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ABSTRACT
We address the inverse problem of cosmic large-scale structure reconstruction from a
Bayesian perspective. For a linear data model, a number of known and novel reconstruction
schemes, which differ in terms of the underlying signal prior, data likelihood, and numerical
inverse extra-regularization schemes are derived and classified. The Bayesian methodology
presented in this paper tries to unify and extend the following methods: Wiener-filtering,
Tikhonov regularization, Ridge regression, Maximum Entropy, and inverse regularization
techniques. The inverse techniques considered here are theasymptotic regularization, the
Jacobi, Steepest Descent, Newton-Raphson, Landweber-Fridman, and both linear and non-
linear Krylov methods based on Fletcher-Reeves, Polak-Ribière, and Hestenes-Stiefel Conju-
gate Gradients. The structures of the up-to-date highest-performing algorithms are presented,
based on an operator scheme, which permits one to exploit thepower of fast Fourier trans-
forms. Using such an implementation of the generalized Wiener-filter in the novel ARGO-
software package, the different numerical schemes are benchmarked with 1-, 2-, and 3-
dimensional problems including structured white and Poissonian noise, data windowing and
blurring effects. A novel numerical Krylov scheme is shown to be superior in terms of perfor-
mance and fidelity. These fast inverse methods ultimately will enable the application of sam-
pling techniques to explore complex joint posterior distributions. We outline how the space of
the dark-matter density field, the peculiar velocity field, and the power spectrum can jointly
be investigated by a Gibbs-sampling process. Such a method can be applied for the redshift
distortions correction of the observed galaxies and for time-reversal reconstructions of the
initial density field.

Key words: large-scale structure of Universe – galaxies: distances and redshifts – methods:
data analysis – methods: statistical – methods: numerical –techniques: image processing

1 INTRODUCTION

According to our current picture of cosmogenesis, the galaxies,
galaxy clusters, galaxy filaments, and giant voids forming the cos-
mic large-scale structure (LSS) are products of gravitational insta-
bility, which pulls increasingly more matter onto the tiny primor-
dial seed density fluctuations generated at the very first epoch of
inflation. The shape and size of the cosmic matter distribution re-
flects the initial conditions set during or shortly after BigBang, as
well as the interplay of the gravitational self-attractionof matter
and the diluting action of the Hubble expansion of cosmic space.
Valuable information about the properties and the origin ofthe cos-
mic inventory are encoded in the LSS, however, on small-scales,
that information is being erased through dynamical non-linear pro-
cesses.

Our goal is to extract as much of this information as possible
from astronomical measurements, which introduce uncertainties

⋆ E-mail: kitaura@mpa-garching.mpg.de

and, consequently, degeneracies. Therefore, we have to adapt an
information-theoretical approach to solve the reconstruction prob-
lem of cosmography. The Bayesian framework turns out to be the
most general approach as we will discuss later. In this paperwe
present the novel ARGO1-software package, which reconstructs
the three-dimensional density field from the information provided
by galaxy surveys with different Bayesian and inverse methods.
Here we focus our study on understanding the Bayesian theoreti-
cal background and the required algorithmic aspects. Further ex-
tensions of the code in which the power-spectrum and the peculiar
velocities can be jointly sampled are outlined. These applications
are planned to be shown in further publications in which theywill
be first tested on mock galaxy catalogues.

The large number of telescopes performing galaxy surveys
with increasing depth, sky coverage, and accuracy in position and
distance (or redshift) determination provide us with superb data on

1 Algorithm for theReconstruction ofGalaxy-tracedOverdensities
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2 Kitaura & Enßlin

the cosmic matter distribution at an exponentially increasing rate.
One problem is that the discrete objects these instruments reveal
to us, the galaxies, are the result of a complex non-linear evolu-
tion of cosmic matter combined with complicated astrophysical
processes such as star formation. A translation of the galaxy data
into the much better understood large-scale dark matter (DM) dis-
tribution, which would be much easier to analyse for imprints of
cosmologically interesting effects, is far from trivial. The discrete
nature of galaxies introduces certain noise, usually modeled by shot
noise. Moreover, the partially understood galaxy-formation pro-
cess inserts systematic uncertainties. In addition, the limited vol-
ume of surveys adds complications beyond the problems of galaxy-
distance determination being contaminated by observational and
velocity redshift-distortions. All these complications have to be
dealt with simultaneously and in a controlled fashion. Since it can-
not be assumed that the correct or optimal values for the various de-
grees of freedom of the problem (bias factors, redshift-corrections,
etc.) will be guessed a priory, repeated and iterative data analysis is
mandatory in order to achieve a high-fidelity and well-understood
cosmic map. For example, a correction of redshift-distortions of the
galaxies requires the gravitational potential generated by the matter
distribution to be reconstructed.

Repeated generation of cosmic matter maps increases the urge
to face another challenge, the scaling of the performance ofthe
underlying map-generation algorithms with the data size. Since
the matter-density information displayed at a location on amap
may depend on all input data (galaxy positions), any algorithm op-
timised to information theory scales super-linear2. With increas-
ing survey sizes, increasing requirements for spatial resolution
and volume coverage, and the need to frequently re-iterate the
map-generation step, the algorithm has to scale closely to linear
with data size, otherwise its application is strongly limited. For-
mer applications in cosmography suffered from such inconvenient
performance-scaling, and an effort has to be made to developsi-
multaneously high-performance and accurate methods.

The work presented in this paper developes the general
methodology of Bayesian reconstruction of the cosmic matter dis-
tribution, based on the invaluable pioneering work of many other
scientists, which will be discussed below, and extends thiswork to
a series of new applications. Existing and novel map making algo-
rithms are summarized in terms of a classification of their Bayesian
likelihood and prior functions. The implementation, optimisation,
and comparison of various numerical schemes are addressed in
detail. This provides a starting point for a correct information-
theory approach to cosmography. Many additional problems,not
addressed in this paper, such as the galaxy bias, will also have to be
solved before accurate maps of the dark matter distributionin our
still mysterious Universe can be generated.

Such an undertaking would be highly rewarded in the short
and long run. An accurate map of the cosmic matter distribution
would be valuable for a manifold of direct scientific applications.
These range from structure-formation analysis, to cosmological pa-
rameter estimation via power-spectrum measurements, darkenergy
studies, galaxy-cluster identification and galaxy-bias studies. Ac-
curate cosmic maps would help to determine weak signals asso-
ciated with the large-scale structure such as the integrated Sachs-
Wolf (ISW) effect, or the extended Sunyaev-Zel’Dovich (SZ)ef-

2 A map of galaxy counts can be generated by an algorithm with linear
scaling to data size however, it is not an optimal representation of the un-
derlying matter field.
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Figure 1. The hierarchical Bayes model for a galaxy distribution in redshift
spaceδz

g is represented here in a directed acyclic graph (DAG). The cosmo-
logical parameterspcosm govern the rest of the variables. The initial density
field coming from e.g. inflationary scenarios can be statistically described
by all its moments〈δnDM〉. Here the power spectrum is usually taken, since
the intitial perturbations are well described by a Gaussianrealization of the
initial seed fluctuations. The further evolution is described by nearly deter-
ministic processes (given by structure and galaxy formation), which deter-
mine the later-time dark matter distributionδDM with its peculiar velocity
field v and the bias functionb that relates the galaxy distribution to the
dark matter density field. The dark matter distributionδDM with the bias
produces the galaxy distribution in real spaceδr

g. The peculiar velocities
v related to the density field through the continuity equationintroduce the
redshift distortion inδr

g finally leading to the galaxy distribution in redshift
spaceδz

g .

fect, the detection of which relies on the construction of optimal
statistical filters for these signals.

Finally, one could argue that mapping the distribution of mat-
ter in the Universe represents a response to mankind’s curiosity in
its aim to discoverterra incognitaand find an orientation in space
and time on cosmological scales and, therefore, should be a goal in
itself.

In the remainder of this introduction we give the sources of
uncertainties, we present an overview of existent and new Bayesian
reconstruction methods, subsequently we briefly describe the algo-
rithmic development presented in this paper, then we summarize
non-Bayesian methods and time-reversal reconstruction methods,
and in the final part we give a more detailed overview of the struc-
ture of this paper.

1.1 Classes of uncertainty

Several classes of uncertainties related to the density-field recon-
struction from galaxy surveys demand a statistical approach. Some
of the uncertainties are intrinsic to the nature of the underlying sig-
nal (the dark matter). Other uncertainties are intrinsic tothe nature
of the observable (the galaxies). And finally there are uncertainties
due to degeneracies which appear through the observation process.

(i) cosmic variance:In cosmology it is generally assumed that
the structure of the Universe comes from some infinitesimal quan-
tum fluctuations which were frozen out and stretched by an in-
flationary phase (see Guth 1981; Guth & Pi 1982; Starobinsky
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1982; Hawking 1982; Linde 1982; Albrecht & Steinhardt 1982;
Bardeen et al. 1983), and later amplified by gravitational instabil-
ity. According to this picture, the seed fluctuations would have an
intrinsic stochastic character and are mainly Gaussian distributed.
However, the mechanisms that stretch the quantum fluctuations
may also introduce deviations from Gaussianity which wouldthen
be imprinted in the seed fluctuations. In general all the moments
of the initial fluctuations have to be considered〈δn

DM〉. Neverthe-
less, most of the inflationary scenarios predict the densityfield to
be very closely Gaussian distributed and it is generally sufficient to
take the second order moment, the two-point correlation function,
or the power-spectrum in Fourier-space. We will discuss below how
to determine the power-spectrum and techniques to disintangle in-
trinsic non-Gaussianities within a Bayesian framework. Note that
there are alternative models to inflation in which e.g. the seed fluc-
tuations are identified with the topological defects that remain as
relics of high-energy phase transitions (Kibble 1976). Accurate re-
constructions of the LSS could help to discriminate betweenthe
different models.

(ii) redshift-distortions: The peculiar motion of galaxies with
respect to the Hubble flow of the Universev introduces uncertain-
ties in their redshift measurement, the so-called redshift-distortions
(see e.g. Hamilton 1998, for an introduction to this problem). The
measured galaxy overdensities are thus said to be not in real-space
δr

g but in redshift-spaceδz
g. In the linear regime, in which galax-

ies fall into the potential wells on large scales, redshift-distortions
cause a squashing of the linear overdensities in radial direction.
However, in the non-linear regime, galaxies (e.g. in a galaxy clus-
ter) tend to behave like particles in a gas with randomized motions
inside the clusters where the potentials are very high and produce
the so-calledfinger-of-godeffect, a dispersion along the line of
sight. The correction of these distortions is not trivial, since struc-
tures erase the information coming from the initial fluctuations after
entering the non-linear regime. Consequently, determining the real
position of galaxies poses a degenerate problem, which has many
possible solutions. Many efforts have been made to correct for these
distortions: in the linear regime these efforts start with Kaiser’s pi-
oneering work (see Kaiser 1987) and are followed by the linear
redshift-distortions operator (for a detailed derivationsee Hamilton
1998). In the non-linear regime, these efforts include a velocity dis-
persion factor (thedispersion-model) corresponding to an exponen-
tial pairwise velocity distribution function with no mean streaming
(see Ballinger et al. 1996). See Scoccimarro (2004) for an exact re-
lationship between real-space and redshift-space two-point statis-
tics through the pairwise velocity distribution function including all
non-linearities. More complex methods of correcting for redshift-
distortions were classified by Schmoldt et al. (1999) into iterative
methods, that use the redshift-space density to calculate apecu-
liar velocity field, which can in turn be used to correct the density
field distortions (Yahil et al. 1991; Kaiser & Stebbins 1991), and
into basis function methods, in which the redshift-space density
field is transformed into a combination of angular and radialba-
sis functions from which the radial redshift-distortion iscorrected
(see e.g. Nusser & Davis 1994; Schmoldt et al. 1999). We propose
below a Bayesian method to correct for the linear and non-linear
redshift-distortions in a statistical way (see section 2.6).

(iii) galaxy bias: The galaxy formation process is a compli-
cated, non-linear and (probably) non-local process. It is known
that on large scales the galaxy power-spectrum fits well to the
expected DM spectrum predicted from cosmic microwave back-
ground (CMB) observations, if some bias factorb between the
amplitude of the galaxy and DM fluctuations is assumed. De-

tailed studies show that the bias factor is not universal, but de-
pends on galaxy type, galaxy formation time, redshift, etc.(see
e.g. Cooray & Sheth 2002, and references therein). For the pur-
pose of reconstructing the underlying density field, linearbiases
can easily be tackled within the linear data model describedbe-
low by including its effects in a selection function. Nevertheless,
more complex biases have to be further investigated in a Bayesian
framework. Physical processes, which are not perfectly understood
within galaxy formation may be treated in a statistical way,encod-
ing the ignorance about certain physical processes in probability
distribution functions. Several works study the stochastic nonlinear
galaxy biasing (see for example Pen 1998; Dekel & Lahav 1999;
Tegmark & Bromley 1999).

(iv) sampling uncertainties:The model connecting the contin-
uous dark matter field and the discrete galaxy distribution intro-
duces additional uncertainties. As we have discussed underitem
(iii) complex physical processes are present in galaxy formation.
The usually assumed Poissonian distribution (shot noise) for the
galaxy distribution is thus only a crude approximation of the under-
lying sampling process. Thus the remaining question is whatdegree
of accuracy one wants to achieve in the reconstruction. Neverthe-
less, further investigation is required in this field. Othersampling
uncertainties are not intrinsic to the observable, but comefrom the
mathematical representation we choose. Treating galaxiesas counts
in cells, for instance, will smooth out the information about their
measured position. The resolution level determines again the valid-
ity of the method.

(v) measurement:The action of measurement introduces un-
certainties, either due to the instruments, e.g. blurring by the tele-
scope, or due to the observational strategy, which is included in the
noise term, the selection function, and the mask effects. Many of
these aspects were already discussed by Zaroubi et al. (1995). We
will analyze these issues throughout this paper and proposenew
solutions to tackle the different problems.

Consequently, extracting the underlying dark matter density field
from the luminous matter distribution given by such surveysposes
a classical signal reconstruction problem. A Bayesian network de-
picting the relation of these uncertainties is displayed infig. (1).

1.2 Bayesian reconstruction methods

Any Bayesian statistical approach requires the definition of a like-
lihood and a prior. The former is the probability distribution func-
tion describing the process generating the observational data. It can
be interpreted as a distance measure of the observed data to the
underlying signal, as we will discuss below. The prior stands for
the distribution function modeling our prior knowledge on the sig-
nal to be recovered. Mathematically it can be shown that it regu-
larizes the estimator in the presence of noise (see section 2.5.1).
Two kinds of priors have to be distinguished, informative priors, in
which the previous physical knowledge about the signal is encoded,
and non-informative priors, which try to give objective estimators
for the underlying signal based on purely information-theoretical
arguments. Here, three non-informative priors are considered: flat
priors (see section 2.5.5) with a constant probability distribution
function (PDF), entropic priors based on Shannon’s notion of in-
formation (see section 2.5.9), and Jeffrey’s prior based oninvariant
statistical structures under transformation of variables(see section
2.5.8). Finally, a maximization or sampling of the posterior distri-
bution, which is proportional to the product of the likelihood and
the prior, has to be done to complete the Bayesian estimation. The
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4 Kitaura & Enßlin

maximization of the posterior is called the maximum a posteriori
method (MAP). The maximum likelihood (ML) and maximum en-
tropy method (MEM) are particular cases of the MAP with flat pri-
ors and entropic priors, respectively. Complex posterior distribution
functions may be sampled iteratively from conditional PDFsin a
Markov Chain Monte Carlo fashion (MCMC), see section 2.6. We
show how different choices for these distribution functions together
with the estimation procedure lead to different reconstruction al-
gorithms, which consequently have distinct application fields (see
table 1). A review of existing methods is presented and new appli-
cations for the large-scale structure reconstruction, which naturally
emerge within the Bayesian formalism, are developed.

In this work we consider Poissonian and Gaussian likelihoods
for the galaxy distribution. The former has been previouslycon-
sidered in image restoration especially for deconvolutionpurposes
(see Richardson 1972; Lucy 1974). For example, the Richardson-
Lucy algorithm can be derived as the ML of a Poissonian likeli-
hood (see Shepp & Vardi 1982, and appendix B). Here an image
can be regarded as photon counts in cells represented by a Poisso-
nian distribution. However, one should notice that this likelihood
does not represent the galaxy-formation process. From a pure im-
age reconstruction perspective, it can still be interesting for LSS
estimations, because it naturally represents the discretenature of
a galaxy distribution. The Gaussian likelihood allows the incor-
poration of arbitrary noise structures through the variance. The
CMB map-making algorithms, which aim to convert time-ordered
data received from satellites into a map of the CMB signal on the
sky as a projection on the sphere, usually use this likelihood. In
this case, the ML leads to the simple COBE-filter first derived
by Janssen & Gulkis (1992). Nevertheless, the complex scanning
strategies and foreground removal can add unlimitted complex-
ity to these algorithms (e.g. Natoli et al. 2001; Doré et al.2001;
Stompor et al. 2002; Keihänen et al. 2005; Yvon & Mayet 2005).

For the LSS the Gaussian prior arises as the natural in-
formative prior due to the arguments discussed above. We pro-
pose a novel algorithm: GAPMAP, which maximizes the poste-
rior with a Gaussian prior and a Poissonian likelihood (see sec-
tion 2.5.4 and appendix A). In contrast, the Gaussian likelihood
with the Gaussian prior leads to the well-known Wiener-filter,
which has been used for the LSS reconstruction (see Fisher etal.
1994; Hoffman 1994; Lahav et al. 1994; Lahav 1994; Zaroubi etal.
1995; Fisher et al. 1995; Webster et al. 1997; Zaroubi et al. 1999;
Schmoldt et al. 1999; Erdoğdu et al. 2004, 2006) and for CMB-
mapping (see e.g. Bunn et al. 1994; Tegmark 1997). It is also
known to give optimal results in terms of yielding the least square
error, see the pioneering work of Rybicki & Press (1992) and
Zaroubi et al. (1995). We present in this paper a fast Wiener-filter
extra-regularized with Krylov methods as we will see below.

Intrinsic primordial non-Gaussianities can be imprinted in the
seed fluctuations depending on the particular theory responsible for
the amplification of the fluctuations coming from the early Uni-
verse. To find such deviations, non-informative priors, which give
non-linear estimates for the underlying signal are required. En-
tropic priors are well suited here, and have been previouslyapplied
for CMB studies. We extend this work for LSS reconstructionsand
develop the corresponding maximum entropy method for Gaussian
and Poissonian likelihoods (see section 2.5.9 and appendixE).

Sampling methods have the advantage of determining the
shape of distributions and, thus, leading to a natural estimate of
the uncertainty of the estimator. Moreover, the mean can be calcu-
lated easily from the sample and is known to give more accurate

results than the maximum in the case of asymmetric PDFs (see e.g.
Tanner 1996).

As an example, Hobson & McLachlan (2003) proposed a SZ-
cluster detection algorithm using the Metropolis-Hastingalgorithm
method based on a Poissonian prior distribution, which is de-
signed to find discrete objects. Recently Sutton & Wandelt (2006)
developed a reconstruction method for radio-astronomy that sam-
ples from the multiplicity function (see eq. 30). Alternative ap-
proaches to the maximum likelihood for CMB-mapping algorithms
try to jointly reconstruct the CMB-map with its power-spectrum us-
ing Gibbs-sampling techniques (Wandelt et al. 2004; Eriksen et al.
2004; O’Dwyer et al. 2005). This approach is especially efficient
with respect to other MCMC methods because the transition prob-
ability matrix moves the system in each step of the chain. Forthis
special case the importance ratio is always one (see e.g. Neal 1993).
This MCMC method requires, however, the complete knowledge
of the full conditional PDFs in order to sample from them. Note
that the Gaussian prior for the signal simultaneously represents the
likelihood for the power-spectrum given the signal, which in this
case is an inverse Gamma function for the power-spectrum (see sec-
tion 2.6.2). This distribution naturally samples the power-spectrum,
which strongly deviates from Gaussianity.

With the aim of estimating the power-spectrum in an objective
way, non-informative priors are used. Usually a flat prior istaken
for the power-spectrum. Alternatively, Jeffrey’s prior, for which we
give a derivation based on Fisher information (see appendixD), can
be used. Alternatively, an entropic prior could also be taken.

Other attempts have been made to estimate the power-
spectrum from the LSS based on the distribution of galaxies.A
modified Gaussian PDF with a log-normal mean has been used
in this approach (see Percival 2005). The same kind of con-
cept, using a modified Gaussian distribution to sample deviations
from Gaussianity, has been applied to SZ-cluster detectionby
Pierpaoli & Anthoine (2005).

In this paper we propose to apply a Gibbs-sampling algorithm
to jointly sample the underlying three-dimensional density field
with the power-spectrum and the peculiar velocities, whichcan be
used to correct for the redshift-distortions (see 2.6). Applications
of this method will be presented in forthcoming publications. Note
that the peculiar velocities can also be used to trace the initial den-
sity fluctuations back in time as we will discuss below.

1.3 Algorithmic development

In this paper we focus our work on the numerical optimizationof
inverse techniques to show that a joint estimation of the LSSmatter
density field and its parameters is feasible (see sections 3 &4).

