρ/ρmodel) which we
measure for our simulated halos (excluding the power-law tail) is
consistently higher than that which we find for our uniform Poisson
distribution. Furthermore, tests show that the differences are stable
if we change the number of neighbours used in the SPH estima-
tor to 32 or 128, even though this changes the noise variance by

factors of two. This procedure give the following estimatesfor rms
intrinsic scatter around the smooth model density field in our six
level-2 halos, Aq-A-2 to Aq-F-2:2.2%, 4.4%, 3.7%, 2.1%, 4.9%
and4.0% respectively. The very large particle number in the radial
range we analyse results in a standard error on these number which
is well below0.01 for all halos. Thus, we can say with better than
99.9% confidence that the DM density at the Sun’s position dif-
fers by less than15% from the average over the ellipsoidal shell
on which the Sun sits. This small scatter implies that the density
field in the inner halo is remarkably well described by a smooth,
ellipsoidal, power-law model.

We conclude that the local density distribution of dark matter
should be very smooth. Bound clumps are very unlikely to have
any effect on direct detection experiments. The main reasonfor
this is the short dynamical time at the solar radius (about 1%of
the Hubble time). This results in very efficient mixing of unbound
material and the stripping of all initially bound objects toa small
fraction of the maximum mass they may have had in the past (see
Vogelsberger et al. 2008, for a discussion of these processes). Note
that the actual density of DM in the Solar neighbourhood and the
shape of the equidensity surfaces of the Milky Way’s dark mat-
ter distribution will depend on how the gravitational effects of
the baryonic components have modified structure during the sys-
tem’s formation. Unfortunately, the shape of the inner DM halo of
the Milky Way is poorly constrained observationally (Helmi2004;
Law et al. 2005). The dissipative contraction of the visiblecompo-
nents probably increased the density of the dark matter component,
and may also have made it more axisymmetric (e.g. Gnedin et al.
2004; Kazantzidis et al. 2004) but these processes are unlikely to
affect the level of small-scale structure. The very smooth behaviour
we find in our pure dark matter halos should apply also to the more
complex real Milky Way.

4 VELOCITY DISTRIBUTIONS

The velocity distribution of DM particles near the Sun is also an
important factor influencing the signal expected in direct detec-
tion experiments. As mentioned in the Introduction, most previ-
ous work has assumed this distribution to be smooth, and either
Maxwellian or multivariate Gaussian. Very different distributions
are possible in principle. For example, if the local densitydistribu-
tion is a superposition of a relatively small number of DM streams,
the local velocity distribution would be effectively discrete with all
particles in a given stream sharing the same velocity (Sikivie et al.
1995; Stiff et al. 2001; Stiff & Widrow 2003). Clearly, it is impor-
tant to understand whether such a distribution is indeed expected,
and whether a significant fraction of the local mass density could
be part of any individual stream.

We address this issue by dividing the inner regions of each of
our halos into cubic boxes2 kpc on a side, and focusing on those
boxes centred between7 and9 kpc from halo centre. In Aq-A-1,
each2 kpc box contains104 to 105 particles, while in the level-
2 halos they contain an order of magnitude fewer. For every box
we calculate a velocity dispersion tensor and study the distribu-
tion of the velocity components along its principal axes. Inalmost
all boxes these axes are closely aligned with those the ellipsoidal
equidensity contours discussed in the last section. We alsostudy
the distribution of the modulus of the velocity vector within each
box. The upper four panels of Fig. 2 show these distributionsof
a typical2 kpc box at the solar circle in Aq-A-1 (solid red lines).
Here and in the following plots we normalise distributions to have
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Figure 4. Velocity modulus distributions in exactly the same format as the bottom panel of Fig. 2 but for all six of our halos at level-2 resolution. All
distributions are smooth. Only in Aq-B-2 do we see a strong spike which is due to a single box which has 60% of its mass (though a small fraction of
its volume) in a single subhalo. No other box in any of the distributions has a subhalo contributing more than 1.5% of the mass. All distributions show
characteristic broad bumps which are present in all boxes ina given halo, and so in its median distribution. These bumps are in different places in different
halos.

