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1 INTRODUCTION

According to our current picture of cosmogenesis, the dgegax
galaxy clusters, galaxy filaments, and giant voids formhngdos-
mic large-scale structure (LSS) are products of gravitatinsta-
bility, which pulls increasingly more matter onto the tinsirpor-
dial seed density fluctuations generated at the very firstlepd
inflation. The shape and size of the cosmic matter distidbute-
flects the initial conditions set during or shortly after Bgng, as
well as the interplay of the gravitational self-attractiohmatter
and the diluting action of the Hubble expansion of cosmiaspa
Valuable information about the properties and the origithefcos-
mic inventory are encoded in the LSS, however, on smallescal
that information is being erased through dynamical noadirpro-

cesses.

Our goal is to extract as much of this information as possible
from astronomical measurements, which introduce uncditai
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and, consequently, degeneracies. Therefore, we have pi ada
information-theoretical approach to solve the reconsimagrob-
lem of cosmography. The Bayesian framework turns out to be th
most general approach as we will discuss later. In this paer
present the novel ARdBsoftware package, which reconstructs
the three-dimensional density field from the informatioovided
by galaxy surveys with different Bayesian and inverse nasho
Here we focus our study on understanding the Bayesian ttieore
cal background and the required algorithmic aspects. Eugk-
tensions of the code in which the power-spectrum and thelipecu
velocities can be jointly sampled are outlined. These apfiins
are planned to be shown in further publications in which tivély
be first tested on mock galaxy catalogues.

The large number of telescopes performing galaxy surveys
with increasing depth, sky coverage, and accuracy in posénd
distance (or redshift) determination provide us with sbyata on
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the cosmic matter distribution at an exponentially inciegsate.
One problem is that the discrete objects these instrumemtalr
to us, the galaxies, are the result of a complex non-lineatuev
tion of cosmic matter combined with complicated astropteisi
processes such as star formation. A translation of the galaia
into the much better understood large-scale dark matter) (@it
tribution, which would be much easier to analyse for imgriof
cosmologically interesting effects, is far from trivialh& discrete
nature of galaxies introduces certain noise, usually neabiey shot
noise. Moreover, the partially understood galaxy-formtpro-
cess inserts systematic uncertainties. In addition, thédd vol-
ume of surveys adds complications beyond the problems akgal
distance determination being contaminated by obsenaitiand
velocity redshift-distortions. All these complicationave to be
dealt with simultaneously and in a controlled fashion. Sitcan-
not be assumed that the correct or optimal values for thewade-
grees of freedom of the problem (bias factors, redshiftestions,
etc.) will be guessed a priory, repeated and iterative dedbysis is
mandatory in order to achieve a high-fidelity and well-ustieod
cosmic map. For example, a correction of redshift-distotiof the
galaxies requires the gravitational potential generayeti® matter
distribution to be reconstructed.

Repeated generation of cosmic matter maps increases the urg

to face another challenge, the scaling of the performandheof
underlying map-generation algorithms with the data sidace&s
the matter-density information displayed at a location omagp
may depend on all input data (galaxy positions), any algoribp-
timised to information theory scales super-lifedwith increas-
ing survey sizes, increasing requirements for spatialluésa
and volume coverage, and the need to frequently re-itetete t
map-generation step, the algorithm has to scale closelinéan
with data size, otherwise its application is strongly lieit For-
mer applications in cosmography suffered from such incoiere
performance-scaling, and an effort has to be made to dewlop
multaneously high-performance and accurate methods.

The work presented in this paper developes the general
methodology of Bayesian reconstruction of the cosmic maite
tribution, based on the invaluable pioneering work of matheo
scientists, which will be discussed below, and extendswioik to
a series of new applications. Existing and novel map makigg-a
rithms are summarized in terms of a classification of theyeB&n
likelihood and prior functions. The implementation, opsation,
and comparison of various numerical schemes are addressed i
detail. This provides a starting point for a correct infotima-
theory approach to cosmography. Many additional problems,
addressed in this paper, such as the galaxy bias, will alsathde
solved before accurate maps of the dark matter distributiaur
still mysterious Universe can be generated.

Such an undertaking would be highly rewarded in the short
and long run. An accurate map of the cosmic matter distidbuti
would be valuable for a manifold of direct scientific apptioas.
These range from structure-formation analysis, to cosgicéd pa-
rameter estimation via power-spectrum measurements gtherigy
studies, galaxy-cluster identification and galaxy-biaglists. Ac-
curate cosmic maps would help to determine weak signals asso
ciated with the large-scale structure such as the intedj@tehs-
Wolf (ISW) effect, or the extended Sunyaev-Zel'Dovich (S3)

2 A map of galaxy counts can be generated by an algorithm witsali
scaling to data size however, it is not an optimal representaf the un-
derlying matter field.
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Figure 1. The hierarchical Bayes model for a galaxy distribution ithsfaft
spaced; is represented here in a directed acyclic graph (DAG). Tence
logical parameterp,..,,, govern the rest of the variables. The initial density
field coming from e.g. inflationary scenarios can be statd{i described
by all its momentg 33, ;). Here the power spectrum is usually taken, since
the intitial perturbations are well described by a Gausegatization of the
initial seed fluctuations. The further evolution is desedlby nearly deter-
ministic processes (given by structure and galaxy form@tizvhich deter-
mine the later-time dark matter distributidy; with its peculiar velocity
field v and the bias functiob that relates the galaxy distribution to the
dark matter density field. The dark matter distributi®py; with the bias
produces the galaxy distribution in real spaig The peculiar velocities
v related to the density field through the continuity equatidgroduce the
redshift distortion ind; finally leading to the galaxy distribution in redshift
spaces;.

fect, the detection of which relies on the construction dfiropl
statistical filters for these signals.

Finally, one could argue that mapping the distribution of-ma
ter in the Universe represents a response to mankind'ssityrio
its aim to discoveterra incognitaand find an orientation in space
and time on cosmological scales and, therefore, should balarg
itself.

In the remainder of this introduction we give the sources of
uncertainties, we present an overview of existent and neye&an
reconstruction methods, subsequently we briefly deschibalgo-
rithmic development presented in this paper, then we suiamar
non-Bayesian methods and time-reversal reconstructicdhous,
and in the final part we give a more detailed overview of thecstr
ture of this paper.

1.1 Classes of uncertainty

Several classes of uncertainties related to the denslty+#eon-
struction from galaxy surveys demand a statistical apgrodome
of the uncertainties are intrinsic to the nature of the ulydey sig-

nal (the dark matter). Other uncertainties are intrinsitheonature
of the observable (the galaxies). And finally there are uaagies
due to degeneracies which appear through the observatop$s.

(i) cosmic variance:In cosmology it is generally assumed that
the structure of the Universe comes from some infinitesimahg
tum fluctuations which were frozen out and stretched by an in-
flationary phase (see Guth 1981; Guth & Pi 1982; Starobinsky
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1982;| Hawkingl 1982, Linde 1982; Albrecht & Steinhardt 1982;
Bardeen et al. 19383), and later amplified by gravitationatahil-
ity. According to this picture, the seed fluctuations wouét/dn an
intrinsic stochastic character and are mainly Gaussianillised.
However, the mechanisms that stretch the quantum fluchstio
may also introduce deviations from Gaussianity which wadhkh
be imprinted in the seed fluctuations. In general all the mume
of the initial fluctuations have to be considergi,;). Neverthe-
less, most of the inflationary scenarios predict the derfigtyg to

be very closely Gaussian distributed and it is generallfigaht to
take the second order moment, the two-point correlatiowtfan,

or the power-spectrum in Fourier-space. We will discusevaélow

to determine the power-spectrum and techniques to digjlgan-
trinsic non-Gaussianities within a Bayesian frameworkteNibat
there are alternative models to inflation in which e.g. thedldtuc-
tuations are identified with the topological defects thaba@ as
relics of high-energy phase transitiohs (Kibble 1976). date re-
constructions of the LSS could help to discriminate betwtsn
different models.

(ii) redshift-distortions: The peculiar motion of galaxies with
respect to the Hubble flow of the Universdntroduces uncertain-
ties in their redshift measurement, the so-called redslstortions
(see e.g. Hamilton 1998, for an introduction to this probjlefine
measured galaxy overdensities are thus said to be not ispeak
d, but in redshift-spacéy. In the linear regime, in which galax-
ies fall into the potential wells on large scales, redstiigtortions
cause a squashing of the linear overdensities in radiattitre
However, in the non-linear regime, galaxies (e.g. in a gatdus-
ter) tend to behave like particles in a gas with randomizetans
inside the clusters where the potentials are very high andyze
the so-calledfinger-of-godeffect, a dispersion along the line of
sight. The correction of these distortions is not triviaihce struc-
tures erase the information coming from the initial flucioias after
entering the non-linear regime. Consequently, deterrgittie real
position of galaxies poses a degenerate problem, which aay m
possible solutions. Many efforts have been made to coroethése
distortions: in the linear regime these efforts start witkisér's pi-
oneering work (see Kaiser 1987) and are followed by the tinea
redshift-distortions operator (for a detailed derivatse® Hamilton
1998). In the non-linear regime, these efforts include acigf dis-
persion factor (theispersionmodel) corresponding to an exponen-
tial pairwise velocity distribution function with no meatreaming
(see Ballinger et al. 1996). See Scoccimalrro (2004) for antee-
lationship between real-space and redshift-space twak statis-
tics through the pairwise velocity distribution functierciuding all
non-linearities. More complex methods of correcting fatsfaift-
distortions were classified by Schmoldt et al. (1999) inative
methods, that use the redshift-space density to calculgieca-
liar velocity field, which can in turn be used to correct theslgy
field distortions [(Yahil et al. 1991; Kaiser & Stebbins 199ajpd
into basis function methods, in which the redshift-spacesitg
field is transformed into a combination of angular and rabtad
sis functions from which the radial redshift-distortioncisrrected
(see e.d. Nusser & Dallis 1994; Schmoldt et al. 1999). We mg®po
below a Bayesian method to correct for the linear and nagalin
redshift-distortions in a statistical way (see secfior).2.6

(iif) galaxy bias: The galaxy formation process is a compli-
cated, non-linear and (probably) non-local process. Itrievin
that on large scales the galaxy power-spectrum fits well & th

tailed studies show that the bias factor is not universal, dau
pends on galaxy type, galaxy formation time, redshift, éee
e.g.[Cooray & Sheth 2002, and references therein). For the pu
pose of reconstructing the underlying density field, linbmses
can easily be tackled within the linear data model descriied
low by including its effects in a selection function. Nevestess,
more complex biases have to be further investigated in a Baye
framework. Physical processes, which are not perfectlersidod
within galaxy formation may be treated in a statistical wexycod-
ing the ignorance about certain physical processes in pilitya
distribution functions. Several works study the stocltastinlinear

galaxy biasing (see for example Fen 1998; Dekel & LEhav|1999;

Tegmark & Bromley 1999).

(iv) sampling uncertainties: The model connecting the contin-
uous dark matter field and the discrete galaxy distributigrot
duces additional uncertainties. As we have discussed Ltetar
(iii) complex physical processes are present in galaxy &bion.
The usually assumed Poissonian distribution (shot nosejhe
galaxy distribution is thus only a crude approximation @ timder-
lying sampling process. Thus the remaining question is wégtee
of accuracy one wants to achieve in the reconstruction. fifexe
less, further investigation is required in this field. Oteampling
uncertainties are not intrinsic to the observable, but chuora the
mathematical representation we choose. Treating galagiesunts
in cells, for instance, will smooth out the information abtieir
measured position. The resolution level determines apaindlid-
ity of the method.

(v) measurement:The action of measurement introduces un-
certainties, either due to the instruments, e.g. blurripghle tele-
scope, or due to the observational strategy, which is iredud the
noise term, the selection function, and the mask effectsyMd
these aspects were already discussed by Zaroubi et al.)(1885
will analyze these issues throughout this paper and propese
solutions to tackle the different problems.

Consequently, extracting the underlying dark matter derfld

from the luminous matter distribution given by such survegses
a classical signal reconstruction problem. A Bayesian aktwle-
picting the relation of these uncertainties is displayefign(T).

1.2 Bayesian reconstruction methods

Any Bayesian statistical approach requires the definitios like-
lihood and a prior. The former is the probability distritmrtifunc-
tion describing the process generating the observatiatal & can
be interpreted as a distance measure of the observed ddia to t
underlying signal, as we will discuss below. The prior stafmt
the distribution function modeling our prior knowledge te tsig-
nal to be recovered. Mathematically it can be shown thatgtire
larizes the estimator in the presence of noise (see sdciiofi)2
Two kinds of priors have to be distinguished, informativeos, in
which the previous physical knowledge about the signal é@dad,
and non-informative priors, which try to give objectiveigsitors
for the underlying signal based on purely information-tiegical
arguments. Here, three non-informative priors are consitidlat
priors (see sectioh_2.5.5) with a constant probabilityritigtion
function (PDF), entropic priors based on Shannon’s notibim-o
formation (see sectidn 2.5.9), and Jeffrey’s prior baseithariant
statistical structures under transformation of varialge® section

expected DM spectrum predicted from cosmic microwave back- [2.5.8). Finally, a maximization or sampling of the postedestri-

ground (CMB) observations, if some bias factobetween the

amplitude of the galaxy and DM fluctuations is assumed. De-
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bution, which is proportional to the product of the likelddband
the prior, has to be done to complete the Bayesian estimathumn
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maximization of the posterior is called the maximum a paster
method (MAP). The maximum likelihood (ML) and maximum en-
tropy method (MEM) are particular cases of the MAP with flat pr
ors and entropic priors, respectively. Complex posteligtridution
functions may be sampled iteratively from conditional PDira
Markov Chain Monte Carlo fashion (MCMC), see secfiod 2.6. We
show how different choices for these distribution functidogether
with the estimation procedure lead to different reconsioacal-
gorithms, which consequently have distinct applicatiotdfi€see
table[1). A review of existing methods is presented and nepli-ap
cations for the large-scale structure reconstructiongwhaturally
emerge within the Bayesian formalism, are developed.

In this work we consider Poissonian and Gaussian likelisood
for the galaxy distribution. The former has been previousin-
sidered in image restoration especially for deconvolugiorposes
(see Richardson 1972; Lucy 1974). For example, the Ricbards
Lucy algorithm can be derived as the ML of a Poissonian likeli
hood (see_Shepp & Vardi 1982, and apperdix B). Here an image
can be regarded as photon counts in cells represented bgsoPoi
nian distribution. However, one should notice that thi®litkood
does not represent the galaxy-formation process. Fromeaipur
age reconstruction perspective, it can still be intergstor LSS
estimations, because it naturally represents the disoadtae of
a galaxy distribution. The Gaussian likelihood allows theor-
poration of arbitrary noise structures through the vamarthe
CMB map-making algorithms, which aim to convert time-ortér
data received from satellites into a map of the CMB signalten t
sky as a projection on the sphere, usually use this likehdo
this case, the ML leads to the simple COBE-filter first derived
by lJanssen & Gulkig (1992). Nevertheless, the complex segnn
strategies and foreground removal can add unlimitted cexapl
ity to these algorithms (e.g. Natoli et al. 2001; Doré ei2401;
Stompor et al. 2002; Keihanen etlal. 2005; Yvon & Mayet 2005)

For the LSS the Gaussian prior arises as the natural in-
formative prior due to the arguments discussed above. We pro
pose a novel algorithm: GAPMAP, which maximizes the poste-
rior with a Gaussian prior and a Poissonian likelihood (see s
tion[Z5.4 and appendix]JA). In contrast, the Gaussian hikeld
with the Gaussian prior leads to the well-known Wienerdfilte
which has been used for the LSS reconstruction l(see Fishér et
1994 Hoffman 1994 ; Lahav etlal. 1994; Lahav 1994; Zarouhi et
1995;| Fisher et al. 1995; Webster etlal. 1997; Zaroubilet3991
Schmoldt et all 1999; Erdogdu et al. 2004, 2006) and for CMB-
mapping (see e.d. Bunnetal. 1994; Tegmark 1997). It is also
known to give optimal results in terms of yielding the leaptare
error, see the pioneering work of Rybicki & Prless (1992) and
Zaroubi et al.|(1995). We present in this paper a fast Widitter-
extra-regularized with Krylov methods as we will see below.

Intrinsic primordial non-Gaussianities can be imprintedie
seed fluctuations depending on the particular theory resplerfor
the amplification of the fluctuations coming from the earlyi-Un
verse. To find such deviations, non-informative priors, chihgive
non-linear estimates for the underlying signal are requien-
tropic priors are well suited here, and have been previcyshjied
for CMB studies. We extend this work for LSS reconstructiand
develop the corresponding maximum entropy method for Gaiss
and Poissonian likelihoods (see secfion 2.5.9 and appEfdix

Sampling methods have the advantage of determining the
shape of distributions and, thus, leading to a natural esénof
the uncertainty of the estimator. Moreover, the mean caralmic
lated easily from the sample and is known to give more aceurat

results than the maximum in the case of asymmetric PDFs (gee e
Tanner 1996).

As an example, Hobson & McLachlan (2003) proposed a SZ-
cluster detection algorithm using the Metropolis-Hastigprithm
method based on a Poissonian prior distribution, which is
signed to find discrete objects. Recently Sutton & Wahd€lo¢2
developed a reconstruction method for radio-astronomtyshan-
ples from the multiplicity function (see ef1.130). Alternatiap-
proaches to the maximum likelihood for CMB-mapping alduris
try to jointly reconstruct the CMB-map with its power-spegch us-
ing Gibbs-sampling techniques (Wandelt et al. 2004; Eriletenl.
2004;| O’'Dwyer et all 2005). This approach is especially igffit
with respect to other MCMC methods because the transitiob-pr
ability matrix moves the system in each step of the chain.tlkisr
special case the importance ratio is always one (see e.{18@3).

This MCMC method requires, however, the complete knowledge
of the full conditional PDFs in order to sample from them. &lot
that the Gaussian prior for the signal simultaneously rsgts the
likelihood for the power-spectrum given the signal, whiatthis
case is an inverse Gamma function for the power-spectruers(e
tion[2.6.2). This distribution naturally samples the powpectrum,
which strongly deviates from Gaussianity.

