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ABSTRACT
Secondary anisotropies of the cosmic microwave background (CMB) can be detected by
using the cross-correlation between the large-scale structure (LSS) and the CMB temperature
fluctuations. In such studies, chance correlations of primordial CMB fluctuations with the LSS
are the main source of uncertainty. We present a method for reducing this noise by exploiting
information contained in the polarization of CMB photons. The method is described in general
terms and then applied to our recently proposed optimal method for measuring the integrated
Sachs–Wolfe (ISW) effect. We obtain an expected signal-to-noise ratio of up to 8.5. This
corresponds to an enhancement of the signal-to-noise ratio by 23 per cent as compared to the
standard method for ISW detection, and by 16 per cent w.r.t. our recently proposed method,
both for the best-case scenario of having perfect (noiseless) CMB and LSS data.
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1 IN T RO D U C T I O N

The low-redshift large-scale structure (LSS) changes the cosmic
microwave background (CMB) fluctuations in various ways. Such
secondary effects on the CMB are, for example, the integrated
Sachs–Wolfe (ISW) effect (Sachs & Wolfe 1967), the Rees–Sciama
(RS) effect (Rees & Sciama 1968), gravitational lensing (Lewis &
Challinor 2006) and the Sunyaev–Zel’dovich (SZ) effect (Sunyaev
& Zeldovich 1972, 1980). By studying these signals, we can ob-
tain valuable information about our Universe. The ISW effect, for
example, provides independent evidence for the existence of dark
energy. Unfortunately, unless the spectral signatures of the signal
differ from the ones of the primordial CMB, it is difficult to detect
them. The reason is that the primordial CMB fluctuations created
at the time of last scattering are much stronger than the secondary
temperature anisotropies. The usual method for detecting secondary
anisotropies in the CMB is via cross-correlating the CMB tempera-
ture maps with LSS data such as the galaxy density contrast. Since
secondary anisotropies in the CMB are created by the LSS, there is
a significant cross-correlation between the two. In contrast, the pri-
mordial CMB fluctuations should not be correlated with the LSS. By
performing the cross-correlation analysis, one can therefore sepa-
rate signatures of the presence of these secondary anisotropies from
the primordial fluctuations.

In the standard cross-correlation method, first described by
Boughn, Crittenden & Turok (1998), the observed cross-correlation
between LSS and CMB data is compared to its theoretical predic-
tion. This method has been extensively used to detect the ISW
effect. Some of the most recent studies are by Ho et al. (2008),
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Giannantonio et al. (2008), Rassat et al. (2006) and Boughn &
Crittenden (2004). Since the theoretical cross-correlation function
is by construction an ensemble average over all possible universes,
fluctuations associated with the specific realization of the LSS in
the observed Universe act as a source of noise in the detected signal
in the standard method.

In Frommert, Enßlin & Kitaura (2008), we suggested a method
for reducing this source of uncertainty, which we will refer to as
the optimal temperature-only method. Instead of comparing the ob-
served cross-correlation function with its theoretical prediction, we
use an optimal matched filter in order to detect an ISW template in
CMB data. Similar schemes were independently proposed by Zhang
(2006), Hernández-Monteagudo (2008) and Granett, Neyrinck &
Szapudi (2008). Optimal matched filters have also been used to
study other secondary effects on the CMB. The first of these studies
explored the detectability of the kinetic SZ effect of galaxy clusters
(Haehnelt & Tegmark 1996), later works on the kinetic SZ and the
RS effects are for example by Schäfer et al. (2006), Maturi et al.
(2007a,b) and Waelkens, Maturi & Enßlin (2008).

However, in both the standard method and the optimal
temperature-only method, the main source of uncertainty in the
detection of the secondary signal comes from chance correlations
of primordial CMB fluctuations with the LSS. In this work, we
present a method which exploits polarization information in or-
der to reduce not only the noise from the specific LSS realiza-
tion but also the noise coming from primordial CMB temperature
fluctuations. This method can be applied generically to the de-
tection of all secondary effects. It is based on the fact that the
polarization measured in the CMB contains information about the
primordial temperature fluctuations. We use the observed E-mode
polarization map, which we translate into a temperature map us-
ing the temperature-E-mode cross-power spectrum. The obtained
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temperature map is then subtracted from the observed temperature
map, and hence no longer contributes to the noise budget of the
detected signal. Once an E map has been measured to a good accu-
racy, this will significantly enhance the signal-to-noise ratio (S/N)
of the detection of secondary effects. The first all-sky measurement
of polarization with high fidelity is expected to be provided by the
Planck Surveyor satellite (Tauber 2000), to be launched in 2009.