unit integral. The black dashed lines in each panel show a multi-
variate Gaussian distribution with the same mean and dispersion
along each of the principal axes. The difference between thetwo
distributions in each panel is plotted separately just above it, This
particular box is quite typical, in that we almost always findthe
velocity distribution to be significantly anisotropic, with a major

axis velocity distribution which is platykurtic, and distributions of
the other two components which are leptokurtic. Thus the veloc-
ity distribution differs significantly from Maxwellian, oreven from
a multivariate Gaussian. The individual velocity components have
very smooth distributions with no sign of spikes due to individual
streams. This also is a feature which is common to almost all our
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Figure 5. Left panel: Median velocity modulus distributions for all six level-2 halos repeated from Fig. 4. The black dashed line is the mean of these
distributions. Middle panel: Deviations of the velocity modulus distribution of each of the six halos from the sample mean. The amplitude of the various
bumps is similar in different halos and over the whole velocity range. It reaches more than 10% of the amplitude of the meandistribution. Right panel: Relative
deviations of the individual velocity modulus distributions from their sample mean. Typical relative deviations are about30%, but they can exceed 50% at
higher velocities.

2 kpc boxes. It is thus surprising that the distribution of the velocity
modulus shows clear features in the form of bumps and dips with
amplitudes of several tens of percent.

To see how these features vary with position, we overlaid the
distributions of the velocity modulus for all 2 kpc boxes centred
between 7 and 9 kpc from the centre of Aq-A-1 (bottom panel of
Fig. 2). We superpose both the directly measured distributions and
the predictions from the best-fit multivariate Gaussians. At each
velocity, the solid red line show the median value of all the directly
measured distributions, while the dashed black line is the median of
all the multivariate Gaussian fits. The dark and light regions enclose
68% and95% of all the individual measured distributions at each
velocity.

It is interesting to note that the bumps in the velocity distri-
bution occur at approximately the same velocity in all boxes. This
suggests that they do not reflect local structures, but rather some
global property of the inner halo. In Fig. 3 we show velocity modu-
lus distribution for four different boxes in Aq-A at the three highest
resolutions (levels 1, 2 and 3). The error bars are based on Poisson
statistics in each velocity bin. Clearly the same bumps are present
in all boxes and at all resolutions. Thus, they are a consequence of
real dynamical structure that converges with increasing numerical
resolution.

In Fig. 4 we make similar plots of the velocity modulus dis-
tribution for all level-2 halos. These distributions are quite smooth.
The sharp peak in Aq-B-2 is due to a single2 kpc box where 60%
of the mass is contained in a single subhalo. No other box in this
or any other halo has more than1.5% of its mass in a single sub-
halo. The great majority of boxes contain no resolved subhalo at
all. Although the details of the median distributions vary between
halos, they share some common features. The low velocity region
is more strongly populated in all cases than predicted by themul-
tivariate Gaussian model. In all cases, the peak of the distribution
is depressed relative to the multivariate Gaussian. At moderately
high velocities there is typically an excess. Finally, and perhaps
most importantly, all the distributions show bumps and dipsof the
kind discussed above. These features appear in different places in
different halos, but they appear at similar places for all boxes in a

given halo. The left panel of Fig. 5 superposes the median velocity
modulus distributions of all level-2 halos and plots their mean as a
black dashed line. The middle panel shows the deviations of the in-
dividual halos from this mean. The amplitudes of the deviations are
similar in different halos and at low and high velocities. Inpercent-
age terms the deviations are largest at high velocity reaching values
of 50% or more, as can be seen from the right panel of Fig. 5.

The bumps in the velocity distribution are too broad to be
explained by single streams. Furthermore, single streams are not
massive enough to account for these features. This is shown more
clearly in Fig. 6 where we illustrate some streams in velocity space
for a 2 kpc box in halo Aq-A-1. Different colours here indicate
particles that belonged to different FoF groups at redshift4.2. For
clarity we only show streams from groups that contribute at least
10 particles to this volume (0.025% of the total number of particles
present at this location). There are 27 such objects. If we consider
all FoF groups that contribute more than2 particles to the volume
shown in Fig. 6, we find that a given FoF group contributes streams
that are typically only populated by2 particles (0.005% of the
total mass in the box). This implies that most of the groups con-
tribute several streams of very low density. The most prominent
streams have∼ 40 particles, i.e.∼ 0.1% of the mass in this vol-
ume. This clearly shows that streams are expected to be neither
dense nor massive in the Solar vicinity.

The most prominent streams typically occupy the tail of the
velocity distribution in these local boxes. The excess of parti-
cles moving with similar velocities and high kinetic energies can
be measured using a velocity correlation function, as shownby
Helmi et al. (2002).

