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ABSTRACT

Context. We investigate the hydrodynamics of the core helium flash near its peak. Past research concerned with the dynamics of this
event is inconclusive. However, the most recent multidimensional hydrodynamic studies suggest a quiescent behavior and seem to
rule out an explosive scenario.

Aims. Previous work indicated, that depending on initial conditions, employed turbulence models, grid resolution, and dimensionality
of the simulation, the core helium flash leads either to the disruption of a low-mass star or to a quiescent quasi-hydrostatic evolution.
We try to clarify this issue by simulating the evolution with advanced numerical methods and detailed microphysics.

Methods. Assuming spherical or axial symmetry, we simulate the evolution of the helium core of a 1.25M,, star with a metallicity
7Z=0.02 during the core helium flash at its peak with a grid-based hydrodynamics code.

Results. We find that the core helium flash neither rips the star apart, nor that it significantly alters its structure, as convection plays
a crucial role in keeping the star in hydrostatic equilibrium. In addition, our simulations show the presence of overshooting, which
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implies new predictions concerning mixing of chemical species in red giants.
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1. Introduction

In stars of mass 0.7 My < M < 2.2 M, the onset of helium burn-
ing constitutes a major event — the core helium flash. The pre-
flash stellar core contains a white dwarf-like degenerate struc-
ture with a central density of about 10° g cm™, and an off-
center temperature maximum resulting from plasma- and photo-
neutrino cooling. When helium burning commences in this de-
generate core, the liberated nuclear energy cannot be used to ex-
pand and cool the layers near the temperature maximum. Instead
it causes further heating and a strong increase of the nuclear en-
ergy release. Only when convection sets in, part of the excess
energy can be transported away from the burning regions, in-
hibiting thereby a thermonuclear explosion. At the end of the
flash, the core has been expanded to densities of the order of
10* g cm™3, with helium burning quiescently in the center, and
the star has settled on the horizontal branch. While standard stel-
lar evolution calculations have been very successful in reproduc-
ing observations of stars on the main sequence and the red giant
branch (RGB), we are forced to recognize several discrepancies
concerning the post-flash phases. In particular, we recall the lack
of understanding of the horizontal-branch morphology, of low-
luminosity carbon stars, and of hydrogen-deficient stars. Since
all these (and other) problems appear after the RGB phase, it is
plausible to suspect that the helium flash may be treated incor-
rectly in standard (hydrostatic) stellar evolution calculations.

The conceptual problems associated with the helium core
flash arise from the extremely short timescales involved in
the event. While the pre-flash evolution proceeds on a nuclear
timescale of ~10% yrs, typical e-folding times for the energy
release from helium burning can become as short as hours at
the peak of the flash. Such short times are comparable to con-

vective turnover times, i.e., the common assumptions used for
the treatment of convection in stellar evolution codes (instanta-
neous mixing, time-independence) are no longer valid. In addi-
tion, the assumption of hydrostatic equilibrium no longer needs
to be fulfilled. Early attempts to overcome these assumptions
by allowing for one-dimensional hydrodynamic flow (Edwards
1969; [Zimmermann|1970; \Villere|1976; Wickett| 1977) remained
inconclusive. The results ranged from a confirmation of the stan-
dard picture to a complete disruption of the star.

Cole & Deupree, (1980, [1981)) performed a two-dimensional
hydrodynamic study of the core helium flash. However, their
study was limited by the computational resources available at
that time to a rather coarse computational grid (23 X 4 zones),
a diffusive first-order difference scheme (weighted donor cell),
and a short time evolution (10° s compared to the duration of
the core helium flash of 10''s from the onset of convection).
They observed, at the radius of the off-center temperature max-
imum, a series of thermonuclear runaways where heat transport
by convection and conduction was sufficiently efficient to limit
the rise of temperature. Each runaway modified the convective
flow pattern and led to some inward transport of heat across the
off-center temperature inversion. During the simulation the time
interval between runaways continuously shortened, and the max-
imum temperature steadily increased until it eventually exceeded
10°K.

Deupree & Cole| (1983) and (Deupree||1984alb) confirmed
these findings using two-dimensional models with an improved
angular resolution (6° instead of 20°), and three-dimensional
simulations (with 8 X8 angular zones in a 80° x80° cone, i.e., 10°
angular resolution). [Cole et al.| (1985) performed stellar evo-
lution calculations of the core helium flash using a model for
convective overshooting based on these hydrodynamic simula-
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Fig. 1. Theoretical evolutionary track of a 1.25 M, star with a
metallicity Z=0.02 in the H-R diagram. The core helium flash
begins at the tip of the red giant branch indicated by the arrow.

tions. They found that the evolution of the core helium flash
is unchanged except for about the last week prior to its peak.
Furthermore, the possibility of mixing of core material into the
hydrogen shell was suggested by numerical experiments where
point source explosions were enforced (Deupree|1984b, |1986;
Deupree & Wallace||1987). These results raised the hope that
some problems concerning abundance anomalies and mass loss
could be solved by understanding the core helium flash.

The results of the hydrodynamic simulations, though vary-
ing in details, indicated a dynamic flash that could disrupt the
star (Deupree||1984a) or at least lead to a significant loss of the
envelope (Cole & Deupree|1981). The simulations were critized
by [[ben & Renzini| (1984) and |Fujimoto et al.| (1990) because
(i) the radial grid was too coarse, (ii) the gravitational poten-
tial was “frozen in” (i.e., time-independent), and (iii) because a
“closed” outer boundary was used. The latter two assumptions
tend to underestimate the expansion of the core, and hence tend
to overestimate the violence of the flash.