With the aim of estimating the power-spectrum in an objectiv
way, non-informative priors are used. Usually a flat priotaiken
for the power-spectrum. Alternatively, Jeffrey’s priasr fvhich we
give a derivation based on Fisher information (see appédjizan
be used. Alternatively, an entropic prior could also be take

Other attempts have been made to estimate the power-
spectrum from the LSS based on the distribution of galaxes.
modified Gaussian PDF with a log-normal mean has been used
in this approach (see_Percival 2005). The same kind of con-
cept, using a modified Gaussian distribution to sample tievis
from Gaussianity, has been applied to SZ-cluster detedbipn
Pierpaoli & Anthoine((2005).

In this paper we propose to apply a Gibbs-sampling algorithm
to jointly sample the underlying three-dimensional denéield
with the power-spectrum and the peculiar velocities, witigh be
used to correct for the redshift-distortions (§ed 2.6). lisptions
of this method will be presented in forthcoming publicatioNote
that the peculiar velocities can also be used to trace thaliden-
sity fluctuations back in time as we will discuss below.

de

1.3 Algorithmic development

In this paper we focus our work on the numerical optimizatidn
inverse techniques to show that a joint estimation of the ira8er
density field and its parameters is feasible (see sedtiond)B &
The calculation of the reconstructions, either through imax
mization or through sampling, requires the inversion ofaiarma-
trices. For the Wiener-filter, for instance, the recongtamcprob-
lem consists in one of its steps on the inversion of the catio
matrix of the data. The methods used in this field so far catedl
this matrix and inverted it mainly using the Singular Valueddom-
position algorithm that scales &n>) for an x n matrix (see e.g.
Zaroubi et all. 1995). However, this approach seems to beléspe
in light of the overwhelming amounts of data coming from eliff
ent surveys and the possibility of combining them. We madae sp
cial effort to implement an algorithm in which the involvedatri-
ces would not need to be stored taking advantage of an operato
formalism, which we worked out here for different reconstion
methods (see talfé 3 and secfiod 3.3). Such a formalism ldecsa
fast iterative numerical methods that speed the invergeugido a
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scaling of O(nlog, n) thus reducing the main operations to fast
Fourier transforms (FFTs). Some of these numerical schéaes
been used in CMB-mapping algorithms, but were lacking aléeta
comparison of the efficiency of the different methods. Suchra-
parison is presented here. We derive the different inversthaads
in a unified way starting with a Bayesian motivation for itéra
schemes (see appenfix F) and following with a general faatiou
of the asymptotic regularization from which the Jacobi, $teep-
est Descent, and the Krylov methods are derived. Moreowsr; n
linear inverse methods are discussed, like the Newton-&aplthe
Lanweber-Fridman and the non-linear Krylov methods. Rrdo
tioning (see append[x]G) was taken into account in all thévaer
tions and the importance of such a treatment is tested ifosel)
(see fig[h). In addition, a previously not discussed Krylcstinod
is derived (see formu[@a®4, sectioh 3 and appehdix H) andijie-s
rior efficiency is demonstrated (see secfibn 4).

1.4 Non-Bayesian reconstruction methods

Let us mention here that there are alternative reconstruc-
tion methods which recover the underlying density field Hase
on the observed radial peculiar velocity of galaxies, such
as the widely known POTENT-code (Bertschinger & Dekel
1989; |Bertschinger etiall 1990; Bertschinger & Dekel 1991).
Kaiser & Stebbirs| (1991) propose a maximum probability tech
nigue to reconstruct the density field from peculiar velesit

Other works are focused on reconstructing the peculiar ve-
locities from denstity fields (see e.g. Branchini & Pliohi89%;
Branchini et all 1996; Kudlicki et al. 2000; Mohayaee et &102;
Mohayaee & Tullyl 2005). For a review see (Zaroubi 2002a) and
references therein.

In addition, reconstruction which

several techniques,

5

The initial density field is of major interest because it eepr
sents the origin of the Universe and many theories can bedest
with such information. As a direct application, constraimébody
simulations can be done by taking the reconstructed fieldhas t
initial conditions to study structure formation by latemgoaring
the results with the observations (see le.qg. Ganon & Hofin®&31
Sheth 1995; Bistolas & Hoffmen 1998; Mathis etial. 2002).

As we have discussed above, the large-scale structure con-
tains information about the seed perturbations and its rdycel
evolution is well approximated in the linear regime. Foliog/this
idea/ Weinberg (1992) proposes to reconstruct the seeddlimhs
through the Gaussianization of the observed density fieldeth
on the approximation that the rank order of the initial dgnfeld
smoothed over scales of a few Mpc is preserved under noarline
gravitational evolution and further assuming the initialdito be
Gaussian distributed. This method can be regarded as andtule
Gaussian mapping scheme.

Other methods run gravity backward in time taking the posi-
tion and peculiar velocities of objects at a certain redshiére,
different schemes have been proposed: a huge class relies-on
grangian dynamical schemes; another class is based onnireahi
action principle; and another class is based on optimal tnass-
portation schemes have been applied for the initial derfstyl
reconstruction.

Lagrangian dynamical schemes mainly use the Zel'Dovich ap-
proximation (Zel’Dovich 1970) in which the comoving trajedes
of the particles are straight lines. In this formalism, tlzgiable
under consideration is the displacement of a particle. iaéve-
construction schemes are based on this approximatiornydimgj
the Zel'Dovich-Bernoulli equation derived by Nusser et(4891),
the Zel'Dovich-continuity equation presented.in Grameh89(3)
or the path interchange Zel'Dovich approximation schemgAp

we do not discuss here are based on geometrical argumentsused by Croft & Gaztanaga (1997), among others (see for deamp

These techniques include Voronoi
Icke & van de Weygaert! 1991] Ebeling & Wiedenmarin _1993;
Zaninetli | 1995;| Doroshkevich etlal. 1997; Meurs & Wilkinson
1999; |Kim etal. | 2000; | _Ramella etlal._2001; Panko & Flin
2004; |Zaninetti | 2006), Delaunay tesselations (see e.g.

tesselations (see e.g.

Dekel et all 1920; Nusser & Dekel 1992; Narayanan & Weinberg
1998;| Valentine et al. 2000). Several of these methods ame co
pared in Narayanan & Croft (1999). More recently, it was josgxl

to determine the inverse Lagrangian map (defined as thefdrans
mation of the present (Eulerian) positions to the respedtiitial

Bernardeau & van de Weygaert 1996; Schaap & van de Weygaert(Lagrangian) positions) by minimising a quadratic costefiion,

2000;  van de Weygaert & Schaap 2001rjends-of-friendsalgo-
rithms (see e.g. Botzler etlal. 2004) doud-in-cellinterpolation
schemes (see elg. Gottlober et al. 2002).

A widely known reconstruction method in various fields is
the Pixon method (see e.g. Puetter & Rina 1993). Unlike Bages
methods, this method does not assign explicit prior praitigisi to
image models. Instead, it restricts them by seeking minirnam-
plexity. The Pixon method minimizes complexity by smoothihe
image model locally as much as the data allow, thus redutiag t
number of independent patches, or Pixon elements, in thgama
For a recent application in astrophysics seele.d. Eke (2001)

1.5 Time-reversal reconstruction of the initial density fiéd

The reconstruction of the initial density fluctuations iesgly re-
lated to the reconstruction of the large-scale density fitlthe

which searches the optimal mass-transport solution of thedé-
Ampere-Kantorovich problem (Frisch etlal. 2002; Mohayaee et al.
2003 Brenier et al. 2003; Mohayaee el al. 2006)

The minimal action principle method was pioneered by
Peebles| (1989, 1990). One of its first applications was ptede
in|Shaya et al! (1995). Here the gravitational instabilitylpem is
treated as a two-point boundary problem and the trajectofithe
mass particles are solved by minimizing the action intedgrhls
method was extended by Goldberg & Spergel (2000a.b); Galdbe
(2001&.b).

1.6 Structure of the paper

This paper is structured as follows: in sectigh (2) we st t
problem of signal reconstruction, then we define the dataetod
Subsequently, we introduce a general statistical perispaetthin

observed epoch focused on in this paper. However, we believe a Bayesian framework from which different solutions to tlee r

that fruitful contributions to the field of initial densityuttuations,
could be extracted from the work presented here. An accoxete
density field at the observed epoch and the information atiaut
peculiar velocities could be useful to perform such a timesre
sal reconstruction. Let us thus briefly review the recorsion
schemes developed in this neighbouring area of cosmology.

(© 0000 RAS, MNRASDOQ, 000-000

construction problem are presented, including Wienegfilg, the
COBE-filter, a novel GAPMAP algorithm with a Poissonian kke
lihood and a Gaussian prior, Jeffrey’s prior and the Maximum
Entropy method (MEM). Markov Chain Monte Carlo methods
(MCMC) that sample the global probability distribution fttion of

the signal and all underlying parameters are presentecedddhl
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approach to achieve a full Bayesian solution of the recanstm
problem. In the numerical method sectién (3), differentative

inverse schemes which have been implemented in ARGO are pre-

sented, including a very efficient novel scheme. The opefate
malism is worked out for four novel algorithms in large-scstruc-
ture reconstruction. The efficiency of the different ineesshemes
is tested with the Wiener-filter under different reconstiarc cases
with synthetic data, including structured noise, blurrieglection
function effects, and windowing in sectidnl (4). Particulatailed
derivations are presented in the appendix.

2 BAYESIAN APPROACH TO SIGNAL
RECONSTRUCTION

The reconstruction of a signal (here: DM distribution) give set
of measurements (here: galaxy catalogues) is usually dyhifgh
generate problem, as we have discussed above, where tladisign
undersampled and modified by systematic and intrinsic €dae
to the nature of the observable. This is indeed the situaiiatwe
are facing, since most of the galaxy redshift surveys hasteapaky
coverage and the discrete nature of galaxies introducessse.

An expression for the data as a function of the real signal has
to be modeled in a first step. The reconstruction problemaisséi
cally seen as the inverse of this functional dependence sthe
tion to this problem is far from being trivial and essentidues,
like solution existence, solution uniqueness, and inktalaf the
solving process, have to be considered. Regarding the@olex-
istence, there will be no model that exactly fits the dategesihe
mathematical model of the physics of the system is appraeima
and the data contain noise. That forces us to look for optsuoal
lutions, rather than exact solutions. We will have to depkeglly
with the last two points mentioned above, uniqueness atlista
beacause an infinite set of possible solutions can fit the atada
because of the ill-conditioned character of the system weraat-
ing. A regularization method that stabilizes the inversecpss by
imposing additional constraints will be required. We shasloly
how the Bayesian framework permits us to do a regularizati@n
natural way and furthermore to jointly estimate the signal and its
parameters. The calculation of the Bayesian estimatotsegire
extra-regularization techniques, which will be preseritesection
(3). We will start posing the inverse problem by defining thediel
of the data.

2.1 Data model

The galaxy formation process is also known to be a complicate
non-linear and probably non-local process, as mentiondakim-
troduction. Thus attempts to invert the galaxy distribatioto the
original DM distribution may appear naive, if not hopeleldew-
ever, it is known that on large scales the galaxy power-spect
fits well to the expected DM spectrum predicted from CMB obser
vations, if some bias factor between the amplitude of thevgal
and the DM fluctuations is assumed. Detailed studies shawtttea
bias factor is not universal, but depends on galaxy typexyefor-
mation time, redshift, etc. Currently, a large effort isrgpimade
to understand such dependencies. For the time being, wenassu
that at some point bias models derived from first principldshe
available from which we can derive our data model connedtieg
signal (DM distribution) to our observable (galaxy coun&jich a
model will be complex, non-linear and non-local. The tegaes to
treat such problems are partially already existing; soilidate to

be developed. However, we are confident that such technigilies
rely on a foundation of methods solving the much simplerdime
inversion problems. Since even those are not fully develdp¢he
field of LSS reconstructions we concentrate here on a linata d
model. Nevertheless, a few excursions, to non-linear nuistizoe
done in preparation of forthcoming work. We will show how the
linear model can also be used to account for non-lineatesing
from structure formation (see section]2.6).

2.1.1 Linear data model

The general linear reconstruction problem formally can bicten
as the inverse problem of recovering the sighfiiom the observa-
tionsd related in the following way

d(w) = / dyR(x,y)s (y), (1)

where R represents the kernel of the Fredholm integral equation
of the first kind defined by[{1), with noise on the sigrabeing
expressed by the superscriptDiscretizing eq.[{l) and assuming
additive noise, we can formulate the signal degradationehioy

d=Rs +e. 2)

where them x 1 vectord represents the data points resulting from
the measurements (here: galaxy counts), the statistiésé ramd
the underlying signal arem x 1 vectore, and an x 1 vectors
respectively. The object that operates on the sign&t Bm x n
matrix which commonly describes blurring effects causedhsy
atmosphere, the point-spread function (PSF) of the tepesoothe
response function of the detectors of the instrument.

Let us denote the physical observation process encoded in th
R-matrix asRp. We are interested in the selection function of the
survey fs with the corresponding masks:, which can also be in-
cluded inR. One has to be careful with the data model defined in
eq.[2. As several authors point out, there is a correlatidwesn
the underlying signa¢ and the level of shot noise produced by the
discrete distribution of galaxies (see e.g. Seljak 1998)ce& by
definition, additive noise assumes no correlation with igea —
otherwise we would have signal content in the noise — we dédime
effective noisee as the product of a structure functigigr, which
could be correlated with the signal, with a random noise comept
(ex) that is uncorrelated with the signal. Given the above defini
tions, the effective noiseis uncorrelated with the signal. We may
then rewrite eq[{|2) in continuous representation as

d(x) = / dy Re (2, ) fs(¥) fu(w)s(y) + for(s(@))ex(@),
3

where R(z,y) Re(z,y) fs(y)fu(y) and e(x)
fsr(s(x))en (). In practice, we will assume white noise (i.e. con-

stant noise in Fourier spacey) = ewn~. However, none of the pre-
sented techniques in this paper depend on this simplifitaiome
of the previous studies of large-scale structure recocistm also
included the inverse of the linear redshift-distortiongi@tor as a
matrix multiplying R (see e.g. Lahav etial. 1994). Such an operator
cannot easily be found for the non-linear regime. Earlierkadry
to correct the non-linear redshift-distortions with anitiddal fac-
tor in the power-spectrum analogous to Kaiser’s factor [Ksgiser
1987, Ballinger et al. 1996; Erdogdu etlal. 2004). Here, veppse
a Bayesian solution to the signal reconstruction problerit &gl
be discussed later.

In most cases, the signal will be strongly underconstraghed
to undersampling, i.e» > m, which is nearly unavoidable due to

(© 0000 RAS, MNRASD0O, 000—-000
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partial sky coverage of surveys. The linear equation [(edo 2e the signal over the joint PDF space
inverted is a rank-deficient system. Such systems are dhairzed
by nonuniqueness, since the matfxhas a nontrivial null space. Ejoint (8) = /ds dp [P(&P | d) 5] =) spd> @

By superposition, any linear combination of the null spaasm ) )
els (modelss, that satisfyRso = 0) can be added to a particular Where we have introduced the ensemble average,, 4, with

solution leading to infinite solutions. Consequently, wergat dis- the subscript representing the PDF over which the integrdbne
criminate between situations where the solution is truetpZsee ~ F(s,p | d) — (s, p | d)]. Expression[{4) can consequently be
for examplé Aster et al. 2005). As is well known, a direct irsien read as the ensemble average over all possible signals eardea

of eq. [2) ® ' d) will amplify the statistical noise and lead to an  ters. The joint PDF is unfortunately quite hard to calcutitectly,
unstable solution (see elg. Zaroubi éf al. 1995). Insteaegular- and the integral in egl]4) is computationally too expensivee-
ization method, which often follows several steps, has tagpied alistic cases as it involves many parameters and a large r@mou

. The first step consists of finding an expression for an estima  Of data. To disentangle the uncertainties in parameter @mls
of the signals that approximately satisfies the data model [@q. 2) sPaces, letus apply the product rule of statittoseq. [3)

and copes with the noise. Further regularization methoelsisu-

ally required in a second step to actually calculate themestir. Ejoint(s) = /dP P(p|d) {/ ds [P(S | p,d) SH

This happens whenever some ill-posed linear or non-linparas

tors have to be inverted. We shall distinguish between neige- = Ep [ES (s|p,d)| d] = (&) sip.d)) pidy- ©)

larization and inverse regularization according to the fired the
second step, respectively. As Zaroubi etlal. (1995) pointeédus-
ing a mean variance estimator alone does not completely siodv
inverse problem. Therefore, they proposed the singularevek-
composition algorithm (SVD) to extra-regularize thesebtems.

This means that the expectation of the signabrresponds to the
average of the conditional mean®©bver the marginal distribution

of p (see for examplz_Gelman et al. 2004), where the conditional
mean is given by

However, this method requires one to calculate the coroglaa- E s) — Fa(s d :/ds P(s d sl = (s
trix of the data implying a slow algorithm, scaling &n?), and cond(8) = Es(s | p,d) [ (s|p,d) (8)(sip.dy-
needs large storage facilities. We will show that a Bayesipn (6)

proach is anatural regularizer for the noise, which then can be reg- 1raditionally, the conditional PDF has been used to deteertie

ularized further for the inverse purpose with efficient noekh that estimator of the signal assuming that all the parameterkraen

scale a®)(nlog, n) (see sectiof]3). Let us address the problem of (€-9-.Zaroubi etal. 1995). - _
signal reconstruction from a statistical inference pectipe. As the reconstruction step of the density field is computatio
ally expensive, a joint estimation of the parameters is dstope.

Therefore, the reduced approach of basing the estimatarsrati-
2.2 Inversion via statistical estimator tional PDFs provides a computationally more feasible waptkle
problems of this kind. In particular, we will demonstratttha op-
erator formalism allows efficient sampling of the condiabRDFs,
enabling us to sample the joint PDF in a Bayesian framework.

In parametric modeling it is assumed that observational Have
been generated by random processes with probability gedfisit
tributions, depending on the model parameters (see for geam
Robert 2001). Statistical analysis in this context is etialiy an
inverse method, which aims at retrieving the causes (hehleesl 2.3 Bayesian approach
to the parameters of the probabilistic generating mechgrfiom
the effects (here summarized by the observations).

