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ABSTRACT

Context. Possible &ects of magnetic fields in core collapse supernovae rely ogffament amplification of the weak pre-collapse
fields. The magneto-rotational instability (MRI) has beeggested to lead to a rapid growth of these weak seed fieltlsoddh
plenty of MRI studies exist for accretion discs, the appl@aof their results to core collapse supernovae is inbibds the physics
of supernova cores is substantiallyfdrent from that of accretion discs.

Aims. We address the problem of growth and saturation of the MRbie collapse supernovae by studying its evolution by means
of semi-global simulations, which combine elements of gladnd local simulations by taking into account the preseriagobal
background gradients and using a local computational §vieinvestigate, in particular, the termination of the griowft the MRI
and the properties of the turbulence in the saturated state.

Methods. We analyze the dispersion relation of the MRI to identifffelient regimes of the instability. This analysis is completed
by semi-global ideal MHD simulations, where we considercaratter in a local computational box (sizel km) rotating at sub-
Keplerian velocity, and where we allow for the presence afdial entropy gradient.

Results. We identify six regimes of the MRI depending on the ratio & émtropy and angular velocity gradient. Our numerical riode
confirm the instability criteria and growth rates for all iregs relevant to core collapse supernovae. The MRI growsrexgially on
time scales of milliseconds the flow and magnetic field gedesebeing dominated by channel flows. We find MHD turbulenu a
efficient transport of angular momentum. The MRI growth ceases the channels are disrupted by resistive instabilibesyrring
due to the finite conductivity of the numerical code), and MtdEbulence sets in. From an analysis of the growth rateseofdbistive
instabilities, we deduce scaling laws for the terminationphtude of the MRI which agree well with our numerical macsleiVe
determine the dependence of the development of large-schérent flow structures in the saturated state on the asgexof the

simulation boxes.
Conclusions. The MRI can grow rapidly in core collapse supernovae leatlinfields exceeding 20 G. More investigations are

required to cover the parameter space more comprehensively
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1. Introduction tional energy into thermal energy of the gas. Imparting ad-

ditional thermal energy into the post-shock stellar matier
The magneto-rotational instability (MRI)_(Balbus & HawleyMRI might be thus of importance for the currently favored
1991) is a local linear instability of weakly magnetizedfeli- neutrino-driven core collapse supernova explosion mdashan
entially rotating fluids. A large number of analytic as wedlrau-  (e.g/. Thompson et al. 2005; Janka et al. 2007), althoughliggss
merical studies support the assertion that the MRI is thexmainly for rapidly and strongly dierentially rotating progenitors.
agent for the excitation of turbulence in Keplerian acomti Furthermore, the growth of the magnetic field resulting fitbin
disks (for a review, see, e.q., Balbus & Hawilley 1998). The MRIRI may provide the adequate physical conditions in the col-
amplifies seed perturbations exponentially with time untibu- lapsed core to launch bipolar outflows, that result in gamaya-
lence sets in. In the turbulent state, the magnetic figldjives burstsi(Aloy & Obergaulinger 2007). As the physical corudis
rise to a non-vanishing (spatial and temporal) mean Maxwdtl accretion disks and stardfidr significantly, and as only a few
stress tensovl;; = bib;. Simulations of accretion disks show aanalytic studies of the MRI in stars exist (elg., Acheson&)97
large negative mean value of the compordgj, (wherew and it remains unclear whether existing results on the MRI irkslis
¢ are the radial and azimuthal coordinate of a cylindricalreocapply to stars, and particularly to supernovae, as well.

dinate system), which gives rise to afi@ent outward transport Numerical simulations of the MRI face a severe problem: the
of angular momentum. growth rate of MRI-unstable modes depends on the product of
Akiyama et al. [(2003) pointed out that the layers surrounthe initial field strength and the wave number of the mode. For
ing the nascent proto-neutron star quite generically fulié a weak field, only fairly short modes grow rapidly. Simulatso
MRI instability criteria. Consequently, any (weak) seedgma of astrophysical flows, on the other hand, often fail to resol
netic field will be amplified exponentially. In the saturastdte just those modes, as it would require prohibitively largmpa-
of the MRI instability, sustained magneto-hydrodynamic tutational costs to cover spatial scales ranging from theajlek-
bulence might then provide anffieient means for an angu-tent of the astrophysical system (which may be much larger th
lar momentum redistribution, and for the conversion of +otdhe MRI-unstable region) down to the wavelengths of thesftst
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growing MRI modes. This dependence of the growth rate on the proven by high-resolution local simulations. Enhandhneg
wavelength of the mode suggests a twofold approximate numigitial magnetic field by a constant factor throughout theneo
ical approach: one either performs simulations which prgpe putational domain, as it is often done in global simulatjaas
cover the global scales of the astrophysical system fonggtni problematic as the MRI is a local instability, i.e. it is not-e
resolve the small scales set by the wavelengths of the fastescted to cause a constant amplification of the field everysvhe
growing MRI modes @lobal simulation¥, or vice versalpcal The ambiguities regardingfiierences between the topology of
simulation$. this artificially enhanced field and that of a field amplified lo
Local simulations evolve only a small part of the entire MRIeally by the MRI add to the uncertainties clouding the inficen
unstable system, known as tebearing box However, infor- of magnetic fields on the overall dynamics.
mation on the scales exceeding the size of the computational Both the local and the global numerical approach has been
grid has to be provided using suitably chosen boundary eondsed for studying the MRI in accretion disks, and this corabin
tions. No unique recipe exists for this procedure, but the useffort has led to the rapid development of the field. Simulations
of reflecting and periodic boundaries is a common practicef the MRI in core collapse supernovae, on the other hand hav
In most studies of accretion disks, the boundary conditimins not yet reached this advanced stage, mainly because of tile we
Hawley & Balbus1(1992) are used in radial direction, whiceé amess of the initial field of the progenitors. According to reunt
essentially periodic boundary conditions but accountfdsthe stellar evolution models (Heger et al. 2005), the canompced
relative shear between the inner and the outer radial edtieeof collapse magnetic fields are so weak that they are unabfetct a
grid. They are often combined with a Galilei transformaiitio  the dynamics of the explosion unless they are amplified gtyon
a frame of reference co-rotating at the mean angular vgloc@orrespondingly, the wavelengths of the fastest growingl MR
of the shearing box, and a linearizion of the angular veyocitnodes are approximately a few meters at nfb¥hus, the pos-
within the box. Local (shearing box) simulations using #iisd sible importance of MHD #ects in core collapse supernovae
of boundary treatment are commonly cal#tkaring-sheetim-  depends on the existence of mechanisms which can amplify the
ulations. field efficiently during core collapse and the post-bounce phase.
The general drawback of local simulations obviously lies ifihe timescale available for the growth of the magnetic fisld i
their inability to account accurately for large-scale pbraena. set by the time required to turn the accretion of matter onéo t
In addition, there is only a limited possibility to model bl  proto-neutron star into an explosion, i.e., a few hundrdasib
gradients other than fierential rotation in shearing-sheet simliseconds. As already mentioned above Akiyvama et al. (2003)
ulations. Independent of the boundary treatment only modasggested that the MRI might provide this mechanism. They
with a wavelength less than the size of the grid can be exstimated the saturation field strength to b&°10101 G, i.e.,
cited, i.e. modes with a wavelength comparable to the dimetiearly in excess of the artificially enhanced initial fietceaigths
sions of the whole system cannot develop. Consequently; MRIsed in global simulations.
driven turbulence may saturate at a level determined (st 8- Up to now, there exist only global simulations of MHD core
tially) by numerical rather than (only) by physical parasrtet A  collapse supernovae, which evolve the entire core of a mas-
careful analysis is necessary to disentangle the respdnfiu- sive star through gravitational collapse, bounce, andcesiph
ence (see e.d., Pessah et al. 2007; Fromang & Papaloizou 2Q8:4., Kotake et al. 2004; Yamada & Sawai 2004; Takiwaki 2t al
Regev & Umurhan 2007). 2004/ Obergaulinger et al. 2006h,a; Burrows et al. 2007¢s€h
Global simulations, on the other hand, follow the evolutioglobal simulations fail to find the MRI unless they employsira
of the entire system, albeit with a much coarser resolutiamt tically stronger initial fields. Obergaulinger et al. (2@0), e.g.,
local ones. Thus, they can account for the large-scaletatieiof  require a pre-collapse field strength exceedintf ®to resolve
stars and disks, for the back-reaction of the MRI instigated the MRI in the post-bounce state. The rationale behind ttie ar
bulence on the global flow, and allow one to draw conclusians €icially increased initial field strengths is that, once ¢greged by
how the saturated state depends on global properties of/fhe she diferential rotation in the proto-neutron star, the MRI will
tem, e.g., the density or pressure stratification. Howdeee- exponentially amplify a much weaker seed field up to the value
going the ability to resolve short-wavelength modes, tleewtin ~ used in the simulations.
of the MRI will be underestimated or suppressed even ewtirel  Due to the lack of local simulations, the importance of the
In many applications of numerical analysis, it is possiblese MRI in MHD core collapse models remains unclear. As a first
suitable models for the unresolved physics on sub-gridescalstep to resolve this issue, we have performed high-resoluti
e.g., sub-grid dtusivity. This requires a good knowledge of thgimulations of small parts of simplified post-bounce, rioat
physics on these scales, and is facilitated greatly if msegat magnetized cores. We have used a recently developed high-
the unresolved scales act merely as a sink for kinetic or magsolution MHD code, and employeshearing-diskboundary
netic energy cascading down from the integral scale. Dutieg conditions [(Klahr & Bodenheimier 2003). These boundary con-
growth of the MRI, however, the power shifts gradually frongitions derive from the shearing-sheet boundary conditioh
short to long modes. Thus, sub-grid models for global MRI-sirfHawley & Balbu’s(1992), but allow one to consider global gra-
ulations tend to be complex, and are not used widely. dients of, e.g., density or entropy. Combining elementdaifag
As a remedy for this problem, global simulations may band local simulations, viz. the presence of global backgdou
performed using unrealistically strong initial fields toagan- gradients, and a high-resolution local grid, we find it jfist to
tee that the fastest growing MRI modes are resolved numetéll our approackemi-globalfor more details see Selt. B.2).
cally. This approach presumes that the unresolved MRI modes Differences in the physical conditions in disks and stars im-
are able to amplify the much weaker actual initial fields te thpede the direct application of the MRI results from accretio
field strengths used as initial value in global simulatiofisis disks to supernovae. Most obviously, the geometry of boh sy
assumption can be justified, if the MRI acting on the unre-
solved scales saturates at the initial field strengths iegas 1 Note, however, that these predictions still involve uraiettes, and
global simulations, i.e., if rapid amplification by the MRikes hence rare, but much more strongly magnetized progenitorsat be
place over many orders of magnitude. However, this can ordycluded presently.
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tems difers strongly. Furthermore, while accretion discs are steere o, p, v, ande, denote the mass density, momentum density,
bilized against gravity by (Keplerian) rotation, stars arg- velocity, total-energy density, of the gas, respectivélys the
ported mainly by pressure gradients, with only a minor dbaotr magnetic field. The total-energy density and the total pness
tion from rotation, i.e. thermal stratification is much morpor- P, are composed of fluid and magnetic contributiags= ¢ +
tant in stars than in disks. Thus, entropy gradients carilig@b %pv2 + %bz andP, = P+ %bz with the internal-energy density
an MRI-unstable region or modify the instability in convieety & and the gas pressure= P(p, ¢, ...). The electric fieldE, is
unstable regions. Consequently, the problem of the MRI e cagiven byE = —I x b. Here,c = 2.998x 10%cm st is the speed
collapse supernovae has to be addressed by simulationgrdecaf light in vacuum and Einstein’s summation convention &l
ing for their specific properties, which is the goal of thisdst. We use the hybrid equation of state (EOS) due to Keil et al.
We investigate the growth of the MRI from initial fields compa(1996) as a rough model for neutron-star matter. Followimig) t
rable to the ones expected from realistic stellar evolutmd- EOS, the total gas pressui®, consists of a barotropic pafy,
eling, and we seek to probe the possibility of MRI-drivendieland a thermal parBy,. The two parts are given by

amplification under typical conditions of supernova cored a -

on timescales similar to the dynamic times of the system,, (i. Po = kp'®, (6)

a few tens of milliseconds). Apart from the restrictionsénh Py = (T, — L)t @)

ent to local and semi-global simulations, several simglifans . , .
limit our approach: we use simplified initial equilibrium aho Here,I's and« refer to the barotropic adiabatic index, and the

els, a simplified equation of state, and neglect neutrindimga POlytropic constant of the EOS, respectively; = &—Py/(I'b—1)
and cooling. The main physical questions that we try to asidrdS the thermal part of the internal energy, ang the corre-
are: (i) does the MRI grow on fiiciently short time scales to SPonding adiabatic index. Please4note tgat we considersoibty
influence the explosion, i.e., within at most 100 msec, glypn  nuclear densitieg, < pnuc = 2x 10**g e ® here since the max-
ical post-bounce rotation profiles and magnetic fieldsHay Mmum density reached in our models is a few time&ganr.
does an entropy gradienffect the growth of the instability? (i)~ We define a pseudo-entrofyfor this equation of state by
How does the saturated state of MRI-driven turbulence dépen p,

on these factors? In particular, is the saturation fielchgfitees- S = P (8)
timated by Akivama et al. (2003), i.e., the conversion of tods b
the rotational energy into magnetic energy, realistic? In the Schwarzschild criterion for convective stabilitye¢sbe-

Analogous questions are studied by local simulations of th@w), this quantity appears instead of the entropy of, amgideal
MRI in accretion disks. The answers may lead the way to fogas.
mulate a turbulence model to be used in global simulatiohs. T A few quantities used frequently in the remainder of this pa-
simplest model would provide a parametrization of the angper are:
lar momentum transport by anviscosity (Shakura & Syunyaev . )
1973), i.e., a turbulent viscosity proportional to the lesaund 1. the Alfvén velocity

speed and the pressure scale height. However, despiteea larg Iby
number of local simulations, no unique formulation of an cp = —, (9)
model for accretion disks has been found up to now. Lacking Ve
similar cpmprehensive!ocal simulations, gturbulenceghﬁ[f _ 2. the (local) magnetic energy density
the MRI in supernovae is even less conceivable. Our sinwulati
intent to provide only a first step towards these highly aebir b?
turbulence models. €mag = PN (10)
The paper is organized as follows: after a discussion of the . )
main properties of the MRI in disks and stars (Sdct.2), we and the corresponding volumetric mean value
outline our numerical method in Sdct. 3, discuss our results 1
Sect[4, and summarize our main results and give conclusions  €mag= — fd(V €mag (11)
Sect[5. v
3. the (local) Maxwell stress tensor
2. MRl in discs and stars M;i; = bib;, (12)
2.1. Physical model and the corresponding volumetric mean value