Since the work of Deupree the computational capabilities
have grown tremendously and methods to simulate hydrody-
namic flow have improved considerably. Thus, the limitations of
the early studies concerning the grid resolution and the numeri-
cal treatment, which were the main points of critique, meanwhile
can be reduced considerably. At the same time, we still have no
coherent picture up to what extent and under what circumstances
(stellar mass and composition) hydrodynamic core helium flash
evolution could differ from canonical stellar evolution calcula-
tions. It therefore appears necessary to have a new and fresh look
into the dynamics of the core helium flash. Incidentally, Deupree
(1996) himself re-examined the problem already more than a
decade ago concluding that the flash does not lead to any hydro-
dynamic event. Quiescent behavior of the core helium flash is
also favored by recent three-dimensional simulations (Dearborn
et al.|2006; |Lattanzio et al.|2006) where the energy transport due
to convection, heat conduction, and radiation seems to be always
able to transport most of the energy generated during the flash
quiescently from the stellar interior to the outer stellar layers,
implying no hydrodynamic event, and hence a quasi-hydrostatic
evolution.
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Fig.2. Temperature distribution as a function of radius. The
dashed line gives the distribution obtained from stellar evolu-
tionary calculations with the “Garstec” code, while the solid line
shows the mapped and stabilized distribution used as initial con-
dition in the hydrodynamic simulations. CVZ marks the convec-
tion zone.

In the following we present a completely independent inves-
tigation of the core helium flash by means of one-dimensional
and two-dimensional hydrodynamic simulations using state-of-
the-art numerical techniques, a detailed equation of state, and a
time-dependent gravitational potential. The hydrodynamic cal-
culations cover about 8 hrs of the evolution near the peak of the
core helium flash. In passing we note that the present investiga-
tion was instigated by a similar, meanwhile technically obsolete
study which was performed by Kurt Achatz (Achatz|1995) in the
context of his diploma thesis. The results of this latter study have
unfortunately never been published.

The paper is organized as follows. In Sect.2 we discuss
briefly the stellar input model for the simulations along with
some results from hydrostatic core helium flash calculations.
In Sect. 3 the hydrodynamics code and the numerical methods
are introduced, while the results of our one and two-dimensional
hydrodynamic runs are presented in Sect.4 and 5, respectively.
Finally, the conclusions are given in Sect. 6.

2. Initial stellar models and hydrostatic calculations

Table[I] summarizes some properties of our initial model, which
was obtained from stellar evolutionary calculations with the
“Garstec” code (Weiss & Schlattl| 2000, 2007). It corresponds
to a star with a mass of 1.25 M and a metallicity Z = 0.02 at
the peak of the core helium flash (Ly, ~ 10°Ly) evolved with a
hydrostatic stellar evolution code. During this violent episode,
the star is located at the tip of the red giant branch in the H-R
diagram (Fig.[T), hence being a red giant consisting of a small
central helium core with a radius r ~ 1.9 10° c¢m, surrounded by
a hydrogen burning shell and a huge convective envelope with
a radius r~ 10'3 cm. Figure[2] shows the temperature distribu-
tion inside the helium core, which is characterized by an off-
center temperature maximum 7,,,,, from where the temperature
steeply drops towards smaller radii and follows a super-adiabatic
gradient towards larger radii (convection zone). The radius 7,
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Table 1. Some properties of the initial model: total mass M, stellar population, metal content Z, mass My, and radius Ry, of the
helium core (X(*He) > 0.98), nuclear energy production in the helium core Ly,, maximum temperature of the star 7},,, and radius

Fimax and density p,.., at the temperature maximum.

MOdel M POp Z MHe RHe LHe Tmux Fimax Pmax
[My] (Mol [10°cm] [10°Lo] [10K] [10°cm] [10° gem™]
M ‘ 1.25 | 0.02 0.38 1.91 1.03 1.70 4.71 3.44
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Fig. 3. Left panel: Pressure (in 10> dyn cm™2) and density (in 10° g cm™3) distribution of the mapped and stabilized initial model.
The pressure and density profile of the original stellar evolution cannot be distinguished from the profiles of the mapped model on
this scale. Right panel: Chemical composition of the initial model showing a dominant fraction of helium and an apparent peak in
12C at the position of the temperature maximum resulting from a non-instantaneous treatment of convective mixing.

of the temperature maximum coincides with the bottom of the
convection zone. The almost discontinuous temperature stratifi-
cation near T, (temperature inversion), where the temperature
rises from 7 107K to 1.7 108K, results from an interplay between
neutrino cooling and heating by nuclear burning. Figure[3|shows
the density and pressure stratification of the model. One recog-
nizes that the temperature inversion is correlated with a drop in
density. A detailed view reveals that the steep increase of tem-
perature corresponds to a decrease of the density by 11%, an
increase of the ion pressure by 70%, and a drop of the electron
pressure by 9%, respectively. Even at the peak of the core he-
lium flash, the helium core is still strongly degenerate: compared
to the electron pressure the ion pressure is lower by a factor of
6, while the radiation pressure is smaller by almost 3 orders of
magnitude.

The stellar model contains the chemical species I, 3He,
“He, 12C, 13C, N, PN, %0 ,170, ?*Mg, and ?8Si. However,
since we are here not interested in the detailed chemical evolu-
tion of the star, it is not necessary to consider all of these species
in our hydrodynamic simulations, as the triple-a reaction dom-
inates the energy production rate during the core helium flash.
For our hydrodynamic simulations we thus adopt only the abun-
dances of “He, '>C, and '°0. The remaining composition is as-
sumed to be adequately represented by a gas with a mean molec-
ular weight equal to that of *°Ne (Fig.[3).