5 ENERGY DISTRIBUTIONS

We have seen that the distributions of individual velocity compo-
nents in localised regions of space are very smooth, whereasthe
velocity modulus distribution shows clear bumps. Taken together
with the fact that these bumps occur at similar velocities inregions
on opposite sides of the halo centre, this indicates that we must be
seeing features in the energy distribution of dark matter particles.
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Figure 6. Streams in velocity space for a2 kpc box∼ 8 kpc from the cen-
tre of Aq-A-1. Different colours stand for particles associated to different
FoF groups at redshift4.2. Only groups contributing more than ten particles
are shown. The box contains 27 such objects and has in total 41143 parti-
cles (shown as small black points) of which 1796 come from these groups.
Clearly, particles originating from the same group clusterin velocity space
and build streams; often many streams per group.
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Figure 7. Mean phase-space density distribution as a function of energy for
Aq-A for particles in a spherical shell between6 and12 kpc and for all
five resolution levels. Especially at high-binding energies the convergence
is very good. Features in the distribution function are visible at all resolu-
tions for energies below2.7 V 2

max, despite the fact that the mass resolution
differs by more than a factor of1800 between Aq-A-1 and Aq-A-5. The
less bound parts show more variation from resolution to resolution but still
agree well between Aq-A-1 and Aq-A-2.

To investigate this further, we estimate the mean phase-space
density as a function of energy in each of our halos using the prop-
erties of the particles at radii between6 and12 kpc. Clearly our
halos are not perfectly in equilibrium and they are far from spher-
ical. Thus their phase-space densities will only approximately be
describable as functions of the integrals of motion, and they will de-
pend significantly on integrals other than the energy. Nevertheless
we can estimate a mean phase-space density as a function of energy
by taking the total mass of particles with6 kpc < r < 12 kpc and
energies in some small interval and dividing it by the total phase-
space volume corresponding to this radius and energy range,e.g.

f(E) =
dM

dE

1

g(E)
, (1)

wheref(E) is the energy-dependent mean phase-space density and

g(E) = 4π

Z

V,E>Φ(x)

d3
x

p

2 (E − Φ(x)), (2)

is the available phase-space volume in the configuration-space vol-
umeV. The differential energy distribution is easily calculated by
binning the energies of all particles between6 and 12 kpc. The
phase-space volume can be calculated by solving for the gravita-
tional potential at the position of all simulation particles and then
using these as a Monte-Carlo sampling of configuration spacein the
relevant integrals. Taking the ratio then yields the desired estimate
of f(E).

In Fig. 7 we showf(E) measured in this way for all our sim-
ulations of Aq-A. We express the energy in units ofV 2

max and we
take the zero-point of the gravitational potential to be itsaverage
value on a sphere of radius 8 kpc. As a result the measured en-
ergy distribution extends to slightly negative values. Note how well
the distribution converges at the more strongly bound energies. At
higher energies the convergence between the level-1 and 2 reso-
lutions is still very good. This demonstrates that we can robustly
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Figure 8. Evolution of the mean phase-space density distribution of Aq-A-
2 over four time intervals of about300 Myr. Below 2.4 V 2

max the phase-
space distribution function is time-independent, implying that the system
has reached coarse-grained equilibrium. The small bumps atthese energies
are therefore well-mixed features in action space. The variability of the fea-
tures in the weakly bound part of the distribution shows thatthey are due
to individual streams and therefore change on the timescaleof an orbital
period. Note that the phase-space density at these energiesis almost three
orders of magnitude below that of the most bound particles.

measure the mean phase-space density distribution. Furthermore,
we see clear wiggles that reproduce quite precisely betweenthe
different resolutions.

Fig. 8 shows similarly estimated mean phase-space density
distributions for Aq-A-2 at five different times separated by about
300 Myr. This is longer than typical orbital periods in the region we
are studying. Despite this, the wiggles at energies below2.4 V 2

max

are present over the complete redshift range shown. This demon-
strates that these features are well-mixed, and that the phase-space
distribution function has reached a coarse-grained equilibrium. In
contrast, the variability of the wiggles in the part of the distribution
corresponding to weakly bound particles (where the orbitalperiods
are much larger) shows that these must be due to individual streams
or to superpositions of small numbers of streams, which havenot
yet phase-mixed away.

To estimate what these phase-space distribution functions
should look like for a “smooth” system, we average the functions
found in our six individual level-2 halos. In Fig. 9 we superpose
these six functions and their mean〈f〉 (the black dashed line). The
similarity of the different distribution functions at highbinding en-
ergies suggests a near-universal shape forf(E). At lower binding
energies, individual halos deviate quite strongly from〈f〉. This can
be seen more clearly in Fig. 10 where we plotlog(f/〈f〉), the dec-
imal logarithm of the ratio of the phase-space density of an indi-
vidual halo to the mean. The lower axis is orbital energy in units of
V 2

max, while the upper axis is the corresponding dark matter parti-
cle velocity at the Solar Circle. In this plot one can clearlysee the
wiggles, which are located at different energies for different halos.
For V8 kpc < 350 km/s the distribution functions for all halos sat-
isfy 0.7 < f/〈f〉 < 1.4. For low binding energies (velocities of
600 km/s or more at the Solar Circle) this ratio can exceed a factor
of ten.