We work in the limit of ideal magnetohydrodynamics (MHD), 1
solving the the equations of ideal MHD in the presence of an Mij = 5 fd(V Mij . (13)

external gravitational potentigl,
We will use most frequently the componeht,, which

dp+V; [pvi] =0, (1) governs the transport of angular momentum in radial direc-
tion, and we will sometimes refer to this componentfzes
ap + v, [pivi P, - bibi] - Vs, 2 Maxwell stresgor short.
dey + Y, [(e* + P*)Vj _ bivibj] _ ijVj(p, 3) 2.2. General properties of the MRI
The stability criteria for the MRI was first discovered by

otb=-cVXxE, (4) |Velikhov (1959) Chandrasekhar (1960) and further dised &y

_ Balbus & Hawley|(1991) in a series of papers. These authers an
Vb =0. (5) alyze wave-like (WKB) perturbations of the form ek{: r +wt)]
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in a background equilibrium of the MHD equations. For conwhere the curl of Eq[{2), i.e. the vorticity equation, hagie
venience cylindrical coordinatgss, ¢,2) are used in the fol- used to simplify the expression 6f Note that this quantity de-
lowing equations. From the dispersion relation, they detie pends on the direction of the perturbati@nbut not ork? itself.
criteria for exponential growth and, if applicable, thewgto If coséc = 0, which corresponds to velocity perturbations par-
rates of WKB modes. Because the main astrophysical conteXel to the rotation axis, the value ¢f diverges, but all length
of this series of papers is accretion discs, some assunsptisnales and growth rates of the discussion below are finit, an
are made which considerably simplify the analysis: i) weatan be computed by taking the limit cas— 0.

magnetic fields wherg/a| < min(Cs, |v,|), ii) incompressible |y the absence of a magnetic field, ii€. = 0, the stabil-
gas (Boussinesq approximation), and iii) angular velocdy- jty condition is simplyC + 4 > 0, which is equivalent to the
stant on cylindersQ(w). The discussion is mostly restricted togplberg-Hgiland stability criteria for a non-magnetizethting
thin discs (i.e., to equatorial regions and to a Kepleriaa-ro fluid (Tassoul 1978).

tion law) and 3-polytropes. Under these assumptions the sta- gecause we want to study instabilities of magnetized fluids,

bility criterion for a diferentially rotating magnetized fluid isWe consider hereafter only the case+ 0. Then the stability
(Balbus & Hawley 1991) condition isC > 0, which corresponds to that|of Balbus (1995),

Ry = wHzQ2 > 0. (14)

If the criterion is not fulfilled only modes with (dimensi@ds) G-B+R-€; 20 (25)

wavenumber (Gxey) (BxR) > 0. (26)

k< \J-Ry = Kerit (15) Modes with wave numbers smaller than the (dimensionles) cr
R R R ical wavenumber

are unstable, whete = Kk - VA/Q, Kerit = Kerit - Va/Q andRy =

R/Q?. The (dimensional) growth rate of the fastest growing.; = cosé V—C 27)

mode is|(Balbus & Hawley 1992)

Orem = Wran/Q = —R. /4 (16) are unstable and grow. The critical wavenumber dependseon th

angled in a complicated way involving, in general, the rotation
which is independent of the magnetic field and correspondspfile, R, the thermal structures, and the stratificatiorg.
(dimensionless) wave numbers closédq.

However in the context of core collapse supernovae some of
these assumptions do not apply: entropy and compositiati-gra
ents are important, more general rotation |&¥(ss, Z) have to
be considered, and the analysis can no longer be restrioted t
equatorial regions. In this general case the dispersiatioal of
WKB modes is (cf. Balbuis 1995; Urpin 1996),

10 3 1

Stable modes 0.8

1

kv, 106
n2 T2 (n2 TO\(~2 | A2 2 o~ 1

(w k ) (w k )(wG + Wi +4co Hk) (17)  Q coB, I o4

— 4KkPcog6 =0 (18) 0.1 '
wherew = w/Q is the dimensionless growth rate of the insta- 0.2
bility, and 6 is the angle betweek and thez-axis. The (dimen-
sionless) frequencies related to buoyancy terms afidrdntial 0.01 0
rotation are -100 -10 -1 01  -001
~ 1 (k-B)(k-G) C
R= GG B (19)
and Fig. 1.Imaginary part of the growth rate normalized to the imag-

1 (k-e,)(k-R) inary part of the maximum growth raté()/3(wrem) as a
[R-Qv - —2} , (20) function of C andk/cosf = k - va/(©cosfy). The dashed
k line shows the value df corresponding to the fastest growing

respectively, where,, is the unit vector ino- direction, mode,J(v)/3(weem) = 1, the solid line gives the boundary be-
tween the two branches of unstable modes (Alfvén and Buoyan

G = E (21) mode§), gnd the dash-dotted line corresponds to the $gabili
P limit (k = Kerit). For—4 < C < 0 only Alfvén modes appear, with
R = @wVQ? (22) a narrow spectrum of fast growing modes closekdg (dash-

Vp VP 1 dInP dotted line). ForC < —4 buoyant modes appear and become
- = dominant forC < -8. In the latter case the spectrum of fast

p TP T1 0s |, ! _ _ ; . .
o _ growing modes is much wider covering the entire region from
are the gravitational, rotational, and buoyancy termspees Kerit 10 O.

tively, andT; = dInP/dInpls. It is convenient for the mode
analysis and if cog # 0 to define the quantity

(23)

Two branches of unstable modes arise from the dispersion
relation withk # 0 (Urpin/1996): the branch of Alfvén modes
cos bk appearing foiC < 0, and the branch of buoyant modes which
(G:B,tart 6 — 2B,G,tanbk + G By + Ry)/Q?,  (24) only appear foC + 4 < 0 (Fig[d).

~2 ~2
(/.)G+LL)R
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For a givery the fastest growing mode is obtained from the the background field strengthy, becomes small for weak
conditiondgw = 0. For-8 < C < 0 it has a (dimensionless) initial fields. Hence, in the limit of a pure shear instapilit

wavenumber only relatively strong initial fields are accessible by nume
ical simulations due to the restrictive constraint on thie gr
Keam = Cos,gk—V_C(CJrS) , (28) size imposed by the requirement to resolyg by at least
4 several grid zones.
and a (dimensionless) growth rate — Magneto-buoyantinstability (MBiff N> < R, and-4Q? <
N? + R, < 0. This regime resembles the magneto-shear
R V=C2 regime, but the instability is not driven by the shear, but
drem = COS—— . (29) rather by the unstable stratification.
A — Magneto-convective instability: N« R, andN? + R, <
If C < -8, the fastest growing mode correspond&gey = O, —402. This regime corresponds to magnetized convective
i.e. it is dominated by buoyant modes with a (dimensionless) flow. The main diference is the stabilization of short modes
growth rate (A < Agrit) due to the magnetic tension. The more important
the negative entropy gradient becomes with respect to the an
WM = COSt VC + 4. (30) gular velocity gradient, the faster is the growth of infihite

. . . . long modes compared to the growth ratelggk, .
Thus, there exist two flierent instability regimes depend- _ Hydrodynamic shear instabilityR,, < N2 andN? + R, <

ing on the value ofC. For -4 < C < 0 only Alfvén modes -402. This case is not of interest in core collapse since for

are possible. Thisnagneto-shear regimevas discussed by  ihe diferential rotation of PNS we alwavs fi 1.502
Balbus & Hawley|(1991). A mixed regime is found fe8 < C < I ! we always firid; > 1.50°%

-4, where both Alfvén and buoyant modes compete (Far—8
the buoyant modes completely dominate the growth of thains

bility, and this regime is thus calledagneto-convectivegime. E:ore collapse occurs in general imaxed regimewhere Alfven

modes and buoyant modes compete. Therefore, none of the

g : izlrggg rtmoi:::j %Oq\éeecgt\;grze?ﬁrg?ihb:tr;gerfég'g?};\l’éwm' above mentioned pure regimes holds for the MHD instalslitie
y 9 9 : appearing during core collapse.

Note that for a given fluid element the behavior of the unsta*
ble modes depends on the an@leThus, diterent regimes can
hold in different directions. To find the absolute fastest growing
mode of a fluid element, i.e. not considering a fixed afdglene
has to determine the zeros @b/d6k, which involves the solu- i
tion of a quartic equation. This fact makes a more detailedyst Stable |
of the instability dfficult. |

To simplify the analysis, we restrict ourselves in the fallo
ing discussion to regions near the equator, where it is redde
to assume only a radial dependence of the hydrodynamic quan-
tities and a vertical magnetic field. Therefore,

Coo = (N? + R)/Q?, (31)

whereN? = 8- G is the square of the Brunt-Vaisala or buoyancy
frequency. Becaus@g, does not depend o, all modes of the
considered fluid element belong to the same branch of modes,
i.e. they are either buoyant modes or Alfvén modes. All nsode
with wavelengths shorter than

Acrit = ﬁ = ﬂ (32)

I<crit \/m |

are stabilized by magnetic tension. It is easy to show that th
modes grow faster whek is parallel to thez-axis @x = 0),
i.e. velocity and magnetic field perturbations grow in dired=ig. 2. Stability regions in the plan®,/Q? vs N?/Q? The
tion perpendicular to the rotation axis. The stability @ripn, solid thick line separating the stable region from the magne
N2 + R, > 0, can easily be interpreted according to the relativetational instabilities (MSI and MBI) correspondsdo-= 0, and
size of the buoyancy terniN?, and the shear ternR,,. Several the solid thick line separating the magneto-rotationdéibgities
different regimes result (Figl. 2): from the hydrodynamic instabilities (convection and shesta-
bility) corresponds to th€ = —4. The mixed zone is arbitrarily

— Magneto-shear instability (MSI)R, < N? and-4Q? <  defined by{R,,/Q2 — N2/Q2| < 2.

N? + R, < 0. All modes longer than; are unstable al-

beit with a vanishing growth rate as their wavelengtap-

proaches infinity. The growth rate peaks for

Avri = 21/Keam ~ V2 Agrit, (33)

o ] ) 2 The reader should not confuse this instability with the negign
where the limit|C| < 8 is used to obtain the second exbuoyancy or Parker instability_(Parker 1966), related ® rragnetic
pression. It is important to note thar,, which scales with field strength gradients.
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3. Method shearing-sheet boundaries cannot be used. Instead, voev foll
Klahr & Bodenheimer (2003) and emplghearing-disdbound-
3.1. Code ary conditions. We abandon the transformation into the co-

We use a newly developed three-dimensional Eulerian MH[F!ating frame and assume radial periodicity of the deorgi
code (Obergaulinger et al., in preparation) to solve the MHES = A~ do, Of a variableq from a given background distribution
equations, Eq4.I1)H(5). The code is based on a flux-cortsarvado: |r_1$te_ad of per!od|c_|ty .Oq |_tself. We d_ef|_ne t_he backgr_ound
finite-volume formulation of the MHD equations and th&liStributiondo by its distribution at the initial timé = 0, i.e.
constraint-transport scheme to maintain a divergenaerfrag- do = d(@:t = 0). This recipe is applied to density, momen-
netic field (Evans & Hawley 1988). Using high-resolutionsko tum, and entropy. As Klahr & Bod_enhem_wer .(2003)' we observe
capturing methods (e.gl. LeVeqle 1992), it employs vaff€ development of resonant radial oscillations which are s
ous optional high-order reconstruction algorithms inaigda Pressed, however, by damping the radial velocity in the first
total-variation diminishing piecewise-linear (TVD-PLgaon- (we usen = 2) CompUt?‘t'O”’?" zones at both radial boundaries.
struction of second-order accuracy, a fifth-order monaigni VW€ Point out that shearing-disc simulations allow for lasgale
preserving (MP5) schemie (Suresh & Huynh 1997), and a fourfRodifications of global gradients. In particular, angulammen-
order weighted essentially non-oscillatory (WENO4) schen{UM transportmay modify the global rotation profile, andraye
(Levy et al 2002), and approximate Riemann solvers based B @hgular momentum and rotational energy of the matter in
the multi-stage (MUSTA) method (Toro & Titarév 2006). Thxiﬁe computational volume. This process can eliminate the di
simulations reported here are performed with the MP5 schefg&ential rotation causing the instability, and thus, temte the
and a MUSTA solver based on the HLL Riemann solver (Hartéiowth of the MRI.