The stellar evolutionary model is one-dimensional, hydro-
static, and was computed on a Lagrangian grid of 2294 zones.
Since only the helium core of the model (without its very cen-
tral part; see Sect. is of interest to us, we consider only the

< r < 1.210° cm, and interpolate all
relevant quantities (e.g., density, temperature, composition) onto
our Eulerian, lower resolution computational grid using polyno-
mial interpolation (Press et al.|1992). Due to the interpolation er-
rors and subtle differences in the input physics, the interpolated
model is no longer in perfect hydrostatic equilibrium. In order
to perfectly balance also the gravitational and pressure forces
in the interpolated model, we use an iterative procedure in the
first hydrodynamic timestep to minimize the numerical fluxes
across zone boundaries. The whole process results in a small
temperature decrease with respect to the temperature profile of
the original model (Fig.[2). The differences do not exceed a few
percent depending on the radial resolution of the Eulerian grid.
The resulting changes in the density and pressure profiles are
negligible due to the strong electron degeneracy of the gas. The
main cause for the slight de-stabilization of the mapped initial
stellar model is the use of different equations of state in both
codes. The hydrodynamic code employs the equation of state by
Timmes & Swesty| (2000), whereas the “Garstec” code relies on
the OPAL equation of state by Rogers et al.|(1996). At a given
density, temperature, and composition in the helium core during
the flash, these equations of state give pressure values which dif-
fer typically by 1 % the difference being most apparent in regions
where the matter is highly degenerate.

initial data for 2108 cm <

Given that the maximum temperature in the helium core is
T ~ 110%K, the stellar model reaches the peak in nuclear en-
ergy production rate during the core helium flash in less than
10* yrs. The rate at which the nuclear energy production rises is
highly non-linear. From the onset of the core helium flash at a
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Fig. 4. Temporal evolution of the helium luminosity Ly, (solid)
versus the hydrogen luminosity Ly (dash-dotted) of model M
during the core helium flash.

helium luminosity Ly, ~ 10'Lg, it takes almost 30000 yrs to
reach Ly, ~ 10*Lg,, whereas it requires only 40yrs to reach
Ly, ~ 10'° The first core helium flash is followed by four
subsequent mini flashes (Fig.[) identified as thermal pulses by
Thomas| (1967)) until the degeneracy in the helium core is lifted
completely and the star settles down on the horizontal branch
quiescently burning helium in its core.

Since the computed model is a Pop I metal rich star, it does
not experience any hydrogen entrainment during the core helium
flash (Fujimoto et al.[1990; Schlattl et al.[2001).

3. Input physics and numerics

3.1. Thermal transport

The energy flux density due to thermal transport is given by
Jeond = —Keond VT, (1)

where K.onq is the total conductivity (erg K™' ecm™' s™!)and VT
the temperature gradient.

In the helium core, which is partially degenerate, thermal
transport due to both radiative diffusion and electron conduction
is important, while heat transport by ions is negligible, i.e.,

Keond = Ky + K, . 2
The radiative conductivity is given by

4ac T3
y = o

e 3)
where «, a, and ¢ are the Rosseland mean of the opacity, the radi-
ation constant, and the speed of light, respectively. For the opac-
ity, we use a fit formula due to [Iben| (1975)) which is based on
the work by |Cox & Stewart| (1970bla)). It takes into account the
radiative opacity due to Thomson scattering, free-free (Krames
opacity), bound-bound, and bound-free transitions.

For the thermal transport by electron conduction we consider
contributions due to electron-ion, and electron-electron colli-
sions which are treated according to [Yakovlev & Urpin| (1980),
and |Potekhin et al.|(1997).

3.2. Neutrino emission

The evolutionary time covered by our hydrodynamic simulations
is too short for neutrino cooling to be of importance. The neu-
trino losses computed from the analytic fits of Itoh et al.| (1996)
give a cooling rate € < 10% erg g~! s7!, or a corresponding de-
crease of the maximum temperature by |[AT| < 107! K over the
longest simulations we performed. Hence, cooling by neutrinos
was neglected.

3.3. Equation of state

The equation of state employed in our hydrodynamic code
includes contributions due to radiation, ions, electrons, and
positrons. Thus, the total pressure is given by

P=P,+Pj, + P, +P,, 4)
where a
P, = §T4 ®)

is the radiation pressure of a black body of temperature T (a is
the universal radiation constant), and

pXi
Pion —Z%A—iT— %pTZYi ©)
is the pressure of a non-relativistic Boltzmann gas of density p
consisting of a set of ions of abundance Y; = X;/A; (X; and A;
are the mass fraction and the atomic mass number of species i,
respectively). P, + P, is the pressure of an arbitrarily degenerate
and relativistic electron-positron gas based on table interpolation
of the Helmholtz free energy (Timmes & Swesty|[2000).

3.4. Nuclear burning

The energy generation rate by nuclear burning is given by

Yi (N

where
Am; = M; — Aim, . (8)

is the mass excess of a nucleus of mass M;, and m,, is the atomic
mass unit.

Abundance changes are described by a nuclear reaction net-
work consisting of the four a-nuclei 4He, 2C, 60, and *Ne,
coupled by seven reactions (including the triple-« reaction). We
used the reaction rate library of Thielemann (private communi-
cation), which gives the product of the Avogadro number N4 and
the velocity averaged cross section (ov) in terms of the fit for-
mula

n
Nylov) = Zexp[cll + Cle_l + C31T_1/3 + C4lTl/3
=1

+ CSIT + C61T5/3 + C7; In T] . (9)
with rate dependent coeflicients c¢; (1 < i < 7). Up to three sets
of coefficients (i.e., 1 < n; < 3) are used. The total reaction rate

due to all one body, two body, and three body interactions has
the form (Miiller|1998)):

Y, = Z cidjY; + Z ¢i(j, K)pNs(oVvy i Y ;Y
J

Jik
+ il PPNV Y iYeY
Jik,l

(10)
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where the weight factors ¢; inhibit multiple counts in the sums
over the nuclei j,k,I. The following nuclear reactions were con-
sidered:

He* + C? — 0% + y
He* + 0% — N + y
0% + y — He + CP?
Ne®  + 0% - He* + 0'°
c?2 + C2 5 N 4+ H
He* + He* + Het — C? + vy
c? 4+ 0% - He* + He* + He

Mathematically this results in a nuclear reaction network con-
sisting of seven non-linear first order differential equations of
the form given by Eq. (I0) and a temperature equation

orT oT

— =& — 11
ot 8nucag» (11

where ¢ is the specific internal energy.