Traditionally, one tries to find a way where the available in-
formation is optimally used and a unique estimator is setbfiom
an infinite set of solutions. One of the classical approacbesists
of minimizing the variance of the residuals, which is theiamace
of the discrepancy between the estimator and the set oflpessi
realizations consistent with the data (See Rybicki & Pre3@2]
This conjecture is reasonable because the least deviationthe
set oftrue signals is searched. The estimator obtained in this way
is called the least squares quadratic (LSQ) estimator. Mewea
transparent statement of the statistical assumptions gsing in
this method, contrary to the Bayesian approach used in tbik w
as will be shown below. Moreover, Bayesian statistics alleam-
pling the PDF of the system under consideration in a natussl w
Strictly speaking, one does not look for a unique estimatdhis

framework. Nevertheless, a summary of the PDF can be given by lihood or the maximum a posteriori (see sectipnd 2. 4andespectively).

the mean of the sample (see secfion 2.6). . . Note that a bracket formalism could be introduced at thisitpan which
The most general approach to determine an estimator, how- g [2) would be represented in the following wé|s|p, d)

ever, should be based on the global (joint) PDF over all eglev 4 pP(s,p|d)=P(s|p,d)P(p| d)
guantities, like the signal and all model parametegs without ne- 5
glecting any possible dependences. Let us assumétizap | d),
the joint PDF of the system under consideration, dependhen t
signals and a series of additional parametprgjiven the observa-

tionsd. One solution would then be to calculate the expectation of

Given a data model, one can usually find an expression foetine s
pling distribution, i.e. the probability of obtaining thatd given the
signal and some additional parametgrs>(d | s, p). Thisis much

less difficult than a direct calculation of the posteriofs | d, p).

We need an expression which relates both the sampling and the
posterior distribution given by Bayes theorem. The deidvabf
Bayes theorem is straightforward from the joint PDF of thgnal

and the data, using the product rule and the fact that thé Ridf

is invariant under permutations of its argum@ﬂBayes theorem

can be expressed by the following equation

P(d|s,p,)P(s|p,1)
P(d|p,I)

P(s|d,p,I)= ) (7)

3 Sometimes, however, the ensemble angles will denote tiraatst of
some signal or parameter in a more general sense, like thenmaxlike-

P(s,d,p,I) = P(s|dpI)P(d|pI)=
P(d,s,p,I) = P(d|spI)P(s|pI)

(© 0000 RAS, MNRASDOQ, 000-000
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where P(s | p, I) represents the prior knowledge about the sig-
nal, as it models the signal before any observations ocdue. T
PDF given byP(d | p,I) stands for the so-called evidence that
is treated as the normalization of the posterior

®)

It is worth mentioning that all the probabilities are conatitl
to the underlying physical picture, or prior informatidn This
has to be explicitely considered in case of model compasision
the following sections, we will present the steps for cortipte
a Bayesian analysis, starting with the likelihood, therca$sing
the importance of the prior, and finishing with sampling tigb
the joint signal and parameter space. Note that differentcels
for these three components (likelihood, prior, and sangpliead
to different classes of reconstruction algorithms. An wiev of
the different reconstruction scheme implementationsdasethis
classification can be found in tablg (1).

P@|p.1) = [ dsP(d]s.pDP(s | p.D)

2.4 The likelihood

The likelihood function is formally any function of the panaters
0 proportional to the sample density

£(0]d) o P(d]0). )

Many inference approaches are based on the likelihood iumct
justified by the likelihood principle, which states that théorma-
tion obtained by an observatiadh about® is entirely contained
in the likelihood function(@ | d). To be specific, ifd: anddz
are two observations depending on the same paramastigch that
there exists a constantsatisfying£1(6 | di1) = ¢L2(0 | d2) for
everyd, d; andd: then bring the same information abatiand
must hence lead to identical inferences.

Maximum likelihood (ML) methods, for example, rely on the
likelihood principle with an estimator of the parametengegi by

(@)mL = argsupg L(0 | d), (20)

i.e., the value ofé that maximizes the probability density dt
Bayesian methods take also advantage of the likelihooctipti
incorporating the decision-related requirement of therential
problem through the definition of a prior distribution (seetion
[2.8). The definition of the likelihood is the first step in a Baian
framework to determine the posterior distribution (see[#q.In
using galaxy redshift surveys to trace the matter distidio,itwe
have to deal with the discrete nature of the data sample. fteus
likelihood may be derived here for Poissonian statistics.

2.4.1 Poissonian likelihood

The likelihood of our galaxy distribution may be approxieilst
represented by a Poissonian distribution (the real staishould
describe the much more complex galaxy formation process). U
der the assumption of independent and identically disteidbiid)
observations, this yields

L(s|d,p) o

Pd]|s,p) = Hexp (= [(Rs")i +ci])

11)
[(Rs')i + ¢;](dited)
(di+e) 7

whered; are the galaxy counts per celand the real, positive sig-
nal of the expectation value of the number of galaxies isrglvg
s = Tig(1 + bsi), with s; = §,; = £ the DM overdensity,

our target signal. The quantity, stands for the mean number of
galaxies,p represents the mean density anthe bias factor. All
these quantities are redshift-dependent. The additicaranpeters
p in this case would be represented by some backgreyrahd
would enter into the operatd® that modifies the signal.

For a similar application in astronomy see Lahav & Gull
(1989) and_Robinson (1991). & is not converted to an integer, a
Gamma function may be used instead of the factofilt c;)! —
T(d; +c; + 1).

2.4.2 Gaussian likelihood

When the number of counts is large the Poisson distributaon c
be approximated by the normal distribution. In that case|ilteli-
hood can be given by a Gaussian distributed noise

L(s|d,p) o

1 1 -
P(d s ——e'NT!
@i = e (34N )

x o[-0 12)
where N = (ee')(ep) is the covariance matrix of the noise
e=d— Rs,and

x’(s) = (d— Rs)'N~'(d — Rs). (13)

The parameterp determine the structure of the noiséand there-
fore the structure of the covariance matf), and also enter into
the operatoR. We give different expressions for the noise covari-
ance matrixIV in section[(3.B).

Note thaty? coincides with the square of the Mahalanobis
distancH betweend and Rs, and also coincides with the squared
N ~'-norm of the error

X*(8) = Diran(d, Rs) jy—1 = || €] [y -1- (14)

In this case, the ML will correspond to the least squareseéthor.

It will minimize the x*(s) and hence minimize the Mahalanobis
distance between the data and the noise-free data mode&fdie
the ML is equivalent to searching the estimator that fits thad
better without constraining the model for the signal. Lestigly
the prior that precisely sets constraints on the signal

2.5 The prior

A second step in Bayesian analysis is to specify the pridridis
bution for the signal, which contains the prior knowledgewuth
the signal before the measurements were carried out. Berifit
formative data it can strongly affect the posterior disttibn and
thus modify any inference based on it. For this reason, fetists
critisize Bayesian methods as being subjective. Otheritiefis of
probability, like the frequentist, however, can be showmipst of
the situations to be particular cases of the Bayesian apprze
e.glTanner 1996), implying the use of an implicit prior. Huwan-
tage of defining the prior knowledge about the system under co
sideration is that the interpretation of the results isightforward,
especially because assumptions flowing into the inferenceep
dure are clearly stated. Once the prior is defined, we carrotbia

6 We introduce here a generalized definition of the Mahalandmstance
as:D% ., (z,y)pg = (& — y)T M(z — y), with = andy being two
vectors in theN-dimensional space amf a N x N matrix.

(© 0000 RAS, MNRASD0O, 000—-000
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Non-informative priors

Informative priors (MAP)

Prior Flat (ML) Entropic (MEM ) Gaussian Poissonian
Likelihood
Gaussian WIENER (Tikhonov, Ridge)
—Radio Sutton & Wandelt (20067
-CMB COBE: Janssen & Gulkis (1992) Maisinger et al. (1997) Bunnugigama (1995) Hobson & McLachlan (2068)
Tegmark (1997,1997b) Hobson et al. (1998) Tegmark (199749
ROMA: Natoli et al. (2001)
MAPCUMBA: Doré et al. (2001)
MAXIMA: Stompor et al. (2002)
MAGIC#: Wandelt et al. (2004) MAGIC#: Wandelt et al. (2004)
MIRAGE: Yvon & Mayet (2005) Eriksen et al. (2004%
MADAM: Keihanen et al. (2005) O'Dwyer et al. (2005¥%
Larson et al. (2007
-LSS Fisher et al. (1994)
Hoffman (1994)
Lahav et al. (1994), Lahav (1994)
Zaroubi et al. (1995)
Fisher et al. (1995)
Webster et al. (1997)
Zaroubi et al. (1999)
Schmoldt et al. (1999)
Erdogdu et al. (2004,2006)
ARGO: MEMG* ARGO: WIENER**#
(sectio 2.5 and appendiX E)  (sectibns 2[5.3[2.6, 4 aperajixd])
Poissonian Richardson (1972) ARGO: MEMP* ARGO: GAPMAP*

Lucy (1974)

(sectiofh 2.519 and appendix E)

(sedfion 2.5d4agpendiXA)

Inverse Gamma
—-CMB

-LSS

MAGIC#: Wandelt et al. (2004)
Eriksen et al. (2004%
O'Dwyer et al. (2005¥%
Larson et al. (2007
ARGO*#
(sectioZ.6.P)

Modified Gaussian
-CMB
-LSS

Pierpaoli & Anthoine (2005%
Percival (2005%

*developed and presented in this papédeveloped, tested and presented in this papable to sample PDFs

We have left out the reconstruction methods that are focasdtie cosmological initial conditions, since they addeed#ferent problem and, in general,
cannot be classified in terms of the PDFs listed in this tdidgther can other reconstruction algorithms based on gemalearguments,
like Voronoi, Delaunay tessellationfsiends-of-friendsschemes ocloud-in-cellinterpolation schemes, be classified here.
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10 Kitaura & EnRilin

maximum a posteriori (MAP) estimator, by maximizing the tges
rior distribution, which is proportional to the likelihoadultplied
by the prior,

(@)map = argsupg P(6 | d).

Note that there is a crucial difference to the maximum lhedid
estimator (ed._110) due to the incorporation of the priorinfation.

(15)

2.5.1 Bayes and regularization methods: the prior as a
regularizer

Looking at the log-probabilities, we see that the MAP esti-
mator maximizes the following quantity using Bayes theorem
(log P(6 | d) o< log(P(d | 8)P(6)))

Q =logP(d | 0)+log P(0). (16)

If we assume that the error is Gaussian distributed, (whiéhfair
assumption if there is no prior information about the ngiseld
we parametrize the prior of the parameter, say the signak can

rewrite eq.[(Ib) as2Q — Q)
Q= —x"(s) + afo(s),

where we absorbed the factom the Lagrangian multipliet, and

fp represents the penalty function that obliges the estimatwofil
some constraint on the parameterto the detriment of the?(s)
that strongly relies on the data. If we further assume Mat' = I
(say we have white noise), the Mahalanobis distance rediaces
the Euclidean distancéX, (d, Rs)|nr—1_ = Diuc(d, Rs)),
and the quantity one wants to minimize reads

l€l” + afo(s),

where we have absorbed the minus signainExpression[(18)
is equivalent to least squares with a regularization temm, lze-

longs to Ridge-regression problerns (Hoerl 1962; Hoerl & il

1970). Assuming that the penalty function takes the foltmiorm

fo(s) =||s||?, we can write expressiof{1L8) as

(17

(18)

2 2
el + s,

(19)

which then becomes the Tikhonov regularization method
(Tikhonov|1963). The parameteris called the regularization pa-
rameter. These methods lead to linear filters and are eskenti
identical to Wiener-filtering (Foster 1961), which will beegented

in the next section. Note that Tikhonov regularization isiieg-
lent to MAP of a Gaussian likelihood with noise covariance- ma
trix N = I and Gaussian prior, with signal covariance matrix
S = o 'I. Nevertheless, the penalty functignin general can be

a non-linear function of the parameter to be estimated (sagig-
nal s) leading to non-linear estimators. We will introduce MEM as
such an example. Tikhonov regularization can also be ghreda
to non-linear problems by introducing a non-linear kerrggrator
R(s).

Summarizing the exposed theory of signal reconstructian, w
might interpret the likelihood as some distance measuredsst
the data and the noise-free model of the data, and the primras
constraint that tightens the estimator to the model of theadi We
have shown here that the classical methods of signal raceonst
tion, like the Tikhonov regularization, are particular eaof the
Bayesian approach. The inclusion of a prior can be regarded a
natural regularization, in the sense that the regularization term i
provided by a (physical) model of thteue signal. In appendik]F,
we discuss the relation between other regularization naistlamd

the Bayesian approach. In the following subsections wedluice
different priors that are relevant for large-scale strreteconstruc-
tion and are implemented in ARGO.

2.5.2 Gaussian prior

The distribution of the primordial density field should beywelose
to Gaussianity according to most of the inflationary scasaiGuth
1981; Linde 1982; Albrecht & Steinhardt 1982). In fact, thean
surements of the CMB show very small deviations from Gauassia
ity (see e.gl_Komatsu etlal. 2003). Non-Gaussianities inntla¢
ter distribution arose mainly from non-linear gravitatbnollapse.
The non-linear regime of structure formation is resporsfbf the
strong radial redshift-distortions, tHimger-of-godeffect, limiting
the accuracy of reconstructions. Previous attempts tcecoifor
these distortions have modified the power-spectrum by datro
ing a lorentzian factor (see e.g. Ballinger et al. 1996; Edipet al.
2004). In section(2]6) we propose an alternative way to @oith
a Bayesian framework, where peculiar velocities are sainfgle
gether with the three dimensional map of the matter distiobu
For the underlying DM density fluctuation we will assume a &au
sian prior. This is a crude approximation for the densitydfiat
the present epoch of the Universe, especially on smalksctlis,
however, a valid description on large-scales and allowsdorpo-
rate non-linear corrections in a MCMC fashion, as will becdissed
in section[(2.6). Following Bardeen et al. (1986) we may thrite
the PDF of the signal as a multivariate Gaussian distributio

S
2y det(S)]172

with S being the covariance matrix of the signal
(S = S(p) = (ss')(s|p))- This formula emphasizes the high
dimensional character of the problem (n dimensions of theadi
reconstruction, with n being typically betwe#6® and10°).

P(s|p) = exp <—%ST5718) , (20)

2.5.3 Gaussian prior and Gaussian likelihood: the Wienkesfi

The Gaussian prior together with the Gaussian likelihoed I®
the Wiener Filter, completing the square for the signal & éx-
ponent of the posterior distribution, as derived| by Zaraitzl.
(1995),

P(s|d,p)

e (= (5= (o) (o) s = (o)) ) 21

where the Wiener-filter used to calculate the estimator ffuerdata
(s)wr = Fwrd is given by

Fwr = SR (RSR' + N)™!, (22)
and the corresponding covariance is
owr = (rrHwr =S+ RINT'R), (23)
with » = s — (s)wr being the residual. The fol-

lowing notation can be introduced for the posterior PDF:
P(s| d,p) x G(s — (s)wr, o), i.€. given a dataset derived
from a Gaussian process, the possible signals are Gaudsian d
tributed around the Wiener-filter reconstructit#)wr with a co-
varianceowr. The parameterp enter the operataR, including
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also the cosmological parameters that determine the sigwati- 2.5.6 Flat prior and Gaussian likelihood: the COBE-filter
ance matrixS. We will discuss in sectior[ (2.6) how to sam#e
and to determine cosmological parameters.

A remarkable characteristic of the Wiener-filter is thatlips
presses the signal in the presence of a high noise leveliresin
the null estimator and gives just the deblurred data whesenisi Fcopg = (RTNflR)*lRTNfl_ (25)
negligible. In this sense it is a biased estimator, sinceatariance
matrix has less power than the original one. Some attempts ha
been made to derive an equivalent unbiased estimator (seala
2002b). However, one might be especially interested inioinitz a
conservative estimator. Sampling the joint PDF will fill timéssing

In CMB map-making algorithms it is common to use the so-chlle
COBE-filter (see_Janssen & Gulkis 1992; Tegmark 1997), which
can easily be derived by maximizing the likelihood givendn @2)

This filter has the property that among all unbiased linetimes
tors (with a noise of zero mean), it leads to the minimum vexéa
(Natoli et al. 2001). Here unbiased means that the stalstiean
of the estimator is equal to theue signal. This is, however, only

~DF! . . P . .
modes (see e.f. Wandelt etlal. 2004) and in this way compiete t fulfilled when the inverse oR' N 'R existsfJ. The covariance
signal in regions where it is undersampled or the signal iseno 0 the COBE-filter can found to be

rgtio is low. Itis inj[erestin.g to note that the Wien(.er Filugincides o2one = (rrf)cose = (RINT'R) ™. (26)
with the MAP estimator in the case of a Gaussian priorscnd . . . )

a Gaussian likelihood(§)wr = (s)nap). This filter can also be  Note that, in general, the following relation holdsyyr < o¢oge.

obtained as the LSQ estimafbt(s)wr = (s)1sq, for an explicit as a comparison to ed. (23) shows.

derivation see Zaroubi et/al. 1995, and appefidix I). Perifigrthe Tegmark [(1997) claims that several linear filters like the
integral of the conditional PDF (see &). 6) one obtains theeses- ~ COBE or the Wiener-filter conserve information by compartiney
timator again, thugs)wr = <S>(s\dp)' This is a very important Fisher information matrix corresponding to the filterednsilgto
result, since it permits one to sample the conditional PDEpHS- the one of the unfiltered time ordered data. This propertyaapp
pose to exploit this property for the joint estimation of tignal ently permits one to perform cosmological parameter estima
and its power-spectrum as is done in the CMB (see Wandel} et al from the reconstructed signal after filtering the data. Hewglin-
(2004) and sectidn 2.8.2). ear filters conserve information only if they are invertibddiich is

not provided for realistic cases as we show in appehdlix C.# co
sistent estimation of cosmological parameters has to be doa
full Bayesian framework by estimating the joint PDF of thgrsil

estimator 2004).