1983). As we will show later, the evolution of our models depends
The simulations are performed using cylindrical coordisat crucially on whether we do or do not apply this damping term.
and include both three-dimensional and two-dimensional, (i However, we note here that the artificial oscillations prage
axisymmetric) models. The computational grid covers aaegiby the damping do not have a strong influence on the evolu-
of a few (typically one or two) kilometers aside resolved by aion of the MRI. We use, if at all, a damping of, by 1.25%
least 26 and at most 800 zones per dimension, corresporaingtthe innermost and outermost two zones of the grid, which
a resolution between 40 and 0.625 m. is a considerably weaker damping than in the simulations of
Klahr & Bodenheimer (2003). Despite its relative weaknéss,
damping term is able to suppress weak radial motions across
the boundary. Thus, it introduces a preferred length sdhke (
In local simulations, the choice of boundary conditions s radial size of the box) into the otherwise shear-periodimta-
cial issue, with possibly subtldfects on the flow geometry. Thetion- Comparing simulations with and without damping (wé wi
standard technique for local simulations of the MRI in aecr&efer to these boundary conditions #yandp, respectively), we
tion disks is theshearing-sheanethod due tb Hawley & Balbus ¢@n study the influence of a preferred scale on the MRI.
(1992). This approach consists of two importantingredig(ijta The box size of standard shearing-sheet simulations ddes no
transformation into a frame of reference co-rotating attie&an  gefine a preferred length scale, i.e., these simulationscaie
angular velocity of the shearing bofo, and the linearizion free and entirely local. In shearing-disc simulations,dntcast,
of the rotation profile aroun€o; (i) the use of shearing-sheetihe scale height of the thermodynamic variables introduces
boundaries in the radial direction, and (in most casespg@ri physical length scale into the simulation. If this prefertength
boundary conditions in the perpendicular directions. scale is smaller than the entire size of the star or disk,itha-s
Periodic boundary conditions are often used in simulationstions can be characterized as being semi-global.
of a small, representative sub-volume of a larger systeras@&h , ,
boundary conditions are based on the idea that the entire sys 1€ Semi-global approach falls in between a purely local and
tem is covered by a homogeneous (e.g., cubic) lattice of-id glpbal one sha_rlng merits andldrawbaclfs Wlth both methods.
tical sub-volumes. Consequently, the, e.g., left bounddthe Similar to local simulations, semi-global simulationsoallone

simulated sub-volume is identified with the right bounddrgro {0 resolve a small part of the entire system better. Becdese t
identical sub-volume translated by one lattice width. rely on a fixed lab frame and do not eliminate the mean rotation

A shearing box represents only a small part of the emi&ﬁe basic time scales are the same as in a global simulation of

3.2. Boundary conditions

; : ; e same resolution. In a Keplerian disk dominated by raati
system. The influence of larger scales is considered by s is might add a major diculty to the numerical treatment of

able boundary conditions, the most natural choice beiniggier : A

ones. These )t/)oundary conditions, however, do not aﬂgx@neﬂee p_roblem. Onhthg other han;j, W'th. pr(alssure d_omlnatll)[r;gdcwe
: : X R inetic energy, the time step of our simulations is goverbg
impose global gradients throughout the shearing box, fag., the sound speed rather than the rotational velocity. A®tisaro

differential rotation §»Q # 0). This shortcoming is eliminated f eliminating th d d d t feel dt
by the linearization of the rotation profile and the transfation &Y ©! €liminating (h€ sound speed, we do not feel a need o use
a shearing-sheet transformation.

into the co-rotating frame since, in this case, the dewitiom
the background profil&<, is the dynamical variable ratherthan ~ We expect the MRI in core collapse to grow and reach
Qitself. Thus, it is possible to use periodic boundary cdndi  saturation within several tens of milliseconds. The timepst
in the radial direction accounting forférential rotation by an st < §x/cs, on the other hand, is much smaller because of the
offsetég(t) = t (Qout — Qinn), as described by (Hawley & Balbuslarge value of the sound speed in a post-collapse o@ye~(
1992), whereQo,tinn are the angular velocities at the outer and0'®cm st), wheresx is the width of the computational zone.
inner radial surface of the shearing box, respectively. Thus, we have to perform a large number (typically several mi
In contrast to accretion disks, thermodynamic variables lions) of time steps, which implies a limit on the grid redain
stars may have global gradients both in the direction pewre can &ord in the simulations, although the resolution is still
pendicular and parallel to the gradient @f Thus, standard much better than that of a global simulation.
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Fig. 3. Hydrostatic structure of the initial models. The panelsighite radial profiles of the gravitational potentigh = ¢ x 1071°
(left), the density1z = p x 10713 (middle), and the angular veloci (right), respectively. The entropy profile of this specific
model is assumed to be flat.

3.3. Initial conditions In all models, the initial field is weak, both in compaisoniwtihe
S thermal and the rotational energy of the models. The weaknes

We use equilibrium initial models based on post-bouncescorgs ihe associated Lorentz force justifies the usdgdrostatic

from |Obergaulinger et al. (2006b). We extract the radial- prihsiead ohydromagnetiequilibria as initial conditions.

file of the gravitational potential along the equator of thel' k.o, Eq.[3B) and the values of typical model parameters we

model A1B3G3, and construct from that the density stratificgiain the following estimate for the MRI wavelength

tion within our shearing box solving the equation of hydatist

equilibrium b 0 -3 o \1
Argm ~ 6.9 km( ) ( ) ( ) (38)
0= paw‘p _ awp + prZ (34) 105G/ \25 10]'39 cnr3 1900s!?
. . . To properly simulate the evolution of the MRIyr, should be
for a given rotation profile resolved by at least a few grid zones. Using a grid resolution
o of 10m or 20 m, we thus can follow the growth of the MRI for
Qw) = Qoo™ (35) magnetic fields exceeding several*aG (Obergaulinger et al.

:2006D,a). To trigger the instability, we impose a small @nd
P&Hial velocity perturbation with an amplitude of a few tisne

the hybrid equation of state in the form 1042 of the rotational velocity.

P=(S+1)’, (36)
4, Results

assuming an entropy profile of the form ) )
4.1. General considerations

S(@) = So + S1(w@ — @) B7) In axisymmetry, the growth of the MRI requires a non-vamghi

. . . . . poloidal initial field. Axisymmetry restricts the dynamickthe
with constant$, andS;. Eq. [33) is solved in a radial domain of RI, suppressing a class of instabilities thafleat the evolu-

size,Aw, which is either one or two kilometers large, center n of MRI-unstable modes (see below). Consequently, tae p
atwoy = 155 km. The structure of ar11 initial model, characterizeg e power of axisymmetric simulations for the evqu]tiof

by the set of parametef, = 1900S", ag = -1.25,S0 = 0,and ¢ Ry js limited, and we cannot rely on them in determining
Sy = 0, is shown in Fid.B. This model has a radial density Scaﬁﬁe saturation amplitude of the instability in supernovaeso
hel_ght_c_)pr = 9. 3.8km, I.€., our compL_ltatlonaI grid COVEISThe growth of the instability does, however, noffeli strongly

a significant fraction of a density scale height. The rotat&te from full 3D models. Thus, we can use 2D models to determine
of ~ 2000s* corresponds to that of a rapidly rotating protogrowth rates, while detailed conclusions can only be drawmf
neutron star with a rotational period €f3 ms. 3D models.

Assuming that the background gravitational potential is a |n axisymmetry, the flow is dominated hannel modes
function of @ only, we construct cylindrically symmetric ini- 3 pattern of predominantly radilflows of alternating direc-
tial models. This approximation is justified by the smallestf  tjon stacked irz direction (Balbus & Hawlely 1991). As the MR
the simulation box ire-direction (1km) compared to its radialgrows, the channels start to merge and their charactegsiith

position (15 km). scales increase, but they survive as coherent flow strigture
We added three fferent types of initial magnetic fields tothroughout the entire evolution and, particularly, do riesdlve
the initial hydrostatic model: into turbulence.
T The analysis of Goodman & Xl (1994) shows that channel
ModelUZ: a uniform B-field inz-direction,b = (0, 0, bé) . modes are an exact nonlinear solution of the axisymmetri©VH

ModelVZ: a B-field inz direction with vanishing net fluxp =

T 3 In general, the channels are oriented parallel to the gnadieQ,
(0.0, b} sin(2r(w - wo)/Aw)) .

wherever it points to.
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equations, which explains their stability observed in many The growth of the MRI proceeds via channel flows, whose
merical simulations. They are, on the other hand, unstablevertical extent and number depends on the initial magnedid. fi
genuinely 3Dparasitic instabilities of, e.g., Kelvin-Helmholtz Two typical channel flows are shown in Hig. 5. During the early
type. Consequently, in 3D, the channel modes appearingglurphase of the instabilityt (= 10.6 ms; upper panel) eight distinct
the early growth phase of the MRI, do not persist until saturahannels are present each one consisting of a pair of up- and
tion. Instead, the channels decay due to the growing parasdown-flows in radial direction. The magnetic field is orgamiz
instabilities, and turbulence develops. into eight elongated radial sheets, and this pattern is ialso
h%rinted onto the distribution d2, as the magnetic field enforces
co-rotation along field lines.

A flow topology dominated by channel modes implies a
phase of exponential growth of the magnetic field, which ends
when the channel modes are disrupted and a less organizesl, mo
turbulent state ensues (in Hig. 4 this happensatll ms). In
most axisymmetric models, the turbulent state is only afi-tra
sient nature, because after some time coherent channel flows
form again leading to a secondary phase of exponential growt
e Fig ¥4 at ~ 23 ms).

Very late in the evolutiont( = 30.7 ms; lower panel of
Fig.[H) we find only one large-scale channel flow which ex-
tends across the entire domain in radial direction. The mag-
netic field is now predominantly radial and is concentratedrn

1900s? andaq = -1.25 (see EG35). The evolution of theséhe channel boundary. This coherent flow pattern is the tresul

models is characterized by an exponential growth of the ma;l‘{—a strong transport of mean angular momentum by Maxwell
netic field, see e.g.. Figl 4 for a model with = 2 x 103G, The Stresses. The stresses enforce co-rotation along fiels), lamel

fastest growing MRI mode is well resolved in this model, angg?:eqfigﬂgugn tgg éce)tartéc;r; psrgf'lglt?éztlEg?g%%%?ﬁﬂ%ggg_of
its growth rateryr = 1.08 mstis found to be close to the the- w = » Oy 9 !

oretical predictionrue = 5w ~ leaOn/2l = 114 ms?t ;on!y. We can dist_inguish two regions of slqw and f_ast rota-

(see Eq FE(Z]9)) Thewrlr?;gneti(c 'f:igll\?j) realcﬁ)esoz/;\ lnaximum valuetion inside and outsidee [-0.15; 025], respectively. Inside the

about 1é5G a.tt ~ 15ms. and the mean Maxwell stress con® owly rotating channel matter is accreting towards theteren
" ’ ith v, ~ 4 x 108cm~1, while the rapidly rotating gas outside

ponentMg, (see EqI(I3)) becomes large enough to alter tt e channel has much slower, random velocities.

rotation profile considerably within a few tens of millisewts. i .
Consequently, the angular momentum of the gas drops dragti- 1°. investigate the dependence of the channel geometry on
cally att ~ 25 ms. e ||_'1|t|al magnetic field a_nd the grid resolution we compute
Fourier spectra of the radial component of the magnetic,field
b, for models withQy = 1900s! andag = -1.25, and an
initial field strength of 4, 10, and 20 10*?G, respectively. The
simulations are performed in a box of eithetZkn? or 2x2 kn?
R R AR using a 408 grid (Fig[8). At each radius we Fourier-transform
il b,(2), and the resulting spectia,(k;) (wherek; is the vertical
wave number) are then averaged over radius. We applied this
procedure to the models during the growth phase of the iitstab
ity att ~ 7.5ms. The first set of models (1 Kndomain, 2.5m
spatial resolution) exhibits growth rates close to the tatcal
values, while this only partially holds for the models of dez-
ond set of models (4 kindomain, 5m spatial resolution). Due
to insuficient spatial resolution the MRI in the model with the
i ; ] weakest initial field 5 = 4 x 10'>G) grows slower than theoret-
¢ ically predicted. However, for the two more strongly maggzed
24 ; models of this sethf = 10, and 2x 10*3G) the fastest growing
i | modes are well resolved, and the MRI growth rates agree with
i the theoretical ones.
220 For each model the spectrum shows a distinct maximum cor-
10 ¢ zn?s 30 40 responding to a dominant vertical length scale given by tiokhw
[ms] of one channel mode. The position of this maximum is a func-
. . . - tion of the initial magnetic field onlykmax o bgl, and thus does
Fig. 4. Evolution of the mean magnetic energy dens#{9 ither depend on the size of the computational domain nor on
(solid black line), the mean energy densities corresp@thn e resolution. A dependence on the last quantities is oply o
thew (dotted red)¢ (dashed brown), anzl(dash-dotted green) seryeq, if the fastest growing mode is under-resolved. is th
component of the magnetic field, and the absolute value of e, we recover the lokwing of the spectral peak, but find
mean Maxwell stress componelt ; (dashed blue line) for , {rncated spectral distribution at higher wave nunfberaller
an aX|symmet3r|c modellwnh_ an initially umfolrm magngtldcﬂe length scales.
by = 2x 10°G in z-direction, and a rotation law given by "MRI theory predicts that the growth rate is independent of
Qo = 1900s" andaq = —1.25. The model was computed inthe initial field strength. Neglecting magneto-convectivedes,
aboxofL; x L, = 1kmx 1km with a grid resolution of 5m. e can expect to observe this behavior in numerical simarati

This basic picture emerged from many simulations of t
MRI in accretion disks. As we will discuss in the followingyio
simulations confirm this result for the MRI in supernova core

4.2. Axisymmetric models with no entropy gradient
4.2.1. Uniform initial magnetic fields

Our models having no entropy gradient show the same dyna‘?\Q
ics as that observed in previous simulations of the MRI irr@&cc
tion discs (see, e.g., Balbus & Hawley 1998). We discusstfiest
models with a uniform initial fieldy in z-direction (model series
UZ2) focusing on models with a rotational law given @y =

30

28

26

109 (€nag Mo, [COS])
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Qls ] — Fig. 6.Radially averaged Fourier spectra of the radial component
419 1053 1687 2320 of the magnetic fieldb,(2), for different uniform-field models

N — att ~ 7.5ms. Models withby = 4 x 102G, 10°G, and 2x

w1 5 N A 10" G are shown by the red dash-dotted, the blue dashed, and
the black solid line, respectively. Thick and thin linesareto a
computational domain of 1 kfrand 2 kn?, respectively. For all
models a grid of 400zones is used.

growth rate is smaller thamegy, because the MRI wavelength,
<< A ; . o i.e., the wavelength of the fastest growing mode, exceedsdhk

- - Nt S A size. Thus, we can only properly simulate the slower growviith o
NS PR o - shorter modes.

15 152 154 156 15.8 16
w[km]

Fig. 5. The channel modes present in two snapshots taken from 100 %% ‘E;i% %
the model for which Fid.J4 shows the time evolution. The snap- i % B ’
shots are taken dat= 10.6 ms (upper panel) and= 30.7 ms 0.8 =
(lower panel), respectively. The panels show the color daae i
gular velocityQ, the magnetic field lines (white), and the flow L & 1
field. The colors of the velocity vectors indicate the magahé 0.6
and the direction of the flow: up- and down-flows are represgbnt
by blue and red vectors, respectively, their color intgnsitrre-

sponding to the absolute value of the (poloiodal) velodihe ( 0.4
darker the larger). The maximum velocities aré:2 10’ cm st [ |

(upper panel), and.8 x 10° cm s (lower panel), respectively. 0. 8

>}

+ 0

0/ Oy
‘

only if the grid is suficiently fine to resolve the fastest grow- 0.0 L L
ing modes close tayr,. Otherwise, if the grid is too coarse the 1 10

growth rate should be much smaller. Our simulations repredu Ca/ (8xp)

this behavior. We show a comparison of the maximum growth

rates from linear analysisrtom = J(wrem) = I%anol) and Fig.7. Growth ratec of the MRI for axisymmetric mod-
the numerical ones for models with@irent initial rotation laws els with uniform initial field as a function of the initial
(Qo ranging from 9503 to 1900s?, andeg from -1 to -1.25) Alfvén speed normalized to the rotational velocity and the
in Fig.[2. If Aur is under resolved for a given initial fielty, the grid resolution,ca/(6xQ0). The colored symbols distinguish
growth rate increases withy, but once the MRI wavelength is different initial rotational laws, wheréQo,aq) are equal to
well resolved, the growth rate becomes constant as theallgti (1900s?, -1.25) [black plus signs], (19005 -1) [red di-
predicted. Fid.l7 implies the following criterion for affigient amonds], (950, -1.25) [green squares], and (950s-1)
resolution of the MRIAw 3 2Qg/ca. The growth rate of the [brown triangles], respectively.

instability does not depend on the size of the computatidaal

main. For models with strong initial fields the computed MRI
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4.2.2. Channel disruption and MRI termination

1000' T T T T \é\\\\\
As long as the dynamics of the model is dominated by channel

modes, the MRI grows exponentially. We observe a terminatio
of its initial exponential growth — henceforth call&tR| termi- o
nation— as soon as the coherent channels are disrupted. Further 100.
MRI growth occurs after an eventual reformation of the clenn
flows. To understand these processes better, we study MRitter
nation in a large number of axisymmetric models witfetient
initial magnetic fields, boxes of flerent size and grid resolution,
and diferent boundary conditions.