The effects of electron screening were included according to
Dewitt et al.| (1973) for the triple-a reaction rate, and in the weak
screening regime only.

3.5. Evolutionary equations

The hydrodynamic and thermonuclear evolution of the core he-
lium flash was computed by solving the governing set of fluid
dynamic equations in spherical coordinates on an Eulerian grid.
Using vector notation these equations have the form,

Q+VF:S

ot (12)

with the state vector U

o
v=|*
pe
pY;

13)

the flux vector F

PV
PVV
(pe + P)V + fcond
pYiv

F= (14)

and the source vector S

0
—pVOd
—pVv - Vo + pénuc
pYi

wn
Il

15)

withi = 1,..., Ny where Ny, is the number of nuclear species
considered in the nuclear reaction network, and p, p, v and @ are
the density, pressure, velocity and gravitational potential. respec-
tively. The term f,,,s describes energy transport by thermal con-
duction (see Sect. 3.1), and &,,. and the Y; are the nuclear energy
generation rate and the change of the mass fraction of species
i due to nuclear reactions, respectively (see Sect. 3.4). The total
energy density pe = pe + pvv/2 with e being the specific total
energy.

3.6. Code

The numerical simulations were performed with a modified ver-
sion of the hydrodynamic code Herakles (Kifonidis et al.[[2003|
2006), which is a descendant of the code Prometheus devel-
oped by Bruce Fryxell and Ewald Miiller (Miiller et al.|[1991}
Fryxell et al.[1991). The hydrodynamic equations are integrated
to second order accuracy in space and time using the dimen-
sional splitting approach of |Strang (1968), the PPM reconstruc-
tion scheme (Colella & Woodward|1984), and a Riemann solver
for real gases according to|Colella & Glaz (1984). The evolution
of the chemical species is described by a set of additional conti-
nuity equations (Plewa & Miiller|1999). Source terms in the evo-
lutionary equations due to self-gravity and nuclear burning are
treated by means of operator splitting. Every source term is com-
puted separately, and its effect is accounted for at the end of the
integration step. The viscosity tensor is not taken into account
explicitly, since the solution of the Euler equations with the
PPM scheme corresponds to the use of a sub-grid scale model
that reproduces the solution of the Navier-Stokes equations rea-
sonably well (Meakin & Arnett 2007). Thermal transport is
treated in a time-explicit fashion when integrating the evolution-
ary equations. Self-gravity is implemented according to Miiller
& Steimnetz| (1995), while the gravitational potential is approx-
imated by a one-dimensional Newtonian potential which is ob-
tained from the spherically averaged mass distribution. The nu-
clear network is solved with the semi-implicit Bader-Deufelhard
method which utilizes the Richardson extrapolation approach
and sub-stepping techniques (Bader & Deuflhard| 1983} Press
et al.[1992) allowing for very large effective time steps.

The code is vectorized and allows for an adjustment of the
vector length to the memory architecture. Therefore, an optimal
performance on both vector and super-scalar, cache-based ma-
chines can be achieved.

A program cycle consists of two hydrodynamic timesteps
and proceeds as follows:

1. The hydrodynamic equations are integrated in r-direction (r-
sweep) including the effects of heat conduction. The time
averaged gravitational forces are computed, and the momen-
tum and the total energy are updated to account for the grav-
itational source terms. Subsequently, the equation of state is
called to update the thermodynamic state due to the change
of the total energy.

Step (1) are repeated in #-direction (6-sweep).

. The nuclear network is solved in all zones with significant
nuclear burning (T > 108K). Subsequently, the equation of
state is called to update the pressure and the temperature.

4. In the subsequent timestep the order of Step (1) and (2) is re-
versed to guarantee second-order accuracy of the time inte-
gration, and Step (3) is repeated with the updated quantities.

5. The size of the timestep for the next cycle is determined.

W

When using spherical coordinates, the CFL stability condi-
tion on the timestep is most restrictive near the origin of the
grid. However, inside a region beneath the off-center tempera-
ture maximum there are no significant non-radial motions to be
expected during the evolution of the core helium flash except
in the immediate vicinity of the temperature inversion, where
convective overshooting may occur. Hence, cutting out the very
center of the computational grid does not lead to any numerical
bias, but saves considerable amounts of computational time. In
the radial direction we used a closed (i.e., reflective) outer and
inner quasi-hydrostatic boundary obtained by means of polyno-
mial extrapolation, which significantly suppresses any artificial
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Fig. 5. Evolution of the temperature maximum 7, in the one-
dimensional models JE2 (solid), JE3 (dashed), and JE4 (dash-
dotted), respectively.

Fig. 6. Temperature stratification across the helium core in
model JE4 during the runaway at #; = 12270 s (dotted), 7, =
12352 s (dashed), 13 = 12392 s (dash-dotted), and t, = 12762 s
(dash-dot-dotted), respectively. The solid line corresponds to the
initial model (#y), and the arrow indicates the direction of the
flame propagation.

velocity fluctuations resulting from an imbalance of gravitational
and pressure forces in the boundary zones. For two-dimensional
runs, the boundary conditions in the angular direction are reflec-
tive as well.