The calculation of the reconstructions, either through maxi-
mization or through sampling, requires the inversion of certain ma-
trices. For the Wiener-filter, for instance, the reconstruction prob-
lem consists in one of its steps on the inversion of the correlation
matrix of the data. The methods used in this field so far calculated
this matrix and inverted it mainly using the Singular Value Decom-
position algorithm that scales asO(n3) for an×nmatrix (see e.g.
Zaroubi et al. 1995). However, this approach seems to be hopeless
in light of the overwhelming amounts of data coming from differ-
ent surveys and the possibility of combining them. We made spe-
cial effort to implement an algorithm in which the involved matri-
ces would not need to be stored taking advantage of an operator
formalism, which we worked out here for different reconstruction
methods (see table 3 and section 3.3). Such a formalism also allows
fast iterative numerical methods that speed the inverse step up to a
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Bayesian reconstruction of the cosmological large-scale structure 5

scaling ofO(n log2 n) thus reducing the main operations to fast
Fourier transforms (FFTs). Some of these numerical schemeshave
been used in CMB-mapping algorithms, but were lacking a detailed
comparison of the efficiency of the different methods. Such acom-
parison is presented here. We derive the different inverse methods
in a unified way starting with a Bayesian motivation for iterative
schemes (see appendix F) and following with a general formulation
of the asymptotic regularization from which the Jacobi, theSteep-
est Descent, and the Krylov methods are derived. Moreover, non-
linear inverse methods are discussed, like the Newton-Raphson, the
Lanweber-Fridman and the non-linear Krylov methods. Precondi-
tioning (see appendix G) was taken into account in all the deriva-
tions and the importance of such a treatment is tested in section (4)
(see fig. 5). In addition, a previously not discussed Krylov method
is derived (see formula 94, section 3 and appendix H) and its supe-
rior efficiency is demonstrated (see section 4).

1.4 Non-Bayesian reconstruction methods

Let us mention here that there are alternative reconstruc-
tion methods which recover the underlying density field based
on the observed radial peculiar velocity of galaxies, such
as the widely known POTENT-code (Bertschinger & Dekel
1989; Bertschinger et al. 1990; Bertschinger & Dekel 1991).
Kaiser & Stebbins (1991) propose a maximum probability tech-
nique to reconstruct the density field from peculiar velocities.

Other works are focused on reconstructing the peculiar ve-
locities from denstity fields (see e.g. Branchini & Plionis 1996;
Branchini et al. 1996; Kudlicki et al. 2000; Mohayaee et al. 2004;
Mohayaee & Tully 2005). For a review see (Zaroubi 2002a) and
references therein.

In addition, several reconstruction techniques, which
we do not discuss here are based on geometrical arguments.
These techniques include Voronoi tesselations (see e.g.
Icke & van de Weygaert 1991; Ebeling & Wiedenmann 1993;
Zaninetti 1995; Doroshkevich et al. 1997; Meurs & Wilkinson
1999; Kim et al. 2000; Ramella et al. 2001; Panko & Flin
2004; Zaninetti 2006), Delaunay tesselations (see e.g.
Bernardeau & van de Weygaert 1996; Schaap & van de Weygaert
2000; van de Weygaert & Schaap 2001),friends-of-friendsalgo-
rithms (see e.g. Botzler et al. 2004) orcloud-in-cell interpolation
schemes (see e.g. Gottlöber et al. 2002).

A widely known reconstruction method in various fields is
the Pixon method (see e.g. Puetter & Pina 1993). Unlike Bayesian
methods, this method does not assign explicit prior probabilities to
image models. Instead, it restricts them by seeking minimumcom-
plexity. The Pixon method minimizes complexity by smoothing the
image model locally as much as the data allow, thus reducing the
number of independent patches, or Pixon elements, in the image.
For a recent application in astrophysics see e.g. Eke (2001).

1.5 Time-reversal reconstruction of the initial density field

The reconstruction of the initial density fluctuations is closely re-
lated to the reconstruction of the large-scale density fieldat the
observed epoch focused on in this paper. However, we believe
that fruitful contributions to the field of initial density fluctuations,
could be extracted from the work presented here. An accurateover-
density field at the observed epoch and the information aboutthe
peculiar velocities could be useful to perform such a time rever-
sal reconstruction. Let us thus briefly review the reconstruction
schemes developed in this neighbouring area of cosmology.

The initial density field is of major interest because it repre-
sents the origin of the Universe and many theories can be tested
with such information. As a direct application, constrained N-body
simulations can be done by taking the reconstructed field as the
initial conditions to study structure formation by later comparing
the results with the observations (see e.g. Ganon & Hoffman 1993;
Sheth 1995; Bistolas & Hoffman 1998; Mathis et al. 2002).

As we have discussed above, the large-scale structure con-
tains information about the seed perturbations and its dynamical
evolution is well approximated in the linear regime. Following this
idea, Weinberg (1992) proposes to reconstruct the seed fluctuations
through the Gaussianization of the observed density field, based
on the approximation that the rank order of the initial density field
smoothed over scales of a few Mpc is preserved under non-linear
gravitational evolution and further assuming the initial field to be
Gaussian distributed. This method can be regarded as an Eulerian
Gaussian mapping scheme.

Other methods run gravity backward in time taking the posi-
tion and peculiar velocities of objects at a certain redshift. Here,
different schemes have been proposed: a huge class relies onLa-
grangian dynamical schemes; another class is based on the minimal
action principle; and another class is based on optimal masstrans-
portation schemes have been applied for the initial densityfield
reconstruction.

Lagrangian dynamical schemes mainly use the Zel’Dovich ap-
proximation (Zel’Dovich 1970) in which the comoving trajectories
of the particles are straight lines. In this formalism, the variable
under consideration is the displacement of a particle. Several re-
construction schemes are based on this approximation, including
the Zel’Dovich-Bernoulli equation derived by Nusser et al.(1991),
the Zel’Dovich-continuity equation presented in Gramann (1993)
or the path interchange Zel’Dovich approximation scheme (PIZA)
used by Croft & Gaztanaga (1997), among others (see for example
Dekel et al. 1990; Nusser & Dekel 1992; Narayanan & Weinberg
1998; Valentine et al. 2000). Several of these methods are com-
pared in Narayanan & Croft (1999). More recently, it was proposed
to determine the inverse Lagrangian map (defined as the transfor-
mation of the present (Eulerian) positions to the respective initial
(Lagrangian) positions) by minimising a quadratic cost-function,
which searches the optimal mass-transport solution of the Monge-
Amp̀ere-Kantorovich problem (Frisch et al. 2002; Mohayaee et al.
2003; Brenier et al. 2003; Mohayaee et al. 2006)

The minimal action principle method was pioneered by
Peebles (1989, 1990). One of its first applications was presented
in Shaya et al. (1995). Here the gravitational instability problem is
treated as a two-point boundary problem and the trajectories of the
mass particles are solved by minimizing the action integral. This
method was extended by Goldberg & Spergel (2000a,b); Goldberg
(2001a,b).

1.6 Structure of the paper

This paper is structured as follows: in section (2) we state the
problem of signal reconstruction, then we define the data model.
Subsequently, we introduce a general statistical perspective within
a Bayesian framework from which different solutions to the re-
construction problem are presented, including Wiener-filtering, the
COBE-filter, a novel GAPMAP algorithm with a Poissonian like-
lihood and a Gaussian prior, Jeffrey’s prior and the Maximum
Entropy method (MEM). Markov Chain Monte Carlo methods
(MCMC) that sample the global probability distribution function of
the signal and all underlying parameters are presented as the ideal
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6 Kitaura & Enßlin

approach to achieve a full Bayesian solution of the reconstruction
problem. In the numerical method section (3), different iterative
inverse schemes which have been implemented in ARGO are pre-
sented, including a very efficient novel scheme. The operator for-
malism is worked out for four novel algorithms in large-scale struc-
ture reconstruction. The efficiency of the different inverse schemes
is tested with the Wiener-filter under different reconstruction cases
with synthetic data, including structured noise, blurring, selection
function effects, and windowing in section (4). Particulardetailed
derivations are presented in the appendix.

2 BAYESIAN APPROACH TO SIGNAL
RECONSTRUCTION

The reconstruction of a signal (here: DM distribution) given a set
of measurements (here: galaxy catalogues) is usually a highly de-
generate problem, as we have discussed above, where the signal is
undersampled and modified by systematic and intrinsic errors due
to the nature of the observable. This is indeed the situationthat we
are facing, since most of the galaxy redshift surveys have partial sky
coverage and the discrete nature of galaxies introduces shot noise.

An expression for the data as a function of the real signal has
to be modeled in a first step. The reconstruction problem is classi-
cally seen as the inverse of this functional dependence. Thesolu-
tion to this problem is far from being trivial and essential issues,
like solution existence, solution uniqueness, and instability of the
solving process, have to be considered. Regarding the solution ex-
istence, there will be no model that exactly fits the data, since the
mathematical model of the physics of the system is approximate
and the data contain noise. That forces us to look for optimalso-
lutions, rather than exact solutions. We will have to deal especially
with the last two points mentioned above, uniqueness and stability,
beacause an infinite set of possible solutions can fit the dataand
because of the ill-conditioned character of the system we are treat-
ing. A regularization method that stabilizes the inverse process by
imposing additional constraints will be required. We show below
how the Bayesian framework permits us to do a regularizationin a
natural way and furthermore to jointly estimate the signal and its
parameters. The calculation of the Bayesian estimators will require
extra-regularization techniques, which will be presentedin section
(3). We will start posing the inverse problem by defining the model
of the data.

2.1 Data model

The galaxy formation process is also known to be a complicated,
non-linear and probably non-local process, as mentioned inthe in-
troduction. Thus attempts to invert the galaxy distribution into the
original DM distribution may appear naive, if not hopeless.How-
ever, it is known that on large scales the galaxy power-spectrum
fits well to the expected DM spectrum predicted from CMB obser-
vations, if some bias factor between the amplitude of the galaxy
and the DM fluctuations is assumed. Detailed studies show that the
bias factor is not universal, but depends on galaxy type, galaxy for-
mation time, redshift, etc. Currently, a large effort is being made
to understand such dependencies. For the time being, we assume
that at some point bias models derived from first principles will be
available from which we can derive our data model connectingthe
signal (DM distribution) to our observable (galaxy counts). Such a
model will be complex, non-linear and non-local. The techniques to
treat such problems are partially already existing; some still have to

be developed. However, we are confident that such techniqueswill
rely on a foundation of methods solving the much simpler linear
inversion problems. Since even those are not fully developed in the
field of LSS reconstructions we concentrate here on a linear data
model. Nevertheless, a few excursions, to non-linear methods are
done in preparation of forthcoming work. We will show how the
linear model can also be used to account for non-linearitiescoming
from structure formation (see section 2.6).

2.1.1 Linear data model

The general linear reconstruction problem formally can be written
as the inverse problem of recovering the signals from the observa-
tionsd related in the following way

d(x) =

Z

dyR(x,y)sǫ(y), (1)

whereR represents the kernel of the Fredholm integral equation
of the first kind defined by (1), with noise on the signals being
expressed by the superscriptǫ. Discretizing eq. (1) and assuming
additive noise, we can formulate the signal degradation model by

d = Rs + ǫ. (2)

where them× 1 vectord represents the data points resulting from
the measurements (here: galaxy counts), the statistical noise and
the underlying signal are am × 1 vectorǫ, and an × 1 vectors
respectively. The object that operates on the signal isR am × n
matrix which commonly describes blurring effects caused bythe
atmosphere, the point-spread function (PSF) of the telescope or the
response function of the detectors of the instrument.

Let us denote the physical observation process encoded in the
R-matrix asRP. We are interested in the selection function of the
surveyfS with the corresponding masksfM, which can also be in-
cluded inR. One has to be careful with the data model defined in
eq. 2. As several authors point out, there is a correlation between
the underlying signals and the level of shot noise produced by the
discrete distribution of galaxies (see e.g. Seljak 1998). Since, by
definition, additive noise assumes no correlation with the signal –
otherwise we would have signal content in the noise – we definethe
effective noiseǫ as the product of a structure functionfSF, which
could be correlated with the signal, with a random noise component
(ǫN) that is uncorrelated with the signal. Given the above defini-
tions, the effective noiseǫ is uncorrelated with the signal. We may
then rewrite eq. (2) in continuous representation as

d(x) =

Z

dyRP(x,y)fS(y)fM(y)s(y) + fSF(s(x))ǫN(x),

(3)
where R(x,y) = RP(x,y)fS(y)fM(y) and ǫ(x) =
fSF(s(x))ǫN(x). In practice, we will assume white noise (i.e. con-
stant noise in Fourier space),ǫN = ǫWN. However, none of the pre-
sented techniques in this paper depend on this simplification. Some
of the previous studies of large-scale structure reconstruction also
included the inverse of the linear redshift-distortions operator as a
matrix multiplyingR (see e.g. Lahav et al. 1994). Such an operator
cannot easily be found for the non-linear regime. Earlier works try
to correct the non-linear redshift-distortions with an additional fac-
tor in the power-spectrum analogous to Kaiser’s factor (seeKaiser
1987; Ballinger et al. 1996; Erdoğdu et al. 2004). Here, we propose
a Bayesian solution to the signal reconstruction problem asit will
be discussed later.

In most cases, the signal will be strongly underconstraineddue
to undersampling, i.e.n≫ m, which is nearly unavoidable due to
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partial sky coverage of surveys. The linear equation (eq. 2)to be
inverted is a rank-deficient system. Such systems are characterized
by nonuniqueness, since the matrixR has a nontrivial null space.
By superposition, any linear combination of the null space mod-
els (modelss0 that satisfyRs0 = 0) can be added to a particular
solution leading to infinite solutions. Consequently, we cannot dis-
criminate between situations where the solution is truely zero (see
for example Aster et al. 2005). As is well known, a direct inversion
of eq. (2) (R−1d) will amplify the statistical noise and lead to an
unstable solution (see e.g. Zaroubi et al. 1995). Instead, aregular-
ization method, which often follows several steps, has to beapplied
. The first step consists of finding an expression for an estimator
of the signals that approximately satisfies the data model (eq. 2)
and copes with the noise. Further regularization methods are usu-
ally required in a second step to actually calculate the estimator.
This happens whenever some ill-posed linear or non-linear opera-
tors have to be inverted. We shall distinguish between noiseregu-
larization and inverse regularization according to the first and the
second step, respectively. As Zaroubi et al. (1995) pointedout, us-
ing a mean variance estimator alone does not completely solve the
inverse problem. Therefore, they proposed the singular value de-
composition algorithm (SVD) to extra-regularize these problems.
However, this method requires one to calculate the correlation ma-
trix of the data implying a slow algorithm, scaling asO(n3), and
needs large storage facilities. We will show that a Bayesianap-
proach is anatural regularizer for the noise, which then can be reg-
ularized further for the inverse purpose with efficient methods that
scale asO(n log2 n) (see section 3). Let us address the problem of
signal reconstruction from a statistical inference perspective.

2.2 Inversion via statistical estimator

In parametric modeling it is assumed that observational data have
been generated by random processes with probability density dis-
tributions, depending on the model parameters (see for example
Robert 2001). Statistical analysis in this context is essentially an
inverse method, which aims at retrieving the causes (here reduced
to the parameters of the probabilistic generating mechanism) from
the effects (here summarized by the observations).

Traditionally, one tries to find a way where the available in-
formation is optimally used and a unique estimator is selected from
an infinite set of solutions. One of the classical approachesconsists
of minimizing the variance of the residuals, which is the variance
of the discrepancy between the estimator and the set of possible
realizations consistent with the data (see Rybicki & Press 1992).
This conjecture is reasonable because the least deviation from the
set of true signals is searched. The estimator obtained in this way
is called the least squares quadratic (LSQ) estimator. However, a
transparent statement of the statistical assumptions is missing in
this method, contrary to the Bayesian approach used in this work
as will be shown below. Moreover, Bayesian statistics allows sam-
pling the PDF of the system under consideration in a natural way.
Strictly speaking, one does not look for a unique estimator in this
framework. Nevertheless, a summary of the PDF can be given by
the mean of the sample (see section 2.6).

The most general approach to determine an estimator, how-
ever, should be based on the global (joint) PDF over all relevant
quantities, like the signals and all model parametersp, without ne-
glecting any possible dependences. Let us assume thatP (s,p | d),
the joint PDF of the system under consideration, depends on the
signals and a series of additional parametersp, given the observa-
tionsd. One solution would then be to calculate the expectation of

the signal over the joint PDF space

Ejoint(s) ≡

Z

ds dp
h

P (s,p | d) s
i

≡ 〈s〉
(s,p|d)

, (4)

where we have introduced the ensemble average〈〉
(s,p|d)

with
the subscript representing the PDF over which the integral is done
P (s,p | d) → (s,p | d)3. Expression (4) can consequently be
read as the ensemble average over all possible signals and parame-
ters. The joint PDF is unfortunately quite hard to calculatedirectly,
and the integral in eq. (4) is computationally too expensivefor re-
alistic cases as it involves many parameters and a large amount
of data. To disentangle the uncertainties in parameter and signal
spaces, let us apply the product rule of statistics4 to eq. (4)

Ejoint(s) =

Z

dpP (p | d)

»

Z

ds
h

P (s | p,d) s
i

–

= Ep
h

Es (s | p,d) | d
i

= 〈〈s〉
(s|p,d)

〉
(p|d)

. (5)

This means that the expectation of the signals corresponds to the
average of the conditional mean ofs over the marginal distribution
of p (see for example Gelman et al. 2004), where the conditional
mean is given by

Econd(s) = Es(s | p,d) =

Z

ds
h

P (s | p,d) s
i

= 〈s〉
(s|p,d)

.

(6)
Traditionally, the conditional PDF has been used to determine the
estimator of the signal assuming that all the parameters areknown
(e.g. Zaroubi et al. 1995).

As the reconstruction step of the density field is computation-
ally expensive, a joint estimation of the parameters is out of scope.
Therefore, the reduced approach of basing the estimators oncondi-
tional PDFs provides a computationally more feasible way totackle
problems of this kind. In particular, we will demonstrat that an op-
erator formalism allows efficient sampling of the conditional PDFs,
enabling us to sample the joint PDF in a Bayesian framework.

2.3 Bayesian approach

Given a data model, one can usually find an expression for the sam-
pling distribution, i.e. the probability of obtaining the data given the
signal and some additional parametersp,P (d | s,p). This is much
less difficult than a direct calculation of the posteriorP (s | d,p).
We need an expression which relates both the sampling and the
posterior distribution given by Bayes theorem. The derivation of
Bayes theorem is straightforward from the joint PDF of the signal
and the data, using the product rule and the fact that the joint PDF
is invariant under permutations of its arguments5. Bayes theorem
can be expressed by the following equation

P (s | d,p, I) =
P (d | s, p, I)P (s | p, I)

P (d | p, I)
, (7)

3 Sometimes, however, the ensemble angles will denote the estimator of
some signal or parameter in a more general sense, like the maximum like-
lihood or the maximum a posteriori (see sections 2.4 and 2.5,respectively).
Note that a bracket formalism could be introduced at this point, in which
eq. (4) would be represented in the following way:(s|s|p,d).
4 P (s,p | d) = P (s | p,d)P (p | d)
5

P (s,d,p, I) = P (s | d,p, I)P (d | p, I) =

P (d, s,p, I) = P (d | s,p, I)P (s | p, I)
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8 Kitaura & Enßlin

whereP (s | p, I) represents the prior knowledge about the sig-
nal, as it models the signal before any observations occur. The
PDF given byP (d | p, I) stands for the so-called evidence that
is treated as the normalization of the posterior

P (d | p, I) =

Z

dsP (d | s,p, I)P (s | p, I). (8)

It is worth mentioning that all the probabilities are conditional
to the underlying physical picture, or prior informationI . This
has to be explicitely considered in case of model comparisons. In
the following sections, we will present the steps for completing
a Bayesian analysis, starting with the likelihood, then discussing
the importance of the prior, and finishing with sampling through
the joint signal and parameter space. Note that different choices
for these three components (likelihood, prior, and sampling) lead
to different classes of reconstruction algorithms. An overview of
the different reconstruction scheme implementations based on this
classification can be found in table (1).

2.4 The likelihood

The likelihood function is formally any function of the parameters
θ proportional to the sample density

L(θ | d) ∝ P (d | θ). (9)

Many inference approaches are based on the likelihood function,
justified by the likelihood principle, which states that theinforma-
tion obtained by an observationd aboutθ is entirely contained
in the likelihood functionL(θ | d). To be specific, ifd1 andd2

are two observations depending on the same parameterθ such that
there exists a constantc satisfyingL1(θ | d1) = cL2(θ | d2) for
every θ, d1 andd2 then bring the same information aboutθ and
must hence lead to identical inferences.

Maximum likelihood (ML) methods, for example, rely on the
likelihood principle with an estimator of the parameters given by

〈θ〉ML = arg supθ L(θ | d), (10)

i.e., the value ofθ that maximizes the probability density atd.
Bayesian methods take also advantage of the likelihood principle
incorporating the decision-related requirement of the inferential
problem through the definition of a prior distribution (see section
2.5). The definition of the likelihood is the first step in a Bayesian
framework to determine the posterior distribution (see eq.7). In
using galaxy redshift surveys to trace the matter distribution, we
have to deal with the discrete nature of the data sample. Thusthe
likelihood may be derived here for Poissonian statistics.