Our optimal polarization method builds on the optimal scheme
to detect LSS signatures in CMB data, which we developed in
Frommert et al. (2008) specifically for the ISW effect. Note that
this method assumes a Gaussian data model, hence it is very well
suited for the ISW effect, whereas one might need to extend it into
the non-Gaussian regime for other effects such as the RS effect, the
kinetic SZ effect or lensing. This can be done using information
field theory (Enßlin, Frommert & Kitaura 2008), but is beyond the
scope of this work. Here, we show how to use the information
contained in polarization data within the framework of a Gaussian
data model and leave the extension to more complicated models for
future work.

When applying our method to ISW detection, we obtain an ex-
pected S/N of up to 8.5. This corresponds to an enhancement of
the S/N by 16 per cent w.r.t. the optimal temperature-only method,
independent of the depth of the galaxy survey considered. In com-
parison to the standard method, the S/N is enhanced by 23 per cent
for a full-sky LSS survey that goes out to redshift 2. Both of these
comparisons have been made for the best-case scenario of having
perfect (noiseless) CMB and LSS data.

Using polarization data to reduce the noise in the detection of
secondary effects was first proposed by Robert Crittenden, follow-
ing a suggestion from Lyman Page (Crittenden 2006). He already
derived the reduced temperature power spectrum, which we show
in Fig. 1, and roughly estimates the improvement of the S/N for
ISW detection to be around 20 per cent, which we confirm with our
calculations.

Our article is organized as follows. In Section 2, we describe the
optimal method derived in Frommert et al. (2008) in general terms.
In Section 3, we then show how we can reduce the noise coming
from primordial temperature fluctuations by using polarization data.
In Section 4, we apply the method to the ISW effect. We conclude
in Section 5.

2 O P T I M A L M E T H O D F O R TH E D E T E C T I O N
O F S E C O N DA RY EF F E C T S O N TH E C M B

In Frommert et al. (2008), we derived an optimal method for the
detection of secondary temperature anisotropies in the CMB using
as example the ISW effect. In this section, we briefly review this
method, which we refer to as the optimal temperature-only method.

Let us assume that we know the LSS well enough to create a
template T τ of the secondary signal Ts that we would like to detect
in the temperature fluctuations, for example, the ISW signal T isw.
Here, TX with any index X denotes the function TX : S2 → R,
which we regard also as an element of a function vector space. The
data d we measure are the observed CMB temperature fluctuations
Tobs. Our data model is then

d ≡ Tobs

= Tcmb + Tfg + Tdet

= Tτ + (Tcmb − Tτ ) + Tfg + Tdet

≡ Tτ + �Tobs, (1)

where Tcmb denotes the cosmological CMB temperature fluctua-
tions, T fg are residual galactic foregrounds after foreground re-
moval and Tdet denotes the detector noise. Note that (T cmb − T τ ) =
(T cmb − T s) + (T s − T τ ) contains the CMB fluctuations other
than the signal we are after, (T cmb − T s), and the uncertainty in the
template w.r.t. the signal, (T s − T τ ), coming from our ignorance of
the full distribution of the matter in the Universe. Note that for sim-
plifying the notation we have redefined T ≡ (T − T 0)/T 0, where
T0 denotes the monopole of the CMB temperature fluctuations. An
overview over the above definitions can be found in Table 1.

We now approximate the distribution of �T obs by a Gaussian
around zero. That is, we write the probability density function of
Tobs given the signal template T τ and the cosmological parameters
p, the likelihood, as

P (Tobs | Tτ , p) = G (Tobs − Tτ ,C) . (2)

Here, we have defined

G(χ,C) ≡ 1√|2πC| exp

(
−1

2
χ† C−1χ

)
(3)

to denote the probability density function of a Gaussian-distributed
vector χ with zero mean, given the cosmological parameters p
and the covariance matrix C ≡ 〈χχ†〉, where the averages are
taken over the Gaussian distribution G(χ,C). Note that in general
the covariance matrix depends on the cosmological parameters,
which is not explicitly stated in our notation. A daggered vector or
matrix denotes its transposed and complex conjugated version, as
usual. Hence, given two vectors a and b, a b† must be read as the
tensor product, whereas a† b denotes the scalar product. Note that in
equation (2) the signal template T τ may depend on the cosmological
parameters p as well.

Let us briefly address the question of how to create the template
T τ . When writing down the likelihood in equation (2), we have
implicitly assumed that the template T τ is the mean of Tobs w.r.t.
the probability distribution given in equation (2). This probability
distribution is conditional on the template T τ , or, in other words,
conditional on the LSS data δg, from which we have created our
template according to some prescription. Note that usually δg de-
notes the galaxy density contrast, but we use it to denote the LSS
data in a more general sense here, which could also be lensing
information for example.

In the following, we assume that the signal T s = R δm is given by
a linear operator R applied to the matter density contrast δm. For the
ISW effect, the operator R is explicitly derived in Frommert et al.