After interpolation and stabilization, the initial model in the
two-dimensional simulations had to be perturbed explicitly to
trigger convection, because an initially exactly spherically sym-
metric model remains that way for ever when evolved in spheri-
cal coordinates with our code. We imposed a random flow field
with a maximum (absolute) velocity of 10 cm s~!, and random
density perturbations with Ap/p < 1072,

4. Results of 1D simulations

Table 2. Some properties of the 1D simulations: number of ra-
dial grid points (N,), radial resolution (Ar in 103cm), time up to
the thermonuclear runaway, t;,,, and maximum evolution time
tmax (bothin s).

run N, Ar i Lnax

JE2 180 5.55 40700 42500
JE3 270 3.77 14600 16250
JE4 360 2.77 12300 15600

We have performed several one-dimensional simulations us-
ing model M, which differ only by their grid resolution (see
Table[2) to see whether without allowing for convective flow a
thermonuclear runaway can be avoided.

Figure[5|demonstrates that heat conduction and adiabatic ex-
pansion alone fail to stabilize the model, i.e., one-dimensional
hydrodynamic simulations result in a thermonuclear runaway.
Initially, the maximum temperature increases only slowly, but
it starts to rise rapidly after a time #,,, (Tab.2) up to a value
T ~ 10° K. For instance, from the temperature evolution of
model JE4 one can determine that a local hot spot with a tem-
perature of 2.3 108 K will runaway after about 80 s (Fig.@). The
time at which the runaway is triggered depends on the grid reso-
lution, being longer in models with lower resolution (Fig.[5).

In every case, a thermonuclear flame with 7" ~ 10° K ulti-
mately forms and propagates outwards with a subsonic veloc-
ity depending on the grid resolution. Since our two-dimensional
(more realistic) simulations do not show such a behavior, we will
refrain from further discussing details of the one-dimensional
simulations.

5. Results of 2D simulations

In Table[3] we summarize some characteristic parameters of our
two-dimensional simulations that are based on model M.

We will first discuss one specific simulation DV4 in some
detail, which serves as a standard to which we will compare the
results of other runs. Thereafter, we will discuss some general
properties of all 2D simulations. Every simulation covered ap-
proximately 30000 s (~ 8hrs) of the evolution near the peak
of the core helium flash. They were performed on an equidis-
tant spherical grid encompassing 95% of the helium core’s mass
(X(*He)>0.98) except for a central region with a radius of
r = 210% cm which was excised in order to allow for larger
timesteps. As this radius is sufficiently smaller than the radius of
the temperature inversion (r ~ 5 108 cm), its presence does not
influence the convection zone.

5.1. Simulation DV4

After the start of the simulation the initial velocity perturbations
begin to grow in a narrow layer just outside the temperature max-
imum (r ~ 510% cm), i.e., in the region heated by nuclear burn-
ing. Later on at t ~ 800 s, several hot bubbles appear, which
rise upward with maximum velocities ~ 4 10° cm s~ (Fig.[8).
They are typically about 0.2% hotter than the angular averaged
temperature at a given radius. The “He mass fraction of all hot
bubbles is about 0.4% less than the corresponding angular aver-
aged value since helium has been depleted in the bubbles by the
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Table 3. Some properties of the 2D simulations: number of grid points in radial (N,) and angular (N,), radial (Ar in 108cm) and
angular grid resolution (A#), characteristic length scale [, of the flow (in 108cm), characteristic velocity v, of the flow (in 10% cm s71),
Reynolds number R, associated with the numerical viscosity of our code (Porter & Woodward||1994), damping time-scale due to
the numerical viscosity t,, typical convective turnover time 7,, and maximum evolution time #,,,, (in s), respectively.

run grid Ar A6 I Ve R, t, t, nax
DV2 180x90 5.55 2° 4.7 1.03 1900 11000 910 30000
DV3 270x180 3.70 1° 4.7 1.46 8900 36000 640 30000
DV4 360x240 2.77 0.75° 4.7 1.52 21000 83000 620 30000
‘I .74 T T T T T j 2‘5 [ T T T T T
T __20¢
o 1.70F . 'n f
- e 1.5
(@) O L
N e [
Z 1.0
= 1.66 ~— [
> I
0.5
<T>mox I
1.62 . . . . .
0 5 10 15 20 25 30 0 2 4 6 8 10 12

Time (10° s)

r (10% cm)

Fig.7. Left panel: Temporal evolution of the horizontally averaged temperature maximum (7 )., (solid), and of the global temper-
ature maximum 7,,, (dotted) in model DV4. The dashed line corresponds to the temporal evolution of the maximum temperature
in the stellar evolutionary calculations of the model M. Right panel: The r.m.s convection velocity v, in simulation DV4 averaged
over 6000 s (solid) versus the convection velocity predicted by the mixing length theory v,,;; (dashed).

triple @ reaction. Consequently, '>C and '°O (produced in helium
burning) are enhanced by ~ 0.7% in the bubbles.

During the first 700 s of the evolution, the off-center maxi-
mum mean temperature (7 '), rises with a rate of ~ 1000 K s~
until it reaches a value ~ 1.67 10® K. At this moment, from the
region around the (7)., the bubbles emerge and cause its de-
crease by ~ 2.6 10° K in just 570 s corresponding to a tempera-
ture drop rate of 4540 K s7! (Fig.. This phase marks the on-
set of convection where a fraction of the thermonuclear energy
released via helium burning starts to be efficiently transported
away from the burning regions by matter flow, thereby inhibit-
ing a thermonuclear runaway.

Once the bubbles form, they rise upwards and start to inter-
act and merge, i.e., the convective layer begins to grow in radius.
About ~ 1300 s after the start of the simulation, the whole con-
vection zone is covered by an almost stationary flow pattern with
an almost constant total kinetic energy of the order of 10* erg.
At this time vortices dominate the flow pattern. They extend
across the whole convective region (~ 2.1H,), and are of ap-
proximately similar angular size, one vortex covering about 40
degrees (diameter ~ 5 108 cm). Usually we find about four such
vortices with two dominant up-flows of hot gas at § ~ 60°, and
6 ~ 120°, respectively (see, e.g., Fig.[). These large vortices are
rather stable surviving until the end of our simulations. Typical
convective flow velocities are v, ~ 1.510° cms™!, and thus
well below the local sound speed (cs ~ 1.7 108 cms™), ie,a

vortex requires about 600 s for one rotation. The persistence of
vortices is not typical for turbulent convection.