These features in the phase-space density distribution must be
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Figure 9. Scaled phase-space distribution functions for all level-2halos.
In addition to scaling according toVmax we have also corrected for a
zero-point offset in the potential energy between different halos. The black
dashed line shows the average distribution function based for our halo sam-
ple. At high binding energies the scatter between average and individual
halo distribution functions is quite small, showing that this part of the distri-
bution function is near-universal. At low-binding energies large amplitude
features are visible in all halos. These features differ from halo to halo and
are related to recent events in their formation histories.
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Figure 10. Deviations of the individual phase-space density distributions
from the mean over our sample of level-2 halos. We focus here on the more
bound part. The lowerx-axis shows the orbital energy while the upper one
shows the corresponding velocity8 kpc distance from halo centre. The am-
plitude of features increases forV8 kpc > 350 km/s. At even lower binding
energies,E > 3 Vmax deviations can reach an order of magnitude, see
Fig. 9.

related to events in the formation of each halo. To demonstrate this
explicitly, we have computedf(E) separately for particles which
were accreted onto two of our halos (i.e. first entered the main
progenitor FoF group) at different epochs. The upper left panel of
Fig. 11 shows that Aq-A-2 had a very “quiet” merger history. Ma-
terial accreted at different times is arranged in a very orderly way
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Figure 11. Top row: Contributions to the present-day phase-space density distribution from particles accreted at different epochs (indicated by different
colours). The top left panel shows the build-up of the distribution function for halo Aq-A-2. This halo has a quiescent formation history with no recent
mergers. The top right panel is a similar plot for Aq-F-2, which underwent a major merger betweenz = 0.75 andz = 0.68. Bottom row: These plots isolate
the contribution of a single, massive FoF group to thez = 0 phase-space density distributions. For Aq-A-2 this group was identified atz = 6.85, for Aq-F-2 at
z = 0.75. In both cases it is clear that material from the group is responsible for some of the features seen in the present-day phase-space density distribution.

in energy space. All the most strongly bound particles were ac-
creted before redshift 5, and material accreted at successively later
times forms a series of “shells” in energy space. The most weakly
bound wiggles are due entirely to the most recently accretedma-
terial, and progressively more bound bumps can be identifiedwith
material accreted at earlier and earlier times. In contrast, the top
right panel shows that Aq-F-2 had a very “active” merger history,
with a major merger betweenz = 0.75 andz = 0.68. The corre-
spondence between binding energy and epoch of accretion is much
less regular than for Aq-A-2, and much of the most bound material
actually comes from the object which fell in betweenz = 0.75
andz = 0.68. It is also striking that many of the wiggles in this
object are present in material that accreted at quite different times,
suggesting that they may be non-steady coherent oscillations rather
than stable structures in energy space. Nevertheless, in both ha-
los one can identify features in the phase-space density distribu-
tion with particles accreted at certain epochs, and in both halos the
most weakly bound particles were added only very recently. Note
that the phase-space density of this material is very low, soit con-
tributes negligibly to the overall local dark matter density. In the
bottom panels of Fig. 11 we show thef(E) distributions of parti-
cles which were associated with a single, massive FoF-groupwhich

was identified atz = 6.85 in the case of Aq-A-2 and atz = 0.75
in the case of Aq-F-2. The wiggles in the strongly bound part of
Aq-A-2 are clearly due to this early merger event, while the later
merger in Aq-F-2 is responsible for most of the material accreted
in 0.56 < z < 0.81 and for most of the strong features in the
phase-space density distribution.

We conclude that these features in the energy distribution
should open the window to “dark matter astronomy” once exper-
iments reach the sensitivity needed for routine detection of DM
particles. We will then be able to explore the formation history of
the Milky Way using the DM energy distribution.