The Gaussian likelihood constitutes a valid approximatidren
the Poissonian character of the distribution is approgigiatnod-

. . . 2.5.7 Flat prior and Poissonian likelihood: the Richardsbnc
eled in the noise correlation matriX . However, one would rather P y

. . - . ) algorithm
describe a discrete sampling process like a galaxy survdy avi
Poissonian likelihood. Unfortunately, there is no filteagable for A widely used deblurring algorithm in astronomy and medical
such a case. Thus, we present a novel iterative equatiorhéor t mography is the Richardson-Lucy algorithin_(Richartison2197
MAP estimator with a Gaussian prior and a Poissonian likald Lucy|1974), which was shown to be the maximum likelihood so-
which we call GAPMAP (see appendiX A for a derivation) lution with a Poissonian likelihood hy Shepp & Vardi (198%)e

show the derivation in appendiX B, as a simplified case witheet
s = SRbm; <_f+ diag (Rn_g(f+ bs’) + 6)71 (d + C)) ~ to eq. [24). The Richardson-Lucy algorithm cannot prevent- s
ous noise amplifications in the restoration process (se€amsso
. . . . (24) 1999). This is a natural consequence when a prior that régeda
This scheme will be presented in further detail in a sepaaper. the solution is missing. We will show in a forthcoming papfeatt
the Krylov regularization methods we present in this papectjon
[B:1.8) are very well suited for deconvolution purposeshay give
2.5.5 Flat prior faster reconstructions than the Richardson-Lucy algoridimd are

. . . L ) o stable against noise. A toy application is presented in@). (
With the aim of deriving objective posterior distributignson-

informative prior distributions are introduced. A nonéniative

prior would suggest that any value is reasonable. Flat pridrere 2.5.8 Jeffrey’s prior
the probability distribution is assumed to be constéts) =
constant are thus very often applied. Note, however, that these are
improper priors, since the integral of these distributidiverges to
infinity. In this case, the posterior is proportional to thelihood.

The maximum likelihood solution coincides in this way withet
MAP estimator assuming a flat priofsmr, = (s)map |fiat)- 8

Other non-informative priors have been suggested basech-on i
variant statistical structures under transformation ofaldes in a
Bayesian formalism. Considering a one-to-one transfaonan

((s)coBE)@sp = (RINT'RTRIN'd)gsp

(
. I . = (RIN"'R)"'RIN"'(Rs+e¢)
Note that in this case, the least squares are referred toesiduals
7, i.e. the difference between the real sigsahnd the estimated signal = (RIN"'R)'R'N'Rs
(s)Lsq: 1712 = ||s — _<3>LSQ||21 where the prior o is given in a more — s, if RTN"!Risinvertible.
implicit way by assuming a linear relation between the eatonand the

data and statistical homogeneity.

(d|s,p)
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12 Kitaura & EnRilin

the one-dimensional case of the parameger: f(0), the equiva-
lence between the respective prior densities is expregsed b

de

5= (27)

—ro)| 5| =ro 11O
This relation is satisfied by Jeffrey’s priét(6) o [J(8)]'/?, where

J(6) is the Fisher informatidh

8logP(d|9)) )ato) = _<8 log P(d|0)

502 )(d16)>

(28)
and where we have assumed the following regularity conditio
[ dd o P(d | 6) = 0. Relation [2¥) can be proved easily by do-

802
2
ing the evaluation/(¢) = — (&L 0 — ()[40

(see e.g. Gelman etlal. 2004). Note, however, that in theidirult
mensional case, Jeffrey’s prior may lead to incoherences/en
paradoxes (see e.g. Berger & Bernardo 1992; Robert 200ft). Je
frey's prior is applied adequately, when not even the order o
magnitude of the parameter to be estimated is known a priori.
We derive Jeffrey’s ignorance prior for the 3-D power-spatt

(S = diag(Ps (k) in appendiXD (see sectién 2.6.2 for an ap-
plication of this prior).

)= (( 280

2.5.9 Entropic prior and Maximum Entropy method

Another approach searches the least informative model atibig
with the data using a prior based on Boltzmann’s definitioerof
tropy SE[ (or equivalently, Shannon’s notion of information, see
Shannon 1948),

P(s | p) = exp(asS®), (29)

and maximizing the resulting posterior distribution, tgpinsome
constant, ang the so-called hidden image (or signal). This infer-
ence procedure is called the Maximum Entropy method (MEM)
(Jaynes 1963, 1968; Frieden 1972; Gull & Daniell 1978; |Gull
1989;| Skillingl 1989; Maisinger et al. 1997; Hobson et al. €99
For a review see Narayan & Nityanahda (1986). From now on we
will represent the underlying signal I8yin the framework of MEM.
The MEM can be considered as MAP estimation with an entropic
prior.

The particular expression for the entropy depends on the sta
tistical formulation of the non-informative prior. Let ukink of a
positive signal as a grid with cells, with each cell having a cer-
tain intensity values;, ¢ = 1,...,q, with an uncertainty on each
value given by+a~'. Then we define some discrajaantan; on
each cell related to the intensity through the uncertainty= as;.

The signal can be guessed by distributing thequantasin the
grid. In this way, the image is modeled in this way analogptsi
the energy configuration space of a thermodynamical sydfeve.
further demand each cell to lid, the number of ways this object
can occur is given by the multiplicity

Ny!

nilna!...ngl’

(30)

9 The generalization to the multidimensional case leads edfalowing
matrix form: J;; () = (2lce 2(di0) dlos P(d|6)
‘ i(0) = (HERL o)

Q).

10 Here the autocorrelation matri§ is represented in k-space. We will

discuss this in further detail in sectidn (B.3).
11 Not to be confused by the signal autocorrelati®n

(d)9) (see appendix

with N, being the total amount afuantasto be distributed in all
cells Vg = >, n). The probability of any particular resultis then
given by the multinomial distribution

P(s' | p) =Wq M. (31)

Sutton & Wandelt|(2006) propose to sample from the multiplic
function directly to perform reconstructions in radioasiwmy. By
using Stirling’s formula for the factorials:{ ~ n"e™") we can
write

log P(s' | p) = —« z s, log s + const. (32

Comparing this expression with ed._{29), we recover Shasnon
definition of entropy §% = >, s} log s'YH. The expression that
is commonly used for the entropy is a generalization of Shaisn
formula by Skilling that can be derived based only on corsisy
arguments within probabilistic information theory for o and
additive distributions (PADs) (Skilling 1989).

This generalization implies the definition of a Lebesgue-mea
sure (n) for the integral of some function of the hidden image to
represent the entropy

ST (s' | p) = Z [SIL — mi — s, log (si/ml)],

i

(33)

here in its discretised form. Skilling’s expression for tha-
tropy can also be derived by consideringteam of monkeys
throwing balls atq cells at random with Poissonian expectation
pit P(nlp) =TI, piie™i /n;!, wheren; = as; and p = am;
(Skilling!1989). For a review on further expressions for émgropy
see Molina et al! (2001).

The global maximum o™ over s in the absence of further
constraints is found to be’ = m. Consequentlym can also be
thought of as a prior model for the image. However, this expre
sion for the entropy will allow reconstructing positive s&s only.
Zaroubi et al. |(1995) propose to defisgé= p and m = p,, to
avoid the possibility of having a negative distribution for

According tol Gull & Skilling (1990) the MEM can be ex-
tended to reconstruct distributions, which can be eithsitpe or
negative, as in the case of density fluctuations. Such bigions
can be described as the difference between two subsidiaitveo
distributions (PADs)

s=u—v, (34)
relative to a common modeh
SE(u,v|p) = Z |:uz —2m; —u; log(ui/mi)}
+ Z [vi —2mi — v; log(vi/mi)]. (35)

One can see from eq(34) thas%/du = —9S%/dv, hence
yielding

uv = m?. (36)
From the relations given by egE. {34) ahdl(36), it is easy tivele
w= %('w—i—s), @37)

12 The “+" symbol in.ST denotes that the definition is only valid for posi-
tive signalss’.

13 The “+£” symbol in SE denotes that the definition is valid for positive
and negative signals.
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v ==

3 (38)

(w—s),

with w; = (s? + 4m?)'/2. Using these expressions, the total en-
tropy can be rewritten as

S:}[::(S | p) = Z [wi — 2m; — s; log ((wZ + si)/2mi)}. (39)

The Maximum Entropy method gives a non-linear estimator of
the underlying signal that one wants to reconstruct. Thithote
is especially interesting to study deviations from Gausgia
(Maisinger et al. 1997; Hobson etial. 1998). It is equivatemhax-
imize 2 with a Lagrangian multiplier, which includes a penalty
function given by the entropy. Maximum Entropy in this cotte
searches the hidden image that adds the least additiomairiaf
tion to the data.

The quantity we need to maximize is given by

Q%(s | p) = as®(s | p) +log L(s | d,p),

where thelog £ is given by eq.[(113) or e {A1). The equation we
want to solve is

(40)

VQ®(s | p) =0.

In section [[3.R), different iterative algorithms to sohrést non-
linear problem will be discussed. The required expressionthe
gradient of@Q® and its curvature for positive and positive/negative
expressions of the entropy (efis]l 33 Ant 39) and for both @awuss
and Poissonian likelihoods are presented in appdndix E.

Note that in the limit of low density fluctuations, i.e. in
the linear regime, the expression of the entropy reduce$eo t
quadratic entropy (eventually with an offset of the origih <),
SE(s | p) ~ —>, s7/2m;. This expression is very similar to a
Gaussian prior for the signal with a variance givenray In that
case Maximum Entropy leads to the Wiener-filter.

(41)

2.6 Markov Chain Monte Carlo: sampling the joint PDF

The drawback of the maximization methods hitherto mentipne
is that they find a unique estimator that is most probably extibj
to the chosen values for the required parameters. As alneady
tioned, the complete characterization of a system is coathin
the joint PDF in the product space of possible signals and pa-
rameters. Thus, it would be desirable to sample from this PDF
to find the region of highest confidence for our estimator.sThi
is possible using Markov Chain Monte Carlo (MCMC). The im-
portance of sampling from the joint PDF and the viability aFd
ing that with MCMCs has already been discussed in other con-
texts in astronomy (Hobson & McLachlan 2003; Jewell €t ab420
Wandelt et al. 2004). With the MCMC method, the whole system
can be moved in its configuration space by updating all vigab
successively in a Monte Carlo fashion, until the systemxeda
(burns-in) and reaches the highest density region.

The expectation of theth parameterd;) can be calculated
by the so-called ergodic average, which is given by the mé#reo
sample

Np—1

1 ¢
)01 = 77 D 0
t=0

with Ny, being the size of the sample drawn once the Markov Chain
hasburned-in In general, the mean estimator is more reliable than
the maximum of the distribution, especially in cases withige
tions from Gaussianity (see elg. Gelman et al. 2004). The CM

(42)
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method permits one to approximately solve the integral in{dy
through expressiof_(%2).

2.6.1 Gibbs sampling

The most straightforward MCMC method is the Gibbs sampler
(Geman & Geman 1934), also known as theatbathalgorithm.
The Gibbs algorithm samples from the joint PDF by repeatesiy
placing each component with a value drawn from its distrdsut
conditional on the current values of all other componeniés pro-
cess can be seen as a Markov Chain with transition probabtiit,
fork=1,..,n,

7(0,60') = P(6; | {6: :i # k}) - [ [ ox (63, 60),
i#k
where {0; : i # k} = (01, ..., Ok—1,0k+1,...,0,) (See e.gl_Neal
1993) andk is the Kroenecker delta-function. The Gibbs sampler
starts with some initial value@® = (6., ..., 6{") and obtains
new update®) = (6, ..., 6%)) from the previous step’/ "
through successive generation of values

(43)

o)~ P | {077V i £1})
05 ~ P00 {077V i > 2}
059 ~ P, | {0 :i+#n}) (44)

In this way a random walk on the vectéris performed by mak-
ing subsequent steps in low-dimensional subspaces, wpéshtee
full product space. This is similar to individual collisi®of parti-
cles in a mechanical system that drives a many-body system to
equilibrium distribution for all degrees of freedom. We aspe-
cially interested in this sampling method because of itgiefficy
and simplicity in contrast to other algorithms, which irsduac-
ceptance and rejection rules like the Metropolis-Hastalgerithm
(Metropolis et all 1953; Hastings 1970). See Wandelt le8l04)
for applications in CMB-mapping and power-spectrum estiioma

The MCMC method can be applied to perform simultaneously
the reconstruction of the density field and the estimationtbér
parameters, such as the power-spectrum, the peculiaitetothe
bias, or the comological parameters (sedig. 1). Here wineute
procedure to apply this method to power-spectrum estimatia
redshift-distortion corrections, which can also be usealjiwint al-
gorithm. The applications of this method will be presentefbith-
coming publications. Note that a higher degree of compfesdin
be achieved by going beyond linear perturbation theory osich
ering higher moments of the density field.

2.6.2 Joint signal and power-spectrum estimation

The joint PDF considered here is given by the joint PDF of the
signal and the power-spectruR(s, S|d). For the initial guess ei-
ther an expression for the power-spectrum can be appliede(se
Efstathiou et al._1992; Peacock & Dodds 1994; Smith et al8199
Eisenstein & Hu 1999), or the power-spectrum of the CMB can be
taken and calculated for the required redshifts with soraesfier
functions (see e.q. Eisenstein & Hu 1999). Then the follgvaam-
pling processes are iterated until the cHaimns-in

UL P(s | S(j),d), (45)

SU+h P(S | S(J'Jrl))7 (46)
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where we sample the DM signal with the following PDF (see sec-

tion[2.5.2)

P(s| §9,d) < G (s = Fwr(SY)d, 0% (SY)) . (47)
By adding a vector with the correct covariance to the Wiener-
filtered signal (see Wandelt et al. 2004) we can generatmatas
of the signal with the required mean and covariance. GiveyeBa
theorem we can write

89 = (sD)yp + y )

OWF "’

(48)

To generateyﬁjv)VF one has to solve the following set of equa-

tions, which are generalized here for windowed signals witk-

sponse operataR (note that similar expressions can be found in

Eriksen et al. 2004)
(4)

Yowr

. —1 .
((S(J))*l_’_RTN*lR) ((S‘”)’l/zmgl +RTN*1/2:UG2)7

(49)

wherezg, andzq, are two independent Gaussian variates. One
can show by direct calculation thg JV)VF has a covariance given

by U'%VF.

The power-spectrum can be sampled by a inverse gamma

function, which we derive here for the case of the 3-D power-
spectrum (see Wandelt et ial. 2004, for the analogous CMB case

P(S|s)x P(S)P(s|S). (50)
Assuming a Gaussian signalsee ed._20) this yields
) 1 sV (k) [*
P(Ps(k) | s¥) o P(Psac))l;[ N R
(51)

with S = diag(Ps(k)). The prior P(Ps(k)) can be chosen to
be flat (P(Ps(k)) = const) or instead Jeffrey’s prior can be used
(P(Ps(k)) = Ps(k)™1), see sectiori(2.5.8) and apperidix D. Note
that the likelihood for the power-spectrum given by dq.] (&1)
clearly non-Gaussian.

2.6.3 Joint signal and peculiar velocities estimation:
redshift-distortions correction

The measured redshift of a galaxy, or its so-called recesso
locity can be expressed by Hubble’s law, that describes titie b
flow of the Universe. However, the peculiar velocity of théaga
ies along the line of sight introduces so-called redsligtegtions.
This has to be considered in order to correct Hubble’s lammade
a galaxy’s redshift-distancez (conveniently expressed in velocity
units) is given by its true distanee= Hd plus its peculiar veloc-

ity v along the line of sight,
cz = Hod+7ry-v. (52)

We propose to sample the peculiar velocities in a MCMC fashio
analogous to the case of the power-spectrum

sUHD L P(s | v, S, d), (53)

Ut o P(v | s(j+1))7 (54)

In each step where we sample the peculiar velocity, the idsh
distortion can be corrected using €qg.](52)

T(j+1) —cz—1y- v(j+1) (55)

For low overdensities, linear theory gives good estimatéiseope-
culiar velocity

vir = —3VV 26, (56)

whereVV 2 is the inverse Laplacian, anglis the linear growth
rate at the present day divided by the bias factos: 5 = fo/0.
For high overdensities, the structures tend to be viridliZEhis
means that the galaxies will have random velocities as inlezBo
mann gas, introducing dispersions in the line of sight, thealled
finger-of-god effect. We propose to sample the peculiaroreés
from a PDF with a meafw)w given by the linear theoryrr and

a velocity dispersiorr, depending on the local value of the over-
density,

Pl sY) x G (v - <v>M(s<J'>),ai(s<J‘>)) . 67
Such a method would provided linear and non-linear comasti
to the redshift-distortions. Note that with a similar apgzh, non-
Gaussianities due to the Lagrangian nature of structuragtion
could also be addressed.

3 NUMERICAL METHOD

In order to efficiently sample the joint PDF, as it is requiied
MCMC methods (see sectin 2.6), fast inverse algorithmsl hee
be considered to regularize the solution. General itezdtiverse
methods scale a8(n*) since they imply matrix multiplications of
an x m matrix in an iterative fashion (at moststeps until con-
vergence). This makes the study of the joint PDFs as presémte
section[[Z2.6), at a first glance, unfeasible. However, agrfggmu-
lation of the problem in an operator formalism allows tregtthe
matrices as operators that have to be neither calculatestored.
Within this operator formalism, the inversion methods wesgnt
here sped up to a scaling 6f(nlog, n). We start with a general
formulation of iterative methods and subsequently predentif-
ferent schemes that we have implemented in ARGO. Since a pre-
conditioning treatment can dramatically enhance the paidoce
of iterative schemes (see our numerical experiments iriosdd),
we pay special attention to this point in the derivation &f tliffer-
ent schemes.

3.1 Iterative inverse and regularization methods: a unified

formulation of different linear methods

Let us consider a regioP in the n-dimensional Euclidean space
E,, and denotelz (D) the Hilbert space of all complex measure-
able sre integrable functiorfs, d"z|g|?(z) < oo with inner

product?
tgls) = |
D

and norm ofg € Ly (D)

d"zg(2)s(2), (58)

lgll = (glg)*/>. (59)
Let ¥ be a subspace of the Hilbert spdeg D) with the conditions
that every elemenp € ¥ must satisfy being smoothness, limit be-
haviour at the boundari, etc. Let us now consider the linear op-
erator A, defined on the linear manifollt, and suppose that is

14 Here a Dirac type notation is introduced. It should not befused with
the ensemble average notation, which does not have a bakteen.
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a positive definite, i.e(Ay|y) > o[ for all 1 € W. The kind
of inverse problem we are interested in belongs to the si@tjo
problems of the form

AY = f,

since, for example, for the COBE-filter we have to invert
A(8)oops = RTN7'd, with ¢ = (s)oopp, A=RIN'R
and f = R"N~'d, and for the Wiener-filtering we have
¥ =(SR") " (s)yp A = (R'SR+ N)and f = d. Eq. [60)
has the same structure as €q. (2), but without a noise terncele
a regularization method is again required.