2.4.1 Poissonian likelihood

The likelihood of our galaxy distribution may be approximately
represented by a Poissonian distribution (the real statistics should
describe the much more complex galaxy formation process). Un-
der the assumption of independent and identically distributed (iid)
observations, this yields

L(s | d,p) ∝ (11)

P (d | s,p) =
m

Y

i=1

exp
`

−
ˆ

(Rs′)i + ci
˜´ [(Rs′)i + ci]

(d′

i+ci)

(d′i + ci)!
,

whered′i are the galaxy counts per celli and the real, positive sig-
nal of the expectation value of the number of galaxies is given by
s′i = ng(1 + bsi), with si = δρi = ρi−ρ

ρ
the DM overdensity,

our target signal. The quantityng stands for the mean number of
galaxies,ρ represents the mean density andb the bias factor. All
these quantities are redshift-dependent. The additional parameters
p in this case would be represented by some backgroundci and
would enter into the operatorR that modifies the signals.

For a similar application in astronomy see Lahav & Gull
(1989) and Robinson (1991). Ifd′i is not converted to an integer, a
Gamma function may be used instead of the factorial,(d′i + ci)!→
Γ(d′i + ci + 1).

2.4.2 Gaussian likelihood

When the number of counts is large the Poisson distribution can
be approximated by the normal distribution. In that case, the likeli-
hood can be given by a Gaussian distributed noise

L(s | d,p) ∝

P (d | s,p) =
1

[(2π)mdet(N )]1/2
exp

„

−
1

2
ǫ
†
N

−1
ǫ

«

∝ exp

»

−
1

2
χ2(s)

–

, (12)

whereN = 〈ǫǫ†〉(ǫ|p) is the covariance matrix of the noise
ǫ ≡ d −Rs, and

χ2(s) = (d−Rs)†N−1(d −Rs). (13)

The parametersp determine the structure of the noiseǫ (and there-
fore the structure of the covariance matrixN ), and also enter into
the operatorR. We give different expressions for the noise covari-
ance matrixN in section (3.3).

Note thatχ2 coincides with the square of the Mahalanobis
distance6 betweend andRs, and also coincides with the squared
N−1-norm of the error

χ2(s) = D2
Mah(d,Rs)N−1 = ||ǫ||2

N−1 . (14)

In this case, the ML will correspond to the least squares of the error.
It will minimize the χ2(s) and hence minimize the Mahalanobis
distance between the data and the noise-free data model. Therefore,
the ML is equivalent to searching the estimator that fits the data
better without constraining the model for the signal. Let usstudy
the prior that precisely sets constraints on the signals.

2.5 The prior

A second step in Bayesian analysis is to specify the prior distri-
bution for the signal, which contains the prior knowledge about
the signal before the measurements were carried out. For little in-
formative data it can strongly affect the posterior distribution and
thus modify any inference based on it. For this reason, frequentists
critisize Bayesian methods as being subjective. Other definitions of
probability, like the frequentist, however, can be shown inmost of
the situations to be particular cases of the Bayesian approach (see
e.g. Tanner 1996), implying the use of an implicit prior. Theadvan-
tage of defining the prior knowledge about the system under con-
sideration is that the interpretation of the results is straightforward,
especially because assumptions flowing into the inference proce-
dure are clearly stated. Once the prior is defined, we can obtain the

6 We introduce here a generalized definition of the Mahalanobis distance
as:D2

Mah(x,y)M = (x − y)†M(x − y), with x andy being two
vectors in theN -dimensional space andM aN ×N matrix.
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Non-informative priors Informative priors (MAP)
Prior Flat (ML ) Entropic (MEM ) Gaussian Poissonian

Likelihood

Gaussian WIENER (Tikhonov, Ridge)
–Radio Sutton & Wandelt (2006)#

–CMB COBE: Janssen & Gulkis (1992) Maisinger et al. (1997) Bunn & Sugiyama (1995) Hobson & McLachlan (2003)#

Tegmark (1997,1997b) Hobson et al. (1998) Tegmark (1997,1997b)
ROMA: Natoli et al. (2001)

MAPCUMBA: Doré et al. (2001)
MAXIMA: Stompor et al. (2002)
MAGIC#: Wandelt et al. (2004) MAGIC#: Wandelt et al. (2004)
MIRAGE: Yvon & Mayet (2005) Eriksen et al. (2004)#

MADAM: Keihänen et al. (2005) O’Dwyer et al. (2005)#

Larson et al. (2007)#

–LSS Fisher et al. (1994)
Hoffman (1994)

Lahav et al. (1994), Lahav (1994)
Zaroubi et al. (1995)
Fisher et al. (1995)

Webster et al. (1997)
Zaroubi et al. (1999)

Schmoldt et al. (1999)
Erdoğdu et al. (2004,2006)

ARGO: MEMG∗ ARGO: WIENER∗∗#

(section 2.5.9 and appendix E) (sections 2.5.3, 2.6, 4 and appendix I)

Poissonian Richardson (1972) ARGO: MEMP∗ ARGO: GAPMAP∗

Lucy (1974) (section 2.5.9 and appendix E) (section 2.5.4 and appendix A)

Inverse Gamma
–CMB MAGIC#: Wandelt et al. (2004)

Eriksen et al. (2004)#

O’Dwyer et al. (2005)#

Larson et al. (2007)#

–LSS ARGO∗#

(section 2.6.2)

Modified Gaussian
–CMB Pierpaoli & Anthoine (2005)#

–LSS Percival (2005)#

∗developed and presented in this paper;∗∗developed, tested and presented in this paper;#able to sample PDFs

We have left out the reconstruction methods that are focusedon the cosmological initial conditions, since they addressa different problem and, in general,
cannot be classified in terms of the PDFs listed in this table.Neither can other reconstruction algorithms based on geometrical arguments,

like Voronoi, Delaunay tessellations,friends-of-friendsschemes orcloud-in-cell interpolation schemes, be classified here.
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10 Kitaura & Enßlin

maximum a posteriori (MAP) estimator, by maximizing the poste-
rior distribution, which is proportional to the likelihoodmultplied
by the prior,

〈θ〉MAP = arg supθ P (θ | d). (15)

Note that there is a crucial difference to the maximum likelihood
estimator (eq. 10) due to the incorporation of the prior information.

2.5.1 Bayes and regularization methods: the prior as a
regularizer

Looking at the log-probabilities, we see that the MAP esti-
mator maximizes the following quantity using Bayes theorem
(logP (θ | d) ∝ log(P (d | θ)P (θ)))

Q = logP (d | θ) + logP (θ). (16)

If we assume that the error is Gaussian distributed, (which is a fair
assumption if there is no prior information about the noise), and
we parametrize the prior of the parameter, say the signals, we can
rewrite eq. (16) as (2Q→ Q)

Q = −χ2(s) + αfp(s), (17)

where we absorbed the factor2 in the Lagrangian multiplierα, and
fp represents the penalty function that obliges the estimatorto fulfil
some constraint on the parameters, to the detriment of theχ2(s)
that strongly relies on the data. If we further assume thatN−1 = I

(say we have white noise), the Mahalanobis distance reducesto
the Euclidean distance (D2

Mah(d,Rs)|N−1
=I = D2

Euc(d,Rs)),
and the quantity one wants to minimize reads

||ǫ||2 + αfp(s), (18)

where we have absorbed the minus sign inα. Expression (18)
is equivalent to least squares with a regularization term, and be-
longs to Ridge-regression problems (Hoerl 1962; Hoerl & Kennard
1970). Assuming that the penalty function takes the following form
fp(s) = ||s||2, we can write expression (18) as

||ǫ||2 + α||s||2, (19)

which then becomes the Tikhonov regularization method
(Tikhonov 1963). The parameterα is called the regularization pa-
rameter. These methods lead to linear filters and are essentially
identical to Wiener-filtering (Foster 1961), which will be presented
in the next section. Note that Tikhonov regularization is equiva-
lent to MAP of a Gaussian likelihood with noise covariance ma-
trix N = I and Gaussian prior, with signal covariance matrix
S = α−1I . Nevertheless, the penalty functionfp in general can be
a non-linear function of the parameter to be estimated (say the sig-
nals) leading to non-linear estimators. We will introduce MEM as
such an example. Tikhonov regularization can also be generalized
to non-linear problems by introducing a non-linear kernel operator
R(s).

Summarizing the exposed theory of signal reconstruction, we
might interpret the likelihood as some distance measure between
the data and the noise-free model of the data, and the prior assome
constraint that tightens the estimator to the model of the signal. We
have shown here that the classical methods of signal reconstruc-
tion, like the Tikhonov regularization, are particular cases of the
Bayesian approach. The inclusion of a prior can be regarded as a
natural regularization, in the sense that the regularization term is
provided by a (physical) model of thetrue signal. In appendix F,
we discuss the relation between other regularization methods and

the Bayesian approach. In the following subsections we introduce
different priors that are relevant for large-scale structure reconstruc-
tion and are implemented in ARGO.

2.5.2 Gaussian prior

The distribution of the primordial density field should be very close
to Gaussianity according to most of the inflationary scenarios (Guth
1981; Linde 1982; Albrecht & Steinhardt 1982). In fact, the mea-
surements of the CMB show very small deviations from Gaussian-
ity (see e.g. Komatsu et al. 2003). Non-Gaussianities in themat-
ter distribution arose mainly from non-linear gravitational collapse.
The non-linear regime of structure formation is responsible for the
strong radial redshift-distortions, thefinger-of-godeffect, limiting
the accuracy of reconstructions. Previous attempts to correct for
these distortions have modified the power-spectrum by introduc-
ing a lorentzian factor (see e.g. Ballinger et al. 1996; Erdoğdu et al.
2004). In section (2.6) we propose an alternative way to do this in
a Bayesian framework, where peculiar velocities are sampled to-
gether with the three dimensional map of the matter distribution.
For the underlying DM density fluctuation we will assume a Gaus-
sian prior. This is a crude approximation for the density field at
the present epoch of the Universe, especially on small-scales. It is,
however, a valid description on large-scales and allows to incorpo-
rate non-linear corrections in a MCMC fashion, as will be discussed
in section (2.6). Following Bardeen et al. (1986) we may thuswrite
the PDF of the signal as a multivariate Gaussian distribution

P (s | p) =
1

[(2π)ndet(S)]1/2
exp

„

−
1

2
s
†
S

−1
s

«

, (20)

with S being the covariance matrix of the signal
(S = S(p) = 〈ss†〉(s|p)). This formula emphasizes the high
dimensional character of the problem (n dimensions of the signal
reconstruction, with n being typically between103 and109).

2.5.3 Gaussian prior and Gaussian likelihood: the Wiener-filter

The Gaussian prior together with the Gaussian likelihood lead to
the Wiener Filter, completing the square for the signal in the ex-
ponent of the posterior distribution, as derived by Zaroubiet al.
(1995),

P (s | d,p)

∝ exp

„

−
1

2

h

s
†
S

−1
s + (d−Rs)†N−1(d −Rs)

i

«

∝ exp

„

−
1

2

h

(s− 〈s〉WF)†(σWF
2)−1(s − 〈s〉WF)

i

«

,(21)

where the Wiener-filter used to calculate the estimator fromthe data
〈s〉WF = FWFd is given by

FWF = SR
†(RSR† +N )−1, (22)

and the corresponding covariance is

σ
2
WF = 〈rr†〉WF = (S−1 +R†

N
−1
R)−1, (23)

with r = s − 〈s〉WF being the residual. The fol-
lowing notation can be introduced for the posterior PDF:
P (s | d,p) ∝ G(s − 〈s〉WF,σ

2
WF), i.e. given a datasetd derived

from a Gaussian process, the possible signals are Gaussian dis-
tributed around the Wiener-filter reconstruction〈s〉WF with a co-
varianceσWF. The parametersp enter the operatorR, including
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Bayesian reconstruction of the cosmological large-scale structure 11

also the cosmological parameters that determine the signalcovari-
ance matrixS. We will discuss in section (2.6) how to sampleS
and to determine cosmological parameters.

A remarkable characteristic of the Wiener-filter is that it sup-
presses the signal in the presence of a high noise level resulting in
the null estimator and gives just the deblurred data when noise is
negligible. In this sense it is a biased estimator, since itscovariance
matrix has less power than the original one. Some attempts have
been made to derive an equivalent unbiased estimator (see Zaroubi
2002b). However, one might be especially interested in obtaining a
conservative estimator. Sampling the joint PDF will fill themissing
modes (see e.g. Wandelt et al. 2004) and in this way complete the
signal in regions where it is undersampled or the signal to noise
ratio is low. It is interesting to note that the Wiener Filtercoincides
with the MAP estimator in the case of a Gaussian prior ons and
a Gaussian likelihood (〈s〉WF = 〈s〉MAP). This filter can also be
obtained as the LSQ estimator7 (〈s〉WF = 〈s〉LSQ, for an explicit
derivation see Zaroubi et al. 1995, and appendix I). Performing the
integral of the conditional PDF (see eq. 6) one obtains the same es-
timator again, thus〈s〉WF = 〈s〉

(s|d,p)
. This is a very important

result, since it permits one to sample the conditional PDF. We pro-
pose to exploit this property for the joint estimation of thesignal
and its power-spectrum as is done in the CMB (see Wandelt et al.
(2004) and section 2.6.2).

2.5.4 Gaussian prior and Poissonian likelihood: the GAPMAP
estimator

The Gaussian likelihood constitutes a valid approximationwhen
the Poissonian character of the distribution is appropriately mod-
eled in the noise correlation matrixN . However, one would rather
describe a discrete sampling process like a galaxy survey with a
Poissonian likelihood. Unfortunately, there is no filter available for
such a case. Thus, we present a novel iterative equation for the
MAP estimator with a Gaussian prior and a Poissonian likelihood,
which we call GAPMAP (see appendix A for a derivation)

s
j+1 = SR

†bng

„

−~1 + diag
“

Rng(~1 + bsj) + c
”−1

(d′ + c)

«

.

(24)
This scheme will be presented in further detail in a separatepaper.

2.5.5 Flat prior

With the aim of deriving objective posterior distributions, non-
informative prior distributions are introduced. A non-informative
prior would suggest that any value is reasonable. Flat priors where
the probability distribution is assumed to be constantP (s) =
constant are thus very often applied. Note, however, that these are
improper priors, since the integral of these distributionsdiverges to
infinity. In this case, the posterior is proportional to the likelihood.
The maximum likelihood solution coincides in this way with the
MAP estimator assuming a flat prior (〈s〉ML = 〈s〉MAP|flat).

7 Note that in this case, the least squares are referred to the residuals
r, i.e. the difference between the real signals and the estimated signal
〈s〉LSQ: ||r||2 = ||s− 〈s〉LSQ||2, where the prior ons is given in a more
implicit way by assuming a linear relation between the estimator and the
data and statistical homogeneity.

2.5.6 Flat prior and Gaussian likelihood: the COBE-filter

In CMB map-making algorithms it is common to use the so-called
COBE-filter (see Janssen & Gulkis 1992; Tegmark 1997), which
can easily be derived by maximizing the likelihood given in eq. (12)

F COBE = (R†
N

−1
R)−1

R
†
N

−1. (25)

This filter has the property that among all unbiased linear estima-
tors (with a noise of zero mean), it leads to the minimum variance
(Natoli et al. 2001). Here unbiased means that the statistical mean
of the estimator is equal to thetrue signal. This is, however, only
fulfilled when the inverse ofR†N−1R exists8. The covariance
for the COBE-filter can found to be

σ
2
COBE = 〈rr†〉COBE = (R†

N
−1
R)−1. (26)

Note that, in general, the following relation holds:σ2
WF 6 σ2

COBE,
as a comparison to eq. (23) shows.

Tegmark (1997) claims that several linear filters like the
COBE or the Wiener-filter conserve information by comparingthe
Fisher information matrix corresponding to the filtered signal to
the one of the unfiltered time ordered data. This property appar-
ently permits one to perform cosmological parameter estimation
from the reconstructed signal after filtering the data. However, lin-
ear filters conserve information only if they are invertible, which is
not provided for realistic cases as we show in appendix C. A con-
sistent estimation of cosmological parameters has to be done in a
full Bayesian framework by estimating the joint PDF of the signal
and the parameters, as we will see in section (2.6) (Wandelt et al.
2004).

2.5.7 Flat prior and Poissonian likelihood: the Richardson-Lucy
algorithm

A widely used deblurring algorithm in astronomy and medicalto-
mography is the Richardson-Lucy algorithm (Richardson 1972;
Lucy 1974), which was shown to be the maximum likelihood so-
lution with a Poissonian likelihood by Shepp & Vardi (1982).We
show the derivation in appendix B, as a simplified case with respect
to eq. (24). The Richardson-Lucy algorithm cannot prevent seri-
ous noise amplifications in the restoration process (see e.g. Carasso
1999). This is a natural consequence when a prior that regularizes
the solution is missing. We will show in a forthcoming paper that
the Krylov regularization methods we present in this paper (section
3.1.5) are very well suited for deconvolution purposes, as they give
faster reconstructions than the Richardson-Lucy algorithm and are
stable against noise. A toy application is presented in fig. (8).

2.5.8 Jeffrey’s prior

Other non-informative priors have been suggested based on in-
variant statistical structures under transformation of variables in a
Bayesian formalism. Considering a one-to-one transformation in

8

〈〈s〉COBE〉(d|s,p) = 〈(R†N−1R)−1R†N−1d〉(d|s,p)

= (R†N−1R)−1R†N−1〈Rs+ ǫ〉(d|s,p)

= (R†N−1R)−1R†N−1Rs

= s, if R†N−1R is invertible.
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12 Kitaura & Enßlin

the one-dimensional case of the parameter:φ = f(θ), the equiva-
lence between the respective prior densities is expressed by

P (φ) = P (θ)

˛

˛

˛

˛

dθ

dφ

˛

˛

˛

˛

= P (θ)
˛

˛f ′(θ)
˛

˛

−1
. (27)

This relation is satisfied by Jeffrey’s priorP (θ) ∝ [J(θ)]1/2, where
J(θ) is the Fisher information9

J(θ) ≡ 〈

„

∂ logP (d|θ)

∂θ

«2

〉(d|θ) = −〈
∂2 logP (d|θ)

∂θ2
〉(d|θ),

(28)
and where we have assumed the following regularity condition
R

dd ∂2

∂θ2 P (d | θ) = 0. Relation (27) can be proved easily by do-

ing the evaluationJ(φ) = −〈 ∂2 log P (d|φ)

∂φ2 〉(d|θ) = J(θ)
˛

˛

˛

dθ
dφ

˛

˛

˛

2

(see e.g. Gelman et al. 2004). Note, however, that in the multidi-
mensional case, Jeffrey’s prior may lead to incoherences oreven
paradoxes (see e.g. Berger & Bernardo 1992; Robert 2001). Jef-
frey’s prior is applied adequately, when not even the order of
magnitude of the parameter to be estimated is known a priori.
We derive Jeffrey’s ignorance prior for the 3-D power-spectrum
(S = diag(PS(k)))10 in appendix D (see section 2.6.2 for an ap-
plication of this prior).

2.5.9 Entropic prior and Maximum Entropy method

Another approach searches the least informative model compatible
with the data using a prior based on Boltzmann’s definition ofen-
tropySE 11 (or equivalently, Shannon’s notion of information, see
Shannon 1948),

P (s | p) = exp(αSE), (29)

and maximizing the resulting posterior distribution, being α some
constant, ands the so-called hidden image (or signal). This infer-
ence procedure is called the Maximum Entropy method (MEM)
(Jaynes 1963, 1968; Frieden 1972; Gull & Daniell 1978; Gull
1989; Skilling 1989; Maisinger et al. 1997; Hobson et al. 1998).
For a review see Narayan & Nityananda (1986). From now on we
will represent the underlying signal bys in the framework of MEM.
The MEM can be considered as MAP estimation with an entropic
prior.

The particular expression for the entropy depends on the sta-
tistical formulation of the non-informative prior. Let us think of a
positive signal as a grid withq cells, with each celli having a cer-
tain intensity valuesi, i = 1, . . . , q, with an uncertainty on each
value given by±α−1. Then we define some discretequantani on
each cell related to the intensity through the uncertainty:ni = αsi.
The signal can be guessed by distributing theni quantasin the
grid. In this way, the image is modeled in this way analogously to
the energy configuration space of a thermodynamical system.If we
further demand each cell to beiid, the number of ways this object
can occur is given by the multiplicity

W =
Nq!

n1!n2! . . . nq !
, (30)

9 The generalization to the multidimensional case leads to the following

matrix form:Jij(θ) ≡ 〈
∂ log P (d|θ)

∂θi

∂ log P (d|θ)

∂θj
〉(d|θ) (see appendix

C).
10 Here the autocorrelation matrixS is represented in k-space. We will
discuss this in further detail in section (3.3).
11 Not to be confused by the signal autocorrelationS.

with Nq being the total amount ofquantasto be distributed in all
cells (Nq =

P

i ni). The probability of any particular result is then
given by the multinomial distribution

P (s′ | p) = Wq−Nq . (31)

Sutton & Wandelt (2006) propose to sample from the multiplicity
function directly to perform reconstructions in radioastronomy. By
using Stirling’s formula for the factorials (n! ∼ nne−n) we can
write

logP (s′ | p) = −α
X

i

s′i log s′i + const. (32)

Comparing this expression with eq. (29), we recover Shannon’s
definition of entropy (SE

+ =
P

i s
′
i log s′i)

12. The expression that
is commonly used for the entropy is a generalization of Shannon’s
formula by Skilling that can be derived based only on consistency
arguments within probabilistic information theory for positive and
additive distributions (PADs) (Skilling 1989).