6 DETECTOR SIGNALS

We will now use the spatial and velocity distributions explored
above to calculate expected detector signals. The main question
here is how the non-Gaussian features of the velocity distribution
influence these signals. Our results show that features due to sub-
halos or massive streams are expected to be unimportant. On the
other hand, deviations of the velocity distributions from aperfect
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Figure 12. Recoil spectra ratio for the three highest resolution simulations of Aq-A (left) and the level-2 (right) simulations ofthe other halos. For these plots
we averaged the recoil rate over a year for every box and then calculated the median recoil rate ratio〈R〉/〈Rgauss〉 of the rates for the simulation and for
the best-fit multivariate Gaussian distribution. Thex-axis is directly proportional to the energy. In all level-2halos the expected recoil spectrum based on a
multivariate Gaussian can be wrong by about10% depending on the energy. Furthermore the behaviour of the deviations seems quite similar. This is due to
the fact that the velocity distributions differ in a characteristic way from a multivariate Gaussian. The deviations inthe recoil spectra are typically highest at
high energies.

Gaussians in terms of general shape, bumps and dips can have an
impact on detector signals.

There are currently more than 20 direct detection experiments
searching for Galactic DM, most of them focusing on WIMPs. For
these, the detection scheme is based on nuclear recoil with the de-
tector material. The differential WIMP elastic scatteringrate can be
written as (Jungman et al. 1996):

R = R ρ0 T (E, t), (3)

whereR encapsulates the particle physics parameters (mass and
cross-section of the WIMP; form factor and mass of target nucleus),
ρ0 is the local dark matter density that we assume to be constant
based on the results of section 3, and

T (E, t) =

∞
Z

vmin

dv
fv(t)

v
, (4)

wherefv is the WIMP speed distribution in the rest frame of the
detector integrated over the angular distribution.vmin here is the
detector-dependent minimum WIMP speed that can cause a recoil
of energyE:

vmin =

„

E (mχ + mA)2

2m2
χmA

«1/2

, (5)

wheremχ is the WIMP mass andmA the atomic mass of the target
nucleus. To get detector independent results we setR = 1 in the
following1.

The recoil rate shows a annual modulation over the year
(Drukier et al. 1986). To take this into account we add the Earth’s
motion to the local box velocities to transform Galactic rest frame
velocities into the detector frame. We model the motion of the

1 This also implies that we assume the form factor to be constant. Any
other form factor will change the shape of the recoil spectrum. Since we are
not interested in the exact shape of the spectrum, but in deviations expected
due to different velocity distributions, we neglect form factor effects in the
following.

Earth according to Lewin & Smith (1996) and Binney & Merrifield
(1998). Let~vE = ~ur + ~uS + ~uE be the velocity of the Earth rel-
ative to the Galactic rest frame decomposed into Galactic rotation
~ur, the Sun’s peculiar motion~uS and the Earth’s velocity relative to
the Sun~uE . In Galactic coordinates these velocities can be written
as:

~ur = (0, 222.2, 0) km/s,

~uS = (10.0, 5.2, 7.2) km/s,

eE,i = uE(λ) cos(βi) sin(λ − λi),

uE(λ) = 〈uE〉 [1 − e sin(λ − λi)] (6)

where i = R, φ, z, λ is the ecliptic longitude (λ0 = (13 ±
1)◦),〈uE〉 = 29.79 km/s is the mean velocity of the Earth around
the Sun, and the ellipticity of the Earth orbite = 0.016722. The
~ur value is based on a combination of a large number of indepen-
dent determinations of the circular velocity by Kerr & Lynden-Bell
(1986). We note that this value has a standard deviation of20 km/s.
For the constantβ andλ angles we take:

(βR, βφ, βz) = (−5.5303◦, 59.575◦, 29.812◦)

(λR, λφ, λz) = (266.141◦,−13.3485◦ , 179.3212◦) (7)

The ecliptic longitude can be written as

λ(t) = L(t) + 1.915◦ sin g(t) + 0.020◦ sin 2g(t),

L(t) = 280.460◦ + 0.9856474◦t,

g(t) = 357.528◦ + 0.9856003◦t, (8)

wheret is the fractional day number relative to noon (UT) on 31
December 1999 (J2000.0). We refer to a day number relative to31
December 2008 in our plots. In what follows we will assume that
theR-direction is always aligned with the major axis of the princi-
pal axis frame of the velocity ellipsoid in each box and theφ- and
z-directions, with the intermediate and short axes. This is needed
to add the Earth’s motion to the box velocities, and to transform the
velocity vectors in each box to the detector frame.