Fig.[8 shows the value of the mean Maxwell stress compo-
nentME7" at MRI termination as a function of the initial mag- 1.0
netic field strengthpy for models with a rotational lav2 =
1900 s'w 125 and a vanishing entropy gradient. We can dis-
tinguish two classes of models according to the boundarglieon
tions applied in the simulations (see seclion 3.2), theitgiaie 10
difference between the models with and without velocity damp- by [10* G]
ing near the boundaries being quite remarkable given th& wea
damping we apply. In models with dampimg‘;’fg‘ grows with  Fig. 8. Volume-averaged Maxwell stress componemg)m at
increasing initial field strength until it levelsfoat a grid size MRI termination as a function of the initial magnetic field
dependent value (colored bands in Eig. 8). For the same modstrength, by, for axisymmetric models with uniform initial
when simulated without damping, we find theife™ o bié7 magnetic field inzdirection , a rotational profileQ =

— : 1 i e 1900s! w12 and a vanishing entropy gradient for a set of
(gray band in Fig.8) independent of the grid size. The “eusl : 9 Py 9

in the upper part of the figure correspond to models comput@§Symmetric models. Blue, green, orange, and red symbois c

with a higher grid resolution than most other models. We wilfSPond to models computed in a square box having an edge size
discuss this fact below. of 0.5, 1, 2, and 4 km, respectively. Models computed with and

To determine whether the radial or the vertical size of tHiithoutvelocity damping at the radial boundaries are dediby
computational grid is responsible for the leveling of the asterisks and diamonds, respectively. The latter models sh

Maxwell stress in the runs with radial damping we simulate twP® Size independent scaling{Z ~ (b5)™®” (gray band), while
models with a grid of & kmx 2 km (for short callechighmodels in models with dampindV5/™ saturates at high field strengths
in the following), and 2 knx 0.5 km (ong models), respectively. the saturation value depending on the box size (colored biori
Our results show that the determining factor for the growthri- tal bands).
marily the radial rather than the vertical box size, as bodlets
follow the behavior ofM, 4 as a function oby for the respec-
tive radial grid sizes. The two classes of models also ekhgbi neglecting resistivity, the presence miimericalresistivity en-
markably diferent post-growth dynamics. In the high models, ables the growth of these instabilities, leading to a reeatian
few channel modes reappear from the turbulent state, anct a s anti-parallel field lines. As a consequence, the elordyetr-
ondary phase of exponential growthMdf, , sets in. Eventually, rent sheet dissolves into a configurationofind O points (lo-
two of the newly formed channel modes merge. By this processited atw ~ 15.25 km and~ 15.5 km, respectively; see middle
which occurs repeatedly, the number of channels decremases, panel of Figl®). When field lines reconnect near the X polrg, t
the final state of the flow is dominated by one short but widtuid is accelerated away from the reconnection point tow#rd
channel mode. In the long models, on the other hand, no s€cpoint. This causes the intense gas flow in positive radiatei
ondary exponential growth is observed, and the Maxwelkstretion at @@, 2) ~ (15.35,0.1) km. The change of the topology of
remains approximately constant, albeit oscillating cdesably the magnetic field and of the flow continues shortly afterward
due to the temporary presence of coherent flow patterns. (att = 16.078 ms; right panel of Fi]9). The O point has grown
To interpret these results, one has to analyze the mechanisrmaize, and the fluid is in vortical motion. As the vortex gsw
responsible for the disruption of the channel modes. Weaudisc field lines in the vortex are advected towards field lines gf@mp
this mechanism for an undamped model with = 1900s?, site polarity belonging to an adjacent channel flow (centate
aq = —1.25, and an initial magnetic field strendifi= 4x10*G  z ~ -0.15km), where reconnection occurs. Note the formation
using a box of ®kmx 0.5km and a resolution of 100 100 of a second X point atdf, 2) ~ (15.38,—0.03) km (Fig[9, right
zones. During the growth of the instability a few large charpanel).
nels are present, which are disrupted at MRI termination (at To demonstrate the growth of the tearing-mode instability
~ 159 ms). and to support its importance for MRI termination, we conepar
Fig.[d illustrates the disruption of one of the channel flowthe evolution of the mean Maxwell stress comporip and of
in some detail. At = 15.850 ms, the channel flow is still in- the magnetic energy density of the z-component of the magnet
tact (left panel), and one recognizes two broad streams-of field, €., of the model (see Fif. 10). Before the tearing mode
flowing and out-flowing gas both permeated by a strong radglows Mg, and€/,.4 increase, their growth rates being similar
magnetic field of opposite polarity. A broad current shegk seto that of the MRI. Att = 15850 ms, the growth rate @,
arates the two flow regions. Owing to small-scale fluctuatiomecomes larger than that of the MRI by one order of magni-
in the flow, the field lines are not perfectly (anti-)parali@hd tude within less than 0.2 ms, wherelsls,, approaches a maxi-
the current sheet is slightly deformed. These deformatamis mum. Once the tearing mode is fully operatite=(15.983 ms),
as seed perturbations for resistive instabilities of tibaring- the growth ofe,,, becomes slower but still continues due to the
modetype. Although we evolve the equations iodkal MHD appearance of more tearing modes (see, e.g., the right panel

T T T
&
O

Lo

*
T SR

10.

KK

Mg [10%° G
o

T T
<O

XX IO O
X

KX

R

0.1 [ [
100




M. Obergaulinger et al.: MRI in core collapse supernovae 11

by [104G ] by [104G ] b, [104G]
—0 =20 20 O

€ €t €t
X X X
N N N

02 V : ]

M — #

—_ — — /ﬁ\ \ yé

IS IS L IS O.IK j _\

X X X q

~ NS == : ~ 00%@/ /\\%

e R a—— AN

—— — — Er—————x 3

: -0.1= == = =——

153 154 155 156 157 153 154 155 156 157 153 154 155 156 157

w[km] w[km] w[km]
j,[10°G/cm] j,[10°G/cm] j,[10°G/cm]
-9 -3 3 9 -9 -3 3 9 -9 -3 3 9

Fig. 9. The disruption of a channel mode in an axisymmetric unifdietd model. We show a section of a model with an initial field
bo = 4 x 10 G computed on a grid of.B x 0.5 kn?. The left, middle, and right panels display the color-codstial component
of the magnetic field,, (top) and the current densify = (V x b), (bottom) beforet(= 15.850 ms), duringt(= 15.983 ms), and
after ¢ = 16.078 ms) the violent disruption of the channel flow, respetyivAdditionally, magnetic field lines (black lines), arigt
velocity field (arrows; top only) are shown. The arrows aecooded according to the magnitude and direction of the.floflows
and outflows are shown by gray and green vectors, respectie longest vector corresponds to a velocitywps 7 x 10° cnys.

Fig.[10 at ¢z, 2) ~ (15.38,-0.03) km). Subsequentlg;,. begins bilities in more detail, we have performed a set of simulaio
to decrease as the tearing modes saturate. (see Apd.A\) using simplified models of channel flows. We reca-
pitulate our results, summarized in Eqg.(A.11), here:

o oc (ca)" (cs) ¥4 (@) 2 (6%)°, (39)

whereor, Ca, Cs, @, anddx are the growth rate of the instabil-
ity, the Alfvén velocity corresponding to the channel megm
field, the sound speed, the width of the channel, and the grid
resolution, respectively. because the instability is rastdnl on a
physical resistivity, but is of purely numerical origin, paysi-

cal transport coéicient appears in EJ.(B9). However, our results
can be interpreted in terms of afiextive resistivitycadx, as de-

1 tailed in App[A. In our models the width of the channel flaw,

1 is set by the MRI wavelength corresponding to the initiaticet

1 magnetic field:

I o< B/ VR o< BE/(VAT0%) (40

(see Eql(32), Eq.(33), and EQ.135)). The width remains con-
stant during the growth, as only mergers of adjacent channel
occurring as a result of resistive instabilities can chahgédield
topology.

Our basic proposition for MRI termination is that channel

Fig. 10. Temporal evolution of the absolute value of the megg, .« are disrupted once the growth rate of the resistivabist
Maxwell stress componem, (solid line; the line is colored ity exceeds the MRI growth rate:

black whereM,4 < 0, and green otherwise), and of the mag-
netic energy density of the z-component of the magnetic,field, > oyri = MRI termination (41)
€hag (dashed red line) of the model shown in Fig. 9. The vertical

yellow lines mark the times of the snapshots shown infig.9.  Using in addition the functional dependencep{Eqg. (39)),
we can establish scaling laws for MRI termination for a given

hydrodynamic background model. As the channel width scales
According to the previous discussion the dynamics of theith the MRI wavelengtha o g, and as the MRI growth rate
channel flows is dominated by the interplay between thé# given byowr = J(wrem) x aaQo (see Eql(Z9)), we find for
growth due to the MRI and their destruction by resistivednstthe Alfvén speed at MRI termination
bilities. Channel flows are unstable against tearing-mygge- 8/7
instabilities at any point in their evolution. To study thdssta- ce™ o« (cs)*/’ (bé) (Qo)™ 7 (6x)~47, (42)
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Fig. 11. Average Alfvén velocity — of models with uniform initial ngaetic field and without velocity damping near the radial
boundaries — corresponding to the radial magnetic field at MRnination normalized tos)~ (left) and ©F)®" (right) as

a function of the initial magnetic field strengthy (left), and the grid resolutioax (right). The light gray lines represent the
power laws expected from our analysis of resistive insitisl (see Eq[{42)). Note that we only consider well-resdlmodels
(omri = 0.95ms?) here.

and for the corresponding Maxwell stress provides a good approximation to the behavior of the models.
167 Due to the small number of models the results should be taken
M;edr’m o (cg)®” (bg) / (Q0) 87 (5%)787 . (43) Wwith care, but a strong anti-correlation M‘;g“ with Qg is sug-

gested. The data also do not support any dependenlvé;@

The latter equation implies thMtwe;m decreases with faster rota-ona,. Finally, in Fig[8 we noticed earlier some outliers at large
tion. Two dfects play a role in explaining this behavior. Firstlyyalues ofMer;m which correspond to models computed on a fine
slower rotation leads to slower MRI growthriri o« Qo), and grid. However, considering that MRI termination depends on
hence weaker magnetic fields are required for the tearingemogrid resolution, all models lie within a narrow band which-co
to overcome the MRI growth. Secondly, slower rotation i@l roborates our scaling laws and provides more evidence of the
wider channel flowsq o« (Q0) ™), i.e., resistive instabilities grow importance of resistive instabilities in understanding MRI.
slower agr; o a2 o< (Q0)” (see Eq[(39)). Consequently, physical (instead of numerical) transpoeffe

The qualitative features of these scaling relations are:  cients should be used in MRI simulations, which may give rise

_ . , . to different scaling laws considering the growth rate of tearing
1. Stronger initial vertical fields and correspondingly,qqes.

wider channels tend to suppress resistive instabilities.
Consequently, MRI termination requires more strongly
magnetized channel flows.

2. Finer grid resolution implies less numerical viscositgd Models with velocity damping In models with uniform initial

hence larger values f@e™ and Mt;;m_ magnetic fields w_here the radia_ll veI_ocity is damped nc_aarrthe i
, term et - ner and outer radial boundary, i.e., in models located irhtire

3. The scaling oM 7™ with the sound speed implies & proy,gntal hands in Figl8, MRI termination happens earlientha
portionality be;ween the Maxwell gtgess and the backgrouRgedicted by our scaling laws, and the Maxwell stressesattu
pressureP o g, and thusMZim o P37, This scaling is rem- for strong initial magnetic fields, the saturation valuendif!™
iniscent of theo-law in accretion discs according to whichheing smaller for slower rotation (see lower panel of Fig. 12
the (MRI-generated) viscosity is proportional to the g&spr This is due to the reconnection instability occurring clséhe
sure. radial boundaries well before the theoretically predictiate

MRI termination. This premature reconnection is causgd b

e field geometry: due to the suppressed motion acrossthe in

ner and outer radial boundary field lines must bent there in

, 4 direction. Consequently, field lines of opposite polaritpeoach
m
Fig.12 (upper panel) confirm that the data Mf;ﬁ obey the each other much earlier than in models without velocity damp

corresponding scaling law (EQ.(43)), too. The upper pafel oy "ang gicient reconnection ensues. In this case, the onset of
the latter figure showd 7i™ as a function of the initial magnetic roconnection is determined by the field geometry rather byan
field strength for models with fferent initial rotational laws. the initial field strength. With reconnection occurring retoent
Obviously, the proportionalitlie™ (b(z))l‘i/7 (light gray lines) flux sheets near the radial boundaries instead betweeniglaral
flow sheets in the bulk volume as for non-damping boundaries,
4 The radial field is typical for all three components. Thusalfgen  the width of a flux sheet is less important in determining the

velocity corresponding to the total magnetic field showsshme de- resistive growth rates. Thus, a slower MRI growth and smalle
pendence. Maxwell stresses are found for slower rotating models wheen v