This generalization implies the definition of a Lebesgue mea-
sure (m) for the integral of some function of the hidden image to
represent the entropy

SE
+(s′ | p) =

X

i

h

s′i −mi − s
′
i log

`

s′i/mi

´

i

, (33)

here in its discretised form. Skilling’s expression for theen-
tropy can also be derived by considering ateam of monkeys
throwing balls atq cells at random with Poissonian expectation
µi: P (n|µ) =

Q

i µ
ni
i e−µi/ni!, whereni = αsi and µ = αmi

(Skilling 1989). For a review on further expressions for theentropy
see Molina et al. (2001).

The global maximum ofSE overs in the absence of further
constraints is found to bes′ = m. Consequently,m can also be
thought of as a prior model for the image. However, this expres-
sion for the entropy will allow reconstructing positive signals only.
Zaroubi et al. (1995) propose to defines′ = ρ andm = ρ0, to
avoid the possibility of having a negative distribution fors.

According to Gull & Skilling (1990) the MEM can be ex-
tended to reconstruct distributions, which can be either positive or
negative, as in the case of density fluctuations. Such distributions
can be described as the difference between two subsidiary positive
distributions (PADs)

s = u − v, (34)

relative to a common modelm 13

SE
±(u,v | p) =

X

i

h

ui − 2mi − ui log(ui/mi)
i

+
X

i

h

vi − 2mi − vi log(vi/mi)
i

. (35)

One can see from eq. (34) that∂SE
±/∂u = −∂SE

±/∂v, hence
yielding

uv = m
2. (36)

From the relations given by eqs. (34) and (36), it is easy to derive

u =
1

2
(w + s), (37)

12 The “+” symbol inSE
+ denotes that the definition is only valid for posi-

tive signalss′.
13 The “±” symbol inSE

± denotes that the definition is valid for positive
and negative signalss.
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Bayesian reconstruction of the cosmological large-scale structure 13

v =
1

2
(w − s), (38)

with wi = (s2i + 4m2
i )

1/2. Using these expressions, the total en-
tropy can be rewritten as

SE
±(s | p) =

X

i

h

wi − 2mi − si log
“

(wi + si)/2mi

”i

. (39)

The Maximum Entropy method gives a non-linear estimator of
the underlying signal that one wants to reconstruct. This method
is especially interesting to study deviations from Gaussianity
(Maisinger et al. 1997; Hobson et al. 1998). It is equivalentto max-
imize χ2 with a Lagrangian multiplier, which includes a penalty
function given by the entropy. Maximum Entropy in this context
searches the hidden image that adds the least additional informa-
tion to the data.

The quantity we need to maximize is given by

QE(s | p) = αSE(s | p) + logL(s | d,p), (40)

where thelogL is given by eq. (13) or eq. (A1). The equation we
want to solve is

∇QE(s | p) = 0. (41)

In section (3.2), different iterative algorithms to solve this non-
linear problem will be discussed. The required expressionsfor the
gradient ofQE and its curvature for positive and positive/negative
expressions of the entropy (eqs. 33 and 39) and for both Gaussian
and Poissonian likelihoods are presented in appendix E.

Note that in the limit of low density fluctuations, i.e. in
the linear regime, the expression of the entropy reduces to the
quadratic entropy (eventually with an offset of the origin of s),
SE(s | p) ≃ −

P

i s
2
i /2mi. This expression is very similar to a

Gaussian prior for the signal with a variance given bym. In that
case Maximum Entropy leads to the Wiener-filter.

2.6 Markov Chain Monte Carlo: sampling the joint PDF

The drawback of the maximization methods hitherto mentioned,
is that they find a unique estimator that is most probably subject
to the chosen values for the required parameters. As alreadymen-
tioned, the complete characterization of a system is contained in
the joint PDF in the product space of possible signals and pa-
rameters. Thus, it would be desirable to sample from this PDF
to find the region of highest confidence for our estimator. This
is possible using Markov Chain Monte Carlo (MCMC). The im-
portance of sampling from the joint PDF and the viability of do-
ing that with MCMCs has already been discussed in other con-
texts in astronomy (Hobson & McLachlan 2003; Jewell et al. 2004;
Wandelt et al. 2004). With the MCMC method, the whole system
can be moved in its configuration space by updating all variables
successively in a Monte Carlo fashion, until the system relaxes
(burns-in) and reaches the highest density region.

The expectation of thei-th parameter (θi) can be calculated
by the so-called ergodic average, which is given by the mean of the
sample

〈θi〉(θ|d)
≃

1

Nb

Nb−1
X

t=0

θi
t, (42)

withNb being the size of the sample drawn once the Markov Chain
hasburned-in. In general, the mean estimator is more reliable than
the maximum of the distribution, especially in cases with devia-
tions from Gaussianity (see e.g. Gelman et al. 2004). The MCMC

method permits one to approximately solve the integral in eq. (4)
through expression (42).

2.6.1 Gibbs sampling

The most straightforward MCMC method is the Gibbs sampler
(Geman & Geman 1984), also known as theheatbathalgorithm.
The Gibbs algorithm samples from the joint PDF by repeatedlyre-
placing each component with a value drawn from its distribution
conditional on the current values of all other components. This pro-
cess can be seen as a Markov Chain with transition probabilitiesπk

for k = 1, ..., n,

πk(θ, θ′) = P (θ′k | {θi : i 6= k}) ·
Y

i6=k

δK(θi, θ
′
i), (43)

where {θi : i 6= k} = (θ1, ..., θk−1, θk+1, ..., θn) (see e.g. Neal
1993) andδK is the Kroenecker delta-function. The Gibbs sampler
starts with some initial valuesθ(0) = (θ

(0)
1 , ..., θ

(0)
n ) and obtains

new updatesθ(j) = (θ
(j)
1 , ..., θ

(j)
n ) from the previous stepθ(j−1)

through successive generation of values

θ
(j)
1 ∼ P (θ1 | {θ

(j−1)
i : i 6= 1})

θ
(j)
2 ∼ P (θ2 | θ

(j)
1 , {θ

(j−1)
i : i > 2})

...

θ(j)n ∼ P (θn | {θ
(j)
i : i 6= n}) (44)

In this way a random walk on the vectorθ is performed by mak-
ing subsequent steps in low-dimensional subspaces, which span the
full product space. This is similar to individual collisions of parti-
cles in a mechanical system that drives a many-body system toan
equilibrium distribution for all degrees of freedom. We areespe-
cially interested in this sampling method because of its efficiency
and simplicity in contrast to other algorithms, which include ac-
ceptance and rejection rules like the Metropolis-Hastingsalgorithm
(Metropolis et al. 1953; Hastings 1970). See Wandelt et al. (2004)
for applications in CMB-mapping and power-spectrum estimation.

The MCMC method can be applied to perform simultaneously
the reconstruction of the density field and the estimation ofother
parameters, such as the power-spectrum, the peculiar velocities, the
bias, or the comological parameters (see fig. 1). Here we outline the
procedure to apply this method to power-spectrum estimation and
redshift-distortion corrections, which can also be used ina joint al-
gorithm. The applications of this method will be presented in forth-
coming publications. Note that a higher degree of complexity can
be achieved by going beyond linear perturbation theory or consid-
ering higher moments of the density field.

2.6.2 Joint signal and power-spectrum estimation

The joint PDF considered here is given by the joint PDF of the
signal and the power-spectrumP (s,S|d). For the initial guess ei-
ther an expression for the power-spectrum can be applied (see e.g.
Efstathiou et al. 1992; Peacock & Dodds 1994; Smith et al. 1998;
Eisenstein & Hu 1999), or the power-spectrum of the CMB can be
taken and calculated for the required redshifts with some transfer
functions (see e.g. Eisenstein & Hu 1999). Then the following sam-
pling processes are iterated until the chainburns-in

s
(j+1) ∼ P (s | S(j),d), (45)

S
(j+1) ∼ P (S | s(j+1)), (46)

c© 0000 RAS, MNRAS000, 000–000



14 Kitaura & Enßlin

where we sample the DM signal with the following PDF (see sec-
tion 2.5.2)

P (s | S(j),d) ∝ G
“

s − FWF(S(j))d,σ2
WF(S(j))

”

. (47)

By adding a vector with the correct covariance to the Wiener-
filtered signal (see Wandelt et al. 2004) we can generate estimates
of the signal with the required mean and covariance. Given Bayes
theorem we can write

s
(j) = 〈s(j)〉WF + y(j)

σWF
. (48)

To generatey(j)
σWF

one has to solve the following set of equa-
tions, which are generalized here for windowed signals witha re-
sponse operatorR (note that similar expressions can be found in
Eriksen et al. 2004)

y
(j)
σWF

= (49)
“

(S(j))−1 +R†
N

−1
R

”−1“

(S(j))−1/2
xG1 +R†

N
−1/2

xG2

”

,

wherexG1 andxG2 are two independent Gaussian variates. One
can show by direct calculation thaty(j)

σWF
has a covariance given

byσ2
WF.
The power-spectrum can be sampled by a inverse gamma

function, which we derive here for the case of the 3-D power-
spectrum (see Wandelt et al. 2004, for the analogous CMB case)

P (S | s) ∝ P (S)P (s | S). (50)

Assuming a Gaussian signals (see eq. 20) this yields

P (PS(k) | s(j)) ∝ P (PS(k))
Y

k

1
p

PS(k)
exp−

|s(j)(k)|2

2PS(k)
,

(51)
with S = diag(PS(k)). The prior P (PS(k)) can be chosen to
be flat (P (PS(k)) = const) or instead Jeffrey’s prior can be used
(P (PS(k)) = PS(k)−1), see section (2.5.8) and appendix D. Note
that the likelihood for the power-spectrum given by eq. (51)is
clearly non-Gaussian.

2.6.3 Joint signal and peculiar velocities estimation:
redshift-distortions correction

The measured redshift of a galaxy, or its so-called recession ve-
locity can be expressed by Hubble’s law, that describes the bulk
flow of the Universe. However, the peculiar velocity of the galax-
ies along the line of sight introduces so-called redshift-distortions.
This has to be considered in order to correct Hubble’s law. Hence,
a galaxy’s redshift-distancecz (conveniently expressed in velocity
units) is given by its true distancer = H0d plus its peculiar veloc-
ity v along the line of sightru

cz = H0d+ ru · v. (52)

We propose to sample the peculiar velocities in a MCMC fashion,
analogous to the case of the power-spectrum

s
(j+1) ∼ P (s | v(j),S,d), (53)

v
(j+1) ∼ P (v | s(j+1)), (54)

In each step where we sample the peculiar velocity, the redshift-
distortion can be corrected using eq. (52)

r(j+1) = cz − ru · v
(j+1) (55)

For low overdensities, linear theory gives good estimates of the pe-
culiar velocity

vLT = −β∇∇−2δρ, (56)

where∇∇−2 is the inverse Laplacian, andβ is the linear growth
rate at the present day (f0) divided by the bias factorb: β = f0/b.
For high overdensities, the structures tend to be virialized. This
means that the galaxies will have random velocities as in a Boltz-
mann gas, introducing dispersions in the line of sight, the so-called
finger-of-god effect. We propose to sample the peculiar velocities
from a PDF with a mean〈v〉M given by the linear theoryvLT and
a velocity dispersionσv depending on the local value of the over-
density,

P (v | s(j)) ∝ G
“

v − 〈v〉M(s(j)), σ2
v(s(j))

”

. (57)

Such a method would provided linear and non-linear corrections
to the redshift-distortions. Note that with a similar approach, non-
Gaussianities due to the Lagrangian nature of structure formation
could also be addressed.

3 NUMERICAL METHOD

In order to efficiently sample the joint PDF, as it is requiredin
MCMC methods (see section 2.6), fast inverse algorithms need to
be considered to regularize the solution. General iterative inverse
methods scale asO(n3) since they imply matrix multiplications of
a n× n matrix in an iterative fashion (at mostn-steps until con-
vergence). This makes the study of the joint PDFs as presented in
section (2.6), at a first glance, unfeasible. However, a proper formu-
lation of the problem in an operator formalism allows treating the
matrices as operators that have to be neither calculated norstored.
Within this operator formalism, the inversion methods we present
here sped up to a scaling ofO(n log2 n). We start with a general
formulation of iterative methods and subsequently presentthe dif-
ferent schemes that we have implemented in ARGO. Since a pre-
conditioning treatment can dramatically enhance the performance
of iterative schemes (see our numerical experiments in section 4),
we pay special attention to this point in the derivation of the differ-
ent schemes.

3.1 Iterative inverse and regularization methods: a unified
formulation of different linear methods

Let us consider a regionD in then-dimensional Euclidean space
En and denoteL2(D) the Hilbert space of all complex measure-
able square integrable functions

R

D
dnz|g|2(z) <∞ with inner

product14

〈g|s〉 =

Z

D

dn
zg(z)s(z), (58)

and norm ofg ∈ L2(D)

||g|| = 〈g|g〉1/2. (59)

LetΨ be a subspace of the Hilbert spaceL2(D) with the conditions
that every elementψ ∈ Ψ must satisfy being smoothness, limit be-
haviour at the boundaryD, etc. Let us now consider the linear op-
eratorA, defined on the linear manifoldΨ, and suppose thatA is

14 Here a Dirac type notation is introduced. It should not be confused with
the ensemble average notation, which does not have a balk in-between.
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a positive definite, i.e.〈Aψ|ψ〉 > 0 15 for all ψ ∈ Ψ. The kind
of inverse problem we are interested in belongs to the stationary
problems of the form

Aψ = f , (60)

since, for example, for the COBE-filter we have to invert
A〈s〉COBE = R†N−1d, with ψ = 〈s〉COBE, A = R†N−1R

and f = R†N−1d, and for the Wiener-filtering we have
ψ = (SR†)−1〈s〉WF, A = (R†SR +N ) andf = d. Eq. (60)
has the same structure as eq. (2), but without a noise term. Hence,
a regularization method is again required.

3.1.1 Minimization of the quadratic form

Another way of approaching the linear inverse problem is themin-
imization of a quadratic form given by

QA(ψ) =
1

2
〈Aψ|ψ〉 − 〈f |ψ〉+ c. (61)

The gradient ofQA leads to

dQA
dψ

(ψ) ≡ Q′

A(ψ) = Aψ − f , (62)

assuming that the operatorA is self-adjoint. Setting the gradient
to zero, one obtains eq. (60). The surface defined by a quadratic
form with a positive definite matrixA is shaped like a paraboloid
bowl (see e.g. Shewchuk 1994). This ensures the existence ofa
unique minimum or, equivalently, the convergence of appropriate
algorithms.

3.1.2 Solution of the non-stationary problem: asymptotic
regularization

Here, a unified framework for the regularization methods that we
have implemented in ARGO is given based on the asymptotic reg-
ularization. Nevertheless, an original Bayesian motivation to the
asymptotic solution is presented in appendix F.

The stationary problem (eq. 60) can be replaced by a non-
stationary equation, which relaxes to the equilibrium solution

∂ψ

∂t
+Aψ = f . (63)

We seek solutions of the form

ψ =
X

l

ψlul, (64)

with a spectrum for the operatorA

Aul = λlul. (65)

Expandingf in this basis, yields

f =
X

l

flul. (66)

Then we get the following relations for the Fourier coefficients in
the stationary case

λlψl = fl, (67)

15 This expression can be written in matrix notation asψ†Aψ > 0, where
ψ† is the conjugate and transpose of the vectorψ.

and for the non-stationary case

∂ψl(t)

∂t
+ λlψl(t) = fl, ψl(0) = 0, (68)

which lead to the following solutions

ψ =
X

l

fl

λl
ul, (69)

and

ψ(t) =
X

l

fl

λl
(1− e−λlt)ul, (70)

for the stationary and non-stationary cases, respectively. Since the
spectrum of a positive definite operatorA is real,λl > 0, it follows
thatlimt→∞ ψ|non−stationary = ψ|stationary.

The non-stationary problem can be solved using difference
methods with respect to t

ψ
j+1 = ψ

j + τ j
M

j(f −Aψj), (71)

with {M j} being a set of non-singular matrices16 and{τj} being
a sequence of real parameters. Here we concentrate on a constant,
self-adjoint matrixM . Let us rewrite eq. (71) as

ψ
j+1 = ψ

j + τ j
Mξ

j , (72)

with the residuals given by

ξ
j = f −Aψj . (73)

The error vectors are defined as

η
j = ψ

j −ψ∗, (74)

whereψ∗ = A−1f is the exact solution. The matrixM and the
real number{τj} are chosen to speed up the convergence.M usu-
ally represents the preconditioning of eq. (71) andτj can be inter-
preted as the time step (see appendix G), and is also called relax-
ation parameter. Here truncation regularization occurs byquitting
the iteration loop. Some stopping rules are therefore required. In the
case where no noise regularization was conducted in the firststep,
they crucially define the noise regularization. In the othercases,
they mostly determine algorithmic performance and accuracy. At
this point we are interested in the regularization for the inverse pur-
pose, since we have already found expressions which regularize the
noise (e.g. Wiener-filter, or MEM). However, the results presented
in section 4 show that in some cases truncation leads to better re-
sults (see discussion in section 4.2.6). In the following subsections,
we will show how different iterative schemes are based on thegen-
eral formula given by eq. (71). It is worth mentioning that other
methods that we do not discuss in this paper, like the algebraic re-
constrcution technique (ART, see Gordon 1974), can also be ex-
pressed through this formula.

3.1.3 Jacobi method

The Jacobi iteration method splits the operatorA in two matrices

A = D +B, (75)

whereD contains the diagonal elements ofA andB contains the
off-diagonal elements. From eq. (60) one follows

ψ = D
−1(f −Bψ). (76)

16 We implicitly generalized eq. (63) to∂ψ(t)/∂t =M(t)(f −Aψ),
where the auxiliary matrixM is chosen to speed up convergence.

c© 0000 RAS, MNRAS000, 000–000



16 Kitaura & Enßlin

SubstitutingB byA −D one gets the following iteration scheme

ψ
j+1 = ψ

j +D−1(f −Aψj). (77)

The Jacobi method turns out to be a particular case of the iteration
scheme given by eq. (71) with a preconditioning matrix givenby
M = D−1 andτ j = 1. This method can, must be optimized by
increasing the timestepτ j by a certain percentage if the solution
converges and decreasing the timestep if the solution diverges. An
optimal timestep is hard to find, because the spectrum of the oper-
atorA has to be known (see appendix G).

3.1.4 Steepest Descent method

The steepest descent method searches the minimum of the
quadratic form by choosing the direction in whichQA decreases
most rapidly. This direction is given by the residual

−Q′

A(ψj) = f −Aψj = ξ
j . (78)

The form of the iteration scheme is thus given by eq. (72), with
the length of the step in the direction of the residual given by τ j .
Steepest descent looks for the optimal length which minimizes the
quadratic form with respect toτ j

0 =
dQA
dτ j

(ψj+1) = 〈Q′

A(ψj+1)|
dψj+1

dτ j
〉 = 〈ξj+1|Mξ

j〉.

(79)
This implies that subsequent searching directions must be orthogo-
nal (sayM = I). Starting from this condition it is straightforward
to derive the expression forτ j . It is only necessary to use the defi-
nition of residual forξj+1 and substituteψj+1 from eq. (72).

τ j =
〈ξj |Mξj〉

〈AMξj |Mξj〉
. (80)

Both the calculation of the factorsτ j and the residualsξj imply
applying the operatorA, each time on different vectors. It is pos-
sible, however, to reduce the operation ofA to the same vector for
every iteration, but the residuals, must be calculated in a different
way. Multiplying both sides of eq. (72) by−A and addingf , one
obtains the following relation for the residuals

ξ
j+1 = ξ

j − τ j
AMξ

j . (81)

Notice that the vectorAMξj already appears in the expression
for τ j , and consequently saves one operation. However, expression
(73) has to be periodically used with the feedback ofψj , to avoid
the accumulation of floating-point roundoff error. The disadvan-
tage of this method is that it ends up searching repeatedly inthe
same direction. This is especially severe when the quadratic form
is highly deformed, which occurs when the matrixA deviates from
the unity matrix. We will see, however, that steepest descent com-
petes with any other method when the preconditioning is effective,
and thus the stretched shape of the quadratic form is broughtclose
to a spherical symmetric shape. Preconditioning should notimply
too many operations; that is the reason why the inverse of thema-
trix, which contains only the diagonal elements ofA, is usually
taken for preconditioning. This will work especially fine when the
operatorA is diagonally dominant, which in our case occurs when
nearly full-sky data are available.

3.1.5 Krylov methods: Conjugate Gradients

To make the iteration scheme more efficient, Conjugate Gradi-
ents proposes to search each time in a different direction. This

is achieved by imposingA-orthogonality to two different (i 6= j)
searching vectorsµi andµj

〈µj |µi〉A ≡ 〈Aµ
j |µi〉 = 0, (82)

which are then said to be conjugated. In the preconditioned case,
the searching vectors are multiplied byM so that the conjugacy
has to be formulated in the following way:〈Mµj |Mµi〉A = 0
(for i 6= j).