Clearly the deviations of the velocity distribution from a per-
fect multivariate Gaussian found in the previous sections will also
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Figure 13. Top panels: Annual modulation for all2 kpc boxes with halocentric distance between7 and9 kpc in halo Aq-A-1 assumingvmin = 300 km/s.
The left plot shows how the dimensionless recoil rate(R(t)−〈R〉)/〈R〉 changes over the year. The right plot shows the corresponding modulation parameter
space defined by the peak day (x-axis) and maximum amplitude(Rmax − 〈R〉)/〈R〉 (y-axis). Bottom panels: Modulation parameters for the local2 kpc
boxes of all level-2 resolution halos. There is no clear trend visible in the day of maximum behaviour over the halo sample. On the other hand, the median
amplitude in all boxes is higher than expected based on the Gaussian sample forvmin = 300 km/s. The line and contour scheme is the same as in Fig. 2.

alter the recoil spectrum, because the velocity integralT (E, t) ef-
fectively measures the1/v-weighted area under the velocity curve.
As in the previous sections we compare the results obtained di-
rectly from the simulations to the expectation for a best-fitmulti-
variate Gaussian distribution. In Fig. 12 we plot recoil spectra ra-
tios for the three highest resolution simulations of Aq-A (left) and
the level-2 (right) simulations of the other halos. For these plots
we averaged the recoil rate over a year for individual boxes.The
rates are calculated using the simulation velocity distribution (〈R〉)
and the best-fit Gaussian model for each box (〈Rgauss〉). The plots
show the median of the ratios〈R〉/〈Rgauss〉 over all boxes. Since
we assume that the densityρ0 is constant in a given box, it drops
out when calculating the ratios. Thex-axis measures the energy in
dimensionlessβ = v/c values. For a given detector this can easily
be converted to keV, assuming the massesmχ andmA are given in
GeV/c2:

E =
2 m2

χ mA

(mχ + mA)2
c2 β2 × 106 keV (9)

Fig. 12 clearly shows that in all level-2 halos the expected re-

coil spectrum based on a multivariate Gaussian model can differ
by up to10% from the directly predicted simulation result. Fur-
thermore, the behaviour of the deviations seems to be similar in all
cases, especially at low energies, where we already found that the
phase-space density is nearly universal. The similarity inthe devia-
tions between the different halos is due to the fact that the velocity
distributions all differ in a characteristic way from the Gaussian dis-
tributions as shown in section 4. The deviations in the recoil spectra
are typically highest at high energies.

The 10% deviations in the recoil spectra are larger than the
typical deviations expected due to the annual modulation. There-
fore these deviations from the Gaussian model can also influence
the annual modulation signal. In Fig. 13 (top row) we plot thedi-
mensionless recoil rate(R(t)−〈R〉)/〈R〉 of all local2 kpc boxes at
∼ 8 kpc from the centre of Aq-A-1 (left),where〈R〉 is the annual
mean recoil. We have assumedvmin = 300 km/s for all plots in
this figure. The maximum can clearly be seen around the month of
June. The plot on the right in Fig. 13 shows the modulation parame-
ter space that we define by the day of maximum amplitude (x-axis)
and the maximum modulation amplitude of the recoil rate overthe
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Figure 14. Top panel: Median recoil rate amplitude for all2 kpc boxes
with halocentric distance between7 and9 kpc for all level-2 halos. The
plot shows the difference between the relative maximum modulation am-
plitude observed in the simulation and that expected for thebest-fit multi-
variate Gaussian distribution. Bottom panel: Median day ofmaximum am-
plitude for the same halos (solid red) compared to their Gaussian predic-
tions (dashed black). The day of maximum amplitude is the same for all
boxes and is well reproduced in the Gaussian model. The phase-reversal
can clearly be seen.

year defined as(Rmax − 〈R〉)/〈R〉 (y-axis). The bottom row of
Fig. 13 shows the maximum amplitude (left) and day of maximum
(right) for all level-2 halos (solid red) and the corresponding best-fit
multivariate Gaussian model (dashed black).

Comparing the Gaussian median values to the box median val-
ues one can see that the day of maximum amplitude does not devi-
ate significantly from that predicted for a multivariate Gaussian; in
particular there is no clear trend visible over the halo sample. On
the other hand, the median amplitude in all halos is slightlyhigher
than expected based on the Gaussian sample forvmin = 300 km/s.