Table 1. Summary of defined symbols.

Symbol Definition

T cmb, Ecmb Cosmological CMB temperature and polarization
T s, Es Real secondary signal that we are trying to detect
T τ , Eτ Signal templates for temperature and polarization
T fg, Efg Residual galactic foregrounds after foreground removal
T det, Edet Detector noise
T obs, Eobs (T cmb + T fg + T det), (Ecmb + Efg + Edet)
�T obs, �Eobs (T obs − T τ ), (Eobs − Eτ )
T isw Fluctuations created by ISW effect
Tprim (T cmb − T isw)
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(2008). We can then write

Tτ ≡ 〈Tobs〉P (Tobs | δg,p )

≈ 〈Ts〉P (Ts | δg,p ) + 〈(Tcmb − Ts)〉P [(Tcmb−Ts) | δg,p ]

+ 〈Tfg〉P (Tfg | δg,p ) + 〈Tdet〉P (Tdet)

= R〈δm〉P (δm | δg,p ), (4)

where we have used that T s, (T cmb − T s), T fg and Tdet are ap-
proximately stochastically independent in the first step and that the
three errors have vanishing means, 〈(Tcmb − Ts)〉P [(Tcmb−Ts) | δg,p ] =
〈Tfg〉P (Tfg | δg,p ) = 〈Tdet〉P (Tdet) = 0, in the second step. For the ISW
effect, (T cmb − T s) ≡ (T cmb − T isw) = T prim are simply the pri-
mordial fluctuations, which do have zero mean (Frommert et al.
2008). For other secondary effects, 〈(Tcmb −Ts)〉P [(Tcmb−Ts) | δg,p] = 0
is probably still a reasonably good approximation. In the last step,
we have pulled the operator R out of the mean.

We see that for creating the signal template T τ we need the
mean of the matter density contrast conditional on the LSS data,
〈δm〉P (δm | δg,p ). In the simplest case of having a Gaussian likelihood
and Gaussian prior for δm, this is given by the Wiener filter. Again
this is a very good approximation for the ISW effect, which is
present on very large scales, on which structure growth is still
linear. For other effects such as the kinetic SZ effect, the RS effect
or lensing, the Gaussian approximation for δm may not be very
good (thus also the Gaussian approximation for �T obs may not be
good), and one would have to consider non-Gaussian data models
using information field theory (Enßlin et al. 2008). However, in this
work we will use the Gaussian data model and leave extensions to
non-Gaussian models for future work. Note that, when choosing the
template as in equation (4), the latter is uncorrelated with �T obs ≡
(T obs − T τ ) (w.r.t. the probability distribution in equation 2), as can
be easily shown.

In order to see how well we can recover such a signal template
from the CMB data, we put an amplitude Aτ in front of the signal
T τ in equation (2), and try to estimate its value from the data (the
true value of this amplitude is 1, of course):

P (Tobs | Aτ , Tτ , p) = G(Tobs − AτTτ ,C). (5)

The maximum likelihood estimator Âτ for the amplitude Aτ is

Âτ = T
†

obsC
−1Tτ

T
†
τ C−1Tτ

=
∑

l(2l + 1)
Ĉ

Tτ ,Tobs
l

C
�Tobs
l∑

l(2l + 1)
Ĉ

Tτ
l

C
�Tobs
l

. (6)

In the second equality, we have assumed that the knowledge of
the secondary anisotropy template is equally good in any direction,
so that the template uncertainty matrix is isotropic and fully de-
scribed by its spherical harmonics power spectrum. We will use this
assumption also in the following. This permits us to evaluate the
expressions in spherical harmonics space in the second step. We
have used the following definitions of the power spectra and their
estimators (we use a hat to denote estimators)

C
X,Y
l ≡ 〈aX

lmaY ∗
lm 〉, (7)

CX
l ≡ C

X,X
l , (8)

Ĉ
X,Y
l ≡ 1

2l + 1

∑
l

Re
(
aX

lmaY ∗
lm

)
, (9)

ĈX
l ≡ Ĉ

X,X
l , (10)

where the alm are defined by an expansion into spherical harmonics
Ylm:

aX
lm ≡

∫
S

d� TX(n̂)Y∗
lm(n̂). (11)

The power spectrum C
�Tobs
l denotes the spherical harmonics space

version of the covariance matrix C. We calculate the variance of the
amplitude estimator to be

σ 2
A ≡

〈(
Âτ − 〈Âτ 〉cond

)2
〉

cond

= (
T †

τ C−1Tτ

)−1 =
[∑

l

(2l + 1)
Ĉ

Tτ

l

C
�Tobs
l

]−1

, (12)

where we have again evaluated the expressions in spherical harmon-
ics space in the last step, and we have used the notation introduced
in Frommert et al. (2008), where the index ‘cond’ indicates that the
average is taken conditional on the signal template T τ , i.e. over the
probability distribution given in equation (2). We can now define
the S/N as follows(