Bayesian reconstruction of the cosmological large-scaigcsure 15
and for the non-stationary case
o (t
20D | \wate) = i, 1(0) =0, (69)
(60) which lead to the following solutions
NN
¢72Agh (69)
and
Y(t) =) ﬂ(l —e My, (70)
l

3.1.1 Minimization of the quadratic form

Another way of approaching the linear inverse problem istie
imization of a quadratic form given by

QA(W) = 5 (Avlw) — (F19) +c. (61)
The gradient of) 4 leads to
dQA oA o
To W =QaW) = A¥ - f, (62)

assuming that the operatet is self-adjoint. Setting the gradient
to zero, one obtains ed. (60). The surface defined by a qumdrat
form with a positive definite matriX is shaped like a paraboloid
bowl (see e.g. Shewchuk 1994). This ensures the existenee of
unique minimum or, equivalently, the convergence of appabe
algorithms.

3.1.2 Solution of the non-stationary problem: asymptotic
regularization

Here, a unified framework for the regularization methods e
have implemented in ARGO is given based on the asymptotic reg
ularization. Nevertheless, an original Bayesian motbratio the
asymptotic solution is presented in apperidix F.

The stationary problem (ef.60) can be replaced by a non-
stationary equation, which relaxes to the equilibrium gotu

o

wn +AY = f. (63)
We seek solutions of the form
Y=, (64)
l
with a spectrum for the operatet
Au; = Ny (65)
Expandingf in this basis, yields
f=> fu (66)
l

Then we get the following relations for the Fourier coeffit&ein
the stationary case

X = fi, (67)

15 This expression can be written in matrix notatior/sisA+) > 0, where
41 is the conjugate and transpose of the veator
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for the stationary and non-stationary cases, respectig@éhge the
spectrum of a positive definite operatdris real,\; > 0, it follows
thatlim d"nonfstationary = d"stationary-

The non-stationary problem can be solved using difference
methods with respect to t

W=yl T MY(f - AyY),

with { M7} being a set of non-singular matridEkand{r;} being
a sequence of real parameters. Here we concentrate on ampnst
self-adjoint matrixM . Let us rewrite eq[{41) as

(71)

Pt = M, (72)
with the residuals given by
¢ =f-Ayp. (73)
The error vectors are defined as
n = -y, (74)

where* = A~! f is the exact solution. The matrix/ and the
real numbef7; } are chosen to speed up the convergefdeusu-
ally represents the preconditioning of €g.1(71) apaan be inter-
preted as the time step (see appendix G), and is also caled re
ation parameter. Here truncation regularization occurguitting
the iteration loop. Some stopping rules are therefore redquin the
case where no noise regularization was conducted in thesfapt
they crucially define the noise regularization. In the otbases,
they mostly determine algorithmic performance and acgurAt
this point we are interested in the regularization for theise pur-
pose, since we have already found expressions which rézpitae
noise (e.g. Wiener-filter, or MEM). However, the resultsgamrted
in sectio % show that in some cases truncation leads torlyette
sults (see discussion in sect[on 412.6). In the followingssctions,
we will show how different iterative schemes are based oméme
eral formula given by eq[(T1). It is worth mentioning thahet
methods that we do not discuss in this paper, like the algebea
constrcution technique (ART, see Gordon 1974), can alsabe e
pressed through this formula.

3.1.3 Jacobi method
The Jacobi iteration method splits the operafoin two matrices
A=D+B, (75)

where D contains the diagonal elements Afand B contains the
off-diagonal elements. From e._{60) one follows

¥ =D"'(f — By). (76)

16 We implicitly generalized eq[{3) t6a)(t)/0t = M(t)(f — Avp),
where the auxiliary matriXVI is chosen to speed up convergence.
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SubstitutingB by A — D one gets the following iteration scheme
P =) + DTN - AYY). (77)

The Jacobi method turns out to be a particular case of thetiber
scheme given by ed_(1) with a preconditioning matrix gibgn
M = D~ ! andr’ = 1. This method can, must be optimized by
increasing the timestep’ by a certain percentage if the solution
converges and decreasing the timestep if the solutiongikgerAn
optimal timestep is hard to find, because the spectrum offike o
ator A has to be known (see appenfik G).

3.1.4 Steepest Descent method

The steepest descent method searches the minimum of the

quadratic form by choosing the direction in which, decreases
most rapidly. This direction is given by the residual

—Qp)=f - Ay =¢.
The form of the iteration scheme is thus given by éq] (72)hwit
the length of the step in the direction of the residual givgnrh.
Steepest descent looks for the optimal length which mirésithe
quadratic form with respect to/
d
—

drJ

(78)

d¢j+1
dri

= )= (& ME).

(79)
This implies that subsequent searching directions mustthego-
nal (sayM = I). Starting from this condition it is straightforward
to derive the expression for. It is only necessary to use the defi-
nition of residual forg? ! and substitutey’*! from eq. [72).

b _gIME)
(AME|ME)

() = Q4 (")

(80)

Both the calculation of the factors’ and the residualg’ imply
applying the operatod, each time on different vectors. It is pos-
sible, however, to reduce the operationdto the same vector for
every iteration, but the residuals, must be calculated iiffarent
way. Multiplying both sides of eq{Y2) by A and addingf, one
obtains the following relation for the residuals

gl =¢ —r7AME. (81)

Notice that the vectodA M &7 already appears in the expression
for 77, and consequently saves one operation. However, expnessio
(73) has to be periodically used with the feedbackyéf to avoid
the accumulation of floating-point roundoff error. The digan-
tage of this method is that it ends up searching repeatediyen
same direction. This is especially severe when the quadiatin

is highly deformed, which occurs when the matdxdeviates from
the unity matrix. We will see, however, that steepest dasoem-
petes with any other method when the preconditioning isgffe,
and thus the stretched shape of the quadratic form is braloge

to a spherical symmetric shape. Preconditioning shouldmply

too many operations; that is the reason why the inverse aige
trix, which contains only the diagonal elements Af is usually
taken for preconditioning. This will work especially fine erinthe
operatorA is diagonally dominant, which in our case occurs when
nearly full-sky data are available.

3.1.5 Krylov methods: Conjugate Gradients

To make the iteration scheme more efficient, Conjugate Gradi
ents proposes to search each time in a different directitis T

is achieved by imposingi-orthogonality to two differenti( 7)
searching vectorg® and p’

(u') 4 = (Ap’|p") =0, (82)
which are then said to be conjugated. In the preconditiorsee,c
the searching vectors are multiplied By so that the conjugacy
has to be formulated in the following wayM p/ |Mp') 4 =0
(forz £ 7).

The iteration scheme is given by substituting the residimls
eq. [72) by the new searching vectdys’ }

P =l T My (83)
By subtractingy)* we obtain an equation for the errors,
T =n) My (84)

Taking into account the relation between the residuals hacdet-
rors

g =—An’, (85)
we can derive the recurrent formula for the residuals
M =AM + M) =¢ —TAMp’ . (86)

Here again, expressioh (73) has to be used periodically thith
feedback oy’ to avoid the accumulation of floating-point round-
off error. The optimal length of the step is found by minimigithe
guadratic form

dQ v , v , ,
0= A @) =~ Mp) = (M) 4. (8D)
Substituting expressiof (B4) in87) we then obtain
(M) 5 (€M p)
T = . - = : . (88)
(Mp/|Mpi) 4 (MpI|Mpi) g

It can be shown that this formula is equivalent to the follogvi
expression

oo eMe)
(Mp/|Mpi) 5’
using(&? | M u?) = (¢7|M¢7) (see appendixH).
To generated-orthogonal searching vectors one could think
of Gram-Schmidt-conjugation

(89)

j—1
W=¢+ 5" (90)
k=0

Here it was assumed that the residuggé} form a set of linearly
independent vectors (see apperdix H). The expression ddath
tors 3% can be derived by callingi-orthogonality in eq.[{90)

(ME|Mp')q + > B (Mp*|Mp') 4
k=0

(ME|Mp') g + 5" (Mp'|Mp') 4.(92)
One obtains the following formula for the factors
(M&|Mp') 4
(MpiMp') 4°
wherei < j according to eq[@.

(Mp’|Mp') g

0

g = ©2)

17 Note that the sign off depends on the definition of the Gram-Schmidt
conjugation. An alternative definition with the negationtbé residuals
would cancel the minus sign in ed.{92). The sign@tan be regarded
as a free parameter.
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N, (g M) (@ MET - ¢) (@ - IM(ET &) —~(METH M) 4
Dy —(&’|M&7)
(&7 MeT) FR PR N3/D1 —
(| M7y N1/D2 N2/D2 N3/D2 —
— (&7 M(&TF! — g7)) N1/D3 N2/D3 N3/D3 —
— (| M(&7T1 — 7)) N1/D4 HS N3/D4 —
—((&7H — &I | M(gI T — ¢I)) N1/D5 N2/D5 N3/D5 —

— (Mgt

(Mp? | Mp/) o

EXP

Table 2. Formulae for the)@-factor:ﬁ{;1 = %. Three of the methods are discussed in the literattiRe{Fletcher-ReevesPR (Polak-Ribere, andHS
(Hestenes-Stiefels). The rest of the formulae are derivetdis paper using equivalence relations derived in appgeddill-H3. Thé-R and thePR methods

are tested against tHeXP algorithm in section[{4).

This method seems to require too much memory, as apparently minimizing the A-norm of the errormin||n|| 4 (see e.g. Marchuk

all previous searching vectors must be stored to calcufetaéew
one. However, only ong-factor remains in the sum in ef. {90), as
we show in appendixH3. Hence, Gram-Schmidt orthogonadiaat
can be simplified to the following expression

uj+1 _ $j+1 +ﬂj+1 J'7 (93)

where

J+1 J

__MET Mg gy
(M pI|Mpi) g

with EXP meaning expensive, since the nominatorsafequires

an extraA operation. This additional operation can be saved with

alternative methods (see appenfliik H), like the FletchavBe

method [(Fletcher & Reevies 1964)

AN (A

ﬁj+l —

J+1 _ gitli
EXP —ﬁ :/6

= - — (95)
- (€M)
the Polak-Rikire formula (Polak & Ribire 1969)
) JHL DL (EIHY _ gd

G
or the Hestenes-Stiefel expression (Hestenes & Stiefél 195

j+1 I+ _ g
@M ) ©7)

(W [M (&7 = ¢&7))
However, Sexp turns out to be a very efficient scheme, which
behaves far more stably than the rest (see seflion 4). Siece t
B-formulae (eq[(94=37) are mathematically equivalent, omact
think of combining them in a single scheme finding numerjcall
different solutions. In such a scheme, one may take advargag
the Sexp-formula only every certain number of iterations, similar,
to the update of the residuals (see €gs$. 73[amd 86). Howdir, t
kind of hybrid scheme remains to be thouroughly studied.

J+1
HS —

1982). In this sense an optimal solution to the inverse grobtan
be found even if no unique solution exists. Conjugate Gradie
works, even if the operatad is not a positive definite (for a dis-
cussion see e.g. Shewchuk 1994). It can easily be shown tmt C
jugate Gradients converges at mostrirsteps, withn being the
number of pixels/vector columns (see €.g. Shewichuk|1994).

3.2 Non-linear inverse methods

Non-linear inverse methods are especially required inrnsitac-
tion algorithms that do not assume a gaussian distribufibe. it-
erative method given in ed._(P4), which makes use of a Paigson
likelihood, can alternatively be solved with the methodssented
in this section. The same applies to the MEM, where zerosef th
non-linear eq.[{41) have to be found.

The generalization of the regularization methods to noaedr
inverse problems is possible with methods like Tikhonowtag
ization as mentioned in sectioh (R.5) or like asymptoticutag
ization as will be shown below (a relation between both mésho
is shown in appendiklF). However, the proofs of the convezgen
properties are different since the spectral theoretioahdiation is
missing here. We refer the reader to e.g. O’Sullivan (1990).

Let us generalize ed.(b0) to non-linear equations of the for

A) = f, (98)

with A being a non-linear operator, and solve the non-linear and
non-stationary equation given by

0P

A =
5 AW =1,
with the forward Euler method. Discretizing the solutiorlgis

I =l 4 I () (f — A(yY)), (100)

(99)

Formula [@B) shows that new searching vectors are built from With 7' being also a non-linear operator, typically given Wiy

alinear combination of the current residual and the pres/g@arch-
ing vector. Since the subsequent residuals are given byirihe |
ear combination of the previous residual and theoperator ap-
plied to the searching vector, the manifold where the sofut be-
ing searched is spanned by the residuals and the so-cali¢advKr
space. The latter is built by applying th& operator to the basis
vector successively. In this manifold, curved quadraticnf® ap-
pear to be spherical and thus the searching process becoones m
effective. Itis possible to derive the Conjugate Gradiemeshod by

(© 0000 RAS, MNRASDOQ, 000-000

or VA, though more complicated expressions exist (see the
Levenberg-Marquardt method or the regularized Gauss-diewt
method, Hanke 1997 ar Bakushinskii 1992 and Blaschkelet al.
1997, respectively).

3.2.1 Newton-Raphson method

One of the most extended non-linear inverse methods is the so
called Newton-Raphson method (for an application in MEMs se
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Maisinger et al. 1997; Hobson etlal. 1998), which can easilgld>
rived by doing a Taylor expansion of the function under stadg
truncating it at the first order

P =)+ (VAW)) T — AWY)).
This method requires the inverse of the gradientAgfwhich for
the cases we are interested in is the inverse of a Hessiaix nfdr
calling the problem of finding extrema of a function as préséin

section[(3.111) and taking into account éq.l(78), the previequa-
tion can be rewritten as

P =) — (VVQ (7)) 'VQ 4 (%),

whereVVQ 4 = 8QA/81/;I81/:7” is the Hessian matrix of) 4 .
For a direct derivation of this equation, we require a Ta@rf
pansion until the second order ¢f 4, which is where the non-
linearity arises. The MEM can be solved (Eql 41) with expoess
(I02) by doing the substitution§ 4 — Q" andy’ — s’. Here
the quantityQ® is implicitly approximated by its quadratic expan-
sion@ 4 . Calculating the inverse of the Hessi@V @ 4 (7)) "
implies solving a linear ill-posed problem in each iteratif the
scheme[(102). Some solutions have been found to reguldigze t
scheme, like the Levenberg-Marquardt method|(see Hanke) t99
the regularized Gauss-Newton method (see e.q. Bakusihirgsk;
Blaschke et &l. 1997).

(101)

(102)

3.2.2 Landweber-Fridman method

Alternative algorithms to the above mentioned Newton-Raph
class of methods do not need to invert the Hessian matrix and c
thus simultaneously speed up and stabilize the inversiongss.
The Landweber-Fridman algorithm belongs to the class ohoust
based on steepest descent

P =l + (VAW) (F - A@WY)).
Making the same substitutions as for €g. (102), we obtain
P =) —(VVQA (W) VQA (W) (104)

Here just the adjoint of the Hessian must be taﬂ@WQA(W))T.
For a convergence analysis of this method see Hanke =t 85Y19

(103)

3.2.3 Non-linear Krylov methods

Another class of methods that do not require one to inverHibe
sian matrix are the Krylov-based methods, which we have segho

in the previous section. The difference with respect to thear
case mainly resides in the calculation of the residgélsind the
step sizer’. The residuals are updated now by the negation of the
gradient of the quadratic form that approximates the famctin-

der consideratiog’ = —VQ 4 (¢?) (see eq_78). The step size is
given by

L VQAW)IM)

T M M) (oo

vVQ 4 @)

The derivation of this expression (see apperidix H4) is based
the second order Taylor expansion@f4 . That is why Krylov al-
gorithms which use this formula are called Newton-Krylovtme
ods. There are alternative expressions for the time stegwhere
the Hessian is approximated and does not need to be explicitl
calculated, like those using a secant approximation. Faows
implementations of non-linear Krylov methods see, for egkemn
Shewchuk|(1994).

3.3 Operator formalism

The iterative methods presented so far require an operatiorai-
ism to become efficient. In this formalism, matrices showdddp-
resented in such a way that their action can be expressethpkesi
operations, like sums and multiplications. In order to acéithis,
one has to carefully choose the adequate representatiarhiah
the individual matrix components are diagonal, though thele
matrix may not be. In this section, we present the differgrre
ators under consideration (see table 3) in k-space andspeake
and discuss their optimal representation. In this way, wetake
advantage of the fast Fourier-transform methods (FFT$)sitele
asn log, n, with n being the length of the arrays, and which ulti-
mately determine the speed of the algorithm.

3.3.1 Fourier-transform definitions and dimensionalityttod
problem

Let us introduce the following definitions of th¥p-dimensional
forward and inverse Fourier-transforms

i(k) =FT[x(r)] = /dNDreXp(ik~r):c(r), (106)
and
o(r) = TFT[i(k)] = / (;T%exp(—ikm)i(k), (107)

respectively.

In general, the reconstruction problem has three spatiadiai
sions (V\p = 3), with the corresponding discrete array lengths
for the real-space and k-space vectors giverrby: (rz,ry,72)
andk = (kg, ky, k.). Each component has the following range:
Ty = ﬁ—;[oﬂlw - 1]7ry = 5_3[07719 - 1]77'Z = ﬁ_j[ovnz - 1] and
ko = 20,00 — 1], ky = 3—2[07ny — 1],k = £[0,n: — 1],
where the volume of the Universe under consideration isgixe
V = L, x L, x L, in [(Mpc/h)®], and the box containing that
volume is divided intar = n, x ny x n. cells, withn being the
length of the array:. In the following, we will treat the operators
as being continuous. However, the discrete implementationbe
derived in a straightforward way (for a discussion on thatieh
between discrete and continuous representations seel 1005).
Note that the methods presented here can be applied inaaybitr
dimensions. The number of dimensiolNs, is thus kept as a free
parameter.