The dominance of large scale structures might be a conse-
quence of the usage of a Riemann solver based compressible
code. The Mach number M of the convective flow is ~ 0.01.
Is PPM suited for this kind of subsonic flow? This question,
which is beyond the scope of the present study, needs to be in-
vestigated, as it is know that the artificial viscosity of standard
Riemann solver methods exhibit incorrect scaling with the flow
Mach number as M — 0. (Turkel||1999) i.e., the inherent artifi-
cial viscosity of PPM may be too high for adequately simulating
flows at low Mach numbers (e.g., M ~ 0.01).

Energy transport by convection within the vortices is concen-
trated into a few narrow upward drafts, compensated partially,
but only to a small extent, by down-flows. The vortices transport
energy mostly along their outer edges. Matter in their centers
does not interact with regions of dominant nuclear energy pro-
duction at all.

The horizontally averaged value of the maximum temper-
ature, barring some additional temperature fluctuations due to
convection, is slightly rising after the onset of convection during
the whole subsequent evolution with a rate of around 40 K s!
(see Fig.[7). This rate seems to be about 60% smaller than the
rate seen in the stellar evolutionary calculations (~ 100 K s71),
which could be either a result of the initially lower value of the
temperature maximum after the stabilization phase at the begin-
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ning of the simulation (see Sec. 2) or more dynamic convective
motion, since the mean convective velocities v, exceed the ve-
locities predicted by mixing length theory, v,,;, on average by a
factor of four (Fig.[7).

Convection distributes the energy in such a way that the tem-
perature gradient V never significantly exceeds V,; in model M.
Although, the value of V established at the beginning of the sim-
ulation deviates slightly after some time from the gradient at
later times, it remains close to the adiabatic temperature gradi-
ent V,, (the relative difference is less than 1%). In this respect

there is thus no indication of any significant deviation from the
situation obtained in stellar evolutionary calculations.

The apparent spike in the initial '>C distribution at the loca-
tion of the temperature maximum (Fig.[3) is a result of a non-
instantaneous treatment of the convective mixing in stellar evo-
lutionary calculations. It turns out that a non-instantaneous treat-
ment of mixing is not required during the core helium flash since
simulation DV4 indicates that the spike gets smeared out imme-
diately after convection is triggered. This implies that the as-
sumption of instantaneous mixing is a good approximation lo-
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cally, despite the strong temperature dependence of the energy
production rate.

5.1.1. Energy fluxes

Fig.Q| displays the individual contributions of various energy
fluxes, time-averaged over many convective turnover times,
i.e., only the average effect of convection should be apparent.
The derivation of these quantities is explained in Appendix A.
All energy fluxes, F, describe the amount of energy which is
transported per unit of time across a sphere of given radius.
Most of the nuclear energy production in the convection zone
takes place in a relatively narrow shell around the location of
the temperature maximum. This energy is transported away by
both convection and thermal transport due to heat conduction
and radiation. The convective (or enthalpy) flux, F¢, varies from

-0.210* erg s7! up to 1.6 10*? erg s~!. The kinetic flux, F,
reaches a value of at most 1 10*? erg s~!, and is mostly positive
in the convection zone, i.e., the motion has a predominantly up-
ward direction. This implies that the fast narrow upward directed
streams are dominating over the slower and broader downward
flows. The ratio of the extreme values of F¢ and Fg is nearly
2:1, i.e., nuclear energy is mainly stored in the internal energy of
rising hot gas.

Convective and kinetic energy flux together transport more
than 90% of the generated nuclear energy upward through the
convection zone, the value is dropping to zero towards its border.
Part of the heat released in the nuclear processes is in fact trans-
ported downwards towards the inner edge of the temperature in-
version. Almost none of the nuclear energy reaches the surface
of the helium core, neither by convection nor by conduction,
i.e., all the energy released is deposited within the core causing
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its expansion. Energy transport due to heat conduction and radi-
ation is everywhere negligible compared to the other contribu-
tions. The viscous flux, Fy, is small as well, and losses due to
friction, Py, only influence the dynamics significantly near the
borders of the convection zone (Achatz|[1995)).

For completeness we also consider the flux and source terms
of the kinetic energy (see Appendix A), which allow for a further
insight into the operation of convection. The radial profile of the
source term Py, corresponding to the work done by buoyancy
forces, shows that the vertical convective flows are accelerated
due to their density fluctuations in the entire region of dominant
nuclear burning (burning zone) above T,,,. Corresponding pres-
sure fluctuations (causing expansion due to a pressure excess,
respectively compression due to a pressure deficit) powered by
the volume work Pp show that the gas within the burning region
expands, which effectively again implies that an acceleration oc-
curs. Due to the importance of Pp in the convection zone, the
acoustic flux Fp, which transports pressure fluctuations, reaches
a value comparable to that of the kinetic flux Fk, its value being
negligible elsewhere.

5.1.2. Turbulent entrainment, temperature inversion and the
growth of the convection zone

Turbulent entrainment (commonly referred to as overshoot-
ing) is a hydrodynamic process allowing for mixing and heat-
ing in regions which are convectively stable according to
the Schwarzschild or Ledoux criterium. Turbulent entrainment,
i.e., penetration beyond the formal convective boundaries, takes
place at both edges of the convection zone, and is driven by
down-flows and up-flows. We study the entrainment by moni-
toring the temperature changes and the '>C concentration at the
(formal) edges of the convection zone. '>C is the most suitable
element for investigating the extent of convective mixing, be-
cause at the beginning of the simulations, it is mostly absent
outside the convection zone, and therefore can be enhanced there
only due to overshooting.