Fig.[11 shows that the average Alfvén velocity corresponﬁ:f
ing to the radid magnetic field at MRI termination is well de-
scribed by the scaling law given in EQ.{42). Similarly, Band
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the newly formed channels are also unstable against resisti
stabilities, but due to their larger width their disrupti@guires
much larger Alfvén velocities, i.e., the MRI can lead to rhuc
larger Maxwell stresses in the second generation of channel
In principle, this process of formation and merger of chasne
can continue until only one single channel flow remains cover
ing the entire box. We note that in later growth phases, ttiara
velocity and the magnetic field strength are typically sgdar
that damping at the radial boundaries, if applied, does eu |
to early saturation.
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0.10 L Fig.13. An early statet(= 12.1 ms) in the evolution of a model
0 with by = 2 x 103G computed in a box ok, x L, = 1 km?
b5 [107 G] covered by 20& 200 grid zones. Shown are the same variables
as in Fig[®. The maximum velocity isTlx 10’cm s,
Fig. 12. Maxwell stressMi™ at MRI termination as a function
of the initial magnetic field strengthy for models with diferent
initial rotational profiles. The upper and lower panels sinood-
els with non-damping and damping boundary condition, respe; 2 3. Models with non-uniform initial magnetic fields
tively. The colored symbols distinguishféirent initial rotational ) _ o o o
laws where(Qo, aq) are equal to (19004, —1.25) [blue dia- Models having a non-uniform initial magnetic field exhibit a
monds], (1900, —1) [green diamonds], (9505 —1.25) [yel- different evolution (see also Balbus & Hawley 1998). To study
low asterisks], and (950% -1) [red asterisks], respectively.this evolution we simulated a set of models varying the anhiti
Note that only models with a box side, x L, = 1x 1 km? magnetic field configuration and the boundary condition fapp
and a resolution of 50, 100, or 200 zones (per dimension) dRg velocity damping or not; see previous subsection). Altim
considered here. The light gray lines in the upper paneititue  €ls rotate initially according to the law given in E.(35)thvi
\16/7 Qo = 1900st andag = —1.25.
power lawsx (bO) ' We considered three types of non-uniform initial magnetic
fields all of which have only @component. The first one

locity damping is imposed. Apart from the dependenciI§f™ i @

- bl = bEsin| ——|x — (44)
on Qp, we also find a dependence an. Both dependences to-~znF ~ ~o b @0
gether give rise to a monotone relation between the strahg-fi v
limit of M®'™ and the MRI growth rategwri, which qualita- varies sinusoidally with radius and scales in additioncas to
tively agrees with the above reasoning. guarantee that the net magnetic flux through the surfacdseof t

Once the initial channel flows are disrupted and the field ggemputational box at = 7y, vanishes. This is the standard zero
ometry is changed by reconnection, the mean magnetic andfiix field used in most MRI simulations. The second type of a
netic energies, and the absolute value of the Maxwell stes§on-uniforminitial field considered by us is given by
begin to fluctuate strongly around roughly constant valses (|, .
the phase between 11 ms and 23 ms in[Hig. 4). Subsequentl%& = |bZNF| : (45)
se(;or)d phase o_f expor_1ent|a_l MRI growth is possible, exhipit Finally, the third type also has a vanishing net magnetic, #sx
a similar dynamics but involving less channel flows than tlee p | , but a step-like dependence on i e
vious growth phase. The reduced number of channels is pipbalZNF’ P P T
due to the strong increase in the vertical magnetic fieldngduri w

- imi i b ep= 00 (@ — @) — (46)
the growth of the tearing modes. Similarly to their predsoces, step= Do (W ~ We @0’
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where® andw. denote the Heaviside step function and the ra-
dial coordinate of the center of the box, respectively. 1000

For the first type of models the MRI starts growing via a oL
multitude of channel modes giving rise to less amplificatién 1000
the magnetic field than in models with a uniform initial field.

Separate channels develop in the two radial regions of ivegat 100 .
and positiveb? (see FigIB), whereas the channels span the full
radial extent if the initial field is uniform. The channel flow
do not merge to form a few large-scale channels, but are de-
stroyed by turbulence. After reaching a transient maximilna,
magnetic energy and the Maxwell stress levébd values much
less than for uniform-field models. The magnetic field become
strongest right after MRI terminatior (L0*® G). After 60 ms the 0.10
maximum field strengths are abou2.0**G, and decrease to '
10" G until the end of the simulation. Fields of this strength can 0.0100

change the profile significantly only on time scales of many ' — ”10 — ‘1‘00
tens of milliseconds, i.e., at the end of the simulation tiation b [102 G]
profile is basically unchanged.

Fig [14 shows a comparison of the maximum Maxwell streggg 14 Maxwell stressM'®/™ at MRI termination as a function
at MRI termination for the models with a non-uniform |n|t|al0 the initial magnetic field strengtb(z) for models with non-

magnetic field. When velocity damping is applied the value niform initial fields. Models with and without velocity dgm

M;Ue;m does not depend on the initial field geometry, and is det(?ﬁ'g are shown by asterisks and diamonds, respectively. Itiee b
mined by reconnection of anti-parallel field lines occugratose green and red symbols denote models wheret@mponent of
to the boundaries. If no velocity damping is applied, thel@vo the jnjtial magnetic field is given b (see Eq @A), (see

tion is similar to that of uniform field models, but dependgios 7 ; :
field geometry. This finding can be understood in the lightwof o Ba.(48)), andb, (see Eq.[@])E;)G% respectively. The light gray

previous discussion of re-connective instabilities, apthie fact lines illustrate power laws: (b(z)
thatMi™is determined by reconnection in the bulk volume, and
not by reconnection near the boundaries.

Models without velocity damping and the initial fieldfy, . netic field. The non-magnetic models are stable due to thie pos
develop large Maxwell stresses which increase with theainit tive entropy gradient, i.e. initial perturbations do nat\gr
field strength. The evolution of these models and the gegroétr ~ The models with a magnetic field belong to the MSI regime
their channel flows are similar to those of models with umifor (cf. Fig.[2), their MRI growth rates being reduced compared t
initial fields, i.e., the growth rates of tearing-modes a@nailar models with no entropy gradient. We simulated models with di
for both classes of models. For models in which the net magneferent entropy gradient®4S = 0.02,0.04,0.08 kn't) and dif-
flux vanishes initially we find thanUe;m is roughly constant for ferent adiabatic index of the equation of stdfg € 1.31,5/3).
sufficiently strong initial fields, the stress being slightlydar Generally, we find a good agreement between the analytic pre-
for sinusoidal b3, ) than for step-like initial fieldsi,,). The dictions and the numerical results. F&S < 0.08 the mod-
models develop a more complex field morphology with mols are unstable belonging to the MSI regime, whereas an en-
intense current sheets and more potential sites for rectione tropy gradientot,S = 0.08 sufices to stabilize the model. The
than uniform field models. Thus, the growth rates of the tiesis growth rates agree well with the analytic ones, and the numer
instabilities are comparable to those of the MRI for muchkeea ical models show the typical dependence of the growth rate of

fields than in the uniform-field models. MRI termination alséhe MRI on the initial magnetic field strength. However, ther
occurs at smaller values Mte‘;m, exists one interesting flerenceo- increases from small values
W

for weak initial fields for whichyg, is under resolved and con-
verges to the correct growth rate for strong fields for whigh;
4.3. Axisymmetric models with entropy gradients exceeds the grid resolution significantly. Unlike for madeith-
_ ) ) ) _ out entropy gradient, the growth rate becomes largest fg-ma
We also simulated some axisymmetric models imposing an afktic fields for which the MRI wavelength is similar to thedyri
ditional entropy gradient. In this case, the instabilititesion resolution, and at these field strengths the numerical droates
is more complicated and various instability regimes exse( can exceed the theoretical ones.
Sect[2): (magnetic) shear instability, convection, andgjme#o- Dynamically the models behave similarly as models without
buoyant instability. Otherwise unstable modes may bels&teldi an entropy gradient. Channel flows develop during the growth
by a stable thermal stratification or by fast (not necessdiffer- phase of the MRI, their width being set by the MRI wavelength.
ential) rotation. TabldsBl1 (models with a positive enyrgpa- MR termination occurs due to the growth of tearing-mode-li
dient) andB.2 (models with a negative entropy gradientyioi® resistive instabilities. When velocity damping is appligde
a list of the simulated models. Note that all models discdigse maximum Maxwell stress at MRI terminatiomfs(;m, is deter-
this subsection have a uniform initial magnetic field. mined by the box size. Comparing models with a positive en-
tropy gradient and with no entropy gradient we find a common
linear relation betweem/ljg‘;m andowri, indicating a common
reason for MRI termination (see Fig]15).
We first discuss dierentially rotating models having a stabiliz-  According to Eq.[(ZB), the channels are wider in models with
ing entropy gradient comparing models with and without madgrger entropy gradients. As wider channels are less pore t
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4.3.1. Positive entropy gradients
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these boundary conditions suppresses the growth of the MRI,
and that both give similar results.

Let us first consider a non-magnetic model which rotates
rigidly with an angular velocity2y = 1000s* and has an en-
tropy profile given bySy = 0.2 andd,S = —0.075km* (see
Eq. (37)). WithN?/Q3 ~ —-14 andR,/Q3 = 0, the model be-
longs to the convective regime. Buoyant modes are unstable
and grow at a theoretical ratg, = 3.4ms?. Simulated on a
grid with 25 m spatial resolution, the model is unstable with
a numerical growth rate- = 2.7 ms!, and convection sets in
quickly. The flow is dominated by a few (one or two) fairly cir-
cular convective rolls. Due to the transport of entropy and a
gular momentum by the overturning fluid, the model develops

complementary entropy and rotation profiles charactertzed
. “cold” (i.e., low-entropy), rapidly rotating matter in dewflows
020 040 060 080 1 1.20 and “hot” (i.e., high-entropy), slowly rotating matter ip-flows.
Oyrs [MSY The redistribution of angular momentum and entropy lead@sito
average (with respect to thecoordinate) rotational profile of
: C e _ the formQ « @2, i.e., constant specific angular momentum
Fig. 15. Maxwell stress at MRI termlnatlom_(lm, ,as a_funct|0n (see FigIB), and a flat entropy profile.
of the MRI growth rategyri, for models with zero (diamonds) = For a faster rotation rate 63, = 1500 s, corresponding to
and positive (plus signs) entropy gradients. N2/Q2 ~ -5.7, i.e., still in the convective regime, the evolution

is similar except for a reduced growth rate£ 1.6 ms!) due to

rotational stabilization. The model developféiential rotation
sistive instabilities, they can support stronger fieldsobefe- With_ the samep-deperjdence as in the case of slower rotation. If
ing disrupted (see discussion above), ME™ is larger in mod- We increase the rotation rate @ = 1900 st (N2/Qj ~ -3.2)
els with larger entropy gradients. The MRI growth rate, oa tPuoyant modes are stabilized by rotation. _ _
other hand, is smaller for larger entropy gradients (se¢Z)) __The above results also hold if the initial model is rotating
implying thatM©™ decreases with increasing entropy gradierdlifferentially. In particular, convection (i.e., the negatiutial
Both efects taken together suggest a weak anti-correlation trop}/zgrad|ent) gives also rise to a rotation law of therfor
M™ with the size of the (positive) entropy gradient. An anti=* < @ = and a flat entropy profile.
correlation is also suggested by our numerical resultspatih
more models are needed to confirm it. It is unclear, for exam-
ple, whether the growth rates of resistive instabilitiegvesl in
Sect[4.2.P also hold for stably stratified media, and whettree
boundary conditions have an influence in models with large en j
tropy gradients. Small perturbations of the quasi-peddbie- 1550..
cause of global gradients) radial entropy distribution reaye “
their imprint on MRI termination by enforcing a preferreddgh
scale, thus cloudingfiects due to a variation @f,S. —

We have also simulated a few of the models using an ideal-

gas equation of stat® = (' — 1)e, instead of the hybrid EOS
finding, however, nofect on the evolution of the models.
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4.3.2. Negative entropy gradients

Convection can develop in models having a negative entropy g
dient, but it can be suppressed by rapid rigid dfedential rota- 14000 v o i b b
tion. If a magnetic field is added to a convectively unstapte s 15 152 154 156 158 16
tem which cannot be stabilized by rotation, the system iatteat w[km]

in the “convection” regime of Fi§]2. In a situation whereaot Fig. 16. Q, averaged ovez, as a function ofs for non-magnetic

tion sufices to suppress the convective instability, the additiqy . ective models dt= 519 ms (green dashed), with an initial

of a weak magnetic field puts thg syslter.n into the “MBI” regimqnagnetic fielcb(z) = 102G att = 51.9 ms (red dash-dotted), and
and a magneto-buoyant instability similar to the standaed, (. uiia fieldb = 10*3G (blue solid lines), respectively. For the

95S = 0) MRI develops. Whew,,S < 0 the equivalent of the latter model the dferent symbols indicate fierent epochg =

standard MRI corresponds to the “MSI” regime in . 2. ; _ ; -
Before discussing our results (see B.2 for a list of ti%ll'S ms (plus signs)t = 208 ms (diamonds), antl= 41.7 ms

. gquares). The dotted black lines show the initial rotatam
s[mulated moplels), we n_eed to comment on the boun_dary OB, = 1500s?, and a power-law profil@ o 2.
ditions. Allowing for radial transport of energy shearidigc
boundaries can, in principle, lead to a transport of entexppss
the pseudo-periodic boundaries, thus modifying the inédia Adding a magnetic field ob] = 103G to a convective
tropy profile. By comparing shearing-disc models and modeisodel, i.e., to a model with a negative entropy gradient ro-
with reflecting boundary conditions, we verified that none dhting suficiently slowly (in our case, for rigid rotation with
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Qo < 1500s?) prevents the development of convection. Initiaérable variations i€, but there is no clear indication of a mean
perturbations are amplified rapidly, but saturation setsithin  differential rotation of the forn@ = Q(w). The entropy profile

6 milliseconds the growth rate being slightly larger tharthie in the saturated state is almost flat.

non-magnetic models. WitN?/Q3 ~ 5.7, the model is domi- Finally, we summarize a few common features of the mod-
nated by buoyant modes, but there still exists some influefhiceels having a negative entropy gradient (see[Tab. B.2). Aei®
the Alfvén modes. In particular, although infinitely longdes develop instabilities in accordance with the flow regime é b
grow rapidly, the fastest growing modes are Alfvén modefs-of expected from their model parameters. The growth ratesl of al
nite wavenumber which depends bfi For suficiently strong models are, within the uncertainties, similar to the thécaé
initial fields (or suficiently fine resolution), these modes are nupredictions. As for the dynamics, we have to distinguish mod
merically resolved, and have a growth rate exceeding thiiteof els in the convective regime from those in the mixed and MBI
corresponding non-magnetic model. The magnetic field gthen regimes. The former class of models shows convective mush-
increases exponentially as the instability develops, atftezon-  rooms and large-scale overturns with only little influentéhe

set of saturation large convective rolls develop. In thersdion  magnetic field, whereas the last class is dominated by channe
phase the flow geometry fiiers considerably from that of theflows. Consequently, angular momentum transport by hydrody
corresponding non-magnetic model. It consists of dowrtsiranamic flow leads to a rotational profi®® = @2 for models in

of cold material and up-flows of hot gas forming small-scalghe convective regime, while models in the mixed-type regim
structures rather than large circular convective roll&elin the tends towards rigid rotation the angular momentum trartspor
non-magnetic model, cold and hot regions correspond tonsgi being dominated by magnetic fields. Termination of the insta
of low and high angular velocity, respectively.fl@irential rota- bility growth occurs for models both in the MBI and mixed-&/p
tion with constant specific angular momentum,« @2, de- regime analogously to that of models in the MSI regime withou
velops due to hydrodynamic transport of angular momentuméntropy gradient, i.e., by reconnection in resistive insities al-
convective overturns. The magnetic energy related to tialra tering the topology of the channel flows. Consequently, we fin
component of the magnetic field and the Maxwell stress compgimilar dependencies on the initial field strength, the geisb-
nentMg4 remain large during saturation, i.e. angular momentuliition, and the type of boundary conditions. The instapiiit
transport converts the~2 rotation law prevailing at early epochsconvective models, on the other hand, saturates when e ini
into nearly rigid rotation (Fid.16). entropy gradient is removed by vigorous entropy transpoet d