The iteration scheme is given by substituting the residualsin
eq. (72) by the new searching vectors{µj}

ψ
j+1 = ψ

j + τ j
Mµ

j . (83)

By subtractingψ∗ we obtain an equation for the errors,

η
j+1 = η

j + τ j
Mµ

j . (84)

Taking into account the relation between the residuals and the er-
rors

ξ
j+1 = −Aηj+1, (85)

we can derive the recurrent formula for the residuals

ξ
j+1 = −A(ηj + τ j

Mµ
j) = ξ

j − τ j
AMµ

j . (86)

Here again, expression (73) has to be used periodically withthe
feedback ofψj to avoid the accumulation of floating-point round-
off error. The optimal length of the step is found by minimizing the
quadratic form

0 =
dQA
dτ j

(ψj+1) = −〈ξj+1|Mµ
j〉 = 〈ηj+1|Mµ

j〉A. (87)

Substituting expression (84) in (87) we then obtain

τ j = −
〈ηj |Mµj〉A
〈Mµj |Mµj〉A

=
〈ξj |Mµj〉

〈Mµj |Mµj〉A
. (88)

It can be shown that this formula is equivalent to the following
expression

τ j =
〈ξj |Mξj〉

〈Mµj |Mµj〉A
, (89)

using〈ξj |Mµj〉 = 〈ξj |Mξj〉 (see appendix H).
To generateA-orthogonal searching vectors one could think

of Gram-Schmidt-conjugation

µ
j = ξ

j +

j−1
X

k=0

βjk
µ

k. (90)

Here it was assumed that the residuals{ξj} form a set of linearly
independent vectors (see appendix H). The expression for the fac-
torsβjk can be derived by callingA-orthogonality in eq. (90)

〈Mµ
j |Mµ

i〉A = 〈Mξ
j |Mµ

i〉A +

j−1
X

k=0

βjk〈Mµ
k|Mµ

i〉A

0 = 〈Mξ
j |Mµ

i〉A + βji〈Mµ
i|Mµ

i〉A.(91)

One obtains the following formula for the factors

βji = −
〈Mξj |Mµi〉A
〈Mµi|Mµi〉A

, (92)

wherei < j according to eq. (90)17.

17 Note that the sign ofβ depends on the definition of the Gram-Schmidt
conjugation. An alternative definition with the negation ofthe residuals
would cancel the minus sign in eq. (92). The sign ofβ can be regarded
as a free parameter.
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Nl 〈ξj+1|Mξj+1〉 〈ξj+1|M(ξj+1 − ξj)〉 〈ξj+1 − ξj |M(ξj+1 − ξj)〉 −〈Mξj+1|Mµj〉A
Dm −〈ξj |Mξj〉

〈ξj |Mξj〉 FR PR N3/D1 —

〈µj |Mξj〉 N1/D2 N2/D2 N3/D2 —

−〈ξj |M(ξj+1 − ξj)〉 N1/D3 N2/D3 N3/D3 —

−〈µj |M(ξj+1 − ξj)〉 N1/D4 HS N3/D4 —

−(〈ξj+1 − ξj |M(ξj+1 − ξj)〉 N1/D5 N2/D5 N3/D5 —
−〈ξj+1|Mξj+1〉)

〈Mµj |Mµj〉A — — — EXP

Table 2. Formulae for theβ-factor:βj+1
lm = Nl

Dm
. Three of the methods are discussed in the literature:FR (Fletcher-Reeves),PR (Polak-Ribìere, andHS

(Hestenes-Stiefels). The rest of the formulae are derived in this paper using equivalence relations derived in appendices H1-H3. TheFR and thePR methods
are tested against theEXP algorithm in section (4).

This method seems to require too much memory, as apparently
all previous searching vectors must be stored to calculate the new
one. However, only oneβ-factor remains in the sum in eq. (90), as
we show in appendix H3. Hence, Gram-Schmidt orthogonalization
can be simplified to the following expression

µ
j+1 = ξ

j+1 + βj+1
µ

j , (93)

where

βj+1
EXP ≡ β

j+1 ≡ βj+1 j = −
〈Mξj+1|Mµj〉A
〈Mµj |Mµj〉A

, (94)

with EXP meaning expensive, since the nominator ofβ requires
an extraA operation. This additional operation can be saved with
alternative methods (see appendix H), like the Fletcher-Reeves
method (Fletcher & Reeves 1964)

βj+1
FR =

〈ξj+1|Mξj+1〉

〈ξj |Mξj〉
, (95)

the Polak-Ribìere formula (Polak & Ribìere 1969)

βj+1
PR =

〈ξj+1|M (ξj+1 − ξj)〉

〈ξj |Mξj〉
, (96)

or the Hestenes-Stiefel expression (Hestenes & Stiefel 1952)

βj+1
HS = −

〈ξj+1|M (ξj+1 − ξj)〉

〈µj |M (ξj+1 − ξj)〉
. (97)

However,βEXP turns out to be a very efficient scheme, which
behaves far more stably than the rest (see section 4). Since the
β-formulae (eq. 94-97) are mathematically equivalent, one could
think of combining them in a single scheme finding numerically
different solutions. In such a scheme, one may take advantage of
theβEXP-formula only every certain number of iterations, similar,
to the update of the residuals (see eqs. 73 and 86). However, this
kind of hybrid scheme remains to be thouroughly studied.

Formula (93) shows that new searching vectors are built from
a linear combination of the current residual and the previous search-
ing vector. Since the subsequent residuals are given by the lin-
ear combination of the previous residual and theA-operator ap-
plied to the searching vector, the manifold where the solution is be-
ing searched is spanned by the residuals and the so-called Krylov
space. The latter is built by applying theA operator to the basis
vector successively. In this manifold, curved quadratic forms ap-
pear to be spherical and thus the searching process becomes more
effective. It is possible to derive the Conjugate Gradientsmethod by

minimizing theA-norm of the error:min||η||A (see e.g. Marchuk
1982). In this sense an optimal solution to the inverse problem can
be found even if no unique solution exists. Conjugate Gradients
works, even if the operatorA is not a positive definite (for a dis-
cussion see e.g. Shewchuk 1994). It can easily be shown that Con-
jugate Gradients converges at most inn-steps, withn being the
number of pixels/vector columns (see e.g. Shewchuk 1994).

3.2 Non-linear inverse methods

Non-linear inverse methods are especially required in reconstruc-
tion algorithms that do not assume a gaussian distribution.The it-
erative method given in eq. (24), which makes use of a Poissonian
likelihood, can alternatively be solved with the methods presented
in this section. The same applies to the MEM, where zeros of the
non-linear eq. (41) have to be found.

The generalization of the regularization methods to non-linear
inverse problems is possible with methods like Tikhonov regular-
ization as mentioned in section (2.5) or like asymptotic regular-
ization as will be shown below (a relation between both methods
is shown in appendix F). However, the proofs of the convergence
properties are different since the spectral theoretical foundation is
missing here. We refer the reader to e.g. O’Sullivan (1990).

Let us generalize eq. (60) to non-linear equations of the form

A(ψ) = f , (98)

with A being a non-linear operator, and solve the non-linear and
non-stationary equation given by

∂ψ

∂t
+A(ψ) = f , (99)

with the forward Euler method. Discretizing the solution yields

ψ
j+1 = ψ

j + τ j
T (ψj)(f −A(ψj)), (100)

with T being also a non-linear operator, typically given by∇A†

or ∇A−1, though more complicated expressions exist (see the
Levenberg-Marquardt method or the regularized Gauss-Newton
method, Hanke 1997 or Bakushinskii 1992 and Blaschke et al.
1997, respectively).

3.2.1 Newton-Raphson method

One of the most extended non-linear inverse methods is the so-
called Newton-Raphson method (for an application in MEMs see
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Maisinger et al. 1997; Hobson et al. 1998), which can easily be de-
rived by doing a Taylor expansion of the function under studyand
truncating it at the first order

ψ
j+1 = ψ

j + (∇A(ψj))−1(f −A(ψj)). (101)

This method requires the inverse of the gradient ofA, which for
the cases we are interested in is the inverse of a Hessian matrix. Re-
calling the problem of finding extrema of a function as presented in
section (3.1.1) and taking into account eq. (78), the previous equa-
tion can be rewritten as

ψ
j+1 = ψ

j − (∇∇QA(ψj))−1∇QA(ψj), (102)

where∇∇QA ≡ ∂QA/∂ψ
l∂ψm is the Hessian matrix ofQA.

For a direct derivation of this equation, we require a Taylorex-
pansion until the second order ofQA, which is where the non-
linearity arises. The MEM can be solved (eq. 41) with expression
(102) by doing the substitutions:QA → QE andψj → sj . Here
the quantityQE is implicitly approximated by its quadratic expan-
sionQA. Calculating the inverse of the Hessian(∇∇QA(ψj))−1

implies solving a linear ill-posed problem in each iteration of the
scheme (102). Some solutions have been found to regularize this
scheme, like the Levenberg-Marquardt method (see Hanke 1997) or
the regularized Gauss-Newton method (see e.g. Bakushinskii 1992;
Blaschke et al. 1997).

3.2.2 Landweber-Fridman method

Alternative algorithms to the above mentioned Newton-Raphson
class of methods do not need to invert the Hessian matrix and can
thus simultaneously speed up and stabilize the inversion process.
The Landweber-Fridman algorithm belongs to the class of methods
based on steepest descent

ψ
j+1 = ψ

j + (∇A(ψj))†(f −A(ψj)). (103)

Making the same substitutions as for eq. (102), we obtain

ψ
j+1 = ψ

j − (∇∇QA(ψj))†∇QA(ψj). (104)

Here just the adjoint of the Hessian must be taken(∇∇QA(ψj))†.
For a convergence analysis of this method see Hanke et al. (1995).

3.2.3 Non-linear Krylov methods

Another class of methods that do not require one to invert theHes-
sian matrix are the Krylov-based methods, which we have exposed
in the previous section. The difference with respect to the linear
case mainly resides in the calculation of the residualsξj and the
step sizeτ j . The residuals are updated now by the negation of the
gradient of the quadratic form that approximates the function un-
der considerationξj = −∇QA(ψj) (see eq. 78). The step size is
given by

τ j = −
〈∇QA(ψj)|Mµj〉

〈Mµj |Mµj〉
∇∇QA(ψj

)

. (105)

The derivation of this expression (see appendix H4) is basedon
the second order Taylor expansion ofQA. That is why Krylov al-
gorithms which use this formula are called Newton-Krylov meth-
ods. There are alternative expressions for the time stepτ j where
the Hessian is approximated and does not need to be explicitly
calculated, like those using a secant approximation. For various
implementations of non-linear Krylov methods see, for example,
Shewchuk (1994).

3.3 Operator formalism

The iterative methods presented so far require an operator formal-
ism to become efficient. In this formalism, matrices should be rep-
resented in such a way that their action can be expressed as simple
operations, like sums and multiplications. In order to achieve this,
one has to carefully choose the adequate representation, inwhich
the individual matrix components are diagonal, though the whole
matrix may not be. In this section, we present the different oper-
ators under consideration (see table 3) in k-space and real-space
and discuss their optimal representation. In this way, we can take
advantage of the fast Fourier-transform methods (FFTs) that scale
asn log2 n, with n being the length of the arrays, and which ulti-
mately determine the speed of the algorithm.

3.3.1 Fourier-transform definitions and dimensionality ofthe
problem

Let us introduce the following definitions of theND-dimensional
forward and inverse Fourier-transforms

x̂(k) ≡ FT
ˆ

x(r)
˜

≡

Z

dNDr exp(ik · r)x(r), (106)

and

x(r) ≡ IFT
ˆ

x̂(k)
˜

≡

Z

dNDk

(2π)ND
exp(−ik · r)x̂(k), (107)

respectively.
In general, the reconstruction problem has three spatial dimen-

sions (ND = 3), with the corresponding discrete array lengths
for the real-space and k-space vectors given byr = (rx, ry, rz)
andk = (kx, ky, kz). Each component has the following range:
rx = Lx

nx
[0, nx − 1], ry =

Ly

ny
[0, ny − 1], rz = Lz

nz
[0, nz − 1] and

kx = 2π
Lx

[0, nx − 1], ky = 2π
Ly

[0, ny − 1], kz = 2π
Lz

[0, nz − 1],
where the volume of the Universe under consideration is given by
V = Lx × Ly × Lz in [(Mpc/h)3], and the box containing that
volume is divided inton = nx × ny × nz cells, withn being the
length of the arrayx. In the following, we will treat the operators
as being continuous. However, the discrete implementationcan be
derived in a straightforward way (for a discussion on the relation
between discrete and continuous representations see Martel 2005).
Note that the methods presented here can be applied in arbitrary
dimensions. The number of dimensionsND is thus kept as a free
parameter.

In our convention, vectors defined in real-space have plain no-
tation (x) and in k-space they are denoted with hats (x̂). Matrices,
however, have two hats in k-space. We represent convolutions with
circles “◦” and multiplications with dots “·”. Due to the convolu-
tion theorem, where convolutions are shown to be multiplications
in the counter space, we can either omit hats if they are present
or include them if they are not, and replace circles with dotsand
vice versa “· ↔ ◦” to change from one representation to the other.
All the numerical iterative inversion schemes (see section3) of the
different reconstruction algorithms (section 2) require only a small
number of basic operators, listed in table (3). To show how the op-
erators listed in table (3) can efficiently be applied we derive their
action on an arbitrary vector.

3.3.2 Data model: the response operator

Let us first remember the data model given in eq. (3), and suppose
that the operatorRP is given by a convolution in real-space with
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ˆ̂
RSR†{x̂}(k) =

Z

dNDk′

(2π)ND
〈α̂(k)α̂(k′)〉(s,ǫ|p){x̂(k

′)}

= f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k− q)

Z

dNDq′

(2π)ND
PS(q′)(2π)ND δD(q− q′)

Z

dNDk′

(2π)ND
f̂SM(k′ − q′)f̂B(k′){x̂(k′)}

= f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k− q)PS(q)

Z

dNDk′

(2π)ND
f̂SM(k′ − q)f̂B(k′) · {x̂(k′)}

= f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k− q)PS(q)

Z

dNDk′

(2π)ND
f̂SM(q− k′) f̂B(k′) · {x̂(k′)}

| {z }

f̂B·{x̂}
| {z }

f̂SM◦
ˆ

f̂B·{x̂}
˜

| {z }

PS·
ˆ

f̂SM◦
ˆ

f̂B·{x̂}
˜˜

| {z }

f̂SM◦
ˆ

PS·
ˆ

f̂SM◦
ˆ

f̂B·{x̂}
˜˜˜

| {z }

f̂B ·
ˆ

f̂SM ◦
ˆ

PS ·
ˆ

f̂SM ◦
ˆ

f̂B · {x̂}
˜˜˜˜

ˆ̂
R†N−1

N R{x̂}(k) = f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k− q)

Z

dNDq′

(2π)ND
PN

−1(q′)(2π)ND δD(q− q′)

Z

dNDk′

(2π)ND
f̂SM(k′ − q′)f̂B(k′){x̂(k′)}

= f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k− q)PN

−1(q)

Z

dNDk′

(2π)ND
f̂SM(k′ − q)f̂B(k′){x̂(k′)}

= f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k− q)PN

−1(q)

Z

dNDk′

(2π)ND
f̂SM(q− k′) f̂B(k′){x̂(k′)}

| {z }

f̂B·{x̂}
| {z }

f̂SM◦
ˆ

f̂B·{x̂}
˜

| {z }

PN·
ˆ

f̂SM◦
ˆ

f̂B·{x̂}
˜˜

| {z }

f̂SM◦
ˆ

PN
−1·

ˆ

f̂SM◦
ˆ

f̂B·{x̂}
˜˜˜

| {z }

f̂B ·
ˆ

f̂SM ◦
ˆ

PN
−1 ·

ˆ

f̂SM ◦
ˆ

f̂B · {x̂}
˜˜˜˜

ˆ̂
R†N−1

WNR{x̂}(k) = f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k− q)

Z

dNDq′

(2π)ND
NWN

−1(q− q′)

Z

dNDk′

(2π)ND
f̂SM(k′ − q)f̂B(k′){x̂(k′)}

= f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k− q)

Z

dNDq′

(2π)ND
NWN

−1(q− q′)

Z

dNDk′

(2π)ND
f̂SM(q− k′) f̂B(k′){x̂(k′)}

| {z }

f̂B·{x̂}
| {z }

f̂SM◦
ˆ

f̂B·{x̂}
˜

| {z }

NWN
−1◦

ˆ

f̂SM◦
ˆ

f̂B·{x̂}
˜˜

| {z }

f̂SM◦
ˆ

NWN
−1◦

ˆ

f̂SM◦
ˆ

f̂B·{x̂}
˜˜˜

| {z }

f̂B ·
ˆ

f̂SM ◦
ˆ

NWN
−1 ◦

ˆ

f̂SM ◦
ˆ

f̂B · {x̂}
˜˜˜˜

Figure 2. Here the action on an arbitrary vectorx̂ of the most complex operators that appear in table (3) is shown. The upper one is required for Wiener-
filtering and represents the signal term in the covariance matrix of the data. The middle and lower ones stand for the inverse of the ML variance (eq. 26) and
are required for the COBE-filter, the MEMG and for sampling purposes with the Wiener-filter. The equations have to be read from right to left. The braces
show the order in which the operations have to be done from topto bottom. One has to be very careful with the correct conjugation of the different functions.
Note that, contrary to naiv expectations, the conjugation of the first selection function̂fSM to be applied in the upper operation disappears and appears in the
middle and lower ones, though initially absent.
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R R† S S−1 S−1/2 N N−1 SR† R†N−1 R†N−1/2 R†N−1R RSR†

COBE X X X

WIENER X X X X# X# X X# X X# X# X

GAPMAP X X X X

MEMG X X X X X

MEMP X X

# additional operators required for sampling processes (seeeq. 49)

Table 3. Operators in columns needed for the different estimators inrows, the COBE-filter (25), the Wiener-filter (22), the GAPMAP estimator (24), and
the MEMs (sections 2.5.9 & 3.2, and appendix E). Note that thetrivial diagonal matrices have been left out of this table. The first two estimators are linear
estimators, whereas the rest are non-linear. MEMG and MEMP stand for the Maximum Entropy method with a Gaussian likelihood and with a Poissonian
likelihood, respectively. Note that some of the operators have to be further inverted either directly, like(R†NR)−1 for the COBE-filter, or in combination
with other operators, like(RSR†+N)−1 for the Wiener-filter. The methods presented in section (3) show how to do this implicitly by applying the operators
in an iterative fashion.

some blurring functionfB

d(r) ≡

Z

dNDr
′ fB(r − r′)fS(r′)fM(r′)s(r′) + fSF(r)ǫN(r).

(108)
The operatorR acting on an arbitrary vector{x} is thus given by

R{x}(r) ≡

Z

dNDr
′ fB(r − r′)fS(r′)fM(r′){x(r′)}. (109)

The selection function and the masks should conveniently bemul-
tiplied in real-space to save convolutions

fSM(r) ≡ fS(r)fM(r). (110)

Accordingly, the same operation as in eq. (109) leads to

ˆ̂
R{x̂}(k) = f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k − q){x̂(q)}

| {z }

f̂SM◦{x̂}
| {z }

(111)

f̂B ·
ˆ

f̂SM ◦ {x̂}
˜

,

in k-space. Here we have introduced the operator notation inwhich
the equations have to be read from right to left. The braces show the
sequence in which the subsequent operations have to be performed
in the algorithm. The analogous operation for the adjointR† yields

ˆ̂
R

†

{x̂}(k) = f̂B ·
ˆ

f̂SM ◦ {x̂}
˜

(k). (112)

3.3.3 Covariance matrix of the data

The data model consists of two terms

α(r) =

Z

dNDr
′ fB(r − r′)fSM(r′)s(r′), (113)

and

ǫ(r) = fSF(r)ǫN(r). (114)

The same quantities in k-space are given by

α̂(k) = f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k − q)ŝ(q), (115)

and

ǫ̂(k) =

Z

dNDq

(2π)ND
f̂SF(k − q)ǫ̂N(q). (116)

Consequently, the covariance matrix of the data is given by the fol-
lowing sum

〈d̂(k)d̂(k′)〉(s,ǫ|p) = 〈α̂(k)α̂(k′)〉(s,ǫ|p) + 〈ǫ̂(k)ǫ̂(k′)〉(s,ǫ|p),
(117)

where we have assumed that the noise is uncorrelated to
the signal, which is consistent with our data model. Even
though the structure function may be correlated with the sig-

nal 〈ŝ(k)f̂SF(k′)〉(s,fSF|p) 6= 0, the random noise part is not

〈ŝ(k)ǫ̂N(k′)〉(s,ǫ|p) = 0. We will calculate the different terms of
the data covariance matrix and other related operators in the next
sections.