S

N

)2

t

≡ 1

σ 2
A

=
∑

l

(2l + 1)
Ĉ

Tτ

l

C
�Tobs
l

, (13)

where the index t indicates that this is the S/N one obtains
for the optimal temperature-only method. This S/N depends
on the actual realization of the matter distribution in our Universe
via the estimator Ĉ

Tτ

l . In Frommert et al. (2008), we showed that
for the ISW effect we obtain on average a S/N of about 7, if we
assume an ideal LSS survey which covers the whole sky and goes
out to a redshift of about 2. In comparison to the standard method,
this is an enhancement of the S/N by about 7 per cent.

3 R E D U C T I O N O F TH E P R I M O R D I A L N O I S E
USI NG POLARI ZATI ON INFORMATI ON

With the method suggested in Frommert et al. (2008), we were able
to reduce the low-redshift cosmic variance effect in amplitude esti-
mates of secondary signals, i.e. we reduced the noise coming from
the specific realization of LSS in our Universe. Now, we show how
even the noise coming from primordial temperature fluctuations
can be reduced. The idea is that since the temperature and polar-
ization maps of the CMB are correlated, the polarization contains
information about the temperature fluctuations. After extracting this
information from the polarization data, we know a part of the tem-
perature map, which we can remove from the data before trying
to detect the signal. In other words, we make our amplitude esti-
mate of the secondary signal conditional on the known part of the
temperature fluctuations.

To include the information contained in the polarization data, we
enlarge our data vector d to include the observed E-mode polariza-
tion map Eobs as well:

d ≡ (Tobs, Eobs)
t, (14)

or, in spherical harmonics space

ad
lm ≡

(
a

Tobs
lm , a

Eobs
lm

)t
. (15)

Note that with the map Eobs, we are referring again to the abstract el-
ement of a function vector space, which contains all the information
on the observed E mode. When evaluating the abstract expressions
obtained in the following, we use the representation of Eobs in spher-
ical harmonics space, consisting of all coefficients a

Eobs
lm .
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In principle, it is possible that the secondary effect we are looking
for is also present as a small signal in the polarization data. If the
temperature anisotropies created by the secondary effect exhibit a
quadrupole component at the time of reionization, this quadrupole
will be rescattered by free electrons and create a polarization sig-
nal (Zaldarriaga 1997). However, for the ISW this effect has been
proven to be small (Cooray & Melchiorri 2006). It should also be
small for the RS effect, lensing and the kinetic SZ effect, the highest
contributions of which are on relatively small scales. Thus, as a first
approximation we assume that the polarization data do not carry
any signal of the effect we want to detect. Our signal template τ is
then

τ ≡ (Tτ , 0)t,

aτ
lm ≡

(
a

Tτ

lm, 0
)t

, (16)

and the data model becomes

d =
(

Tobs

Eobs

)
=

(
Tτ + �Tobs

Eobs

)
. (17)

The observed E map, Eobs = Ecmb + Efg + Edet, consists of the cos-
mological E-mode fluctuations Ecmb, residual galactic foregrounds
after foreground removal Efg and the detector noise Edet. Assuming
again Gaussianity, we can write down the likelihood

P (d | τ, p) = G(d − τ, C̃), (18)

where the covariance matrix C̃ is

C̃ ≡ 〈(d − τ )(d − τ )†〉cond, (19)

and we have redefined the index ‘cond’ to denote the average over
the probability distribution in equation (18). In spherical harmonics
space, the covariance matrix C̃ is block diagonal with the blocks
being

C̃(l) =
(

C
�Tobs
l C

�Tobs,Eobs
l

C
�Tobs,Eobs
l C

Eobs
l

)
. (20)

Therefore, the likelihood factorizes:

P (d | τ, p) =
∏
l,m

G
[
ad

lm − aτ
lm, C̃(l)

]
. (21)

When inserting the inverse of the covariance matrix C̃(l), it is pos-
sible to rewrite the likelihood as a product of a reduced temperature
part and a polarization part. To this end, let us define the reduced
temperature map and power spectrum:

a
Tred
lm ≡ a

Tobs
lm − C

�Tobs,Eobs
l

C
Eobs
l

a
Eobs
lm ,

Cred
l ≡ C

�Tobs
l −

(
C

�Tobs,Eobs
l

)2

C
Eobs
l

. (22)