The amplitude differences for variousvmin values are shown
in Fig. 14. Here we calculated the maximum amplitude and day of
maximum for differentvmin values for all level-2 halos. The ampli-
tude plot (top) shows the difference between the maximum relative
modulation amplitude observed in the simulation and that expected
for the best-fit multivariate Gaussian model. The maximum ampli-
tudevmin-dependence is similar for the six halos. Since only the
velocity distribution enters into the recoil calculation,this similar-
ity is due to the fact that deviations of the halo velocity distribution

from the Gaussian model are also quite similar for all six halos.
The bottom plot of Fig. 14 shows the day of maximum amplitude is
well predicted by the multivariate Gaussian for all halos. The sharp
transition in the day of maximum is due to the well-known phase-
reversal effect (Primack et al. 1988). We checked that the subhalo
dominated box in Aq-B-2, where by chance about60% of the box
mass is in a single subhalo, leads to a very different modulation sig-
nal. The day of maximum in that case shifts about100 days from
the Gaussian distribution. We note that although the subhalo mass
fraction in this particular box is high, the subhalo volume fraction
is tiny, so even within this box, almost all observers would see the
smooth regular signal.

Although most of the direct experiments currently search
for WIMPs the axion provides another promising candidate for
CDM. It arises from the Peccei-Quinn solution to the strong CP-
problem. One axion detection scheme is based on using the axion-
electromagnetic coupling to induce resonant conversions of axions
to photons in the microwave frequency range. Galactic axions have
non-relativistic velocities (β = v/c ∼ 10−3) and the axion-to-
photon conversion process conserves energy, so that the frequency
of converted photons can be written as:

νa = ν0
a + ∆νa = 241.8

„

ma

1µeV/c2

« „

1 +
1

2
β2

«

MHz (10)

wherema is the axion mass that lies between10−6 eV/c2 and
10−3 eV/c2. 5µeV axions would therefore convert intoν0

a
∼=

1200 MHz photons with an upward spread of∆ ∼∼= 2 kHz due
to their kinetic energy. An advantage of axion detection compared
to WIMP searches is the fact that it is directly sensitive to the en-
ergy rather than to the integral over the velocity distribution. The
power P , developed in the axion search cavity due to resonant
axion-photon conversion can be written as (Sikivie 1983):

P = P ρa(νcavity) (11)

where P encapsulates the experimental properties (cavity vol-
ume, magnetic field, quality factor) and particle physics properties
(model dependent coupling parameter, axion mass). The onlyas-
trophysical input is the local densityρa(νcavity) of axions with en-
ergies corresponding to the cavity frequency. For simplicity we set
P = 1. We can produce axion spectra from our simulations by tak-
ing a local volume element (a box) and computing the distribution
of kinetic energiesK of the particles found in this location. The
number of particles with a givenK is then directly proportional to
ρa at this frequency, and so to the power in the frequency bin.

To make the results independent of axion mass and other ex-
perimental properties we present histograms ofβ2 normalised to
one. For a given axion massma (in µeV/c2) the x-axis must be
transformed according tox → 241.8 ma (1 + 1/2x) to get the
corresponding frequencies in MHz.

A long-running axion search experiment is ADMX at LLNL
(Hagmann et al. 1996). It has channels at medium (MR) and high
resolution (HR). The latter has a frequency resolution of about
0.02 Hz. For ν0

a = 500 MHz and an axion velocity ofv =
200 km/s this translates into a velocity width of only0.018 km/s2.
Our numerical resolution prevents us from predicting the behaviour
on such small scales. For wider bin searches and especially for the
medium resolution (MR) channel (125 Hz corresponding to a typi-
cal velocity spread of about100 km/s) we can, however make reli-
able predictions by binning particles with respect toβ2.

2 For non-relativistic motion we can writedv = (c2/v) (dν/ν0
a ).
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Figure 15. Axion spectra of level-2 halos for all2 kpc boxes with halocentric distance between7 and 9 kpc. Rescaling thex-axis according tox →
241.8 ma (1 + 1/2x) for an axion massma in µeV yields thex-axis in MHz. They-axis is proportional to the powerP developed in the detector cavity.
Therefore the panels show the predicted frequency spectra expected for an axion search experiment like ADMX. These spectra can be reasonably described
by a multivariate Gaussian but significant differences remain. The maximum in the power is at lower frequencies in the simulation than in the Gaussian model.
The bumps already found in the velocity and energy distribution are clearly visible in these spectra. In all halos the power at low frequencies is higher than
expected from the Gaussian model. The line and contour scheme are the same as in Fig. 2.