In our convention, vectors defined in real-space have plain n
tation (z) and in k-space they are denoted with hats Matrices,
however, have two hats in k-space. We represent convohutidtin
circles “o” and multiplications with dots -*. Due to the convolu-
tion theorem, where convolutions are shown to be multitibces
in the counter space, we can either omit hats if they are ptese
or include them if they are not, and replace circles with cotd
vice versa * < o” to change from one representation to the other.
All the numerical iterative inversion schemes (see se@joof the
different reconstruction algorithms (sect{dn 2) requinéya small
number of basic operators, listed in taljle (3). To show hanoih
erators listed in tabld]3) can efficiently be applied we\detheir
action on an arbitrary vector.

3.3.2 Data model: the response operator

Let us first remember the data model given in Efy. (3), and sgpo
that the operatoRp is given by a convolution in real-space with

(© 0000 RAS, MNRASD0O, 000—-000
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2 Np ./
RSEHa}k) = [ S GRG0 eip (3K}
R dVpg dNo g’ , dNo k! 7 NP
= otk [ G fntk—a) [ SRR @) En P n(a—a) [ G T — @) fa (R}
. Npg Npp/ ———
= o) [ G Fotk = @Ps(@) [ £ T = ) oK) - (k)
Np Nppg!/ .
= otk) [ G foth =) Po(a) [ G (e — ) folk) - (k)
fe{a}
Fsmo[fm{a}]
PS‘[fSMO[E'{i}H
fSMO[PS'[fSMOﬁ‘{j}H]
fB - [fsmo [Ps- [fsmo [f_B {2}]]]]
T :71 N ND ' 71 Np dVp k! _ / /
RNy R{#} (k) G ot —a) [ G (a)2m) " 0 (a =) | G oK = )k ()}
Npp! .
- 4 k=P ) é o Fom (K — ) o ) (2(6)
N
- / Gy Ttk —a) P @) [ S8 Fola = 1) fo k) 6K}
fe{2}
Fsmo[f-{2}]
PN'@O[JEB'{‘E}}]
Fsmo[Pn—1-[Fsmo [fe-{2}]]]
fo- [fsmo [Pyt [fsmo [f5 - {2}]]]]
~ Np _ Np Np p./
RINGRIaNE) = folh) [ G o8 foultk—a) [ ST Nun " a—a) | G5 ok = @) oK) (20)
Npg ———— Np o/ Npp/ ————
= o) [ Gt el —a) [ SN 0= d) [ G Tola k) fa k) (a())

fe{2}

Fsmo [ fm-{#}]
Nwn—to[fsmo[fe-{2}]]

Fsmo [NWN’10 @0 [fB'{i'}]”

/- [EO [Nwn 1o

[Fsm o [/ - {2}]]]]

Figure 2. Here the action on an arbitrary vectarof the most complex operators that appear in tdble (3) is shde upper one is required for Wiener-
filtering and represents the signal term in the covarianceixnaf the data. The middle and lower ones stand for the swaf the ML variance (ef._26) and
are required for the COBE-filter, the MEMG and for samplingpgmses with the Wiener-filter. The equations have to be read fight to left. The braces
show the order in which the operations have to be done fronmottypttom. One has to be very careful with the correct conjaogaf the different functions.
Note that, contrary to naiv expectations, the conjugatibthe first selection functiorfsn to be applied in the upper operation disappears and appetrs i
middle and lower ones, though initially absent.
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R Rt s s1!' 5§12 N N1 SR RIN' RN-Y2 RIN-'R RSRf
COBE X X X
WIENER X X X X# X# X X # X X # X# X
GAPMAP X X X X
MEMG X X X X X
MEMP X X

# additional operators required for sampling processesgg£49)

Table 3. Operators in columns needed for the different estimatorsvrs, the COBE-filter[(25), the Wiener-filte {22), the GAPMAstimator[(24), and
the MEMs (sectiong 2.5.9 B 3.2, and appendix E). Note thatrili@l diagonal matrices have been left out of this tablbeTirst two estimators are linear
estimators, whereas the rest are non-linear. MEMG and MEtdiRdsfor the Maximum Entropy method with a Gaussian likedith@nd with a Poissonian
likelihood, respectively. Note that some of the operataeehto be further inverted either directly, likdT N R)~! for the COBE-filter, or in combination
with other operators, likéRS R + IN)~! for the Wiener-filter. The methods presented in secfidni@jshow to do this implicitly by applying the operators

in an iterative fashion.

some blurring functiorfs

d(r) = /dNDr’ fo(r —r") fs(r') fa(r’)s(r’) + for (r)en(r).
(108)
The operatoR acting on an arbitrary vectdrz } is thus given by

R{z}(r) = / A0 fi(r — 1) fs() fra(r) ()} (109)

The selection function and the masks should convenientipie
tiplied in real-space to save convolutions

fom(r) = fs(r) fu(r).
Accordingly, the same operation as in €d. (109) leads to

(110)

Folk) [ g fonle = a){ta))

R{z}(k) = o)

(111)

fsmo{a}

fi - [fom o {2}],

in k-space. Here we have introduced the operator notatiaioh
the equations have to be read from right to left. The bracew sie
sequence in which the subsequent operations have to bemedo
in the algorithm. The analogous operation for the adjétftyields

I - e
R {&}(k) = f5 - [fsm o {&}] (k). (112)
3.3.3 Covariance matrix of the data
The data model consists of two terms
a(r) = [ A% folr = 1) fon(r)s(r), (113
and
e(r) = fsr(r)en(r). (114)
The same quantities in k-space are given by
. d¥Nog .
a() = folk) [ S ik - @it (@19
and
ey = [P p g0 116
é( )—/W}%F( —q)én(g)- ( )

Consequently, the covariance matrix of the data is giverhbydil-
lowing sum

(d(k)d(k'))(s.eip) = (a(k)a(k"))(s,eip) + (E(R)EK)) (s,e1p)>
(117)
where we have assumed that the noise is uncorrelated to
the signal, which is consistent with our data model. Even
though the structure function may be correlated with the sig

nal (é(k)fsp(k’)xsyfsp‘p) # 0, the random noise part is not

(3(k)én (k")) (s,e;p) = 0. We will calculate the different terms of
the data covariance matrix and other related operatorseimeixt
sections.

3.3.4 Covariance matrix of the data: the signal term

Here it becomes necessary to choose the Fourier reprasantat
since it is there that the signal-autocorrelation matrigesps to be
diagonal in the form of a power spectrum (Eg.1118). Taking int
account statistical homogeneity for the sigral

(3(k)3(K))(s1py = (2m)"Pop(k — k') Ps(K'), (118)

with ép being the Dirac-delta function, we can derive the expres-
sion for the signal covariance matrix term

RSR! (k') = (a(k)a0R) s1p) (119)
R dNDq ~ P ’ A ’

= folk) [ o Fonalk = )P () o (K — ) o)

= fol#) [ gy otk = @)Ps (@) fola — K)ok,

For its action on a vector (see fig. 2), we get

RéR*{ﬁ:}(k) = fu- [fomo [Ps - [fom o [f - {2}]]]] (R),
(120)
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and consequently

2 Np ./ —
SRU@} k) = [ G G sip 1)

= Pu) [ S otk — ) FaR) - (3(0K)

(2) —_—

fSMO[g‘{i}}

Ps - [fSM o [fB {z}]].
The inverse of the signal-autocorrelation matrix can beesbtriv-
ially in Fourier-space,é”*1 = diag(Ps(k)™'). Hence, the inverse
square root yield$ /2 = diag(Ps(k)~Y/?).

(121)

3.3.5 Covariance matrix of the data: the noise term

We assume, analogous to the case of the signal, statistoab-h

geneity forex
(ex(k)en (k) ep)

and then derive the expression for the noise covariancexmatr
<A(k)A( /)>(S,€\p)

g k — q)Px(q)f: X
7/(2 )NDfSF( q) N( )fSF(q— )

Its action on a vector yields

= (2m)"Pép(k — k') Px(K),  (122)

Nk, K) =

(123)

N{a)k) = [ G T o, eip LK)

dMo k!

dNDq R INfarL!

fsro{a}

Py- I:f?SFO{i}}

fsr o [Px - [fsr o {2}]],

In the case where there is no structure function, the noisan
relation reduces to

Nu(k, k') = (21) 0 6p(k — K)Px(K').  (125)
Then, its action is given by
N{@}(k) = P {a (k). (126)
The corresponding inverse operation is
N @} (k) = Py~ {a (k). (127)

Consequently, we obtain (see fig. 2)

RIN'R{&}(k) = o - [fow o [Px~" - [Fow o [ (#)]]]] (k).
(128)
and
RINSHa}(k) = fo - [for o [Pv" {a}]] (k). (129)

The inverse square root d;VN can now be calculated and leads to
N2 (k) = diag(Py 2 (k). (130)
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The operatlonRTN 1/2{:1:} can then be obtained by doing the
following substitutionV ;' — N Y2 in eq. [129)

= fo - [fsr o [Py {2}]] (K).

We are especially interested in the case of white noike &
Pwn = const) with a structure function (given by the Poissonian
shot noise)

RING (e} (k) (131)

s Jee (k= @) far (' — q).
(132)
The corresponding action yields

2 , dNp
Nwn(k, k') = PWN/ @

JQVWN{C%}(’C)

Np R Np ./
ZPWN/élﬁ—)l\l,ifSF(l’C—Q)/(d2 )JI:D for(q — k) {2(K")}.

fspo{d}

fspo I:fSFO{i}}

P - [fsr o [fse o {#}]] = Pwx - [fir o {2}]

It can be seen from this equation, that the preferentialespita-
tion now is in real-space, whet¥ is diagonal

Nwn(r,r') = 6p(r — ') Cwn fip (1),

with Cwn = IFT[Pwn] being a constant. The inverse operation
yields

(133)

(134)

Nyx{z}(r) = (Cwn f3e) ™" - {a}(r). (135)
Hence, the inverse square root yields
N2 (), 7 = dp(r —r)Cwa ™2 for (r), (136)
and its action in k-space reads
N (@} (k) = Pan ™2 [l o {2} (k). (187)

(124)Then we get (see fifgl 2)

RTNWNR{x}( ) = [fSF o [NWN o [fSF o [fB {x}””( )s
(138)
and consequently
RTNWN{m}( )=

[fSF o [NWN ° {:r}”( )- (139)

To calculateRTN 1/2{w} one has to do the following substitu-

tion NWN - N 1% in eq. [139)

[For o [Negi/? o {2}]] (k).

In summary, we showed that the action of the different opera-
tors on a vector required for the different reconstructistineators
(see tabl¢]3) can be calculated in a straightforward waynas-a
dered series of products and convolutions. Note that wiezneg
need to perform a convolution, we change to the counter spgpee
resentation with FFTs and do multiplicatiBfishere.

RN (@) k) = o (140)

18 |n order to avoid aliasing effects one has to adequatelyoparzero-
padding(see e.gd. Press et al. 1992).
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4 EFFICIENCY AND QUALITY VALIDATION OF THE
INVERSE METHODS WITH THE WIENER-FILTER

In this section the Wiener-filter implemented in ARGO is ¢ebt
with the different linear inverse algorithms presentechim $ection
of numerical method$13) under several conditions detexchiny
structured noise, blurring, selection function effectd arindow-

ing.

The inverse methods that we test here are the Jacobi (J),

the Steepest Descent (SD), and several Krylov methodsthike
Fletcher-ReevestR), the Polak-Ribire (PR), and theexpensive
Conjugate Gradients methoBXP), which requires an additional
operation in each iteration (see section 3.1.5 and appddd)x
This scheme has not been previously discussed in the literahd
turns out to be very efficient as will be discussed below. Mattwer
Krylov methods (see tablé 2) can be built from simple eqeneé

resembles theeal signal guided by the trend at the boundary. This
effect is much larger in multiple dimensions as is shown inffid).

In the right plot in fig. [B), two sampling processes are ulyiley

the yellow signal. First, the Gaussian random field that gEpe
the red signal, which is then Poisson sampled thus leadirnigeto
yellow data. Again the blue and the green curves representth
constructions with and without proper window treatmenspez-
tively. In this case, the blue curve also approachegriesignal
better.

4.2 Multi-dimensional test cases

ARGO has been implemented such that the global dimension
Np (see sectio_3.3.1), and even the length in each dimension
(nz,ny,n), can be chosen arbitrarily. Our tests in one-, two- and

relations, as we show in appendix H. However, only the method three dimensions show that the results do not differ quisdétly.

mentioned above are taken into account here, as we conkigfar t
to be sufficiently representative. The extra-regularirative pro-
pose with these Krylov methods converts the Wiener-filggima
hybrid Tikhonov-Krylov space regularization method. Irdaibn,
we also test the Wiener-filter that uses hermitian redundaade-
rived in appendiXll. We call the Wiener-filter defined by thepma
ping equation[(IB) the conjugated Wiener-filter (CJ), wiasréhe
Wiener-filter defined by eq_{(17) has no extra suffix.

With the aim of having full control over the synthetic data,
we generate Gaussian random fiefhwith thel Peacock & DodHs
(1994) formula for the power spectrum. The resultiegl den-
sity field is denoted by...i = J,, and the reconstruction by

The convergence behaviour changes with the length of tlayarr
(n = ne Xny xXn;)asnlog, n fully determined by the FFTs, as we
showed in sectiori {3). For the demonstration cases in tipisrpae
have selected the two-dimensional tests with x 128 = 16384
pixels. However, three dimensional tests were also caotg¢tead-
ing to the same conclusions.

4.2.1 Qualitative and quantitative measurement of theituaf
the reconstruction

To give a quantitative measurement of the quality of themstrac-
tions, we define the correlation coefficientbetween the recon-

Srec = 1. The signals are discretized and arranged as vectors givenStructed and the real density field by

by [k +n. x (j +ny x4)], wherei € [0,n, — 1], € [0,ny — 1],
andk € [0,n. — 1]. The algorithmical part of the reconstruction
methods shown in sectiof] (3) does not change with the dimensi
ality, but solely the length of the vectors giventy= n, xny, xn.
change and thus also the dimension of the involved matrides.
formulation of the matrices is explained in detail in sect{8.3).
The Fourier transforms must be accordingly called with tineeh-
sions under consideration, which occurs in ARGO by switgHie-
tween the different FFTs given by FFEW In addition, the power
spectrum that is used for the reconstruction has to be seithphe
corresponding length and the data have to be correctlyaeged
to their original dimensiong4[[j][k] < [k + n- X (j + ny X 1)])
after their manipulation.

4.1 One-dimensional example

We can see in fig[{3) an example of a Gaussian realizationen on
dimension (red curve) that can represent a time-line. Actired
noise that increases with the distance and with a randore oois-
ponent was added to the signal. Finally a region was exclaited
ulating windowing effects. The resulting curve was takethasn-
put signal (yellow curve). The reconstruction given by ARG
blue and green, where the boundary effects were considertbe i
first case, but not in the second. There the signal was asstarbed
zero in the unsampled region. We can see that the blue cutiar be

19 We use GARFIELDSGAussianRandomFIELDS, a program we
developed to generate Gaussian random fields from a giveergpectrum.
The method can be found in detail in Martel (2005).

20 FFTW is a C subroutine library for computing fast discreteufier

transforms in one or more dimensions of arbitrary input sizd of both
real and complex data: http://www.fftw.org/

Yo7 Opithi

NSRS

This statistical quantity is not very sensitive to the olledéstri-
bution and yields good values (close to unity) in some cages e
with poor reconstructions (see figure 9). The pixel to piXet pf
thereal density field against the reconstruction is highly informa-
tive because the scatter in the alignment of the pixels atdbe
line of perfect correlation (45slope) gives a qualitative goodness
of the reconstruction. In general, the quality of the recesleden-
sity map is better represented by the Euclidean distancecket
the real and the reconstructed signals. The ensemble aveftgs
guantity can also be regarded as an action or loss functadhehds
to the Wiener-filter through minimization (see appertiixig¢re we
introduce the volume-averaged squared Euclidean diftince

1 2

Dhua(v:3,) = 3 [ a*r [(r) — 8,0)]

with V' = L, x L, x L.. We further normalize the Euclidean
distance through the following defintion

D%}ucl(w7 5P)
D%ucl(d)O? 5#) '
where1)y is the zero vector. We define the convergence tolerance
criterion based on the squared Euclidean distance betwerse-s
quent reconstructions

tollf,i = Dpua (¥’ 47).

crit

r=

(141)

(142)

D?Eucl(wv 6!’) = (143)

(144)

We prefer this criterion with respect to the squared ressjig |>
(see eq[_A3) because all the tests show that no furthertistaltis

21 Note thatD (¥, 8,) = + D&, (1, 6p).
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Figure 3. 1-D Reconstruction with structured noise & window The left plot shows the reconstruction of a one-dimensiowady signal. The red curve
is thetrue underlying signal. The yellow lines represent the measdegd in each grid cell. The data are windowed by a functioerglyy the black line. A
random noise with a structure function that increases iittdistance with respect to the origin has been added tout@signal. The green and the blue lines
show different reconstructions. In the blue case the wiridgus formally treated, whereas in the green case the unsegon is modeled by a mean signal,
which is zero in this case. We see that the unsampled regastileated by the blue curve better than by the green cunerenthe edge effects were neglected.
The proper treatment of edge-effects gives even betteltseéauhe sampled regions close to the the borders of thenupisal regions. This improvement can
clearly be seen in figL{d1Poisson noisein the right plot, two sampling processes are underlyingytitow signal. First the Gaussian random field that
generates the red signal, which is then Poisson sampleithdetacthe yellow data. Again, the blue and the green curveesent the reconstructions with and

without proper window treatment, respectively.

quality improvement in the reconstructions is reached aﬁ%m,
as can be inferred from the correlation coefficientsnd the nor-
malized squared Euclidean distan@s,.; (1, 6,)

4.2.2 Numerical performance with and without preconditign

Here we analyze the convergence behaviour of the diffenertse
schemes with and without preconditioning. We start by aersng

a Gaussian random field with some structured noise thataeese
radially and is modulated by a random noise component. Aga pr
conditioning expression, the diagonal part of the data canae
matrix is chosen, which is given by the sum of

RSR'(k, k)
R dMgq . . ~
= folk) [ G il — ) Po(@)fow(a K)o (k)
= Py(k) / (‘;:; 9 poy(k — q)Ps(q) (145)
Pg - [Psm o Ps],
and
N(k, k)
Np N .
= [ G ek = @) Pula) e (g~ )
- [ Pt —aPy(a) (146)
PSFOPN7

(© 0000 RAS, MNRASDOQ, 000-000

where we have used the following definitionB; AR
Psm = ||fsml||? and Psp = || fsr|]?. We can thus calculate the
preconditioning matrix\/ required for the different schemes (sec-
tion[3) by just inverting each diagonal component. The tesim-
marized in fig.[(b) show important differences between themne
structions done with (on the left side) and without (on ttghri
side) preconditioning. Some of the methods just speed keptlie
various EXP methods or the SD scheme. Others, however,are st
bilized and manage to converge to the solution only aftecqudi-
tioning, like the J, the FR and the CPR methods. Without prdico
tioning, the latter converges extremely quickly to a wroolygon.
This is due to the fact that we did not impose the followind)sta
lization: Bpr = max(Bpr,0) in this calculation (see_Shewchuk
1994, for a discussion). However, our tests show that upqo$m
ing this stabilization the PR-method becomes significasiibyver
than the rest. On the other hand, the EXP-Krylov methodsueeha
most stably and converge very quickly. In the preconditiboase,
we see that all methods converge to the same statisticdt,rasu
we can infer from the correlation coefficientand Dz, (v, ,),
except for the PR scheme that yields slightly less optimsiilte
(see the green line in comparison to the rest in pahelve have
tested preconditioning in the rest of the examples and cooid
firm the results presented in this section. Preconditiofuings out

to be necessary to achieve fast algorithms.