With these definitions, the likelihood becomes

P (d | τ, p) =
∏
l,m

[
G

(
a

Tred
lm − a

Tτ

lm, Cred
l

)
G

(
a

Eobs
lm , C

Eobs
l

)]
, (23)

as we prove in Appendix A. Now, our goal is to find the signal
template T τ in the CMB data. The polarization part of the above
likelihood, G(aEobs

lm , C
Eobs
l ), does not depend on the signal template,

nor does the reduced temperature part explicitly depend on Eobs. In
other words, the observed E map does not contain relevant infor-
mation any more after introducing the reduced temperature fluctua-
tions. Thus, we can marginalize over it, and continue only with the

likelihood of the reduced temperature map

P (Tred | Tτ , p) ≡ G(Tred − Tτ ,Cred)

=
∏
l,m

G
(
a

Tred
lm − a

Tτ

lm, Cred
l

)
. (24)

Note that it is straightforward to derive the factorized likelihood
also for the case that we do have a non-zero signal template Eτ

for the polarization part. In that case, the covariance matrix C̃(l) is
slightly changed, as well as the definitions of the reduced temper-
ature map and power spectrum, and we can no longer neglect the
polarization part of the likelihood. Please refer to Appendix A for
details.

Let us pause for a second and have a closer look at the quantities
defined in equation (22). What we have effectively done is the
following. We have a polarization map a

Eobs
lm , which is correlated

with the temperature fluctuations a
�Tobs
lm via C

�Tobs,Eobs
l . That is, the

polarization map contains information about the temperature map,
which we can translate into a ‘known’ part of the temperature map
using the prescription (C�Tobs,Eobs

l /C
Eobs
l )aEobs

lm . This known part of
the temperature map is subtracted from the observed one, and we
work only with the remaining unknown temperature fluctuations in
which we try to detect our signal template.

The reduced temperature map fluctuates around our signal tem-
plate T τ only with the variance Cred

l , which is smaller than the full
variance C

�Tobs
l of the observed temperature map. This reduced vari-

ance is the uncertainty going into our signal-detection problem now,
rather than the full variance of the original temperature fluctuations.

In order to see this, let us again put an amplitude in front of the
signal template in equation (24) and estimate it from the data using
a maximum likelihood estimator:

Âτ = Tred
†C−1

redTτ

T
†
τ C−1

redTτ

=
∑

l(2l + 1)
Ĉ

Tred ,Tτ
l

Cred
l∑

l(2l + 1)
Ĉ

Tτ
l

Cred
l

. (25)

Here, the last expression is in spherical harmonics space. The vari-
ance of Âτ is now

σ 2
A = (

T †
τ C−1

redTτ

)−1 =
[∑

l

(2l + 1)
Ĉ

Tτ

l

Cred
l

]−1

, (26)

and hence the S/N becomes(
S

N

)2

pol

=
∑

l

(2l + 1)
Ĉ

Tτ

l

Cred
l

=
∑

l

(2l + 1) Ĉ
Tτ

l

C
�Tobs
l −

(
C

�Tobs,Eobs
l

)2 /
C

Eobs
l

. (27)

Note that we have added the index ‘pol’ to indicate that this is
the S/N one obtains when using the polarization data to reduce
the variance. Comparing the S/N in equation (27) with the one in
equation (13), we see that by including the information contained
in the polarization data we reduce the variance in every mode by
the term (C�Tobs,Eobs

l )2/C
Eobs
l .

Let us now get an impression of how much the variance gets
reduced for the different multipoles. To this end, we neglect the
detector noise Tdet and Edet, and the foreground noise T fg and Efg,1

1 In reality, galactic E-mode foregrounds Efg are likely to be the limiting fac-
tor in the improvement of the detection significance coming from including
polarization data. We comment on this at the end of this section.
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which allows us to write

C
�Tobs,Eobs
l ≈ C

Tcmb,Ecmb
l − C

Tτ ,Ecmb
l

C
�Tobs
l ≈ C

Tcmb
l − 2C

Tcmb,Tτ

l + C
Tτ

l (28)

C
Eobs
l ≈ C

Ecmb
l . (29)

We furthermore neglect the cross-term C
Tτ ,Ecmb
l . For the ISW effect,

we have verified numerically that it is negligible. For the kinetic
SZ and RS effects, the template itself is so small that we can also
certainly neglect C

Tτ ,Ecmb
l . Then, the reduced temperature power

spectrum defined in equation (22) becomes

Cred
l ≈ C

Tcmb
l − 2C

Tcmb,Tτ

l + C
Tτ

l −
(
C

Tcmb,Ecmb
l

)2

C
Ecmb
l

. (30)

In Fig. 1, we plot the template-free part of the reduced temperature
power spectrum C

Tcmb
l − (CTcmb,Ecmb

l )2/C
Ecmb
l (note that we have not

included the template-dependent terms −2C
Tcmb,Tτ

l and C
Tτ

l in the
plot), which gives us an impression of how the variance coming from
primordial temperature fluctuations is being reduced by including
polarization data. The variance will be further reduced by working
conditionally on the signal template T τ , which is encoded in the
terms −2C

Tcmb,Tτ

l and C
Tτ

l , and already described in Frommert et al.
(2008). We also plot the original CMB power spectrum C

Tcmb
l and

the difference to the reduced one for comparison. We have assumed
a flat 	CDM model with the parameter values given by Komatsu
et al. (2008), table 1 (�b h2 = 0.02265, �	 = 0.721, h = 0.701, ns =
0.96, τ = 0.084, σ 8 = 0.817), and used CMBEASY (www.cmbeasy.org,
Doran 2005) for obtaining the respective spectra.