If for the same initially rigidly rotating model the initiahag- to overturning fluid motions.

netic field is too weak to resolviyr (we simulated two mod-

els withby = 10* and 182, respectively) convection develops4 4. Three-dimensional models

The growth rates are similar to those of non-magnetic models

The weakest initial fieldbé = 10* G, has no impact at all, and The results of the axisymmetric simulations discussedeptie-

the evolution of the model with an initial field of 3G differs Vious section demonstrate the possibility of MRI-driveridfie
only slightly from that of the non-magnetic model. The magme _am_pllflc_atmn in core (_:ollapse supernovae, and prowde some
field increases exponentially as the instability growsgegper- insight into the evolution of MRI unstable layers in the core
sistent convective rolls form, andftiirential rotation develops. However, to address the MRI problem in full generality, ome h
After an initial exponential growth the mean magnetic eyeeg {0 consider three-dimensional models, because the assumpt
mains large, but the contribution of the radial componerihef ©Of axisymmetry implies severe restrictions for the dynanué
magnetic field and the mean Maxwell stress compohentde- the magr_leuc_and kinetic flelds_. Th(_e most important Ilrmlas
crease almost by four and two orders of magnitude, resgytiv @re that, in axisymmetry, a toroidal field cannot be conwkirte
Consequently, no significant angular momentum transport gePoloidal one, and that the disruption of the channel flows re
curs due to magnetic stresses, and similar to the non-riagdet duires non-axisymmetric parasitic instabilities (Goodmaxu
model aQ « @~ rotation law develops. Fif.16). 1994).

As 3D simulations are computationally much more expen-
e than 2D ones, we could not perform a comprehensive study
. > ; but had to focus on a few selected models. We simulated mod-
ing an initial entropy gradient, S = —0.1km* (see TalBR), ¢|s with diferent field geometries and varied the initial field

which impliesNz/Qg ~ —3.6. Without magnetic field, the insta- o; th. th t fil d the arid si [TabaBB
bility of the buoyant modes is suppressed by the fast rmatiosl-ég[%)’_ e entropy profile, and the grid size (see

However, if a weak magnetic field is added, an instabilityhef t
MBI type develops, i.e., the Alfvén modes become unstdliie.
numerical growth rates show a similar dependence on the magt.1. Uniform initial magnetic fields, no entropy gradient

netic field strength as in case of the standard (@gS = 0) i ) i ) o )
MRI, becauselyr; is resolved. The instability grows rapidly e first discuss models which have a uniform initial magnetic

(o ~ 1L.4ms?, similar to the theoretical valueq ~ 1.7 ms2). field b(z) in z-direction, no entropy gradient, and rotatéelien-
During the growth phase channel modes appear, which lead téadly with Qo = 1900 s andaq = —1.25 (see Eq[(35)). If the
transport of both angular momentum and entropy. After amexpMRI wavelength is well resolved (e.g., for models with ialti
nential initial growth and some decrease after MRI ternigmat field strengths of 210G and 4<10'3G simulated at a grid res-
the mean magnetic energies contained in the total magneltic fiolution of 5w = 20 m), the growth rate is large and independent
and all three field components remain large (correspondingaf b} . Under-resolved models (e.g., models wigh= 10"G
field strengths of 10'*G), but the mean Maxwell stress com-simulated at the same resolution) exhibit a slower growtief
ponentM,,; drops to zero within ten milliseconds oscillating af MRI. From the growth rates of the MRI, we infer that in 3D the
terward with decreasing amplitude between positive ancdnegame resolution criterion applies as in the case of axisymyme
tive values. Hence, large-scale angular momentum trahgpor  During early epochs the evolution is similar to that of the-co
limited. At the end of the simulation, the model shows considesponding axisymmetric models: a number of radially aan

We now consider th&/BI regime (see Fi@l2) and discuss;j,,
models rotating initially rigidly withQ, = 1900s?! and hav-
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channels appear. Strongfféirential rotation causes significantoy = 4 x 10'3G computed on a grid of 5 100x 50 zones is
wind-up of flow features leading to structures elongateg-in displayed at two dferent epochs in Fig, 20. At= 21.5 ms (left
direction, i.e., there exists only a modest variation of MteD  panel) one recognizes a turbulent state, while large-pedierns
variables with azimuthal angle at this stage. Sheet-likecst (right panel; yellow structures) dominate the flont at 37.2ms
tures dominate the field geometry. The rotational profilehegeg when the magnetic field strength is largest, and the Maxwell
to show distortions due to the transport of angular momentuwstress is strongest. Unlike in the model discussed abogeah
by Maxwell stresses (see left panel of FEigl. 17). At later égsocherent flow is unstable and becomes turbulent within a few mil
the flow in 3D is more complex than in axisymmetry. Althougliseconds, and the absolute value of the Maxwell st¢m§ﬁ|
coherent structures, i.e., flux sheets, are still presesgit,geom- decreases.
etry is more tangled and twisted, and less isotropic thalieear
in the evolution (see middle panel of Higl17).

An evolution from coherent channel flows to a more tu
bulent state is characteristic for all three-dimensionatets

I(_:hannel modes and parasitic instabilities: The appearance
and stability of single large-scale flows that lead to a sdaon

with a uniform initial magnetic field. However, as pointedt ouexponential growth phase and eventually to the disruptiahe

by [Sano & Inutsukal (2001), channel flows can develop agaWltation profile depend on the geometry of the simulated doma

from the turbulent state. Consequently, the magnetic fiakl cas well as on the ratio of the grid resolution and the fastestg

continue growing, and the angular momentum transport wifl9 mode.

be enhanced strongly. In the most extreme cases, the evoIH-MOdilsz'OWhiChdari complIJteq irclja qu o_f 1§<rwi|§hda (;es- |
tion is similar to that of a corresponding axisymmetric miode?'ution of 20m and where velocity damping Is applied, depelo
condary stable channels, if the initial magnetic fieldrager

This is exactly what we observe for some models at late tin
; ; an 2x 10%G. The MRI grovvth rates found for these models
> m F / =
t > 30ms (see I‘Ight panel of @]1 ), when a dominant chal | {0.76.1.03, 1.10} sif r bo (12,4} x 1 ]SG, respec-

S%JJ?P]N ;g(rjrr;slé:'gh; ;Zrm)??heé zggedlsrgﬁlgn?esntﬁﬁ\g ;ﬁ?;;ig Ively) indicate that the grid resolution is fiently fine to re-
Maxwell stresses. The field strengths reach severaiGOpeak- solve tftl_e fgstesé glrovljlng MRI .r;n.o?e for the t\;vo most S'&rglng!y
ing at 10°G, and the mean Maxwell stress componieif; ex- magnetized models. HOWevVer, 1L1S too coarse for the moaal wi

» 3 ) . the weakest initial field, because the theoretical growth far
cgeds 18 erg e (;ee mu_:idle pane_l of FI@.S), and comparg, o fastest growing MRI mode isyr; = 1.14ms? for these
with the corresponding axisymmetric model in the left pa"nelmodels (see Se€LA2.1) )

Despite a qualitative similarity between the evolutionloé 8D To investigate the stability properties of large-scal I

and axisymmetric models, we note that the secondary eXPONEN 1 < as a function of the box aeometry. we simulated mod-
tial growth is slower in three dimensions. 9 Y

qél& with an initially uniform magnetic field using boxes of-di

fieI(;ir?r%r?wrgeigreg]uclgn?fs?atl:rgghszaeles:gr?ciwre@mlghiorr?]a%?ﬁ ent size and shape. The models were rotating according to
’ P '3% = 1900s?! andeq = —1.25, and their initial magnetic field

the field structure at = 26.8ms andt = 42.5ms, respectively. wash? = 4 x 10°G when applying velocity damping bound-

At the earlier time (left panel), we find a small-scale fielddo " 3 . i .
inated by slender flux tubes. Field lines offdrent polarity (in- a1€S, and = 2x 10'°G otherwise. We varied both the ratio be-

dicated by diferent colors) are lying close to each other. AftefV€en the radial and verticdl,/L,, and the radial and toroidal
the development of the channel flow (right panel), the field f2&:Ls/L, Size of the box. The grid resolution was 20m (see
dominated by a large-scale pattern. A smooth surface permi@P[B.3). Plotting the stress ratidsT%"/MZU™ (Fig.[21; damp-
ating the box at nearly constamicoordinate separates in twoing boundaries) antM4)/MES™ (Fig.[22; non-damping bound-
large regions field lines of flierent polarity from each other. Inaries) as a function of the aspect ratio of the computatiboz)
each of the two regions, we find one broad flux sheet where mpstvides some indication of the range Wi, values prevail-
of the magnetic energy is concentrated. The separatiom isyeing during the post-growth phase. The ratios allow one te dis
filled by gas rotating nearly uniformly at a ow angular veloctinguish models with a strong variability due to the dominan
ity (Q ~ 1500s?t). The surrounding gas rotates uniformly ase-appearance of channel modes from those models exlgilkitin
well, but at a much higher velocityX ~ 1800s?). The two smooth evolution without dominant large-scale coheremicst
flux sheets form a thin transition region between both roteti tures.
states. Thus, the dynamics is similar to that of the cornedjpg We find that models with a radial aspect ratig/L, = 1
axisymmetric model. and a toroidal aspect ratig,/L, > 2 are unstable against par-
Because our boundary conditions allow for a loss of angulasitic instabilities, independent of the grid resolutiortiaroidal
momentum, and thus for the total disruption of th&atiential direction. Turbulence develops and leads to a flow strucare
rotation profile by transport through the radial boundaribis shown in Figl2D. Models having the same radial aspect ratio,
stage represents the end of the evolution, just as it did in dut a smaller toroidal one are stable and evolve similarlspas
isymmetry: the instability has used up its free-energymgse isymmetric models, i.e., parasitic instabilities do nodwgrand
Hence, the later evolution consists only of violent ostitlas.  a dominant large-scale channel flow develops, which gives ri
Only a subset of our models show a prominent re-appearameea morphology of the type presented in [Eig. 20. These find-
of single channel flows, and most of them do not exhibit a seieigs do not depend on how the growth of the MRI ends, i.e.,
ondary exponential growth phase. Instead, the mean magnethether velocity damping is applied and reconnection betwe
energy and the Maxwell stress remain roughly constant dadjacent channels occurs inside the box, or whether no damp-
ing saturation, albeit fluctuating strongly (see the righhg@ ing is imposed and reconnection occurs near the surfaceeof th
of Fig.[18). Angular momentum transport is lesiaient for computational box.
these models, and their initial rotation profiles remainrlyea  These results can be understood from the analysis of par-
unchanged. A turbulent flow and magnetic field persist durirasitic instabilities by Goodman & Xu (1994), who argued that
saturation, and coherent, channel-like structures dpveln- three-dimensional flows are unstable against parasitiabils
siently. The structure of the magnetic field of a model witkies, but these instabilities can be suppressed by the gepafe



18 M. Obergaulinger et al.: MRI in core collapse supernovae

Fig. 17. Structure of a 3D model withy = 2 x 103G computed on a grid of 1 kirat a resolution of 20 m dt= 16.2 ms (left),
t = 26.8 ms (middle), and = 42.5 ms (right), respectively. Shown is the volume renderedmetig field strength (blue to green),
and a red-orange is@-surface corresponding @ = 1820 s? (left and middle) and2 = 1680 s? (right), respectively. The red,
green, and blue axes point inég, ¢, andz direction, respectively. Channel flows can be identifiedragig sheet-like structures.
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Fig. 18. Evolution of the mean magnetic energy dengt#? (solid black line), the mean energy densities correspantiirthe

w (dotted red)¢ (dashed brown), angl(dash-dotted green) component of the magnetic field, andlikelute value of the mean
Maxwell stress componeM,, , (dashed blue line) for models with an initially uniform magic fieldby = 2x 103G in z-direction,
and a rotation law given b§, = 1900 s* andag = —1.25. The panels show a 2D model computed in a bdxo% L, = 1kmx 1km
(left), a 3D model computed in a box &f, x Ly x L, = 1kmx 1kmx 1km (middle), and a 3D model computed in a box of
Lz X Lg X L, = 1kmx 2kmx 1km (right), respectively. The grid resolution is 20m intaltee cases.