3.3.4 Covariance matrix of the data: the signal term

Here it becomes necessary to choose the Fourier representation,
since it is there that the signal-autocorrelation matrix appears to be
diagonal in the form of a power spectrum (eq. 118). Taking into
account statistical homogeneity for the signals

〈ŝ(k)ŝ(k′)〉(s|p) = (2π)NDδD(k − k′)PS(k
′), (118)

with δD being the Dirac-delta function, we can derive the expres-
sion for the signal covariance matrix term

ˆ̂
RSR

†(k,k′) = 〈α̂(k)α̂(k′)〉(s|p) (119)

= f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k − q)PS(q)f̂SM(k′ − q)f̂B(k′)

= f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k − q)PS(q)f̂SM(q − k′)f̂B(k′),

For its action on a vector (see fig. 2), we get

ˆ̂
RSR

†{x̂}(k) = f̂B ·
ˆ

f̂SM ◦
ˆ

PS ·
ˆ

f̂SM ◦
ˆ

f̂B · {x̂}
˜˜˜˜

(k),
(120)
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and consequently

ˆ̂
SR

†{x̂}(k) =

Z

dNDk′

(2π)ND
〈ŝ(k)d̂(k′)〉(s|p){x̂(k

′)}

= PS(k)

Z

dNDk′

(2π)ND
f̂SM(k − k′) f̂B(k′) · {x̂(k′)}

| {z }

f̂B·{x̂}
| {z }

f̂SM◦
ˆ

f̂B·{x̂}
˜

| {z }

PS ·
ˆ

f̂SM ◦
ˆ

f̂B · {x̂}
˜˜

. (121)

The inverse of the signal-autocorrelation matrix can be solved triv-

ially in Fourier-space:ˆ̂S−1 = diag(PS(k)−1). Hence, the inverse

square root yieldsˆ̂S−1/2 = diag(PS(k)−1/2).

3.3.5 Covariance matrix of the data: the noise term

We assume, analogous to the case of the signal, statistical homo-
geneity forǫN

〈ǫ̂N(k)ǫ̂N(k′)〉(ǫ|p) = (2π)NDδD(k − k′)PN(k′), (122)

and then derive the expression for the noise covariance matrix

ˆ̂
N (k,k′) = 〈ǫ̂(k)ǫ̂(k′)〉(s,ǫ|p)

=

Z

dNDq

(2π)ND
f̂SF(k − q)PN(q)f̂SF(q − k′). (123)

Its action on a vector yields

ˆ̂
N{x̂}(k) =

Z

dNDk′

(2π)ND
〈ǫ̂(k)ǫ̂(k′)〉(s,ǫ|p){x̂(k

′)}

=

Z

dNDq

(2π)ND
f̂SF(k − q)PN(q)

Z

dNDk′

(2π)ND
f̂SF(q − k′){x̂(k′)}

| {z }

f̂SF◦{x̂}
| {z }

PN·
ˆ

f̂SF◦{x̂}
˜

| {z }

f̂SF ◦
ˆ

PN ·
ˆ

f̂SF ◦ {x̂}
˜˜

, (124)

In the case where there is no structure function, the noise autocor-
relation reduces to

ˆ̂
NN(k,k′) = (2π)NDδD(k − k′)PN(k′). (125)

Then, its action is given by

ˆ̂
NN{x̂}(k) = PN · {x̂}(k). (126)

The corresponding inverse operation is

ˆ̂
N

−1
N {x̂}(k) = PN

−1 · {x̂}(k). (127)

Consequently, we obtain (see fig. 2)

ˆ̂
R

†
N

−1
N R{x̂}(k) = f̂B ·

ˆ

f̂SM ◦
ˆ

PN
−1 ·

ˆ

f̂SM ◦
ˆ

f̂B · {x̂}
˜˜˜˜

(k),
(128)

and

ˆ̂
R

†
N

−1
N {x}(k) = f̂B ·

ˆ

f̂SF ◦
ˆ

PN
−1 · {x̂}

˜˜

(k). (129)

The inverse square root ofˆ̂NN can now be calculated and leads to

ˆ̂
N

−1/2
N (k) = diag(PN

−1/2(k)). (130)

The operation
ˆ̂

R†N
−1/2
N {x̂} can then be obtained by doing the

following substitutionˆ̂
N−1

N →
ˆ̂
N

−1/2
N in eq. (129)

ˆ̂
R

†
N

−1/2
N {x}(k) = f̂B ·

ˆ

f̂SF ◦
ˆ

PN
−1/2 · {x̂}

˜˜

(k). (131)

We are especially interested in the case of white noise (PN =
PWN = const) with a structure function (given by the Poissonian
shot noise)

ˆ̂
NWN(k,k′) = PWN

Z

dNDq

(2π)ND
f̂SF(k − q)f̂SF(k′ − q).

(132)
The corresponding action yields

ˆ̂
NWN{x̂}(k)

= PWN

Z

dNDq

(2π)ND
f̂SF(k − q)

Z

dNDk′

(2π)ND
f̂SF(q − k′){x̂(k′)}

| {z }

f̂SF◦{x̂}
| {z }

f̂SF◦
ˆ

f̂SF◦{x̂}
˜

| {z }

.

PWN ·
ˆ

f̂SF ◦
ˆ

f̂SF ◦ {x̂}
˜˜

= PWN ·
ˆ

f̂2
SF ◦ {x̂}

˜

(133)

It can be seen from this equation, that the preferential representa-
tion now is in real-space, whereN is diagonal

NWN(r, r′) = δD(r − r′)CWNf
2
SF(r′), (134)

with CWN = IFT
ˆ

PWN

˜

being a constant. The inverse operation
yields

N
−1
WN{x}(r) = (CWNf

2
SF)−1 · {x}(r). (135)

Hence, the inverse square root yields

N
−1/2
WN (r), r′ = δD(r − r′)CWN

−1/2f−1
SF (r), (136)

and its action in k-space reads

ˆ̂
N

−1/2
WN {x̂}(k) = PWN

−1/2 ·
ˆ

f̂−1
SF ◦ {x̂}

˜

(k). (137)

Then we get (see fig. 2)

ˆ̂
R

†
N

−1
WNR{x̂}(k) = f̂B ·

ˆ

f̂SF ◦
ˆ ˆ̂
N−1

WN ◦
ˆ

f̂SF ◦
ˆ

f̂B · {x̂}
˜˜˜˜

(k),
(138)

and consequently

ˆ̂
R

†
N

−1
WN{x̂}(k) = f̂B ·

ˆ

f̂SF ◦
ˆ ˆ̂
N−1

WN ◦ {x̂}
˜˜

(k). (139)

To calculate
ˆ̂

R†N
−1/2
WN {x̂} one has to do the following substitu-

tion ˆ̂
N−1

WN →
ˆ̂
N

−1/2
WN in eq. (139)

ˆ̂
R

†
N

−1/2
WN {x̂}(k) = f̂B ·

ˆ

f̂SF ◦
ˆ ˆ̂
N

−1/2
WN ◦ {x̂}

˜˜

(k). (140)

In summary, we showed that the action of the different opera-
tors on a vector required for the different reconstruction estimators
(see table 3) can be calculated in a straightforward way, as an or-
dered series of products and convolutions. Note that whenever we
need to perform a convolution, we change to the counter spacerep-
resentation with FFTs and do multiplications18 there.

18 In order to avoid aliasing effects one has to adequately perform zero-
padding(see e.g. Press et al. 1992).
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4 EFFICIENCY AND QUALITY VALIDATION OF THE
INVERSE METHODS WITH THE WIENER-FILTER

In this section the Wiener-filter implemented in ARGO is tested
with the different linear inverse algorithms presented in the section
of numerical methods (3) under several conditions determined by
structured noise, blurring, selection function effects and window-
ing.

The inverse methods that we test here are the Jacobi (J),
the Steepest Descent (SD), and several Krylov methods, likethe
Fletcher-Reeves (FR), the Polak-Ribìere (PR), and theexpensive
Conjugate Gradients method (EXP), which requires an additional
operation in each iteration (see section 3.1.5 and appendixH3).
This scheme has not been previously discussed in the literature and
turns out to be very efficient as will be discussed below. Manyother
Krylov methods (see table 2) can be built from simple equivalence
relations, as we show in appendix H. However, only the methods
mentioned above are taken into account here, as we consider them
to be sufficiently representative. The extra-regularization we pro-
pose with these Krylov methods converts the Wiener-filtering in a
hybrid Tikhonov-Krylov space regularization method. In addition,
we also test the Wiener-filter that uses hermitian redundancy as de-
rived in appendix I. We call the Wiener-filter defined by the map-
ping equation (I6) the conjugated Wiener-filter (CJ), whereas the
Wiener-filter defined by eq. (I7) has no extra suffix.

With the aim of having full control over the synthetic data,
we generate Gaussian random fields19 with the Peacock & Dodds
(1994) formula for the power spectrum. The resultingreal den-
sity field is denoted byδreal ≡ δρ, and the reconstruction by
δrec ≡ ψ. The signals are discretized and arranged as vectors given
by [k+nz× (j+ny× i)], wherei ∈ [0, nx − 1], j ∈ [0, ny − 1],
andk ∈ [0, nz − 1]. The algorithmical part of the reconstruction
methods shown in section (3) does not change with the dimension-
ality, but solely the length of the vectors given byn = nx×ny×nz

change and thus also the dimension of the involved matrices.The
formulation of the matrices is explained in detail in section (3.3).
The Fourier transforms must be accordingly called with the dimen-
sions under consideration, which occurs in ARGO by switching be-
tween the different FFTs given by FFTW20. In addition, the power
spectrum that is used for the reconstruction has to be set up with the
corresponding length and the data have to be correctly rearranged
to their original dimensions ([i][j][k] ← [k + nz × (j + ny × i)])
after their manipulation.

4.1 One-dimensional example

We can see in fig. (3) an example of a Gaussian realization in one-
dimension (red curve) that can represent a time-line. A structured
noise that increases with the distance and with a random noise com-
ponent was added to the signal. Finally a region was excludedsim-
ulating windowing effects. The resulting curve was taken asthe in-
put signal (yellow curve). The reconstruction given by ARGOis in
blue and green, where the boundary effects were considered in the
first case, but not in the second. There the signal was assumedto be
zero in the unsampled region. We can see that the blue curve better

19 We use GARFIELDS:GAussianRandomFIELDS , a program we
developed to generate Gaussian random fields from a given power spectrum.
The method can be found in detail in Martel (2005).
20 FFTW is a C subroutine library for computing fast discrete Fourier
transforms in one or more dimensions of arbitrary input sizeand of both
real and complex data: http://www.fftw.org/

resembles thereal signal guided by the trend at the boundary. This
effect is much larger in multiple dimensions as is shown in fig. (11).
In the right plot in fig. (3), two sampling processes are underlying
the yellow signal. First, the Gaussian random field that generates
the red signal, which is then Poisson sampled thus leading tothe
yellow data. Again the blue and the green curves represent the re-
constructions with and without proper window treatment, respec-
tively. In this case, the blue curve also approaches thetrue signal
better.

4.2 Multi-dimensional test cases

ARGO has been implemented such that the global dimension
ND (see section 3.3.1), and even the length in each dimension
(nx, ny , nz), can be chosen arbitrarily. Our tests in one-, two- and
three dimensions show that the results do not differ qualitatively.
The convergence behaviour changes with the length of the arrays
(n = nx×ny×nz) asn log2 n fully determined by the FFTs, as we
showed in section (3). For the demonstration cases in this paper, we
have selected the two-dimensional tests with128 × 128 = 16384
pixels. However, three dimensional tests were also carriedout lead-
ing to the same conclusions.

4.2.1 Qualitative and quantitative measurement of the quality of
the reconstruction

To give a quantitative measurement of the quality of the reconstruc-
tions, we define the correlation coefficientr between the recon-
structed and the real density field by

r ≡

Pn
i δρiψi

q

Pn
i δ

2
ρi

q

Pn
j ψ

2
j

. (141)

This statistical quantity is not very sensitive to the overall distri-
bution and yields good values (close to unity) in some cases even
with poor reconstructions (see figure 9). The pixel to pixel plot of
the real density field against the reconstruction is highly informa-
tive because the scatter in the alignment of the pixels around the
line of perfect correlation (45◦ slope) gives a qualitative goodness
of the reconstruction. In general, the quality of the recovered den-
sity map is better represented by the Euclidean distance between
the real and the reconstructed signals. The ensemble average of this
quantity can also be regarded as an action or loss function that leads
to the Wiener-filter through minimization (see appendix I).Here we
introduce the volume-averaged squared Euclidean distance21

D2
Eucl(ψ, δρ) ≡

1

V

Z

dNDr
h

ψ(r)− δρ(r)
i2

, (142)

with V = Lx × Ly × Lz . We further normalize the Euclidean
distance through the following defintion

D2
Eucl(ψ, δρ) ≡

D2
Eucl(ψ, δρ)

D2
Eucl(ψ0, δρ)

, (143)

whereψ0 is the zero vector. We define the convergence tolerance
criterion based on the squared Euclidean distance between subse-
quent reconstructions

tolj+1
crit ≡ D2

Eucl(ψ
j+1, ψj). (144)

We prefer this criterion with respect to the squared residuals ||ξ||2

(see eq. 73) because all the tests show that no further statistical

21 Note thatD2
Eucl(ψ, δρ) = 1

V
D2

Eucl(ψ, δρ).
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Figure 3. 1-D Reconstruction with structured noise & window: The left plot shows the reconstruction of a one-dimensionalnoisy signal. The red curve
is thetrue underlying signal. The yellow lines represent the measureddata in each grid cell. The data are windowed by a function given by the black line. A
random noise with a structure function that increases with the distance with respect to the origin has been added to thetruesignal. The green and the blue lines
show different reconstructions. In the blue case the windowing is formally treated, whereas in the green case the unseenregion is modeled by a mean signal,
which is zero in this case. We see that the unsampled region isestimated by the blue curve better than by the green curve, where the edge effects were neglected.
The proper treatment of edge-effects gives even better results in the sampled regions close to the the borders of the unsampled regions. This improvement can
clearly be seen in fig. (11).Poisson noise:In the right plot, two sampling processes are underlying theyellow signal. First the Gaussian random field that
generates the red signal, which is then Poisson sampled leading to the yellow data. Again, the blue and the green curves represent the reconstructions with and
without proper window treatment, respectively.

quality improvement in the reconstructions is reached after tolj+1
crit ,

as can be inferred from the correlation coefficientsr and the nor-
malized squared Euclidean distancesD2

Eucl(ψ, δρ).

4.2.2 Numerical performance with and without preconditioning

Here we analyze the convergence behaviour of the different inverse
schemes with and without preconditioning. We start by considering
a Gaussian random field with some structured noise that increases
radially and is modulated by a random noise component. As a pre-
conditioning expression, the diagonal part of the data covariance
matrix is chosen, which is given by the sum of

ˆ̂
RSR

†(k, k)

= f̂B(k)

Z

dNDq

(2π)ND
f̂SM(k − q)PS(q)f̂SM(q − k)f̂B(k)

= PB(k)

Z

dNDq

(2π)ND
PSM(k − q)PS(q)

| {z }

(145)

PB ·
ˆ

PSM ◦ PS

˜

,

and

ˆ̂
N (k,k)

=

Z

dNDq

(2π)ND
f̂SF(k − q)PN(q)f̂SF(q − k)

=

Z

dNDq

(2π)ND
PSF(k − q)PN (q)

| {z }

(146)

PSF ◦ PN,

where we have used the following definitions:PB ≡ ||f̂B||
2,

PSM ≡ ||f̂SM||
2 andPSF ≡ ||f̂SF||

2. We can thus calculate the
preconditioning matrixM required for the different schemes (sec-
tion 3) by just inverting each diagonal component. The results sum-
marized in fig. (5) show important differences between the recon-
structions done with (on the left side) and without (on the right
side) preconditioning. Some of the methods just speed up, like the
various EXP methods or the SD scheme. Others, however, are sta-
bilized and manage to converge to the solution only after precondi-
tioning, like the J, the FR and the CPR methods. Without precondi-
tioning, the latter converges extremely quickly to a wrong solution.
This is due to the fact that we did not impose the following stabi-
lization: βPR = max(βPR, 0) in this calculation (see Shewchuk
1994, for a discussion). However, our tests show that upon impos-
ing this stabilization the PR-method becomes significantlyslower
than the rest. On the other hand, the EXP-Krylov methods behave
most stably and converge very quickly. In the preconditioned case,
we see that all methods converge to the same statistical result, as
we can infer from the correlation coefficientr andD2

Eucl(ψ, δρ),
except for the PR scheme that yields slightly less optimal results
(see the green line in comparison to the rest in panelc). We have
tested preconditioning in the rest of the examples and couldcon-
firm the results presented in this section. Preconditioningturns out
to be necessary to achieve fast algorithms.

4.2.3 Poissonian distribution

In this study case, we investigate the reconstruction of a Gaussian
field based on a Poissonian distribution. This model is far from re-
ality, where much more complex processes are known to occur (see
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a b

c d
Figure 4. Structured noise treatment: The upper left picture shows the real signal. The upper rightpicture is the input signal, where some random noise
that increases radially was added. Note that the scale of thecolourbar changes from a maximum overdensity of 20 to 70. Thelower left picturec shows
the reconstruction. The reconstructions using different numerical methods implemented in ATLAS are indistinguishable. In the lower right imaged, the real
density field is plotted against the reconstructed density field pixel by pixel without any smoothing. The numerical performance of this reconstrcution case is
shown in the next figure.

discussion in section 2.1). However, we can model a non-Gaussian
process in this way and test how good the Wiener-filter reconstruc-
tion works under such circumstances. Here the assumed data model
does not coincide with the one that has generated the data. How-
ever, the Poissonian noise can be modeled in the noise matrixof
the Wiener-filtering through the structure functionfS.

The results presented in fig. (6) show very good agreement
between the reconstruction and thereal underlying density field
(compare panelsa andc). The convergence behaviour and statisti-
cal goodness is plotted in the left side of fig. (7), panelsa, c and
e. There we can see that the FR and PR methods do not converge
rapidly (see yellow and green curves in panela). On the contrary,
the J, SD, and EXP schemes are very efficient (panelc) and lead to
very similar results (panelsc ande).

4.2.4 Blurring effects: deconvolution

In this numerical experiment we tested the blurring effectsby con-
volving the density field with a Gaussian. The result is shownin
fig. (8), panelb. We see how the small structures are smoothed out
and only the larger ones prevail. Some noise with a structurefunc-
tion was added to the signal. However, the noise was kept low with

the aim of investigating primarily the blurring effect. Theresults
of the reconstruction that considers only the noise does notchange
much with respect to the input signal, as can be expected. However,
the extra-regularized Wiener-filtering deblurs the image applying
eqs. (120) and (121), and yields the figure shown in panelc. We
see how much of the small scale structure is restored and the peaks
become enhanced. The correlation between this reconstruction and
the original signal (panele) is significantly better than for the case
where the blurring is ignored (panelf). We can see in fig. (7) that
the deconvolution algorithm is very fast for all the methodsexcept
for the FR-scheme. The PR-method is the fastest, but it leadsto
slightly worse results (see the green curve in panelsc ande). The
EXP turns out to be more efficient than the J and SD methods in
this case.

4.2.5 Selection function effects

For this case we use a modified data model in which the selection
function also affects the noise

d = fS · (s+ fSF · ǫWN), (147)
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a b

c d

e f
Figure 5. Numerical performance with and without preconditioning: Here the convergence behaviour and the goodness of the reconstructions using
different inversion algorithms can be seen. The pictures onthe left show the methods using preconditioning, whereas the pictures on the right do not use
preconditioning. The upper plots show the squared Euclidean distance between succesive reconstructions. The plots inthe middle show the normalized
Euclidean distance between the different reconstructionsand the true signal. The lower plots show the evolution of thestatistical correlation coefficient
between reconstruction and signal. We see from panelc and panele that after less than 10 iterations the reconstructions do not significantly improve with most
of the inversion algorithms. The different inversion algorithms used are: Jacobi (J), Steepest Descent (SD), Conjugate Gradients (CG), Fletcher Reeves (FR),
and Polak Riviere (PR). We also tested a more expensive variant that uses one additional operation of the involved matrix(EXP) and one other variant (CJ),
where a degree of freedom in the mapping equation for the Wiener-filter is used.

c© 0000 RAS, MNRAS000, 000–000



26 Kitaura & Enßlin

a b

c d
Figure 6. Poissonian noise:Here two stochastic processes are underlying the input signal. First the Gaussian random field that generates the signalin panel
a, which is then Poisson sampled leading to the signal in panelb. The reconstruction in panelc is shown to be in good agreement with the underlying signal.
The pixel values are correctly distributed as can be seen in paneld.

with fS ∈ [0, 1], simulating the fading strength of the signal with
increasing distance. The results are plotted in fig. (9), where the
structure of the signal can be seen to become undistinguishable in
radial direction (see panelb). Taking only the noise into account
leads to very poor reconstructions (see paneld). On the contrary,
by also considering the selection function effects, the structures are
resolved even at contours where only 10 % of the signal plus noise
is left (see panelc). As can be appreciated in panelse andf there
is an improvement in the correlation between thereal density field
and the reconstructed signal. Paneleshows a higher correlation co-
efficient, but the quality enhancement of the reconstruction can be
seen better in the distribution of the density values for each pixel.
How the points are correctly spread along the diagonal line can
be verified there. The longer Euclidean distance to thereal density
field shows the quantitative difference very clearly, by just compar-
ing the pink curve with the rest (fig. 10 and panelc). It is worth
mentioning that although the PR test seems to give a comparable
result to the calculation that ignores the selection function. The fi-
nal correlation coefficient in paneleshows that the reconstructions
actually strongly differ and panelc shows that the quality of the
recovered signal is notably better for the former experiment.