In Fig. 2, we plot a realization of the original temperature map
Tcmb (top panel), the reduced temperature map T red (middle panel)
and the difference of the two, (C�Tobs,Eobs

l /C
Eobs
l )aEobs

lm , for compari-
son (bottom panel). The realizations were created using the HEALPIX

package (Górski et al. 2005).
Note that all of what we have done works equally well for reduc-

ing the E-mode polarization map when trying to detect a secondary
signal contained in the polarization data. One has to simply ex-
change the roles of T and E in the derivation. This was partly
already done by Jaffe (2003), who used the information contained

Figure 1. Reduction of the variance in the detection of secondary tem-
perature signals by using the information contained in polarization data.
Shown are the CMB temperature power spectrum C

Tcmb
l (solid line),

and the template-free part of the reduced temperature power spectrum
C

Tcmb
l − (CTcmb,Ecmb

l )2/C
Ecmb
l (dashed line), together with the part of the

CMB power spectrum coming from the ‘known’ part of the temperature
fluctuations which we infer from the polarization map, (CTcmb,Ecmb

l )2/C
Ecmb
l

(dotted line).

Figure 2. Realization of the original CMB temperature map Tcmb (top
panel), the reduced temperature map T red (middle panel) and the difference
between the two for comparison (bottom panel) in μK. We have chosen the
same colour range from −500 to 500 μ K for all maps.

in the CMB temperature map for predicting a polarization map from
it. The equivalent plot to Fig. 1 for this scenario is given in Fig. 3.
The likelihood for the case of simultaneously detecting a temper-
ature template T τ and a polarization template Eτ is derived in
Appendix A.

In practice, the accuracy to which we can measure the E map is
limited by galactic foregrounds Efg, the most important of which are
synchrotron radiation and dust emission of the Milky Way. Uncer-
tainty in the measured E map makes the reduction of the temperature
power spectrum less efficient, because the power contained in the
foreground noise, C

Efg
l , enhances the observed E-mode power spec-

trum C
Eobs
l ≈ C

Ecmb
l + C

Efg
l + C

Edet
l . The prediction of a realistic

S/N for our method would require a detailed study of foreground
effects, detector noise and scanning strategies, which is beyond the
scope of this work.

4 EXAMPLE: THE ISW EFFECT

Let us now apply our method to the ISW effect. That is, our sig-
nal template T τ is now an ISW template which we obtain from
a Wiener filter reconstruction of the LSS, which can be shown
to be optimal for the purpose of ISW detection (Frommert et al.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 395, 1837–1844



1842 M. Frommert and T. A. Enßlin

Figure 3. Reduction of the variance in the detection of secondary polar-
ization signals by using the information contained in temperature data.
Shown are the CMB E-mode power spectrum C

Ecmb
l (solid line), and

the template-free part of the reduced E-mode power spectrum C
Ecmb
l −

(CTcmb,Ecmb
l )2/C

Tcmb
l (dashed line), together with the part of the CMB power

spectrum coming from the ‘known’ part of the E-mode fluctuations which
we infer from the temperature map, (CTcmb,Ecmb

l )2/C
Tcmb
l (dotted line).

2008). We assume the best-case scenario of having perfect (noise-
less) LSS and CMB data. In other words, we neglect the detector
noise Tdet and Edet, which is safe on the largest scales, where cos-
mic variance dominates (Afshordi 2004). We furthermore neglect
residual galactic foregrounds T fg and Efg as well as the shot noise
in the observed galaxy distribution and assume that we have an
ideal galaxy survey that covers the whole sky and goes out to a
redshift of at least 2. Then our signal template is exact, T τ =
T s ≡ T isw, and the residual (T cmb − T isw) ≡ T prim is simply given
by the primordial CMB fluctuations, which are created at the surface
of last scattering (we have ignored other secondary effects here).
We further assume T isw to be uncorrelated with the primordial fluc-
tuations Tprim, which is a safe assumption because they are created
on very different scales (Boughn et al. 1998). We can then write
C

Tcmb,Tτ

l ≡ C
Tcmb,Tisw
l = C

Tisw
l .