Fig. 19.Same as middle and right panel of Figl 17, but showing besidegolume rendered magnetic field strength (blue to green)
also the magnetic field lines, which are obtained by starttiggintegration of the magnetic field at two surfaces of camisi-
coordinate (i.e., orthogonal to the green axis) at the left aght hand side of the domain. The field lines originatinanf the

left and right surface are plotted in red and yellow, respebt The right panel shows, in addition, the isosurfage= O (i.e. the
magneto-pause).
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Fig. 20. Volume rendered magnetic field strength of a model Wfh= 4 x 10*G computed in a box of ¥ 2 x 1 kn?® with a
resolution of 20m at = 21.5ms (left) and = 37.2ms (right), respectively. The coordinate directions arbdated as in Fig. 17.

the computational box. According to their analysis, theagho For boxes having a large toroidal aspect rétigL, > 2, we
rate of the parasitic instabilities is largest for modeshwitllf observe a quiet evolution during the non-linear saturagtiagise
the wave number of the unstable MRl modes they are feediafjthe MRI when varying the radial aspect ratiq,/L,. In par-
off. Hence, if a channel flow forms at late times with a wavaicular, the fluctuations oM, are small after MRI termination
length equal to the box size mdirection,L;, unstable parasitic for models where both aspect ratios are large. The modeiein t
modes must have a toroidal wavelengtt?L, to grow rapidly. upper right corner of Fi.21 have values(cMmp)/M}g;m close
Thus results in the criterion for the channel flow instapilite  to unity.

have found in our simulations. We may try to infer some consequences from these results

In accordance with simulations presented recently K9r the MRIin supernova cores. Close to the core’s equatr th
Bodo et al.[(2008), we find that models with a radial aspect reggion, where the MRI develops, can have to a small radiel siz
tio Lo/L; <1 experience a second exponentia| growth phase Ias, ranglng.from afewto a'few hundred kllometgrs determined
described in Sedf.4.2 (note the large ratiosv#2 and M by the gradients of2 andS in the core. The vertical extent of
for the corresponding models in Figl21), whereas a larger the unstable region,;, can be expected to be qf S|m|'lar size.
dial aspect ratio appears to favor a less violent post-grpivase | n€ azimuthal extent of the MRI unstable regidg, will be
where coherent channel modes can appear but are disrupgted &gnificantly larger, leading to a non-violent evolutiorthé sat-

a short timel_Bodo et all_(2008) obtained this result for dimu urated state of the MRI. The geometry isfdient close to the
tions performed with a toroidal aspect ratig/L, = 4. pole. However, we cannot apply our results there withoutimod
fications as we have considered only cases where the gradient

_ We confirm a similar dependence of the dynamics on the I§-and of all thermodynamic quantities are aligned — a sitmatio
dial aspect ratio also in axisymmetry and for three-dimemai \yhich does not apply near the poles.

boxes with smallet,/L,. In this case, parasitic instabilities are

unable to disrupt the channel modes. Consequently, the MRI

experiences a second exponential growth phase dominatedEffgcts of resolution and initial magnetic fields in 3D vs 2D:
just one (two in a few cases) large channel mode of walth After having discussed how the aspect ratios of the sinarati
which is determined by the size of the computational box pox determine the Maxwell stress at MRI termination andrtyiri
z-direction. The maximum Maxwell stress that can be reach#fte subsequent saturation phase, we will now compare whethe
is limited by the onset of resistive instabilities. The degence the behavior of 3D models filers from that of 2D models. The
on the channel width (Ed.{A.11)) explains why the maximumnodels discussed in this paragraph are listed in[Tab. B.Bahd
Maxwell stress varies with,: larger boxes allow for wider chan-  First, we note that in 3D, as in axisymmetry, the growth rate
nels for which the resistive instabilities grow slower,glraquir-  of the instability is not &ected by the choice of the grid provided
ing higher Alfvén velocities for a growth rate comparalildhiie the fastest growing mode is resolved.

one of the MRI. Hence, the MRI reaches stronger fields foelarg  Fig.[23 demonstrates that in 3D the dependend\i!m11 on

(in z direction) boxes. the initial magnetic field strength is well described by thens

Despite the dferences in the MRI termination process, theower law as in axisymmetry: models without damping of the
behavior of models with and without velocity damping is quitradial velocity line up along a band (b5)'®”’, and models with
similar, because the velocity damping does ni¢et the sec- Velocity damping are characterized by a roughly constalueva
ond generation of vigorous channel flows significantly. Thius  0f M5;™, which depends on the size of the radial box (compare
breakup of these channels and the values of the corresmpndifith Fig.[8). This agreement is to be expected as the growdh an
maximum Maxwell stress do not depend strongly on the choitiee resistive disruption of channel flows are essentiallgyam-
of the boundary condition. On the other hand, MRI termirationetric processes, which are, thus, not significantly madiifie
(the termination of the initial exponential growth of the MR three-dimensionalfgects.
does depend on whether velocity damping is applied or ndt, an After MRI termination the evolution oM, depends on the

thus the ratidvlggx/M}g;m, too. aspect ratio of the computational box (see discussion gbove
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Fig. 21.The left panel shows the ratio of the maximum MaxwelFig. 23. Volume-averaged Maxwell stress componmﬁ;m at
stress per unit volumeM?%, and its value at MRI termina- MRI termination as a function of the initial magnetic field
tion, M};;m, as a function of the toroidal and radial aspect restrength g, for axisymmetric models with uniform initial mag-
tios, Ly/L, andL /L, for the models listed in TalB.3. The rightnetic field inz-direction, a rotational profil@ = 1900 s* @2,
panel shows the ratio dfl,, averaged over the saturation phas@nd a vanishing entropy gradient for a set of 3D models com-
and the value at MRI termination. Each model is represenged puted with (asterisks) and without (diamonds) velocity garg

a symbol its color reflecting its maximum Maxwell stress. Alpt the radial boundaries. Models computed in a box with aafadi

models are computed imposing velocity damping at the radgire of 1km and & km are shown with green and blue symbols,
grid boundaries. respectively. The colored bands are the same as ifiFig. 8.

max term avge term . . .
0g Mo / Mo, 10g Mgy~ / Mo, 4.4.2. Uniform b? field, entropy gradients
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o o a@ o i Mixed regime: Let us first consider models from the mixed

regime having an initial rotation law given b, = 1900s?
andaq = —1.25, and an entropy distribution given By = 0.2
andd,S = -0.038 (i.e, with a negative entropy gradient). In
o a oo o o axisymmetry the MRI grows in these models with a rate of
omrl ~ 1.7ms1, i.e., close to the theoretical valueo2.0ms 2.

The 3D models show the same growth rate provided the spatial
grid resolution is sfliciently high.

The long-term evolution (i.e., many rotational periodint
the non-linear phase) of the models depends strongly on the
o | on [+] o choice of the radial boundary conditions. If the entropytet t

inner and outer boundary is allowed to change (i.e., usifigae

log L,/ L,
=
o
1]
o

tive boundaries), a flat entropy profile develops after atdhoe.

- u - u To reduce the influence of boundarfjexts, one could employ a
1 1 technique widely used in simulations of convective layacd
log Ly /L, log Ly /L, a cooling layer on top of and an overshoot layer below the con-

vection zone. However, exploring this approach was beybed t
Qéope of the present work.

For models having a negative entropy gradient the growth
of the MRI is not influenced by 3Dfeects, if the fastest grow-
ing mode is resolved. Thus, their behavior is similar to thfat
models with no entropy gradient. The Maxwell stress at MRI
termination also does notfir significantly from that of the
When averaging the fluctuating Maxwell stresses over the saorresponding axisymmetric models, and due to the boundary
uration phase, we find values fo¥,) which differ consider- conditions applied in the models (velocity damping) itsueais
ably from those oM™, Lacking a thorough understanding ofset by recombination of field lines close to the inner and oute
the instabilities involved in the MRI saturation processj hav- radial boundary.
ing only a imited set of 3D models at hand, one is not yet in a Contrary to axisymmetric models, the saturated state of the
position to formulate a better description of the dependesfc 3D models does not show any sign of a late exponential growth
the evolution after MRI termination on the aspect ratio af thphase characterized by the re-appearance of channel naodes,
box, and to provide a unified description of MRI saturation anthe saturated MRI stresses are smaller in magnitudeMgft,
plitudes. i.e., the maximum Maxwell stress is reached at MRI termanati

Fig. 22.Same as Fif. 21, but for models where no velocity dam
ing is applied at the radial grid boundaries.
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Fig. 24. Evolution of the mean magnetic energy densf?® Fig.25. Average radial entropy profile as a function of time for
(solid black line), the mean energy densities correspanthin the model shown in Fi§. 24.

thew (dotted red)¢ (dashed brown), anzi(dash-dotted green)

component of the magnetic field, and the absolute value of the

mean Maxwell stress componeit, , (dashed blue line) for a

3D quel be]onging to the mixed regime. The mod_ellr_otates difiore strongly magnetized models where we can resaie.

ferentially with Qo = 1900s* and‘fsf = —125. The initial en- The growing convective modes eventually extend over the en-

tropy gradient is),;S = ~0.038knT", and the initial magnetic tirg qomain in radial ana-direction, while having a small wave-

field strength ishf = 2 x 10"3G. The model was simulated 'nlength ing direction (see Fid.26, upper panel). The exponen-

a box of sizeL, x Ly x L, = 1 x 2x 1km® and on a grid of tial growth of the convective instability saturatestat 7ms.

50x 100x 50 zones. During this growth phase the mean magnetic energy incredses
the same rate as does the kinetic energy. After MRI terngnati
the structure of the model is characterized by two largeghdu

(See F|m and Compare with F@ 4) The evolution of the agub|c ConVeCtiVe Ce||S W|th a Size Of about 1:i(|instead Of a
erage radial entropy profile profile, computed as the avephgeMultitude of elongated structures (see (Eig. 26, lower haaed
S(w, ¢, 2) at constant, is shown in Fig_2b. Until the saturationan essentially flat entropy profile. The magnetic field is sabj
of the instability (att ~ 11ms), the initial linear profilS(w) to kinematic amplification at a smaller growth rate than befo
is basically unchanged. However, afterward the entropgilpro MRI termination due to stretching in the convective vorsicat
flattens,S becoming nearly constant for Zkm < @ < 15.8km. much later epochs the typical size of structures in the vigloc
Close to both radial boundaries, the entropy profile devetop  field decreases again, leading to more turbulent fields. Tg m
trema, which are most likely an artifact of our boundary dendnetic field, which is too weak toféect the dynamics, is passively
tions. The flat entropy profile is stable and does not varygiiyo  advected with the flow.
with time. TheQ profile flattens after the initial growth phase, For the model having the strongest initial magnetic field
too. The velocity field in the saturated state is dominatedbyb] = 2 x 103G we can resolvelyr. The axisymmetric ver-
rich small-scale structure, while the magnetic field is aigad sion of this model showed a MBI growth a rate close to the
in a multitude of flux tubes. theoretical onedyr; ~ 1.7ms?). For the 3D model we find
oconv ~ 2.6ms?), i.e., its evolution is dominated by convection
. , i i (although we are able to resolve the MBI), and the MBI growth
MBI regime: Next we consider a few models that, in axisymrate is similar to that of a weakly magnetized model (seeiprev
metry, belong to the MBll regime. Initially, the models r@at o5 paragraph). MBI growth is mediated by non-axisymmetric
rigidly with Q = 1900s” and possess an entropy gradienhgges having the same elongated geomeiry as those in the es-
a?s = —0.10I%m (i,e.,C = ;3.6). We computed models for sentially unmagnetized model. After saturation, a feweargr-
by = 10G, 16°G, and 2x 10"°G, respectively. All models are fices of approximately cubic shape form, which later decday i
simulated in a box of size, x Ly X L, = 1x 2x x1km™> and small-scale structures again. An intermediate stage sfdat
on a a grid of 50< 100x 50 zones. cay process is displayed in Fig]27, when one large vortetlis s
Contrary to their axisymmetric counterparts (see $ed}, 4.present in the right half of the box, while its left half is dem
these models develop convective modes even when no miegted by spatially less coherent fields. At even later tities
netic field is present. As described, e.g., by Tassoul (1968) vortex disappears and the structure of the whole model is sim
tation can stabilize axisymmetric modes in a convectivédy s lar to that shown in the left half of the box. The mean magnetic
ble environment, but non-axisymmetric modes can neversiselenergy and Maxwell stress are small compared to typical MSI
grow in that situation. The model with the weakest initialdie or mixed models. Compared to afféirentially rotating model
(bj = 10G) shows a growth of non-axisymmetric MBI modegQo = 1900s?, aq = —1.25) with a vanishing entropy gradient,
but these modes cannot be resolved due to the extremely wdskmaximum magnetic fields are reduced by a facter f and
initial field. Thus, the model behaves essentially simiteait un- the mean magnetic energies and Maxwell stresses by a fdctor o
magnetized one, but can serve as a reference model foflinitia~ 10, but we still find a slow growth at the end of the simulation.
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4

Fig. 27.Structure of a rigidly rotating model withf = 2x 10*3G

att = 19.3ms. The figure shows a volume rendering of the mag-
netic field strength (blue — green), the value of the angwdior

ity, Q, at three slices parallel to the coordinate axes (red — yel-
low), and stream lines of the velocity field in a co-rotatingrfie
(black lines). In the right half of the figure, one can identihe
large convective cell, whereas the features of, e.g., thecing
field in the left half are of considerably smaller scale. Thagm
netic field is comparably weak inside the convective celf an
strongest in the flux tubes both at the boundaries of the @enve
‘ tive cell and in the left part. The colored arrows point inte t
same coordinate directions as in [Eigl. 17.

Fig. 26. Flow structure of a MBI model witthj = 10G at
t = 4.86ms (upper panel), and= 14.4ms (lower panel), re-
spectively. The solid black lines are stream lines of theaig} Performing similar simulations Lesur & Ogilvie (2008) pro-
field computed in a frame co-rotating with the mean angular veosed a non-linear dynamo that balances the dissipatiomeof t
locity, and regions of positive and negative radial velpeite magnetic energy in MRI models with zero net flux. In the tur-
colored in red and green, respectively. The colored arravirstp bulent saturated state, they identified large-scale djyataver
into the same coordinate directions as in Eig. 17. a sizable fraction of the box) and temporally (over seveytd+

tional periods) coherent patterns of the toroidal magrfetid.