4.2.3 Poissonian distribution

In this study case, we investigate the reconstruction of as&an
field based on a Poissonian distribution. This model is famfre-
ality, where much more complex processes are known to oseer (
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Figure 4. Structured noise treatment: The upper left picture shows the real signal. The upper fiigture is the input signal, where some random noise
that increases radially was added. Note that the scale ofdloairbar changes from a maximum overdensity of 20 to 70. [dWwer left picturec shows
the reconstruction. The reconstructions using differemherical methods implemented in ATLAS are indistinguidbain the lower right imagel, the real
density field is plotted against the reconstructed denstg fiixel by pixel without any smoothing. The numerical penfiance of this reconstrcution case is

shown in the next figure.

discussion in sectidn 2.1). However, we can model a non-&@as  the aim of investigating primarily the blurring effect. Thesults
process in this way and test how good the Wiener-filter reicoas of the reconstruction that considers only the noise doesimatge
tion works under such circumstances. Here the assumed dail m  much with respect to the input signal, as can be expectedektaw
does not coincide with the one that has generated the date- Ho the extra-regularized Wiener-filtering deblurs the imagplging
ever, the Poissonian noise can be modeled in the noise nwdtrix eqgs. [12D) and{121), and yields the figure shown in pangle
the Wiener-filtering through the structure functign see how much of the small scale structure is restored ancetiesp
The results presented in fid.] (6) show very good agreement become enhanced. The correlation between this recoristianid
between the reconstruction and tieal underlying density field the original signal (pand) is significantly better than for the case
(compare panela andc). The convergence behaviour and statisti- where the blurring is ignored (panBl We can see in fig[{7) that

cal goodness is plotted in the left side of figl (7), parels and the deconvolution algorithm is very fast for all the metheasept

e. There we can see that the FR and PR methods do not convergdor the FR-scheme. The PR-method is the fastest, but it leads
rapidly (see yellow and green curves in paaglOn the contrary, slightly worse results (see the green curve in panelade). The

the J, SD, and EXP schemes are very efficient (pehahd lead to EXP turns out to be more efficient than the J and SD methods in
very similar results (panelsande). this case.

4.2.4 Blurring effects: deconvolution

In this numerical experiment we tested the blurring effégtson- 4.2.5  Selection function effects

volving the density field with a Gaussian. The result is shawn  For this case we use a modified data model in which the sefectio
fig. (8), paneb. We see how the small structures are smoothed out fynction also affects the noise

and only the larger ones prevail. Some noise with a strudture

tion was added to the signal. However, the noise was kept libw w d=fs-(s+ fsr - ewn), (247)

(© 0000 RAS, MNRASD0O, 000—-000
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Figure 5. Numerical performance with and without preconditioning: Here the convergence behaviour and the goodness of thestasoctions using
different inversion algorithms can be seen. The picturesheneft show the methods using preconditioning, whereasptbtures on the right do not use
preconditioning. The upper plots show the squared Eudlidiistance between succesive reconstructions. The pldtseimiddle show the normalized
Euclidean distance between the different reconstructamt the true signal. The lower plots show the evolution ofdtatistical correlation coefficient
between reconstruction and signal. We see from paaet panek that after less than 10 iterations the reconstructions dsignificantly improve with most
of the inversion algorithms. The different inversion aiguns used are: Jacobi (J), Steepest Descent (SD), Coej@gatlients (CG), Fletcher Reeves (FR),
and Polak Riviere (PR). We also tested a more expensiventdhat uses one additional operation of the involved md&iXP) and one other variant (CJ),
where a degree of freedom in the mapping equation for the &¥ifiiter is used.
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Figure 6. Poissonian noiseHere two stochastic processes are underlying the inpuékigirst the Gaussian random field that generates the sigpainel
a, which is then Poisson sampled leading to the signal in pgariehe reconstruction in panelis shown to be in good agreement with the underlying signal.

The pixel values are correctly distributed as can be seearneld.

with fs € [0, 1], simulating the fading strength of the signal with
increasing distance. The results are plotted in fiYy. (9),revitee
structure of the signal can be seen to become undistindulesia
radial direction (see panél). Taking only the noise into account
leads to very poor reconstructions (see pat)elOn the contrary,
by also considering the selection function effects, thecstires are
resolved even at contours where only 10 % of the signal pliseno
is left (see panet). As can be appreciated in panelandf there

is an improvement in the correlation between tbal density field
and the reconstructed signal. Paashows a higher correlation co-
efficient, but the quality enhancement of the reconstractan be
seen better in the distribution of the density values fohegzgel.
How the points are correctly spread along the diagonal lae c
be verified there. The longer Euclidean distance ta¢la¢density
field shows the quantitative difference very clearly, byt g@mpar-
ing the pink curve with the rest (fi_110 and pam}l It is worth
mentioning that although the PR test seems to give a comigarab
result to the calculation that ignores the selection fuomctirhe fi-
nal correlation coefficient in panelshows that the reconstructions
actually strongly differ and panel shows that the quality of the
recovered signal is notably better for the former experimen

In addition, we tested the same selection function affgctin

only the underlying signal with a model given by

d=fs-s+ fsr - ewn, (148)

and obtained the same qualitative results.

4.2.6 Windowing effects

In this section we investigate the mask effects that intcedtou-
pling between different modes in Fourier-space so that #te co-
variance matrix is no longer diagonal. The input signal i®giin
panelb of fig. (I1). The noisy signal from panélin fig. (@) was

cut in stripes, to simulatebservedregions. We compare two re-
constructions here, the first one ignores windowing effgaten

in paneld and a second reconstruction employs the proper treat-
ment of the boundary througfy in the algorithm (see eds. 120 and
[IZ1). The statistical correlation is given in panelandf, respec-
tively. Our experiments not only show better results for Iditéer
reconstruction in the unsampled regid®) (represented by the red
dots in panel® andf in fig. (I1), but also in the sampled regions
(€2). The global correlation is significantly improved. Whereas
the distribution of the black dots, the values of the degesiin the
observedregions, does not apparently change, the distribution of
the unsampled red dots clearly does. These are distribubetha
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Figure 7. Poissonian noise and numerical performance (pafea, c, e):Here the convergence behaviour and quality of the recastgiruis comparable

for the J, SD, EXP methods. The FR and PR schemes do not peefasitconvergence (par@l. Nevertheless, the FR scheme (yellow curve) seems to lead
to the correct solution (panetsande). The PR formula, on the contrary, stagnates at recon&inscthat have much lower quality compared to the rest of the
schemesBlurring treatment and numerical performance (panels b, d,f): In this study case, the EXP algorithm seems to work better tha rest of the
schemes. Although the PR formula converges very rapidefgicurve in pandd), it leads to a lower quality reconstruction (panglandf). The FR scheme
converges to the same solution as the J, SD, and EXP algarithoaever, with a slower convergence (yellow curve in pagerhe J and SD methods have
an overall good behaviour in this case, but still convergmificantly slower than the EXP scheme (their convergendeeistical black and red curves are
overplotted). The reconstruction considering just thes@d very poor, because the noise is negligible in this qziak €urves).
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Figure 8. Blurring treatment: Here the signal (panel) was convolved with a gaussian modeling blurring effecisteown in pandb. Some low noise with a
structure function was added. Panahows the deblurred result. Padehkes only the noise into account. We see in patieé correlation between the input
signal and therue signal, because the noise is negligible. The correlati@ffictent is thus very high, however, the alignment of theetsixn the plot is not
correct. Overdensities and underdensities tend to be esiit@ated, which is consistent with the blurring effecte Taconstruction given in panelcorrects
this effect and consequently a higher correlation coeffitdie achieved.
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Figure 9. Selection function treatment: Here selection function effects were simulated with a fiamcthat takes values between zero and one, decreasing
exponentially in radial direction. The contours show d#fet values of this function. Panalshows the real density field. Partelshows the input data,
where the true signal was multiplied in real space with thecsien function and a radially increasing noise was addée. reconstruction and its correlation
with the true signal are represented in panahde, respectively. The reconstruction ignoring selectiore@f by taking only the noise into account leads
to panelsd andf. The reconstruction given in panelis very conservative and smooths the overdensities outaueise supression. This leads to a high
correlation coefficient, though the individual pixels ateaely not correctly aligned (panél. Panek, on the contrary, shows more structures that are enhanced
due to consideration of the selection function effectssTarrectly distributes the pixels, as can be seen in panghe correlation coefficient seems to be
significantly better than in panélhowever, a better measure of the overall quality of thensttaction can be seen in next figure.
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Figure 10. Selection function treatment and numerical pebrmance (panels a, ¢, €)The same color coding is used as in fld. (5) pametxcept for
additional curve (represented in pink) that indicates ém®nstruction in which the selection effects are ignoresefa shows the squared Euclidean distance
between subsequent reconstructions. The squared Euclilgance between the reconstruction and the true deraltyidiplotted in panet, showing a huge
difference between the reconstruction which takes onlynthise into account and ignores the selection function aeddht of the methods. Note that the
statistical correlation r is also much better for the caserelthe selection effects are properly treated (panéne concludes from the three plots, that the
SD and EXP methods (red, blue and violet curves) clearly eme/faster to a more or equally optimal solution in compariaith the rest of the methods.
The J scheme shows a significantly slower convergence (blacle in paneh). The PR algorithm stagnates at poorer reconstructionsrabe seen from
panelc ande. Windowing treatment and numerical performance (panels b, d f): In this case, the PR shows extremely good results: fast cgenee
(panelb) and a high correlation coeficient (parhl However, the Euclidean distance is slightly bigger thantlie rest of the methods, except for the pink
curve (ignoring windowing effects). The FR method is digass in this study case and diverges from the solution as easeén in pandl The J, SD, and
EXP methods show good and stable results. The J and SD algsrigive extremely similar results. Although their conegrge behaviour is similar to the

EXP schemes, the latter give slightly better results: ssnathlues for the Euclidean distance and higher values &cdinrelation coefficient (violet curves in
panelsd andf, respectively).
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Figure 11. Windowing treatment: Here the edge effects are shown in two dimensions. The tgmalsivas multiplied by a windowing function that is one
in the observed regior()) and zero in the unknown regiof). The sampled regions are given by the vertical stripesdditian, a radially increasing noise
was added (see partg). Panelc shows the reconstruction handling the edge effects. Rhamegresents the result taking only the noise into accountsé&®en
panelc how the information is propagated into the unsampled regieading to a closer resemblance of the real signal, whéneasoise is just suppressed
in paneld. Panelse andf show the correlation coefficients for the whole reconsadaegion, split into the sampled (black dots) and the unsdmegions
(red dots). Note that the red dots are strongly aligned attlie zero value in pané] whereas they are correctly spread in pameitatistically representing
the information propagation process mentioned above.

(© 0000 RAS, MNRASDOQ, 000-000



32 Kitaura & Enf3lin

the zero value for the case where windowing is ignored, lmau
zero signal is assumed by ARGO in feegion. In contrast we see
that the red dots are distributed along the diagonal linervétge
effects are considered. This is equivalent to a propagafitime in-
formation to the unsampled regions or the appropriatepotation
and extrapolation of signals. Looking at the numerical gernance

in fig. (7)) reveals that most of the methods behave very sitpila
except for the PR and FR schemes that deviate from the rest. Th
former converges rapidly to a good solution that has a higber
relation (see green curve in paffiglbut a slightly worse Euclidean
distance to thdrue signal. The FR on the other hand converges
extremely slowly. The correlation coefficient is at a stadeere

it becomes dramatically worse (see yellow curve in pdpheThe
smaller Euclidean distance is no measure for the qualityhis t

case, because these low values can be achieved when the recon

struction is very conservative (closer to zero) and has msire.
Notice how many schemes start with better values for théacice
measure (see pand). The EXP methods converge faster and the
CJ version leads to even slightly better results (see valete in
panelsd andf).

It is also worth mentioning that the best reconstructions in
terms of high correlation coefficients and low Euclideanatises
to the underlying signal are achieved only after three tii@na for
the J, SD, and EXP methods, prior to numerical convergenee. W
furthermore tested ARGO under extreme noise conditionghiciw
the inversion diverges and produces density values thabapp
infinity. At early iterations, extremely good reconstrocis were
produced. These examples underline the regularizatioractea
of the inversion schemes under consideration in this patidn.
However, for the cases we are interested in, where the nsise i
mainly determined by the discrete sampling of galaxies, duii-a
tional stopping rules are required and the inversion aligors can
be run until full convergence.

5 SUMMARY AND CONCLUSIONS

The goal of this work is to exploit the Bayesian formalism to
develop methods that reconstruct the underlying darkenalis-
tribution from the discrete sample of galaxies and theie¢hr
dimensional positions provided by galaxy redshift survesigch

a general Bayesian analysis permits one to innovate metuudis
push this field forward to develop more accurate reconstnuct-
gorithms.

We show how a series of uncertainties demand a statistieal ap
proach (see figuid 1 and sectfon]1.1). Some of the uncedsiate
intrinsic to the nature of the underlying signal (the darkterd and
have a stochastic character, the cosmic variance. Othertantc
ties are intrinsic to the nature of the observable (the gedvand
lead to a kind of shot noise, galaxy-bias and redshift-distos.
Additional uncertainties, such as windowing, selectiamction ef-
fects and blurring effects, arise due to the observationgs®. The
degeneracies that are produced by such uncertaintieseaegu-
larization techniques, which should converge to optimaitgms.
We discuss the different Bayesian approaches specifiedghmif-
ferent options for the likelihood and the prior, and see Inatural
regularizations can be performed by the prior-choice (seticn
[2.5). Moreover, we see how the definition of particular lilkebds
and priors define classes of algorithms, each specific tdferelift
problem approach (see table 1).

We develop new algorithms in this Bayesian framework which
account for the discrete nature of a galaxy distributiondkyrg a

Poissonian likelihood. This is done for the case of a Gangwi@r
leading to the GAPMAP estimator (see secfion 2.5.4 and ajipen

[A) and for the case of an entropic prior (see sedfion P.5.9apAd

pendixXE). The Maximum Entropy method is studied in detaiéas
non-informative prior, which does not assume a particutgtgon
for the underlying signal. This can be interesting when cdag
for intrinsic deviations from Gaussianity (see secfion@#nd ref-
erences therein).

We extend the Wiener-filter (see section 2.5.3 and appé&hdix |
and propose novel algorithms to do a joint estimation of #esity
field, its power-spectrum, and the peculiar velocities efghlaxies
(see sectiof 216). We also address the possibility of ektgralich
work to determine cosmological parameters and the biasdwgtw
galaxies and dark matter.

Such an aim requires a large number of repeated reconstruc-
tions, which can be only achieved with highly efficient irseial-
gorithms. We develop here the necessary numerical schenes i
preconditioned way for linear and non-linear inverse peoid (see
section[3 and appendix]H B]G). Such iterative schemes acquire
their real power only in an operator formalism, which we deri

in detail for different Bayesian methods (see sedtioh 3)ovel
Krylov formula (see section 3.1.5 and apperdix H) turns otig
superior in terms of performance and fidelity, as we show dtice

@.

The novel ARGO-software package is presented in this paper.
Different inverse schemes are tested with the Wiener-fittgre-
mented in ARGO under several conditions determined by struc
tured noise, blurring, selection function effects and winthg (see
sectiorl ).

We conclude that fast three-dimensional reconstructibtiseo
large-scale structure scaling adog, n (with n being the total
number of grid cells) can be done with hybrid Wiener-Krylteri
ative schemes under an operator formalism, which takensatya
of the speed of FFTs. This opens new horizons of possilsiiiech
as joint parameter and signal estimation, in the field ofdesgale
structure reconstruction.

Itis our goal to apply such techniques to reconstruct thernd
lying density field, the power-spectrum and the peculiaocities
from galaxy surveys. Still, different problems, such asagglbias
studies, have to be further analysed. However, we are canfidat
such issues can be tackled from an information-theory aapro
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APPENDIX A: GAPMAP: MAP WITH A GAUSSIAN
PRIOR AND A POISSONIAN LIKELIHOOD

RememberP(s | d,p) x L(d | s,p)P(s | p) to be extremized.
First we write the log-likelihood taking the logarithm of.€d2)

log L(s | d,p) = Z [— (Rs"); —ci

%

+(d; + ¢;) log ((Rs')i + ci) —log ((d; + cl)')} (A1)
Then we differentiate with respect to the signal to yield
dlog L(s | d, p) A2)

E)sk
= Z [Rzkbn_g( -1+ (Z Rijs; + Ci)il(d; + CL)):| .
i J
The same exercise for the Gaussian prior leads to

810gPs|p Zsk] 5.

Now we demand = Jlog P(s | d,p)/ask to get an equation for
the MAP estimator. After applyin@ to the equation we obtain

ZZ [Sszizbn_g
i1
( - (ZR’”’m_g(l +bsh,) + Ci)il(d; + Cz))] — sl =0.