The S/N for the detection of the ISW signal, equation (27), then
reduces to(

S

N

)2

pol

=
∑

l

(2l + 1) Ĉ
Tisw
l

C
Tprim
l −

(
C

Tprim,Ecmb
l

)2 /
C

Ecmb
l

. (31)

As we said before, the S/N depends on the specific LSS realization
in our Universe via Ĉ

Tisw
l . We can infer its probability distribution

from the distribution of T isw by using the central limit theorem for
the distribution of (S/N)2 and deriving the distribution for S/N from
that (see also Frommert et al. 2008).2 We then average the S/N over
this probability distribution in order to compare it to the S/N of the
standard method and the average S/N of the optimal temperature-
only method, both described in Frommert et al. (2008). Recall that
the S/N one obtains for the standard method is given by(

S

N

)2

st

=
∑

l

(2l + 1) C
Tisw
l

C
Tprim
l + C

Tisw
l

. (32)

The cumulative S/N versus the maximal multipole lmax used in the
analysis are plotted in Fig. 4. Here, we have assumed the ideal galaxy
survey described above. We see that including the polarization data

2 This will provide accurate results for multipoles l 
 1; however, it is a
coarse approximation in the regime l ∼ 1.

Figure 4. Comparison of the cumulative S/N for zmax = 2. Top panel:
average S/N ratio of the optimal polarization method (S/N)av

pol (solid line),
of the optimal temperature-only method (S/N)av

t (dashed line) and S/N of
the standard method (S/N)st (dotted line) versus the maximal multipole
considered in the analysis. Bottom panel: ratio of the signal-to-noise of the
optimal polarization method with the one of the standard method (solid line)
and with the one of the optimal temperature-only method (dashed line).

in the analysis increases the S/N by 16 per cent as compared to the
optimal temperature-only method and by 23 per cent as compared
to the standard method. Note that we only included the linear ISW
effect in Fig. 4. Beyond a multipole of about l ≈ 100, non-linear
effects start to play a crucial role (Cooray 2002), which could change
the plot for l > 100. However, we see that for the linear ISW effect
there is hardly any contribution for such high multipoles.

Let us now look at the enhancement of the S/N for shallower
LSS surveys. We use the same approximation as in Frommert et al.
(2008), i.e. we introduce a sharp cut-off in redshift and redefine
everything beyond that redshift as primordial fluctuations. This
introduces a correlation between what we consider the ISW and
primordial fluctuations, which we would not have if we had used
a proper Wiener filter based template T τ for redefining T isw. How-
ever, for getting a rough picture of the redshift dependence, this
approximation is good enough.3 We plot the redshift dependence
of the S/N of the three methods in Fig. 5. We also plot the ratio of
the signal-to-noise of the optimal polarization method with the one
of the standard method (solid line) and with the one of the optimal
temperature-only method (dashed line). Note that the enhancement
of the S/N w.r.t. the optimal temperature-only method is almost
constant in redshift. This is quite clear from the fact that we have
reduced the primordial noise with the polarization data, and nei-
ther the primordial noise nor the reduction of the latter depends
on redshift. Therefore, the reduction of the noise from including
polarization data is always the same, independent of how deep in
redshift our survey goes, and the S/N is already significantly en-
hanced for currently available surveys. For example, for a maximal
redshift of zmax ≈ 0.3, which is the maximal redshift for the Sloan
Digital Sky Survey (SDSS) main galaxy sample, we have a better
S/N by about 16 per cent as compared to the standard method. The
additional enhancement for higher redshifts of our S/N w.r.t. the

3 The ratio of this neglected coupling to the template strength gets large for
small zmax. Our estimates are therefore less accurate in this regime.
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Figure 5. Comparison of the S/N versus the maximal redshift zmax of the
galaxy survey. Top panel: average S/N of the optimal polarization method
(S/N)av

pol (solid line), of the optimal temperature-only method (S/N)av
t

(dashed line) and S/N of the standard method (S/N)st (dotted line). Bot-
tom panel: ratio of the S/N of the optimal polarization method with the
one of the standard method (solid line) and with the one of the optimal
temperature-only method (dashed line). We see that with polarization data
included, the S/N is significantly enhanced even for low redshifts.

standard method comes from working conditionally on the galaxy
data, as we have described in detail in Frommert et al. (2008).

5 C O N C L U S I O N S

The detection of secondary effects on the CMB remains a challenge,
because the amplitudes of these effects are much smaller than those
of primordial CMB fluctuations. The techniques for detecting such
secondary signals are all based on the existing cross-correlation
between the LSS and the signal in question. However, in all of these
studies, chance correlations of primordial CMB fluctuations with
the LSS are the dominant source of noise in the analysis.

We have presented a way of reducing the noise coming from
primordial temperature fluctuations by simply subtracting the part
of the temperature map which is known from the polarization data.
Effectively, only the unknown part of the temperature fluctuations
then contributes to the variance of the signal estimate.