In Fig. 15 we show axion spectra for all level-2 halos3. In a

3 We neglect the effects of the Earth’s motion when constructing the spec-
tra since here our focus is on the general spectral shape. This motion typi-

broad sense, the spectra obtained from our simulations looksimilar

cally leads to a shift of about100 Hz due to annual modulation and a daily
shift of about1 Hz due to the Earth’s rotation (Duffy et al. 2005).
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to those of multivariate Gaussian models. However there area num-
ber of differences. For example, the peak power is shifted tolower
frequencies. The Gaussian distribution is also a poor description of
the spectrum at low frequencies. In all halos the power at lowand
high frequencies is higher then expected from a multivariate Gaus-
sian model. This effect is quite small for high frequencies but very
significant for low frequencies. The higher power at low frequen-
cies can be understood from the velocity distributions in Fig. 4.
In Aq-B-2 the subhalo dominated box that was seen in Fig. 4 is
clearly visible as a peak in the power spectrum at high frequency.
The bumps in the velocity distribution also result in quite signifi-
cant features in the axion spectra that might be visible in the MR
channel given enough signal-to-noise.

7 CONCLUSION

We have characterised the local phase-space distribution of dark
matter using the recently published ultra-high resolutionsimula-
tions of the Aquarius Project. Our study provides new insights rele-
vant to searches for the elusive CDM particles. This resultsfrom the
unprecedented resolution and convergence (in a dynamical sense)
of our simulations, as well as from the fact that they providea sam-
ple of six Milky Way-like dark matter halos.

We have measured the probability distribution function of the
DM mass density between6 and 12 kpc from the centre of the
halo, finding it to be made up of two components: a truly smooth
distribution which scatters around the mean on ellipsoidalshells by
less than5% in all the halos of our sample, and a high-density tail
associated with subhalos. The smooth DM component dominates
the local DM distribution. With99.9% confidence we can say that
the Sun lies in a region where the density departs from the mean
on ellipsoidal shells by less then15%. Experimentalists can safely
adopt smooth models to estimate the DM density near the Sun.

We find that the local velocity distribution is also expectedto
be very smooth, with no sign of massive streams or subhalo contri-
butions. The standard assumption of a Maxwellian velocity distri-
bution is not correct for our halos, because the velocity distribution
is clearly anisotropic. The velocity ellipsoid at each point aligns
very well with the shape of the halo. A better fit to the simulations
is given by a multivariate Gaussian. Even this description does not
reproduce the exact shape of the distributions perfectly. In partic-
ular the modulus of the velocity vector shows marked deviations
from such model predictions. Velocity distributions in oursix dif-
ferent halos share common features with respect to the multivari-
ate Gaussian model: the low-velocity region is more populated in
the simulation; the peak of the simulation distribution is depressed
compared to the Gaussian; at high velocities there is typically an
excess in the simulation distribution compared to the best-fit multi-
variate Gaussian. Furthermore the velocity distribution shows fea-
tures which are stable in time, are reproduced from place to place
within a given halo, but differ between different halos. These are
related to the formation history of each individual halo.

The imprints in the modulus of the velocity vector reflect fea-
tures in the energy distribution. We explicitly show that the phase-
space distribution function as a function of energy contains char-
acteristic wiggles. The amplitude of these wiggles with respect to
the average distribution function of our sample of six halosrises
from high to low-binding energies. After appropriate scaling, the
most bound part of the distribution function looks very similar in
all halos, suggesting a (nearly) universal shape. The weakly bound

part of the distribution, on the other hand, can deviate in any given
halo by an order of magnitude from the mean.

We have used our simulations to predict detector signals for
WIMP and axion searches. We find that WIMP recoil spectra can
deviate about10% from the recoil rate expected from the best-fit
multivariate Gaussian model. The energy dependence of these de-
viations looks similar in all six halos; especially at higher binding
energies. We find that the annual modulation signal peaks around
the same day as expected from a multivariate Gaussian model
with no clear trend over our halo sample for varying recoil ve-
locity thresholds. The maximum recoil modulation amplitude, on
the other hand, shows a clear threshold-dependent difference be-
tween the signal expected for a multivariate Gaussian modeland
that estimated from the simulation. We have also explored the ex-
pected signal for direct detection of axions. We find the axion spec-
tra to be smooth without any sign of massive streams. The spectra
show characteristic deviations from those predicted by a multivari-
ate Gaussian model; the power at low and high frequencies is higher
than expected. The most pronounced effect is that the spectra peak
at lower frequencies than predicted. Since the frequenciesin the
axion detector are directly proportional to the kinetic energy of the
axion particles, the bumps in the DM velocity and energy distribu-
tions are also clearly visible in the axion spectra. All the effects on
the various detector signals are driven by differences in the veloc-
ity distribution. Individual subhalos or streams do not influence the
detector signals however, since they are sub-dominant by a large
factor in all six halos.

Our study shows that, once direct dark matter detection has
become routine, the characterisation of the DM energy distribution
will provide unique insights into the assembly history of the Milky
Way halo. In the next decade, a new field may emerge, that of “dark
matter astronomy”.
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