At t = 30000s, i.e., near the end of simulation DV4, the tem-
perature inversion is located at r = 4.65 10° cm (Fig.[10). Thus,
it is about 70 km closer to the center of the star than it was at the
beginning of the simulation (4.72 10% cm). Its shape remains al-
most unchanged and discontinuous during the whole evolution,
and its propagation speed can be estimated from the heating rate
8T /6t ~ 2760 K s~! and the local gradient 6T /6r ~ 12 K cm™!
at the steepest point of the inversion:

v = —(6T/61) | (6T /6r) ~ 2.3 ms™! (16)

This speed is significantly higher than the propagation speed due
to the heat conduction alone. Note that the energy flux carried
by the heat conduction is seven orders of magnitude smaller than
the energy flux carried by the convection. Assuming that the con-
vective energy flux at the position of the temperature inversion
(F. ~ 0.210% erg s7') is used up completely to heat the lay-
ers beneath the temperature inversion, a typical heating rate of
T = E/Cin, ~ 1250 K 57! can be derived, which is a bit smaller
than the value inferred from the simulation, but still in good
agreement. C;,, is the heat capacity of the layers including the
temperature inversion (Cj,, ~ 1.610% erg K™!). This implies
that turbulent entrainment leads to a strong heating of the inner
neutrino cooled center of the star that occurs on timescales which
are relatively short compared to stellar evolutionary timescales.
Such a heating was studied already by Deupree & Cole| (1983))
and|Cole et al.|(1985)) who obtained qualitatively similar results.
Note, that in the one-dimensional stellar evolution calculations
the temperature maximum moves outwards with time.

Assuming that the estimated propagation speed of the tem-
perature inversion remains constant, it would reach the center of
the helium core and lift the electron degeneracy there in just 24
days. This scenario would rule out the occurrence of mini-flashes
subsequent to the main core helium flash, which are observed in
stellar evolutionary calculations (Fig.[). Moreover, as in stars
with higher mass and helium abundance the flash occurs closer
to the center (Sweigart & Gross||1978)), in these stars the center
can be reached even faster.

We have also found an influence of the turbulent entrain-
ment on the outer boundary of the convection zone. In the ini-
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tial model this boundary is located at » = 9.2 10% cm and corre-
sponds to a discontinuous change in the distribution of elements
(Fig.[3), which in stellar evolution models results from the as-
sumed instantaneous mixing. In such models all species in the
convectively unstable region are mixed instantaneously across
the whole convection zone, while the regions which are assumed
to be convectively stable do not experience any mixing at all.

The distribution of '2C at the end of our simulation DV4
is depicted in Fig.[I0] Compared to the initial model there is a
clear shift of the carbon discontinuity at the outer edge of the
convection zone to a larger radius (» = 9.7 108 cm). In hydro-
dynamic simulations the gas overshoots naturally from the con-
vectively unstable to the formally convectively stable region be-
cause of its inertia. At the boundaries of the convection zone the
overshooting seems always to destroy the stability according to
the Schwarzschild criterium transforming the originally convec-
tively stable region into a convectively unstable one. This allows
the boundary to propagate further when a subsequent load of gas
will try to overshoot at a later time. We have estimated the prop-
agation speed of the outer boundary of the convection zone to
be about ~ 14 m s~!. With a propagation speed of this order the
convection zone would reach the hydrogen rich layers surround-
ing the helium core at a radius = 1.9 10° cm and trigger a hy-
drogen injection flash (Schlattl et al.|[2001) within just 10 days.
Expected hydrodynamic phenomena due to the extra hydrogen
mixing into the helium burning shell via such an extended con-
vection zone could alter the structure of the star significantly.
Moreover, additional nucleosynthesis could be triggered, since
the hydrogen entrainment will result in the production of neu-
trons and possibly also of some s-process elements. The hydro-
gen injection flash in Pop I stars is in contradiction to the canon-
ical scenario since stellar evolutionary models fail to inject hy-
drogen to the helium core during the core helium flash, unless
their metallicity is close to zero (Fujimoto et al.[1990).

Since the turbulent entrainment at the inner convective
boundary involved just three radial grid zones over the longest
simulations we performed, the estimated propagation velocity
must be taken with care and be considered as an order of mag-

nitude estimate. The turbulent entrainment at the outer convec-
tive boundary involved eighteen numerical zones in radial di-
mension, therefore the estimated propagation velocity has higher
confidence level, but still it should be taken as a rough number.

5.1.3. Two-dimensional models with different resolution

We find only minor differences between the properties of model
DV4 and those of the corresponding models computed with a
different grid resolution.

First, the initial mapping process leads to different interpo-
lation errors for different grid resolutions. However, the major
source of discrepancy in this phase of the calculation is the sta-
bilization itself. The iterative procedure which minimizes the
numerical fluxes across zone boundaries (in order to keep the
model in hydrostatic equilibrium) tends to decrease the temper-
ature stronger in models with lower resolution.

Another source of discrepancy is caused by the numerical
diffusion which is obviously larger in models with lower resolu-
tion. Therefore, model DV2 suffers more from numerical diffu-
sion than model DV3 or DV4, which is evident from Figure@
The temperature inversion, which is almost discontinuous at the
beginning, gets smoothed out faster in model DV2. Note, that the
temperature inversion is situated at smaller radii for models with
higher resolution, since the typical flow velocities are higher in
better resolved models (Tab., i.e., the turbulent entrainment is
more effective, and the temperature inversion propagates with
higher speed.

Nevertheless, models DV3 and DV4 seem to be well re-
solved since their mutual differences are minor. The temporal
evolution of their total nuclear energy production rate, for in-
stance, overlaps almost perfectly (Fig.[TT). The temperature fluc-
tuations in the two-dimensional models are suppressed stronger
in the better resolved models. Contrary to|Dearborn et al.| (2006),
the more intense temperature fluctuations occurring in models
that we have calculated with grid resolutions even lower than
that of model DV2, did not lead to an explosion.
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6. Summary

We have presented one and two-dimensional (i.e., axisymmetric)
hydrodynamic simulations of the core helium flash near its peak
covering about eight hours of evolution time. We find no hydro-
dynamic events which deviate significantly from the prediction
of stellar evolutionary calculations. After an initial adjustment
phase the 2D models reach a quasi-steady state where the tem-
perature and nuclear energy production rate are only slowly in-
creasing.