As presented here, our method can be generically applied to all
secondary effects. However, in this work we have used a Gaussian
approximation for the uncertainty in the signal template, which may
not be optimal for effects on smaller scales such as the RS effect, the
kinetic SZ effect or lensing. We leave the extension of our method
to non-Gaussian noise models for future work.

We calculated the achievable reduction in primordial noise for
perfect (noiseless) data using the example of the ISW effect, and
obtained a S/N of up to 8.5. This corresponds to an enhancement of
the S/N by 16 per cent as compared to our optimal temperature-only
method, independent of the depth of the LSS survey. In comparison
to the standard method, the S/N is enhanced by 23 per cent for a
full-sky galaxy survey which goes out to a redshift of at least 2.
When using the SDSS main galaxy sample, which has a maximal
redshift of about zmax ≈ 0.3, our S/N is still enhanced by about
16 per cent as compared to the standard method.

The variance reduction achieved with this method will signifi-
cantly improve the detection of all kinds of secondary effects on the
CMB, where a spatial template constructed from non-CMB data can

be created. This stresses the importance of accurate measurements
of primordial polarization fluctuations even for non-primordial sig-
nal detection and analysis. The upcoming Planck Surveyor Mission,
as well as more future experiments like PolarBeaR4 or CMBPol,5

will allow us to benefit from polarization for the detection of sec-
ondary CMB signals in the way presented in this work.
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A P P E N D I X A : PRO O F O F T H E
FAC TO R I Z AT I O N O F TH E L I K E L I H O O D

We now explicitly prove the factorization of the likelihood in
equation (21) into a reduced temperature part and a polarization
part, as given in equation (23). We will do this for the more general
case that we not only have a signal template T τ for the temperature
part but also a non-zero template Eτ for the polarization part. In
this case, the covariance matrix is

C̃(l) =
(

C
�Tobs
l C

�Tobs,�Eobs
l

C
�Tobs,�Eobs
l C

�Eobs
l

)
, (A1)

instead of the simplified one given in equation (20). Here, �Eobs

is defined as �Eobs ≡ Eobs − Eτ . The inverse of the covariance
matrix is given by

C̃(l)−1 = 1

C
�Tobs
l C

�Eobs
l −

(
C

�Tobs,�Eobs
l

)2

×
(

C
�Eobs
l −C

�Tobs,�Eobs
l

−C
�Tobs,�Eobs
l C

�Tobs
l

)
. (A2)

We first rewrite the exponent of G[ad
lm − aτ

lm, C̃(l)] in equation (21)
by inserting the inverse of C̃(l):(
a

Tobs
lm − a

Tτ

lm, a
Eobs
lm − a

Eτ

lm

)
C̃(l)−1

(
a

Tobs
lm − a

Tτ

lm, a
Eobs
lm − a

Eτ

lm

)†

=
[∣∣∣a�Tobs

lm

∣∣∣2
− 2

(
C

�Tobs,�Eobs
l /C

�Eobs
l

)
Re

(
a�Eobs

lm a�Tobs
lm

)
+

(
C

�Tobs
l /C

�Eobs
l

) ∣∣∣a�Eobs
lm

∣∣∣2
]

/ [
C

�Tobs
l −

(
C

�Tobs,�Eobs
l

)2
/C

�Eobs
l

]

=

∣∣∣a�Tobs
lm −

(
C

�Tobs,�Eobs
l /C

�Eobs
l

)
a

�Eobs
lm

∣∣∣2

C
�Tobs
l −

(
C

�Tobs,�Eobs
l

)2
/C

�Eobs
l

+

∣∣∣a�Eobs
lm

∣∣∣2

C
�Eobs
l

≡

∣∣∣aTred
lm − a

Tτ

lm

∣∣∣2

Cred
l

+

∣∣∣aEobs
lm − a

Eτ

lm

∣∣∣2

C
�Eobs
l

, (A3)

where we have completed the square in the second last step and
used a generalized definition of the reduced temperature map and
power spectrum, which we had introduced in equation (22), in the
last step. Similarly, we can decompose the determinant of C̃(l):∣∣C̃(l)

∣∣ = C
�Tobs
l C

�Eobs
l −

(
C

�Tobs,�Eobs
l

)2

≡ Cred
l C

�Eobs
l .

Inserting equations (A3) and (A4) into G[ad
lm − aτ

lm, C̃(l)] allows us
to write

G[ad
lm − aτ

lm, C̃(l)] = G(aTred
lm − a

Tτ

lm, Cred
l )

× G(aEobs
lm − a

Eτ

lm , C
�Eobs
l ). (A4)

In the case of the polarization template Eτ being zero, this expres-
sion reduces to the one in equation (23).
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