In addition, we tested the same selection function affecting

only the underlying signal with a model given by

d = fS · s+ fSF · ǫWN, (148)

and obtained the same qualitative results.

4.2.6 Windowing effects

In this section we investigate the mask effects that introduce cou-
pling between different modes in Fourier-space so that the data co-
variance matrix is no longer diagonal. The input signal is given in
panelb of fig. (11). The noisy signal from panelb in fig. (4) was
cut in stripes, to simulateobservedregions. We compare two re-
constructions here, the first one ignores windowing effectsgiven
in paneld and a second reconstruction employs the proper treat-
ment of the boundary throughfM in the algorithm (see eqs. 120 and
121). The statistical correlation is given in panelse and f, respec-
tively. Our experiments not only show better results for thelatter
reconstruction in the unsampled region (Ω), represented by the red
dots in panelse and f in fig. (11), but also in the sampled regions
(Ω). The global correlationr is significantly improved. Whereas
the distribution of the black dots, the values of the densities in the
observedregions, does not apparently change, the distribution of
the unsampled red dots clearly does. These are distributed around
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a b

c d

e f
Figure 7. Poissonian noise and numerical performance (panels a, c, e):Here the convergence behaviour and quality of the reconstruction is comparable
for the J, SD, EXP methods. The FR and PR schemes do not presenta fast convergence (panela). Nevertheless, the FR scheme (yellow curve) seems to lead
to the correct solution (panelsc ande). The PR formula, on the contrary, stagnates at reconstructions that have much lower quality compared to the rest of the
schemes.Blurring treatment and numerical performance (panels b, d,f): In this study case, the EXP algorithm seems to work better than the rest of the
schemes. Although the PR formula converges very rapidly (green curve in panelb), it leads to a lower quality reconstruction (panelsd andf). The FR scheme
converges to the same solution as the J, SD, and EXP algorithms, however, with a slower convergence (yellow curve in panelb). The J and SD methods have
an overall good behaviour in this case, but still converge significantly slower than the EXP scheme (their convergence isidentical black and red curves are
overplotted). The reconstruction considering just the noise is very poor, because the noise is negligible in this case (pink curves).
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a b

c d

e f
Figure 8. Blurring treatment: Here the signal (panela) was convolved with a gaussian modeling blurring effects, as shown in panelb. Some low noise with a
structure function was added. Panelc shows the deblurred result. Paneld takes only the noise into account. We see in panelf the correlation between the input
signal and thetrue signal, because the noise is negligible. The correlation coefficient is thus very high, however, the alignment of the pixels in the plot is not
correct. Overdensities and underdensities tend to be underestimated, which is consistent with the blurring effect. The reconstruction given in panele corrects
this effect and consequently a higher correlation coefficient is achieved.
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a b

c d

e f
Figure 9. Selection function treatment:Here selection function effects were simulated with a function that takes values between zero and one, decreasing
exponentially in radial direction. The contours show different values of this function. Panela shows the real density field. Panelb shows the input data,
where the true signal was multiplied in real space with the selection function and a radially increasing noise was added.The reconstruction and its correlation
with the true signal are represented in panelc ande, respectively. The reconstruction ignoring selection effects by taking only the noise into account leads
to panelsd and f. The reconstruction given in paneld is very conservative and smooths the overdensities out due to noise supression. This leads to a high
correlation coefficient, though the individual pixels are clearly not correctly aligned (panelf). Panelc, on the contrary, shows more structures that are enhanced
due to consideration of the selection function effects. This correctly distributes the pixels, as can be seen in panele. The correlation coefficient seems to be
significantly better than in panelf, however, a better measure of the overall quality of the reconstruction can be seen in next figure.
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a b

c d

e f
Figure 10. Selection function treatment and numerical performance (panels a, c, e):The same color coding is used as in fig. (5) panela, except for
additional curve (represented in pink) that indicates the reconstruction in which the selection effects are ignored. Panela shows the squared Euclidean distance
between subsequent reconstructions. The squared Euclidean distance between the reconstruction and the true density field is plotted in panelc, showing a huge
difference between the reconstruction which takes only thenoise into account and ignores the selection function and the rest of the methods. Note that the
statistical correlation r is also much better for the case where the selection effects are properly treated (panele). One concludes from the three plots, that the
SD and EXP methods (red, blue and violet curves) clearly converge faster to a more or equally optimal solution in comparison with the rest of the methods.
The J scheme shows a significantly slower convergence (blackcurve in panela). The PR algorithm stagnates at poorer reconstructions as can be seen from
panelc ande. Windowing treatment and numerical performance (panels b, d, f): In this case, the PR shows extremely good results: fast convergence
(panelb) and a high correlation coeficient (paneld). However, the Euclidean distance is slightly bigger than for the rest of the methods, except for the pink
curve (ignoring windowing effects). The FR method is disastrous in this study case and diverges from the solution as can be seen in panelf. The J, SD, and
EXP methods show good and stable results. The J and SD algorithms give extremely similar results. Although their convergence behaviour is similar to the
EXP schemes, the latter give slightly better results: smaller values for the Euclidean distance and higher values for the correlation coefficient (violet curves in
panelsd andf, respectively).

c© 0000 RAS, MNRAS000, 000–000



Bayesian reconstruction of the cosmological large-scale structure 31

a b

c d

e f
Figure 11. Windowing treatment: Here the edge effects are shown in two dimensions. The true signal was multiplied by a windowing function that is one
in the observed region (Ω) and zero in the unknown region (Ω̄). The sampled regions are given by the vertical stripes. In addition, a radially increasing noise
was added (see panelb). Panelc shows the reconstruction handling the edge effects. Paneld represents the result taking only the noise into account. Wesee in
panelc how the information is propagated into the unsampled regions leading to a closer resemblance of the real signal, whereasthe noise is just suppressed
in paneld. Panelse andf show the correlation coefficients for the whole reconstructed region, split into the sampled (black dots) and the unsampled regions
(red dots). Note that the red dots are strongly aligned around the zero value in panelf, whereas they are correctly spread in panele, statistically representing
the information propagation process mentioned above.
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the zero value for the case where windowing is ignored, because a
zero signal is assumed by ARGO in theΩ region. In contrast we see
that the red dots are distributed along the diagonal line when edge
effects are considered. This is equivalent to a propagationof the in-
formation to the unsampled regions or the appropriate interpolation
and extrapolation of signals. Looking at the numerical performance
in fig. (7) reveals that most of the methods behave very similarly,
except for the PR and FR schemes that deviate from the rest. The
former converges rapidly to a good solution that has a highercor-
relation (see green curve in panelf), but a slightly worse Euclidean
distance to thetrue signal. The FR on the other hand converges
extremely slowly. The correlation coefficient is at a stage where
it becomes dramatically worse (see yellow curve in panelf). The
smaller Euclidean distance is no measure for the quality in this
case, because these low values can be achieved when the recon-
struction is very conservative (closer to zero) and has no structure.
Notice how many schemes start with better values for that distance
measure (see paneld). The EXP methods converge faster and the
CJ version leads to even slightly better results (see violetcurve in
panelsd andf).

It is also worth mentioning that the best reconstructions in
terms of high correlation coefficients and low Euclidean distances
to the underlying signal are achieved only after three iterations for
the J, SD, and EXP methods, prior to numerical convergence. We
furthermore tested ARGO under extreme noise conditions in which
the inversion diverges and produces density values that approach
infinity. At early iterations, extremely good reconstructions were
produced. These examples underline the regularization character
of the inversion schemes under consideration in this publication.
However, for the cases we are interested in, where the noise is
mainly determined by the discrete sampling of galaxies, no addi-
tional stopping rules are required and the inversion algorithms can
be run until full convergence.

5 SUMMARY AND CONCLUSIONS

The goal of this work is to exploit the Bayesian formalism to
develop methods that reconstruct the underlying dark-matter dis-
tribution from the discrete sample of galaxies and their three-
dimensional positions provided by galaxy redshift surveys. Such
a general Bayesian analysis permits one to innovate methodsand
push this field forward to develop more accurate reconstruction al-
gorithms.

We show how a series of uncertainties demand a statistical ap-
proach (see figure 1 and section 1.1). Some of the uncertainties are
intrinsic to the nature of the underlying signal (the dark matter) and
have a stochastic character, the cosmic variance. Other uncertain-
ties are intrinsic to the nature of the observable (the galaxies) and
lead to a kind of shot noise, galaxy-bias and redshift-distortions.
Additional uncertainties, such as windowing, selection function ef-
fects and blurring effects, arise due to the observation process. The
degeneracies that are produced by such uncertainties require regu-
larization techniques, which should converge to optimal solutions.
We discuss the different Bayesian approaches specified through dif-
ferent options for the likelihood and the prior, and see hownatural
regularizations can be performed by the prior-choice (see section
2.5). Moreover, we see how the definition of particular likelihoods
and priors define classes of algorithms, each specific to a different
problem approach (see table 1).

We develop new algorithms in this Bayesian framework which
account for the discrete nature of a galaxy distribution by taking a

Poissonian likelihood. This is done for the case of a Gaussian prior
leading to the GAPMAP estimator (see section 2.5.4 and appendix
A) and for the case of an entropic prior (see section 2.5.9 andap-
pendix E). The Maximum Entropy method is studied in detail asa
non-informative prior, which does not assume a particular pattern
for the underlying signal. This can be interesting when searching
for intrinsic deviations from Gaussianity (see section 2.5.9 and ref-
erences therein).

We extend the Wiener-filter (see section 2.5.3 and appendix I)
and propose novel algorithms to do a joint estimation of the density
field, its power-spectrum, and the peculiar velocities of the galaxies
(see section 2.6). We also address the possibility of extending such
work to determine cosmological parameters and the bias between
galaxies and dark matter.

Such an aim requires a large number of repeated reconstruc-
tions, which can be only achieved with highly efficient inverse al-
gorithms. We develop here the necessary numerical schemes in a
preconditioned way for linear and non-linear inverse problems (see
section 3 and appendix H & G). Such iterative schemes acquire
their real power only in an operator formalism, which we derive
in detail for different Bayesian methods (see section 3.3).A novel
Krylov formula (see section 3.1.5 and appendix H) turns out to be
superior in terms of performance and fidelity, as we show in section
(4).

The novel ARGO-software package is presented in this paper.
Different inverse schemes are tested with the Wiener-filterimple-
mented in ARGO under several conditions determined by struc-
tured noise, blurring, selection function effects and windowing (see
section 4).

We conclude that fast three-dimensional reconstructions of the
large-scale structure scaling asn log2 n (with n being the total
number of grid cells) can be done with hybrid Wiener-Krylov iter-
ative schemes under an operator formalism, which takes advantage
of the speed of FFTs. This opens new horizons of possibilities, such
as joint parameter and signal estimation, in the field of large-scale
structure reconstruction.

It is our goal to apply such techniques to reconstruct the under-
lying density field, the power-spectrum and the peculiar velocities
from galaxy surveys. Still, different problems, such as galaxy-bias
studies, have to be further analysed. However, we are confident that
such issues can be tackled from an information-theory approach.
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Erdoğdu P., Lahav O., Huchra J., et al. 2006, MNRAS, 373, 45
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J. B., O’Dwyer I. J., 2007, ApJ, 656, 653
Linde A. D., 1982, Physics Letters B, 108, 389
Lucy L. B., 1974, AJ, 79, 745
Maisinger K., Hobson M. P., Lasenby A. N., 1997, MNRAS, 290, 313
Marchuk G. I., 1982, Methods of numerical mathematics. Springer-

Verlag, New York
Martel H., 2005, ArXiv Astrophysics e-prints

c© 0000 RAS, MNRAS000, 000–000



34 Kitaura & Enßlin

Mathis H., Lemson G., Springel V., Kauffmann G., White S. D. M., Eldar
A., Dekel A., 2002, MNRAS, 333, 739

Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A.H., Teller
E. T., 1953, Journal of Chemical Physics, 21, 1087

Meurs E. J. A., Wilkinson M. I., 1999, in Giuricin G., Mezzetti M., Salucci
P., eds, Observational Cosmology: The Development of Galaxy Sys-
tems Vol. 176 of Astronomical Society of the Pacific Conference Series,
Large-scale structure assessed with Voronoi techniques. pp 333–+

Mohayaee R., Frisch U., Matarrese S., Sobolevskii A., 2003,
Astr.Astrophy., 406, 393

Mohayaee R., Mathis H., Colombi S., Silk J., 2006, MNRAS, 365, 939
Mohayaee R., Tully B., Frisch U., 2004, ArXiv Astrophysics e-prints
Mohayaee R., Tully R. B., 2005, ApJ, 635, L113
Molina R., Nunez J., Cortijo F. J., Mateos J., 2001, Signal Processing Mag-

azine, IEEE, 18, 11
Narayan R., Nityananda R., 1986, Ann.Rev.Astrn.Astrophys., 24, 127
Narayanan V. K., Croft R. A. C., 1999, ApJ, 515, 471
Narayanan V. K., Weinberg D. H., 1998, ApJ, 508, 440
Natoli P., de Gasperis G., Gheller C., Vittorio N., 2001, Astr.Astrophy.,

372, 346
Neal R. M., 1993, in Technical Report CRG-TR-93-1 Probabilistic Infer-

ence Using Markov Chain Monte Carlo Methods. Dept. of Computer
Science, University of Toronto

Nusser A., Davis M., 1994, ApJ, 421, L1
Nusser A., Dekel A., 1992, ApJ, 391, 443
Nusser A., Dekel A., Bertschinger E., Blumenthal G. R., 1991, ApJ, 379,

6
O’Dwyer I. J., Bersanelli M., Childers J., et al. 2005,

.Rev.Astrn.Astrophys., 158, 93
O’Sullivan F., 1990, SIAM J. Numer. Anal., 27, 1635
Panko E., Flin P., 2004, in Diaferio A., ed., IAU Colloq. 195:Outskirts of

Galaxy Clusters: Intense Life in the Suburbs Application ofthe Voronoi
tessellation technique for galaxy cluster search in the Münster Red Sky
Survey. pp 245–247

Peacock J. A., Dodds S. J., 1994, MNRAS, 267, 1020
Peebles P. J. E., 1989, ApJ, 344, L53
Peebles P. J. E., 1990, ApJ, 362, 1
Pen U.-L., 1998, ApJ, 504, 601
Percival W. J., 2005, MNRAS, 356, 1168
Pierpaoli E., Anthoine S., 2005, Advances in Space Research, 36, 757
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Nu-

merical recipes in C. The art of scientific computing. Cambridge: Uni-
versity Press, —c1992, 2nd ed.

Puetter R. C., Pina R. K., 1993, in Fowler A. M., ed., Proc. SPIE Vol. 1946,
p. 405-416, Infrared Detectors and Instrumentation, Albert M. Fowler;
Ed. The pixon and Bayesian image reconstruction. pp 405–416

Ramella M., Boschin W., Fadda D., Nonino M., 2001, Astr.Astrophy., 368,
776

Richardson W. H., 1972, Journal of the Optical Society of America (1917-
1983), 62, 55

Robert C. P., 2001, The Bayesian choice. Springer-Verlag, New York
Robinson D. R. T., 1991, in Grandy W. T., Schick L. H., eds, Maxi-

mum Entropy and Bayesian methods Maximum Entropy with Poissonian
statistics. pp 337–341

Rybicki G. B., Press W. H., 1992, ApJ, 398, 169
Schaap W. E., van de Weygaert R., 2000, Astr.Astrophy., 363,L29
Schmoldt I. M., Saar V., Saha P., Branchini E., Efstathiou G.P., Frenk

C. S., Keeble O., Maddox S., McMahon R., Oliver S., Rowan-Robinson
M., Saunders W., Sutherland W. J., Tadros H., White S. D. M., 1999,
ApJ, 118, 1146

Scoccimarro R., 2004, Phys. Rev. D, 70, 083007
Seljak U., 1998, ApJ, 503, 492
Shannon C. E., 1948, A mathematical theory of communication. Vol. 27,

Bell System Technical Journal
Shaya E. J., Peebles P. J. E., Tully R. B., 1995, ApJ, 454, 15
Shepp L. A., Vardi Y., 1982, IEEE Trans. Med. Imaging, 1, 113
Sheth R. K., 1995, MNRAS, 277, 933

Shewchuk J. R., 1994, An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain. published in the web

Skilling J., ed. 1989, Maximum Entropy and Bayesian methods: 8 : 1988
Smith C. C., Klypin A., Gross M. A. K., Primack J. R., HoltzmanJ., 1998,

MNRAS, 297, 910
Starobinsky A. A., 1982, Physics Letters B, 117, 175
Stompor R., Balbi A., Borrill J. D., Ferreira P. G., Hanany S., Jaffe A. H.,

Lee A. T., Oh S., Rabii B., Richards P. L., Smoot G. F., Winant C. D.,
Wu J.-H. P., 2002, Phys. Rev. D, 65, 022003

Sutton E. C., Wandelt B. D., 2006, .Rev.Astrn.Astrophys., 162, 401
Tanner M. A., 1996, Tools for statistical inference. Springer-Verlag, New

York
Tegmark M., 1997, Phys. Rev. D, 56, 4514
Tegmark M., 1997, ApJ, 480, L87+
Tegmark M., Bromley B. C., 1999, The Astrophysical Journal,518, L69
Tikhonov A. N., 1963, Soviet Math Dokl, 4, 1035
Valentine H., Saunders W., Taylor A., 2000, MNRAS, 319, L13
van de Weygaert R., Schaap W., 2001, in Banday A. J., Zaroubi S., Bartel-

mann M., eds, Mining the Sky Tessellation Reconstruction Techniques.
pp 268–+

Vogeley M. S., Szalay A. S., 1996, ApJ, 465, 34
Wandelt B. D., Larson D. L., Lakshminarayanan A., 2004, Phys. Rev. D,

70, 083511
Webster M., Lahav O., Fisher K., 1997, MNRAS, 287, 425
Weinberg D. H., 1992, MNRAS, 254, 315
Yahil A., Strauss M. A., Davis M., Huchra J. P., 1991, ApJ, 372, 380
Yvon D., Mayet F., 2005, Astr.Astrophy., 436, 729
Zaninetti L., 1995, Astr.Astrophy.Suppl., 109, 71
Zaninetti L., 2006, Chinese Journal of Astronomy and Astrophysics, 6,

387
Zaroubi S., 2002a, ArXiv Astrophysics e-prints
Zaroubi S., 2002b, MNRAS, 331, 901
Zaroubi S., Hoffman Y., Dekel A., 1999, ApJ, 520, 413
Zaroubi S., Hoffman Y., Fisher K. B., Lahav O., 1995, ApJ, 449, 446
Zel’Dovich Y. B., 1970, Astr.Astrophy., 5, 84

c© 0000 RAS, MNRAS000, 000–000



Bayesian reconstruction of the cosmological large-scale structure 35

APPENDIX A: GAPMAP: MAP WITH A GAUSSIAN
PRIOR AND A POISSONIAN LIKELIHOOD

RememberP (s | d,p) ∝ L(d | s,p)P (s | p) to be extremized.
First we write the log-likelihood taking the logarithm of eq. (12)

logL(s | d,p) =
X

i

h

− (Rs′)i − ci

+(d′i + ci) log
“

(Rs′)i + ci
”

− log
“

(d′i + ci)!
”i

. (A1)

Then we differentiate with respect to the signal to yield

∂ logL(s | d,p)

∂sk
(A2)

=
X

i

h

Rikbng

“

− 1 + (
X

j

Rijs
′
j + ci)

−1(d′i + ci)
”i

.

The same exercise for the Gaussian prior leads to

∂ logP (s | p)

∂sk
= −

X

j

S−1
kj sj . (A3)

Now we demand0 = ∂ logP (s | d,p)/∂sk to get an equation for
the MAP estimator. After applyingS to the equation we obtain
X

i

X

l

h

SklRilbng (A4)

“

− 1 +
“

X

m

Rimng(1 + bsj
m) + ci

”−1

(d′i + ci)
”i

− sj
k = 0.

Adding the indexj + 1 andj to s on lhs and rhs respectively, an
iteration scheme is formed

sj+1
k =

X

i

X

l

h

SklRilbng

“

− 1 +
“

X

m

Rimng(1 + bsj
m) + ci

”−1

(d′i + ci)
”i

. (A5)

Let us simplify this algorithm for positive signalss′ in matrix no-
tation

s
′j+1 = s

′2
SR

†
h

−~1+diag(Rs′j +c)−1(d′ +c)
i

+ s′, (A6)

where we made following substitutionsb → 1 andng → s′, with
s′ being the average of the positive signal.

APPENDIX B: POISSONIAN MAXIMUM LIKELIHOOD

The context in which the Richardson-Lucy algorithm is applied has
positive intensity signals and the kernelR in eq. (1) is understood
as a blurring function that can be expressed mathematicallyas a
convolution with thetruesignals. We will further assume no back-
ground (c = 0) so that the log-likelihood of eq. (12) can be written
as

logL(s′ | d′, p) =
X

i

h

− (Rs′)i + d′i log(Rs′)i − log(d′i!)
i

,

(B1)
differentiating with respect to the signal yields

0 =
∂ logL(s′ | d′,p)

∂s′k
=

X

i

h

Rik

“

−1+(Rs′)−1
i d′i

”i

. (B2)

We can multiply this equation with the signals′ and make an iter-
ative method which coincides with Richardson-Lucy algorithm

s
′j+1 = diag

“

R
†diag(Rs′j)−1

d
′
”

s
′j , (B3)

withR†~1 = ~1 due to the convolution operation.