(A3)

(A4)

Adding the indexj + 1 andj to s on lhs and rhs respectively, an
iteration scheme is formed

TS [suram
7 l
. —1
( —1+ (Z RimTig(1+ bs?,) + ci) (d, + ci))] . (A5)
Let us simplify this algorithm for positive signals in matrix no-
tation
st =358R’ [— T+ diag(Rs"” +¢) ' (d’ +c)] +3', (A6)

where we made following substitutiohs— 1 andn, — 3, with
5’ being the average of the positive signal.

APPENDIX B: POISSONIAN MAXIMUM LIKELIHOOD

The context in which the Richardson-Lucy algorithm is apglhas
positive intensity signals and the kerrnlin eq. [1) is understood
as a blurring function that can be expressed mathematieallg
convolution with thetrue signals. We will further assume no back-
ground ¢ = 0) so that the log-likelihood of ed. {1.2) can be written
as

log £(s' | d',p) = Y | = (Rs'); + d; log(Rs"); — log(d)]

l (B1)
differentiating with respect to the signal yields

Olog L5 | 4op) _ S~ [ (<14(RS); )] B2

aslk
We can multiply this equation with the signglland make an iter-
ative method which coincides with Richardson-Lucy aldorit
st = diag(RTdiag(Rs'j)fld') s, (B3)

with RTT = T due to the convolution operation.

0=

(© 0000 RAS, MNRASDOQ, 000-000

35

APPENDIX C: LINEAR FILTERS NEED TO BE
INVERTIBLE TO CONSERVE INFORMATION

The Fisher information matrixJ for a Gaussian distribu-
tiord with zero mean and covariance mati& calculated by
Vogeley & Szalayl(1996) has the form

Jij = %tr (GlGJ), (Cl)

with

G, =Cc7'Cy, (C2)

where the comma notatio€ ; stands for the derivative with re-
spect to the parametéy: dC'/d0;. Followingl Tegmark! (1997), we
calculate the Fisher information matrikfor the filtered and unfil-
tered signal. Let us assume a linear fillerwhich provides us with
an estimator of the signal

(s)1. = Ld. (C3)
The correlation matrix of the estimator yields
C* = ((s)1.(s)])s.epp) = L' (RSRT + N) L. (C4
We get then
ce Lt (RS,,L-RT) L (C5)
Gt L (RSRT T N) AT (Rs,iRT ) L (C6)

where we have denoted the approximate inversb at L. Doing
the same for the data yields

o (dd") s eip) = (RSR'+ N ) , C7)
(o a RS R, (C8)
Gaat (RSRT + N) - (RS,iRT ) . (C9)

If we now insert expressiof (C6) in the Fisher matfix](C1),ge¢

5= Lu (@)

oL (o A Aok i B Al AGTY

In general, this will differ from the Fisher matrix of the datf we
assume, however, that the linear operator is invertle ), then

eq. [CI0) reduces to

1
IS =t
B r

— data ~data
cs (L Lgatagdat L) . (C11)
Invoking that the trace of a product of matrices is invariantler
cyclic permutations, we see that
s 1 ats ats
st dat dat. dat.
= g (Geae) S e
This shows the result that any linear invertible filter comes in-
formation, regardless of the parameters that one wantgitoas.
However, one should be careful with this statement becansarl
filters are, in general, not invertible unless the data agwisispace
have the same dimension, the noise is non-zero for any fregue
and theR- and.S-matrices are invertible. Usually the data and sig-

nal space will differ and th&-matrix will not be exactly invertible.

22 Here a Gaussian likelihood is assumed, but the result doesiyoon
the Gaussianity of the data (see €.g. Seljak 1998).
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APPENDIX D: JEFFREY'S PRIOR FOR THE Gaussian case valid for positive’) and positive and negative sig-
3-DIMENSIONAL POWER SPECTRUM nals (s+)
Let us start by assuming a Gaussian likelitigbd Viog La(s | d,p)i = —%VXQ(S)i - _ (RTNﬂ(RS _ d)) |
Is(k)l2 (E6)
(s | Ps(k)) oc H \/T ToPs(k) (b1) and the corresponding curvature
1 _
The log-likelihood is then given by VVlog La(s | d,p) = —§VVX2(S) =-R'N"'R. (E7)
s(k)|? The Poissonian case leads to
log (P(s | Ps(k:))) x3 [log (Ps(k))+ 'P( (i:') ] (D2)
& s Viog Le(s | d,p)s (E8)
We now need the second derivatives of the log-likelihoodhwt- = bn_gz [R,ﬂ( -1+ (z Rijs'y +cn) Ndx + ck))]
spect to the parametét k J
-1
0> 1 2| s(k)|? = bng RY( — 1+ diag (Rs')+c) (d +0o))|,
The next step consists of calculating the Fisher infornmatiy
performing the integral dsP(s | Ps(k)) on the above quantity, VVlog Lr(s | d,p)is (E9)
which is t_equivalent to performing the following ensemblermge = —bmg” [Rki(z Riis't 4 cx) 2R (d' + ck)]
(see section 212) .
o 1 = —b°ng° | R (diag((Rs’ TR
J(Ps(k)) = log (P(s | Ps(k , = —b"mg iag( (Rs') +¢ (@ +e))| .
(Ps(0) = (5 sz 108 (P(s ] Ps() ) yaim) s [ 7! (cos ) ),

(D4) Note that when dealing with overdensity fields one shouldhdo t
where we have taken into account that(k) = (|s(k)|*)(s|p)- following substitution:s’; = mz(1 + bs;) in the last two expres-
Finally the square-root of the Fisher information leadsetffrdy’s sions.
prior Summing up, we have the following gradient@F for PADs

P(Ps(k)) = \/J(Ps(k)) o Ps(k) . (D5)

/
VQE( | p)i = —alox () + Vios£(s | d.p), (EL0
Following|Wandelt et &l.| (2004) we can argue in a more intaiti N ) Z. o
way thatP(Ps(k)) o« Ps(k)~" is a solution to a measure invari- ~and for positive and negative distributions
ant under scale transformations of the fofiPs(k))dPs(k) = B w; — 8
P(aPs(k))adPs(k) (here we have generalized this result to the ~ VQx(s | p)i = —alog (T) + Vleg L(s | d, p)i,
3-dimensional power spectrum). (E11)

and the corresponding curvatures

VVQE(s' | p) = —adiag(s) " +VVieg £L(s' | d,p), (E12
APPENDIX E: MEM WITH GAUSSIAN AND @r(s [p) = —adiag(s) "+ VVlog L(s [ d.p), (E12)
The corresponding likelihood (Gaussian or Poissonian)thdmse
QE(S | p) = asE(s | p) +log L(s | d, p). (E1) inserted in each of the expressions for the gradient or twuna

) ) of Q. For the choice of an optimal regularization constargee
After some calculations we see that the gradient of the pytro ¢ ' Maisinger et all (1957) ahd Hobson étlal. (1998).

for PADs is

The quantity to maximize is given by

7

’
VSE(s' | p)i = —log [ =L ), E2
+sp) & (m- €2 APPENDIX F: BAYES, TIKHONOV, ASYMPTOTIC

and for positive and negative distributions REGULARIZATION AND LEARNING ALGORITHMS

) ) We want to solve eq[{60) from a Bayesian perspective. Letus a
E w; + Si . e . .
VSi(s|p)i=—log ( : ) (E3) sume a Gaussian likelihood with covarianke
We took into account thabw;/0s; = s;/w;ds;. It is then more L | f.p)=G(f — AY. 1), (F1)
straightforward to calculate th&" curvature for PADs which is a fair assumption in the absence of noise [eq). (G&)us/-
VVSE(s' | p) = —diag(s’)’l, (E4) alent to eq.[(R) without noise,= 0). Let us further assume a Gaus-

. . . . . . ~ —1
sian prior around a prior solutiogr™ with covariancer M

P |p) =G — ", 7M ). (F2)

. We can now calculate the MAP which coincides in this case with
Analogously, we calculate the gradient of g £(s | @) for the the mean of the posterior. Let us look at the quantity giverhiay
log-posterior PDF

and for positive and negative distributions,

VVSLi(s|p) = —diag(w) " (E5)

23 Note that the likelihood foPs (k) is the prior fors. [|f — Av|]* + 7|y — ¢*||§W, (F3)
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which is a generalization of Tikhonov regularization. Mitizing and summing over we get
the negativelog-posterior yields the following equation for the j j j
Bayesian estimatdp))s Zﬂ’[i 11 = Z Wi — Z M Apli]. (G7)
AN(A@)s — ) +7 ' M(($)s —9") =0.  (F4) =0 = =0
If we now chooseM = ATM ~! (M is an invertible matrix) we Manipulating the indices, we see that
get J J+1
. Dopli+1= yli] - (o). G8®)
AT (M7 (" — ()s) +7(f — A{®)s)) =0, (F5) pard par
This equation will be fulfilled if the following equality hdk Combining the last two equations we obtain &qlif11)
(W)s =9~ +TM(f — A(y)B). (F6) P =)+ M(f - AYY), (G9)
The estimator(y)s for the solution to the inverse problem  with
eq. is expressed in ef._(F6) as the prior solug lus
(eq. [60)) is exp 4.1F6) p yonp W[0] = ° = MF. (G10)

a correction term given by the residytl- A (). Since only the
residual based on the prior solution is known, the followsudp-
stitution must be done on the right-hand-side (rbg)s — ¥*

leading to

(V) =9¢" +TM(f — AY7). (F7)

This can be interpreted as an iterative scheme, in whichdfima-
tor is the update + 1 ((1)s — 17+ on the left-hand-side (Ihs))
of the estimator at the previous stgfy* — 1’ on the rhs)

P = T M(f - AYY).
In this way, we have found the general iterative method [(&). 7
derived with the asymptotic regularization in section (2)1From
the Bayesian point of view, this scheme could be interpreted
learning algorithm, in which the estimator of the solutianthe

inverse problem is calculated from the prior solution anddbees
itself the prior solution for the subsequent iteration.

(F8)

APPENDIX G: PRECONDITIONING

We can enhance the convergence of the iteration methods by mu
tiplying the matrix we want to invert by another matrix thatiose
to its inverse

MAyp = MFf, (GY)

with M ~ A~*. Let us show this by deriving ed.(71) in a different
way. We can invertM A using the Neumann expansion for the
inverse of an operator
Y=(MA)'Mf=> (I-MAMf. (G2
1=0
This iteration scheme will convergeliff — M A|| < 1. Let us in-
troduce the following notation

Y= i, (G3)
1=0
v =3 ¢l (G4)
=0
with
Yli)]= (T - MA)YMF. (G5)
It follows that
Yli+1] =T - MA)Y[i], (G6)

(© 0000 RAS, MNRASDOQ, 000-000

The meaning of the preconditioning matt™ is clear when we
look at eq.[(GR). There it can be seen that a much more rapid con
vergence is obtained {ff — M A) is close to zero, that is iM is
close to the inverse oA.

APPENDIX H: KRYLOV METHODS: CONJUGATE
GRADIENTS

H1 Orthogonality between the residuals and the searching
vectors

Eq. [87) tells us that each error vecighr™ is A-orthogonal to the
previous searching vectdf 17 . Since all different searching vec-
tors M n' are A-orthogonal to each other by construction, and the
error vectors are given by the linear combination of the jorev
error vector and the previous searching vector (ed. (84pllows
that each error vectaj’*! is A-orthogonal to all previous search-
ing vectorsy®, i.e. fori < 7,

(" Mu') 4 = 0. (H1)
Using eq.[(8b) we can write ed._(H1) as
@Mpt) =0, (H2)

beingi < j.
Applying the inner product between the searching vectors
M " and the recurrent formula for the residuals [ed. 86), we get

(@ Mp') = (€ Mp') — 7 (Mp’|Mp') 4. (H3)
Fori # j this equation reduces to
(@ Mpt) = (€ |Mp). (H4)
From eq.[(HR) and ed_(H4) we conclude thatfet j,
(€ Mp') =0. (H5)

H2 The set of residuals as a basis of linearly independent
vectors

Taking the Gram-Schmidt orthogonalization scheme [(€l.a9)
multiplying it with the residuals, we obtain

j—1
(€ Mp’) = (€'|ME) + > Y (&' | Mp”).

k=0

(H6)

24 The iteration time step has been absorbed here in the mafvik
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Using the result obtained in the appendixl H1 (gl H5), onevsho
the orthogonality (strictly orthogonal, #4 = I') between any dif-
ferent residuals (fof # j

(€M) =0. (H7)
Fori = j by combining [Hb) and_(H6) we get the relation we used

in equation[(8P)

(€| Mp') = (&'|ME). (H8)

H3 Formulae for the 3-factor
From the scalar product between €qJ](86) and the resglual
(ETME) = (¢ |ME) — 7 (M IMET) 4, (HY)

it is clear that the3-factors are all zero except for one. Notice that
the denominator i, given by(Muj|M£i>A cancels out if nei-
theri = 5 + 1 nori = j. The latter is excluded according to the
definition of 3 (see eqd$. 90 add P2). Gram-Schmidt orthogonaliza-
tion thus simplifies to eq[{93), with

j+1 <M$j+1|MI~Lj>A

=5 ThJ/A H10
P (M pi|M pi) o (F10)

Other expressions for this factor can be derived by reptptis
j+1lineq.[H9)

(M@ |MET™) 4 = —— (@ ME™). (1)

Substituting this expression in eg.[92) and using the fdanfior
77 (eq.[89) one obtains the Fletcher-Reeves equation

(Mgt
(€'|me¢’)
Polak-Ribkres formula can now be obtained trivially by taking ex-

pression [(HF7) into account. Let us do an invariant operakign

adding — (&7 M¢7) to the nominator in Fletcher-Reeves for-
mula

(€1 IME) — (€M) = (¢ IMEH - &),

J+1

TR = (H12)

(H13)
which immediately leads to Polak-Riloes expression
v j+1 R

(€'|me¢’)
In order to get Hestenes-Stiefels formula one has to conside
egs. [HB8) and{H5) in the denominator @fr

<€J|M£]> — <[J,j|M£j> _ <uj|M€j+l> _ <[J,j|M(£j _ €j+1)>7

(H15)
resulting in the following expression
_ j+1 J+1 _ gd

(WM —€))
Due to the relations derived in this appendix other equivaier-
mulae for3 (summarized in tablel 2) can be found, which differ in
their numerical behaviour. Note that from the 16 possiblestes
presented here, only 3 are discussed in the literature.

25 This result is at first glance only valid far < j. However, with the
additional requiriment that the matri be self-adjoint, the generalization
tos # j is trivial.

H4 Preconditioned non-linear time step

The function under consideration is expanded until the se:co-
der aroundr? M p’ according to eq[(83)

QAW + T Mp’) ~ Q4 (") + 77 (VQ 4 ()| Mp?)

32 ) )
+7<MNJ|MNJ> (H17)

ACYICO)

Then the derivative with respect to the searching vectooido
find the extremum

LQaw + M) =
(VQAE) M)+ 7 (M M)y - (H18)

By setting this equation to zero, one finds an expressiorhétime
step

L (Ta)Mw)
<M”]|M'LL]>VVQA(1/Jj)

(H19)

Note that the last equation can be rewritten using relalfif@) as

S (VQA()IMVQ 4 (%))
(M pI | M pd )

_ (H20)
vVQ A7)

APPENDIX I: THE MAPPING EQUATION FOR THE
WIENER-FILTER IN K-SPACE

Following the concept of minimum variance (e.g. Rybicki &Bs
1992; Zaroubi et al. 1995), we define an action given by the nor
malized volume integral of the square of the difference betw
the reconstructiomf) and the ensemble of different possible real-
izations of the density fields(= d,))

A= <%/de [1/)(7‘) —s(r)rﬂs,e‘p). (11)

From the statistical point of view, the actichis the loss function
that has to be minimized. Note that this action can be exptess

the ensemble average of the squared Euclidean distancedretw
the real density field and the reconstruction

1

A=7

(Dt (¥, 8)) (s,€1p)- (12)

dMrk

Transforming expressiofi{l1) into Fourier space yields
(2m) ™D

1
A=<
— (D (k)3R)) (s, e1p) — (5U)D(R)) s €1 |

Assuming a linear relation between the reconstructioand the

datad
= [

(D)D) s €1 + (3(k)3R)) s €1y

(13)

dNDk/ ~

@ Py (k, k")d(K'), (14)
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and statistical homogeneity (¥(k)3(k'))(s.ep) =
(2m)NPép (k — k') Ps(K")), yields

1 dMrk dNog!
A:v/ (%)ND/ @ |

A Nop, 7 . =

Fur(k i) [ &—)N‘QFWF(I:,q><d(k'>d<q>><s,e\p)

+(2m)Pop(k — k') (3(k")5(K")) (s.e1p)
_FWF(kv kl)(‘Z(k,)g(k»(s,e\p)

— Fwr (k, k’)(§(k)&(k’)>(s,e‘p)]. (15)

Now the action is minimized with respect to the linear opatat

—3A_ — 0, to obtain the following mapping equation
SFwr

/dNDq S 7 1.7 A 1.
WFWF(kﬂ)(d(q)d(k )>(s,€\p) = (8(k)d(k )>(s,e\p)«
(16)

Note that eq{(I6) allows us to substitutéby —k’, which is equiv-
alent to the conjugation af(k’) due to the hermitian redundancy
of real numbers

Np 2 R
/ %Fv’w(h 9){d(q)

jSIN

(k,)>(s,€\p) = <§(k)d(k,)>(s,e\p)o

(I7)
The linear operator one obtains in this way is different, folftls
the same requirements. We compare both cases in sedctidre(4).
us see how one would apply such a filter. The covariance maitrix
the data is given by

<d(k)d(k/)>(s,6\p) = <@(k)&(k/)>(s,e\p) + <€(k)€(kl)>(s,e\p),

(18)
and its action on some vector by
[ R a1 )) s e (3K}
(2m)Np ’

= fo - [fmo [Ps- [fonro [i - {2}]]]) (R), (19)
and
[ R e s e K

= fsr o [P [fs_p o {2}]] (k). (110)

The correlation matrix between the data and the signal egppd
that vector yields

[ B s s e (5K}
= Bs- [fmo [/ - {£}]) (k). (111)

We see that the difference with respect to the operatiorigedkin
section[(3.B) resides in the conjugation of certain fumctio

(© 0000 RAS, MNRASDOQ, 000-000
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