Convection plays a crucial role in keeping the star in hy-
drostatic equilibrium. Based on our two-dimensional simulation
with the highest grid resolution (model DV4), convection fol-
lows approximately the predictions of mixing length theory, al-
though the temperature gradient of our dynamically evolved 2D
models deviates by about 1% from that of the initial model which
is obtained from (1D) stellar evolutionary calculations. The max-
imum temperature (7 '),,,, in out best resolved model DV4 rises
with a rate of about 40 K s~!, which is about 60% smaller than
the rate predicted by stellar evolutionary calculations. The mean
convective velocity exceeds the velocities predicted by mixing
length theory by up to factor of four.

During the early 2D dynamic evolution the size of the con-
vective region does not deviate from that of the initial (hydro-
static) model. However, after a stable convective pattern is es-
tablished, our 2D simulations show that the convective flow, con-
sisting of four quasi-stationary large scale (~ 40 degrees angular
width) vortices, starts to push the inner and the outer boundary
of the convection zone as determined by the Schwarzschild sta-
bility criterium towards the center of the star, and towards the
stellar surface, respectively. This results in a rapid growth of the
radial extent of the convection zone on dynamic timescales.

Our 2D simulations further suggest that it is unlikely that the
core helium flash is followed by subsequent core helium mini-
flashes, which are observed in (1D) stellar evolutionary calcula-
tions, since the inner convective boundary could reach the center
of the core in less than one month. On the other hand, the injec-
tion of hydrogen from the stellar envelope into the helium core
is likely to happen within just 10 days, which is in contradiction
to the predictions of the canonical evolution of low-mass Pop1
stars.

As our 2D axisymmetric simulations probably cannot prop-
erly capture the intrinsically three-dimensional character of the
convective flow, we have started to perform also 3D simulations
of the core helium flash. In addition, we plan to extend our 2D
simulations to time intervals of several days instead of hours.
The results of these long-term 2D simulations and of the first
well resolved 3D simulations of the core helium flash will be
presented in due time elsewhere.
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Appendix A: Energy fluxes

An analysis of the vertical energy transport allows for conclu-
sions about the importance of the different physical processes
occurring in the convection zone. To separate the various con-
tributions to the total energy flux (Hurlburt et al.||1986} |Achatz

1993)), one integrates the hydrodynamic equation of energy con-
servation

0:(pe) + 0i(vi(pe + p) = v;Z;; — K6;T) = —pv;0,®
i,j=1,2,3
(A.1)
(with e = € + v;¥;/2 being the specific total energy density) over
angular coordinates (8, ¢), and separates both the specific en-
thalpy (£ + p/p) and the kinetic energy (v;v;/2) into a horizontal

mean and a perturbation (f = f + f7). This results in

OE+8.(Fc+Fx+Fgr+Fy+Fg)=0 (A.2)
with[1]
E = 56 pertdQ (A.3)
_ r\ >
Fe = ng,p . (s+ —) r=dQ (A4)
P

] ’
Fx = 95 Vep - (zviv,-) P2dQ , i=1,23 (A.5)
Fr = — 56 Kd,T r*dQ (A.6)
Fy = — 95 vEardQ , i=1,2.3 (A7)

22— p 1

Fg =4nrvp-|e+ =+ Eviv[ +0,D|. (A.8)

P

Here, the various terms F; give the total energy transported per
unit time across a sphere by different physical processes. They
are the convective (or enthalpy) flux, F¢, the flux of kinetic en-
ergy, Fg, the flux by heat conduction and radiation, Fg, and the
viscous flux, Fy. Finally, Fg, collects all terms causing a spher-
ical mass flow, i.e., the model’s expansion or contraction, while
F¢ and Fg rest on deviations from this mean energy flow (vor-
tices). The latter are the major contributors to the heat transport
by convection, while F'y is usually negligibly small.

In a similar way one can also formulate a conservation equa-
tion for the mean horizontal kinetic energy, which provides fur-
ther insight into the effects of convective motions. Using the
other hydrodynamic equations

0:(p) + di(pvi) = 0 (A9)
0i(pvi) + 04(0ijp + pviv; —Xj) = —pdi® (A.10)
=123 (A11)

and 9;(pv;v;/2) = v;0,(ov;) — vivi0;p/2, one finds

8,EK+6,(FK+FP+FV+FE,K) :PA+PP+P‘/+PE’K (A12)

! The gravitational potential ® was assumed to be constant for sim-
plicity.
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With Fg and Fy as introduced above, one obtains

Ex = 95 gvivi 2dQ (A.13)
Fp = — 9§ v.p' PdQ (A.14)
Frg = 4nr2m-(3 + ﬂ) (A.15)
P 2
Py = — 95 V0 8,® r2dQ (A.16)
Pp = 9§ PO r’dQ (A.17)
Py = —SE(?,-VJ-ZierdQ (A.18)
Ppk = 4nr - (powi—vpo,®) , i=1,2.3 (A.19)

where the P; are source or sink terms of the kinetic energy.
They are separated into the effect of buoyancy forces (Py), fric-
tion forces (Py), and the work due to density fluctuations (Pp,
volume changes). By analyzing the various P; one can deter-
mine what brakes or accelerates convective motions. The acous-
tic flux, Fp, describes the vertical transport of density fluctua-
tions. Fg g and Pk describe the effect of expansion (volume
work, and work against the gravitational potential), similar to

Fg in Eq. (Ag).
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