APPENDIX C: LINEAR FILTERS NEED TO BE
INVERTIBLE TO CONSERVE INFORMATION

The Fisher information matrixJ for a Gaussian distribu-
tion22 with zero mean and covariance matrixC calculated by
Vogeley & Szalay (1996) has the form

J ij =
1

2
tr (GiGj) , (C1)

with

Gi = C
−1
C ,i, (C2)

where the comma notationC ,i stands for the derivative with re-
spect to the parameterθi: dC/dθi. Following Tegmark (1997), we
calculate the Fisher information matrixJ for the filtered and unfil-
tered signal. Let us assume a linear filterL, which provides us with
an estimator of the signal

〈s〉L ≡ Ld. (C3)

The correlation matrix of the estimator yields

C
est = 〈〈s〉L〈s〉

†
L〉(s,ǫ|p) = L

†
“

RSR
† +N

”

L. (C4)

We get then

C
est
,i = L

†
“

RS,iR
†
”

L, (C5)

G
est
i = L̃

“

RSR
† +N

”−1

L̃
†
L

†
“

RS,iR
†
”

L, (C6)

where we have denoted the approximate inverse ofL asL̃. Doing
the same for the data yields

C
data = 〈dd†〉(s,ǫ|p) =

“

RSR
† +N

”

, (C7)

C
data
,i = RS,iR

†, (C8)

G
data
i =

“

RSR
† +N

”−1 “

RS,iR
†
”

. (C9)

If we now insert expression (C6) in the Fisher matrix (C1), weget

J
est
ij =

1

2
tr

`

G
est
i G

est
j

´

=
1

2
tr

“

L̃C
data−1

L̃
†
L

†
C

data
,i LL̃C

data−1
L̃

†
L

†
C

data
,j L

”

.(C10)

In general, this will differ from the Fisher matrix of the data. If we
assume, however, that the linear operator is invertible (∃L−1), then
eq. (C10) reduces to

J
est
ij =

1

2
tr

“

L
−1
G

data
i G

data
j L

”

. (C11)

Invoking that the trace of a product of matrices is invariantunder
cyclic permutations, we see that

J
est
ij =

1

2
tr

“

G
data
i G

data
j

”

= J
data
ij . (C12)

This shows the result that any linear invertible filter conserves in-
formation, regardless of the parameters that one wants to estimate.
However, one should be careful with this statement because linear
filters are, in general, not invertible unless the data and signal space
have the same dimension, the noise is non-zero for any frequency,
and theR- andS-matrices are invertible. Usually the data and sig-
nal space will differ and theR-matrix will not be exactly invertible.

22 Here a Gaussian likelihood is assumed, but the result does not rely on
the Gaussianity of the data (see e.g. Seljak 1998).
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APPENDIX D: JEFFREY’S PRIOR FOR THE
3-DIMENSIONAL POWER SPECTRUM

Let us start by assuming a Gaussian likelihood23

P (s | PS(k)) ∝
Y

k

1
p

PS(k)
exp−

|s(k)|2

2PS(k)
. (D1)

The log-likelihood is then given by

log
“

P (s | PS(k))
”

∝
X

k

h

log
“

PS(k)
”

+
|s(k)|2

PS(k)

i

. (D2)

We now need the second derivatives of the log-likelihood with re-
spect to the parameterPS

∂2

∂PS(k)2
log

“

P (s | PS(k))
”

∝
h

−
1

P 2
S (k)

+
2| s(k)|2

P 3
S (k)

i

. (D3)

The next step consists of calculating the Fisher information by
performing the integral

R

dsP (s | PS(k)) on the above quantity,
which is equivalent to performing the following ensemble average
(see section 2.2)

J(PS(k)) = 〈
∂2

∂PS(k)2
log

“

P (s | PS(k))
”

〉(s|p) ∝
1

P 2
S (k)

,

(D4)
where we have taken into account thatPS(k) = 〈|s(k)|2〉(s|p).
Finally the square-root of the Fisher information leads to Jeffrey’s
prior

P (PS(k)) =
p

J(PS(k)) ∝ PS(k)−1. (D5)

Following Wandelt et al. (2004) we can argue in a more intuitive
way thatP (PS(k)) ∝ PS(k)−1 is a solution to a measure invari-
ant under scale transformations of the formP (PS(k))dPS(k) =
P (αPS(k))αdPS(k) (here we have generalized this result to the
3-dimensional power spectrum).

APPENDIX E: MEM WITH GAUSSIAN AND
POISSONIAN LIKELIHOODS

The quantity to maximize is given by

QE(s | p) = αSE(s | p) + logL(s | d,p). (E1)

After some calculations we see that the gradient of the entropy
for PADs is

∇SE
+(s′ | p)i = − log

„

s′i
mi

«

, (E2)

and for positive and negative distributions

∇SE
±(s | p)i = − log

„

wi + si

mi

«

. (E3)

We took into account that∂wi/∂sj = si/wiδij . It is then more
straightforward to calculate theSE curvature for PADs

∇∇SE
+(s′ | p) = −diag(s′)−1, (E4)

and for positive and negative distributions,

∇∇SE
±(s | p) = −diag(w)−1. (E5)

Analogously, we calculate the gradient of thelogL(s | d) for the

23 Note that the likelihood forPS(k) is the prior fors.

Gaussian case valid for positive (s′) and positive and negative sig-
nals (s±)

∇ logLG(s | d,p)i = −
1

2
∇χ2(s)i = −

“

R
†
N

−1(Rs − d)
”

i
,

(E6)
and the corresponding curvature

∇∇ logLG(s | d,p) = −
1

2
∇∇χ2(s) = −R†

N
−1
R. (E7)

The Poissonian case leads to

∇ logLP(s | d,p)i (E8)

= bng

X

k

h

Rki

“

− 1 + (
X

j

Rkjs
′
j + ck)−1(d′k + ck)

”i

= bng

h

R
†
“

−~1 + diag
“

(Rs′) + c
”−1

(d′ + c)
”i

i
,

and

∇∇ logLP(s | d,p)ij (E9)

= −b2ng
2

X

k

h

Rki(
X

l

Rkls
′
l + ck)−2Rkj(d

′
k + ck)

i

= −b2ng
2
h

R
†
“

diag
“

(Rs′) + c
”−2

R
†(d′ + c)

”i

ij
.

Note that when dealing with overdensity fields one should do the
following substitution:s′i = ng(1 + bsi) in the last two expres-
sions.

Summing up, we have the following gradient ofQE for PADs

∇QE
+(s′ | p)i = −α log

„

s′i
mi

«

+∇ logL(s′ | d,p)i, (E10)

and for positive and negative distributions

∇QE
±(s | p)i = −α log

„

wi − si

mi

«

+∇ logL(s | d,p)i,

(E11)
and the corresponding curvatures

∇∇QE
+(s′ | p) = −αdiag(s′)−1+∇∇ logL(s′ | d,p), (E12)

∇∇QE
±(s | p) = −αdiag(w)−1 +∇∇ logL(s | d,p). (E13)

The corresponding likelihood (Gaussian or Poissonian) hasto be
inserted in each of the expressions for the gradient or curvature
of QE. For the choice of an optimal regularization constantα see
e.g. Maisinger et al. (1997) and Hobson et al. (1998).

APPENDIX F: BAYES, TIKHONOV, ASYMPTOTIC
REGULARIZATION AND LEARNING ALGORITHMS

We want to solve eq. (60) from a Bayesian perspective. Let us as-
sume a Gaussian likelihood with covarianceI

L(ψ | f ,p) = G(f −Aψ, I), (F1)

which is a fair assumption in the absence of noise (eq. (60) isequiv-
alent to eq. (2) without noise,ǫ = 0). Let us further assume a Gaus-

sian prior around a prior solutionψ∗ with covarianceτM̃
−1

P (ψ | p) = G(ψ − ψ∗, τM̃
−1

). (F2)

We can now calculate the MAP which coincides in this case with
the mean of the posterior. Let us look at the quantity given bythe
log-posterior PDF

||f −Aψ||2 + τ ||ψ − ψ∗||2˜M
, (F3)
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which is a generalization of Tikhonov regularization. Minimizing
the negativelog-posterior yields the following equation for the
Bayesian estimator〈ψ〉B

A
†(A〈ψ〉B − f ) + τ−1

M̃ (〈ψ〉B − ψ
∗) = 0. (F4)

If we now chooseM̃ = A†M−1 (M is an invertible matrix) we
get

A
† `

M
−1(ψ∗ − 〈ψ〉B) + τ (f −A〈ψ〉B)

´

= 0, (F5)

This equation will be fulfilled if the following equality holds

〈ψ〉B = ψ
∗ + τM (f −A〈ψ〉B). (F6)

The estimator〈ψ〉B for the solution to the inverse problem
(eq. (60)) is expressed in eq. (F6) as the prior solutionψ∗ plus
a correction term given by the residualf −A〈ψ〉B. Since only the
residual based on the prior solution is known, the followingsub-
stitution must be done on the right-hand-side (rhs)〈ψ〉B → ψ∗

leading to

〈ψ〉B ≃ ψ
∗ + τM (f −Aψ∗). (F7)

This can be interpreted as an iterative scheme, in which the estima-
tor is the updatej + 1 (〈ψ〉B → ψj+1 on the left-hand-side (lhs))
of the estimator at the previous stepj (ψ∗ → ψj on the rhs)

ψ
j+1 = ψ

j + τM (f −Aψj). (F8)

In this way, we have found the general iterative method (eq. 71)
derived with the asymptotic regularization in section (3.1.2). From
the Bayesian point of view, this scheme could be interpretedas a
learning algorithm, in which the estimator of the solution to the
inverse problem is calculated from the prior solution and becomes
itself the prior solution for the subsequent iteration.

APPENDIX G: PRECONDITIONING

We can enhance the convergence of the iteration methods by mul-
tiplying the matrix we want to invert by another matrix that is close
to its inverse

MAψ = Mf , (G1)

withM ∼ A−1. Let us show this by deriving eq. (71) in a different
way. We can invertMA using the Neumann expansion for the
inverse of an operator

ψ = (MA)−1
Mf =

∞
X

i=0

(I −MA)i
Mf . (G2)

This iteration scheme will converge if||I −MA|| < 1. Let us in-
troduce the following notation

ψ ≡

∞
X

i=0

ψ[i], (G3)

ψ
j ≡

j
X

i=0

ψ[i], (G4)

with

ψ[i] ≡ (I −MA)i
Mf . (G5)

It follows that

ψ[i+ 1] = (I −MA)ψ[i], (G6)

and summing overi we get

j
X

i=0

ψ[i+ 1] =

j
X

i=0

ψ[i]−

j
X

i=0

MAψ[i]. (G7)

Manipulating the indices, we see that

j
X

i=0

ψ[i+ 1] =

j+1
X

i=0

ψ[i]− ψ[0]. (G8)

Combining the last two equations we obtain eq. (71)24

ψ
j+1 = ψ

j +M (f −Aψj), (G9)

with

ψ[0] = ψ
0 = Mf . (G10)

The meaning of the preconditioning matrixM is clear when we
look at eq. (G2). There it can be seen that a much more rapid con-
vergence is obtained if(I −MA) is close to zero, that is ifM is
close to the inverse ofA.

APPENDIX H: KRYLOV METHODS: CONJUGATE
GRADIENTS

H1 Orthogonality between the residuals and the searching
vectors

Eq. (87) tells us that each error vectorηj+1 isA-orthogonal to the
previous searching vectorMµj . Since all different searching vec-
torsMµi areA-orthogonal to each other by construction, and the
error vectors are given by the linear combination of the previous
error vector and the previous searching vector (eq. (84)), it follows
that each error vectorηj+1 isA-orthogonal to all previous search-
ing vectorsµi, i.e. for i 6 j,

〈ηj+1|Mµ
i〉A = 0. (H1)

Using eq. (85) we can write eq. (H1) as

〈ξj+1|Mµ
i〉 = 0, (H2)

beingi 6 j.
Applying the inner product between the searching vectors

Mµi and the recurrent formula for the residuals (eq. 86), we get

〈ξj+1|Mµ
i〉 = 〈ξj |Mµ

i〉 − τ j〈Mµ
j |Mµ

i〉A. (H3)

For i 6= j this equation reduces to

〈ξj+1|Mµ
i〉 = 〈ξj |Mµ

i〉. (H4)

From eq. (H2) and eq. (H4) we conclude that fori < j,

〈ξj |Mµ
i〉 = 0. (H5)

H2 The set of residuals as a basis of linearly independent
vectors

Taking the Gram-Schmidt orthogonalization scheme (eq. 90)and
multiplying it with the residuals, we obtain

〈ξi|Mµ
j〉 = 〈ξi|Mξ

j〉+

j−1
X

k=0

βkj〈ξi|Mµ
k〉. (H6)

24 The iteration time stepτ has been absorbed here in the matrixM.
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Using the result obtained in the appendix H1 (eq. H5), one shows
the orthogonality (strictly orthogonal, ifM = I) between any dif-
ferent residuals (fori 6= j)25

〈ξi|Mξ
j〉 = 0. (H7)

For i = j by combining (H5) and (H6) we get the relation we used
in equation (89)

〈ξi|Mµ
i〉 = 〈ξi|Mξ

i〉. (H8)

H3 Formulae for the β-factor

From the scalar product between eq. (86) and the residualξi

〈ξj+1|Mξ
i〉 = 〈ξj |Mξ

i〉 − τ j〈Mµ
j |Mξ

i〉A, (H9)

it is clear that theβ-factors are all zero except for one. Notice that
the denominator inβ, given by〈Mµj |Mξi〉A cancels out if nei-
ther i = j + 1 nor i = j. The latter is excluded according to the
definition ofβ (see eqs. 90 and 92). Gram-Schmidt orthogonaliza-
tion thus simplifies to eq. (93), with

βj+1
EXP = −

〈Mξj+1|Mµj〉A
〈Mµj |Mµj〉A

. (H10)

Other expressions for this factor can be derived by replacing i =
j + 1 in eq. (H9)

〈Mµ
j |Mξ

j+1〉A = −
1

τ j
〈ξj+1|Mξ

j+1〉. (H11)

Substituting this expression in eq. (92) and using the formula for
τ j (eq. 89) one obtains the Fletcher-Reeves equation

βj+1
FR =

〈ξj+1|Mξj+1〉

〈ξj |Mξj〉
. (H12)

Polak-Ribìeres formula can now be obtained trivially by taking ex-
pression (H7) into account. Let us do an invariant operationby
adding−〈ξj+1|Mξj〉 to the nominator in Fletcher-Reeves for-
mula

〈ξj+1|Mξ
j+1〉 − 〈ξj+1|Mξ

j〉 = 〈ξj+1|M (ξj+1 − ξj)〉,
(H13)

which immediately leads to Polak-Ribières expression

βj+1
PR =

〈ξj+1|M (ξj+1 − ξj)〉

〈ξj |Mξj〉
. (H14)

In order to get Hestenes-Stiefels formula one has to consider
eqs. (H8) and (H5) in the denominator ofβPR

〈ξj |Mξ
j〉 = 〈µj |Mξ

j〉 − 〈µj |Mξ
j+1〉 = 〈µj |M (ξj − ξj+1)〉,

(H15)
resulting in the following expression

βj+1
HS = −

〈ξj+1|M (ξj+1 − ξj)〉

〈µj |M (ξj+1 − ξj)〉
. (H16)

Due to the relations derived in this appendix other equivalent for-
mulae forβ (summarized in table 2) can be found, which differ in
their numerical behaviour. Note that from the 16 possible schemes
presented here, only 3 are discussed in the literature.

25 This result is at first glance only valid fori < j. However, with the
additional requiriment that the matrixM be self-adjoint, the generalization
to i 6= j is trivial.

H4 Preconditioned non-linear time step

The function under consideration is expanded until the second or-
der aroundτ jMµj according to eq. (83)

QA(ψj + τ j
Mµ

j) ≃ QA(ψj) + τ j〈∇QA(ψj)|Mµ
j〉

+
τ j2

2
〈Mµ

j |Mµ
j〉

∇∇QA(ψj
)
. (H17)

Then the derivative with respect to the searching vector is done to
find the extremum

d

dτ j
QA(ψj + τ j

Mµ
j) ≃

〈∇QA(ψj)|Mµ
j〉+ τ j〈Mµ

j |Mµ
j〉

∇∇QA(ψj
)
. (H18)

By setting this equation to zero, one finds an expression for the time
step

τ j = −
〈∇QA(ψj)|Mµj〉

〈Mµj |Mµj〉
∇∇QA(ψj

)

. (H19)

Note that the last equation can be rewritten using relation (H8) as

τ j = −
〈∇QA(ψj)|M∇QA(ψj)〉

〈Mµj |Mµj〉
∇∇QA(ψj

)

. (H20)

APPENDIX I: THE MAPPING EQUATION FOR THE
WIENER-FILTER IN K-SPACE

Following the concept of minimum variance (e.g. Rybicki & Press
1992; Zaroubi et al. 1995), we define an action given by the nor-
malized volume integral of the square of the difference between
the reconstruction (ψ) and the ensemble of different possible real-
izations of the density field (s = δρ)

A = 〈
1

V

Z

dNDr
h

ψ(r)− s(r)
i2

〉(s,ǫ|p). (I1)

From the statistical point of view, the actionA is the loss function
that has to be minimized. Note that this action can be expressed as
the ensemble average of the squared Euclidean distance between
the real density fields and the reconstructionψ

A =
1

V
〈D2

Eucl(ψ, s)〉(s,ǫ|p). (I2)

Transforming expression (I1) into Fourier space yields

A =
1

V

Z

dNDk

(2π)ND

h

〈ψ̂(k)ψ̂(k)〉(s,ǫ|p) + 〈ŝ(k)ŝ(k)〉(s,ǫ|p)

−〈ψ̂(k)ŝ(k)〉(s,ǫ|p) − 〈ŝ(k)ψ̂(k)〉(s,ǫ|p)

i

. (I3)

Assuming a linear relation between the reconstructionψ and the
datad

ψ̂(k) =

Z

dNDk′

(2π)ND

ˆ̂
FWF(k,k′)d̂(k′), (I4)
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and statistical homogeneity (〈ŝ(k)ŝ(k′)〉(s,ǫ|p) =

(2π)NDδD(k − k′)PS(k′)), yields

A =
1

V

Z

dNDk

(2π)ND

Z

dNDk′

(2π)ND

h

ˆ̂
FWF(k,k′)

Z

dNDq

(2π)ND

ˆ̂
FWF(k, q)〈d̂(k′)d̂(q)〉(s,ǫ|p)

+(2π)NDδD(k − k′)〈ŝ(k′)ŝ(k′)〉(s,ǫ|p)

−
ˆ̂
FWF(k,k′)〈d̂(k′)ŝ(k)〉(s,ǫ|p)

−
ˆ̂
FWF(k,k′)〈ŝ(k)d̂(k′)〉(s,ǫ|p)

i

. (I5)

Now the action is minimized with respect to the linear operator,
δA

δ
ˆ̂
FWF

= 0, to obtain the following mapping equation

Z

dNDq

(2π)ND

ˆ̂
FWF(k, q)〈d̂(q)d̂(k′)〉(s,ǫ|p) = 〈ŝ(k)d̂(k′)〉(s,ǫ|p).

(I6)
Note that eq. (I6) allows us to substitutek′ by −k′ , which is equiv-
alent to the conjugation of̂d(k′) due to the hermitian redundancy
of real numbers
Z

dNDq

(2π)ND

ˆ̂
F ′

WF(k, q)〈d̂(q)d̂(k′)〉(s,ǫ|p) = 〈ŝ(k)d̂(k′)〉(s,ǫ|p).

(I7)
The linear operator one obtains in this way is different, butfulfils
the same requirements. We compare both cases in section (4).Let
us see how one would apply such a filter. The covariance matrixof
the data is given by

〈d̂(k)d̂(k′)〉(s,ǫ|p) = 〈α̂(k)α̂(k′)〉(s,ǫ|p) + 〈ǫ̂(k)ǫ̂(k′)〉(s,ǫ|p),
(I8)

and its action on some vector by
Z

dNDk′

(2π)ND
〈α̂(k)α̂(k′)〉(s,ǫ|p){x̂(k

′)}

= f̂B ·
ˆ

f̂SM ◦
ˆ

PS ·
ˆ

f̂SM ◦
ˆ

f̂B · {x̂}
˜˜˜˜

(k), (I9)

and
Z

dNDk′

(2π)ND
〈ǫ̂(k)ǫ̂(k′)〉(s,ǫ|p){x̂(k

′)}

= f̂SF ◦
ˆ

PN ·
ˆ

f̂SF ◦ {x̂}
˜˜

(k). (I10)

The correlation matrix between the data and the signal applied to
that vector yields
Z

dNDk′

(2π)ND
〈ŝ(k)d̂(k′)〉(s,ǫ|p){x̂(k

′)}

= PS ·
ˆ

f̂SM ◦
ˆ

f̂B · {x̂}
˜˜

(k). (I11)

We see that the difference with respect to the operations derived in
section (3.3) resides in the conjugation of certain functions.
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