To study this process, we looked for similar patterns in oadm

Finally, we add a few comments on a model where we canrfi$-

resolvedyrs (b3 = 10'°G), but where the magnetic field satu- An example is shown in Fig.28 for a model witlf =
rates within~ 60ms after the onset of convection. The moded x 103G simulated in a box of 1kfon a grid of 58 zones
evolves similarly to the essentially unmagnetized one, diut applying no velocity damping. The figure shows the mean value
t ~ 60ms the energy of the kinematically amplified magnetigt the toroidal field componett, (i.e. b? averaged oves and
field becomes almost as large as the convective kinetic gnerg) as a function o and time. Fott < 14ms the early channels
The amplification process ceases, and the magnetic energy fgws can be identified in which the magnetic field grows. At
els df. Close to the end of the simulation convective transpart. 14ms, the channels are disrupted, and the growth of the field
gives rise to a rotation laf ~ const. seizes. In the saturated state that follows, the mean ¢adyrsize
of the structures is larger: at any time, we find only a fewittyp
cally two) regions of opposite field polarity (blue and reghjch
remain stable for a few rotational period3¢ ~ 0.53ms). Thus,
Many results discussed above also apply analogously to Imodee make similar observationslas Lesur & Ogilvie (2008) do for
where the initial magnetic field has a vanishing net flux tigtou their models.
the surface of the computational box. We simulated moddls wi  \We also simulated a few 3D models with zero-flux fields
Q = 1900s! andeq = —1.25, and find a basically axisymmetricin the mixed regime. The results are analogous to those ob-
growth of channel flows, which decay due to resistive in$itabitained if the initial fields are uniform(see, e.qg., Fig. 2%he
ties at a level consistent with axisymmetric models. Thedab- MRI growth rates are similar to those of the corresponding 2D
lution of the models is dominated by turbulent fields. Conytra models, and the mean Maxwell stress in the saturated state is
to uniform-field models, there is no second phase of chammel gomewhat smaller. In the saturated state, both the entugpy (
tivity. Hence, the mean magnetic energies and Maxwell sé®s per panel) and the angular velocity profiles become flat tapid
do not fluctuate violently in the saturated state, and - eveernw The spatially and temporally coherent large-scale strastin
no velocity damping is applied - the maximum values of, e.ghe magnetic field are even more pronounced than in MSI mod-
LMWL are reached at MRI termination. Later|d#,| decreases els (compare the lower panel of Fig] 29 with Figl 28). They-con

y a factor of a few, and stays roughly constant subsequentlysist of two large regions characterized by an opposite sfgn o

4.4.3. Magnetic fields with zero net flux
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the mean (i.e., averaged over a plane at congtanbrdinate) 907040 20440 382107
toroidal field component of a 3D model having an initial mag- YL | 1
netic field of zero flux and strengti = 2 x 101°G. The model 04 '

was simulated in a box of 1kincovered by 50 zones with
no velocity damping applied. This figure is similar to Fig.fL o 0.2+

b?, which persist for the entire simulation of the saturatedest
(= 140ms), subject only to a slow drift in vertical directiorhd =0.2p+

implications of this behavior for the presence and propentif
a nonlinear dynamo of the type proposed@@ilvie
(2008) remain to be explored.
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5. Summary and conclusions

We have studied the possible amplification of seed pertiormt Fig. 29. Evolution of a mixed-regime 3D model with zero net
in supernova cores by the magneto-rotational instablfithe  flux (b5 = 2 x 10*3G), an entropy gradiert,S = —0.038kn1*,
MRI grows on dynamically relevant time scales (a few tens aind a rotation law given b@ = 1900s* andaq = —1.25. The
milliseconds), it can lead to MHD turbulence arfii@ent trans- upper panel shows the entropy of the model averaged ovezplan
port of angular momentum. Because the growth of the magnedicconstanto as a function of radius and time. The lower panel
field and the associated Maxwell stresses is exponentimhim t shows, similarly to Fid. 28, the averagelfover planes of con-
the MRI is one of the most promising mechanisms to amplify ttetantz as a function oz and time.

— most likely weak — magnetic field of the supernova progenito

up to dynamically relevant strengths.

As pointed out by Akiyama et al. (2003), the conditions foidentified the regimes of the instability relevant to supem
the instability are fulfilled in typical post-collapse supeva cores.
cores. Under the assumption that the MRI converts most of We distinguish betweeAlfvén and buoyantmodes of the
the energy contained in fiiérential rotation into magnetic en-MRI. The former ones are generalizations of the standard MRI
ergy, these authors predicted saturation fields of apprately modes, and the latter ones resemble standard convectivesmod
10'°G. This prediction derived from a semi-analytic analysiBuoyant modes are unstable only in systems dominated by a
and 1D simulations can only be confirmed by detailed multhegative entropy gradient, whereas Alfvén modes prekdif-
dimensional numerical simulations. The reliability of lg& ferential rotation is the main agent of the instability. Viéeas
simulations of the entire core, however, is limited due ®@nle-  Alfvén modes are rapidly amplified only for a small range of
cessity to resolve accurately small length scales (a feversgt wave numbers, buoyant modes grow at essentially the same rat
at most) leading to impracticable computational costs. for a wide range of wave numbekss Kmax.

Traditionally, the MRI is studied in great detail in accosti We have identified six regimes of the MRI depending on the
discs, i.e., in systems dominated by Keplerian rotatioraBee ratio of the entropy and angular velocity gradient. Thesel MR
typical post-collapse supernova corefiei from these systemsregimes and their properties can be summarized as follows:
in many respects, e.g., by the importance of the thermai-stra
fication and the sub-Keplerian rotation, we investigatedlith 1. Suficiently large positive gradients of the angular velocity or
stability under more general physical conditions. Anaigzihe of the entropy define th&table regimevith oscillatory rather
MRI dispersion relation of Balblis (1995); Urbin (1996), we than growing modes.
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2. For stficiently strong diferential rotation and small entropy
gradients (or small buoyancy frequencies), we findstear

regime corresponding to the hydrodynamic shear instability4.

3. If negative entropy gradients dominate the system, ib4s |
cated in theconvective regimewhich resembles ordinary
hydrodynamic convection potentially modified in the non-
linear phase by the presence of a magnetic field.

4. A small degree of diierential rotation (e.g., Keplerian) and a

small entropy gradient (if present at all) are the condgifor 5.

the magneto-shear (MSI) regimeell studied for accretion
discs.

5. When fast (nearly) rigid rotation suppresses convectien
stabilizing éfect can be overridden by a weak magnetic field,
giving rise tomagneto-buoyant (MBHodes. This regime is

only encountered in axisymmetric flows as rotation can sta-

bilize only axisymmetric modes of convection, i.e., in #are
dimensions convection may grow faster than the MBI.

6. Finally, amixed regimeexists which shares properties of all
unstable regimes listed above.

To substantiate our stability analysis, we performed a set

of more than 200 models of semi-global high-resolution simu
lations of the MRI in simplified models of post-bounce cores.

Our novel semi-global simulations combine elements of both

global and local simulations by taking into account the pres
ence of global background gradients and by providing highllo
spatial resolution. In particular, we employed the shepdisc
boundary conditions proposed by Klahr & Bodenhelmer (2003)
which allow for the treatment of global gradients of, e.g@n4d
sity or entropy, and studied the influence of a thermal dicati
tion on the MRI assuming various (radial) entropy profilelse T
presence of gradients constitutes an importafiédince of our
setting from that of accretion discs. We used a newly deeslop
Eulerian high-resolution MHD code to evolve the flow in a com-

putational box having an edge length of a few kilometers. The

box was located in the equatorial plane of the core at a distan
of 15 km. The initial data were computed assuming hydrastati
equilibrium of diferentially rotating matter described by a sim-

plified equation of state. The gas in the box was endowed with a

weak initial magnetic field of dierent topology and strength. In
most of the simulations, the magnetic field of the progeritat
a strength of approximately 1%G. We neglected thefiects of
neutrino radiation and assumed an ideal MHD flow.

The main results of our simulations are agree well with both

our mode analysis and with local simulations of the MRI in ac-

cretion discs. They also confirm the estimate’s of Akivama.et &-

(2003), and they are consistent with the results of globalMH
simulations of core collapse (e.g., Obergaulinger &t 26503).
We summarize our results as follows:

1. The MRI can act in supernova cores amplifying an initial

magnetic field strongly. The growth times are approximately

equal to the rotational period of the core, which for rapidly
rotating cores is dficiently fast to influence the dynamics.
2. Due to our relatively fine numerical grids, we were able
to resolve the fastest growing MRI modes for initial field
strengths larger than a few *(. This threshold is consider-

ably lower than the one of previous global simulations (e.g8-
Obergaulinger et al. 2006b,a), enabling us to probe the MRI

in a parameter range inaccessible to global simulations.

3. The growth of the instability is accompanied by the devel-
opment of channel flows, predominantly radial flows of al-
ternating direction stacked up in tlzedirection. This flow

pattern is characteristic of both axisymmetric and three-
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dimensional simulations. The width of the channels is set
by the wave length of the fastest growing MRI modes.

At MRI termination (i.e., at the end of the first exponehtia
growth phase of the instability) the channels dissolve into
a turbulent flow having a complex magnetic field topology.
During the subsequent evolution secondary generations of
channel flows can (re-) appear which characterize secondary
phases of exponential growth.

We identified the mechanism responsible for the breakup of
the channel flows and MRI termination in our simulations.
Despite the absence of a physical resistivity in our model
equations, we find that resistive MRI instabilities of the
tearing-mode type develop due to the finite numerical resis-
tivity of our MHD code. A main characteristic of the channel
flows is the presence of prominent current sheets immersed
between layers of opposite magnetic polarity, which are un-
stable against current-driven instabilities. Using a difiejl
model of this kind of flows, we investigated the growth rates,
o, Of the resistive instabilities, and derived an approxenat
law for the scaling ofo, with the magnetic field strength
present in the channels, the channel width, and the grid res-
olution. Comparing these growth rates with the MRI ones,
we find that the MRI ceases to grow once the tearing modes
grow faster than the MRI. Using this criterion, we are able to
explain the dependence of the conditions (i.e., field stteng
Maxwell stresses) at MRI termination on, e.g., the initial
field strength, the grid resolution, and the initial rotatjro-

file.

Strictly speaking, there should be no reconnection without
physical resistivity, and the behavior of a magnetizedlidea
fluid subject to numerical resistivity may be quiteffdi-

ent from that of a fluid having a large but finite conductiv-
ity. Consequently, our results and their implications ann
replace a rigorous treatment of MRI growth in supernova
cores with a non-ideal MHD model. In particular, we have
to be careful when drawing conclusions for the MRI in non-
ideal plasmas. Nevertheless, our results provide some qual
itative insight into the basic processes of MRI saturation,
highlighting the importance of tearing-mode-like instabi
ties. Quantitative conclusions, as e.g., the scaling lawthe

field strengths and the Maxwell stresses at MRI termination
as a function of the initial magnetic field strength, should
be taken with a grain of salt. These depend on the dissipa-
tive properties of the numerical scheme employed, which are
likely to change when physical resistivity is considerd.

The saturation phase of the MRIfiirs considerably be-
tween axisymmetric and unrestricted 3D models, and be-
tween models having a fikerent initial field configuration.

In 2D the flow does not break down into small-scale turbu-
lence, instead the channel flows merge until they form one
pair of large-scale coherent up- and down-flows. When the
strength of the magnetic field exceed$®), the rotational
profile is modified within a few tens of milliseconds.

7. Axisymmetric models having an initial magnetic field with

a vanishing net flux through the computational box become
turbulent after a growth phase dominated by channel flows.
The saturation fields are considerably smaller thaiG0

The previous finding also holds for 3D models. Turbulence
develops, but a spontaneous reorganization of the flow may
lead to a re-appearance of channel modes, resulting in
Maxwell stresses comparable to those found for axisymmet-
ric models. In models which do not develop late-stage chan-
nel flows, field strengths up to several’4@ are encoun-
tered. The field is predominantely toroidal. The extent of
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the late-time channel activity depends on the developmesystem, as e.g., the rotation law, the thermodynamic ciomdit
of secondary (parasitic) instabilities, both flow-driveng., and probably also the neutrino transport.
Kelvin-Helmholtz) and current-driven (e.g., tearing msye With our current simulations we are unfortunately not yet
which feed df the channel flows. The presence of these instable to go beyond the stage of a qualitative proof of prirecasid
bilities is determined to a large degree by the the aspéot raib address important open questions of the MRI in core cedlap
of the computational box, i.e., we observe a strong depesupernovae. This would require additional 3D high-resotut
dence of the saturated state on the aspect ratio. For magnatin-ideal MHD simulations covering a large parameter spéce
rotational core collapse, our results suggest that seepndpossible rotation profiles, thermal stratifications, andyneic
instabilities are fairly &icient in suppressing coherent chanfield geometries. We are planning to address these issues in f
nel flows during saturation. ture work.
9. For models having an initial entropy gradient, we find an im
portant influence of convective stabilization or destabii AcknowledgementsThis research has been supported by the Spadisisterio
ton o he evolution of the MR, e confim the nstabile e Ceredats 11207 752 6001 02007 o)
It.y reglmes predicted b.y our linear anaIyS|_s Wl.th numencgptheyDeutsche Forschungsgesellschaft (DFG /SFBisregio 7). MAA is ay
simulations, the numerical growth rates being in accordangamen y Cajal fellow of theinisterio de Educacion y CienciaMost of the
with the theoretical ones. The MRI is suppressed in cosimulations were performed at the Rechenzentrum GarcRAg] of the Max-
vectively stable regions, the growth rates are reduced, arlghck-Society. We are also thankful for the computer ressmy the technical
the geometry of the flow changes favoring radially less e&¥Pertise, and the assistance provided by the Barceloner&upputing Center
. . . - Centro Nacional de Supercomputacion. Finally, we woiklel fo acknowledge
tended patterns. In the mixed regime, convectively unetalyl,
regions with comparably large entropy gradients are domi-
nated by flows similar to volume-filling hydrodynamic con-
vection. The magnetic field is expelled from convectiveellA\ppendix A: Growth rates of resistive instabilities
and accumulates near the box boundaries. We note that the . o o
entropy gradients required for thesgeets are fairly shallow Our S|mulat|o_ns of t_he MRI |nd|c_ate that the terml_natlonk_uét
~ 0.1km L. We confirm the existence of the MBI regime foidrowth of the instability is determined, at least partidtly resis-
axisymmetric models, whereas the same models, comput¥g instabilities of the tearing-mode type. Although thexxist
in 3D, experience the growth of non-axisymmetric modes_detane_d investigations of this I_<|nd_ of resistive instéalab (see,
10. In 3D models having a zero net magnetic flux we obser§ed- Biskamp 2000), the application of the results to oudyt
the development of large-scale coherent field patternsasimiis hampered by the completelyfidirent type of dissipative ef-
those seen by Lesur & OgilVie (2008), despite the turbulefficts we are facing here: all previous results hold for ipifitees
nature of the velocity and magnetic fields. We also find diflue tophysicalresistivity, whereas oudeal MHD simulations
ferences in the flow patterns between MSI and mixed regiraée dfected bynumericalresistivity, only. Hence, we had to de-
models. The tentative connection to a non-linear dynamo dgfmine the growth rates of resistive instabilities fronmrasical

erating in the models remains to investigated further. experiments without referring to analytic results — althlouas
we will see, there exist certain similarities.

These results allow us to draw a few conclusions. Firstly, We simulated the evolution of two-dimensional currenteshe
the MRI has the potential to play an important role for the dynodels on a Cartesian gridd, x:] x [Yo, y1] with m, x m, zones
namics of supernova explosions, at least for relativelyrfamt- imposing periodic boundary conditions. The fluid is desedib
ing progenitors. The details of the evolution of the MRI deghe Py anideal-gas equation of state with an adiabatic indexd/3.
crucially on the properties of the core, in particular itertnal We used initial data mimicking MRI-generated channel flows:
stratification. This makes the study of the MRI in supernawvaethe initial magnetic field varies sinusoidally in a gas of stamt
subject of its own, related to the MRI in accretion discs bsba densitypo and pressurés,
quite diferent from it. Hence, there is a need for more inves-

lightening discussions with Tom Abel and Fen Zhao abauMRI.

tigations focusing on MRI properties specific to core calap b* = b} sin M’ (A.1)
supernovae. , . a
While local (or semi-global) simulations can yield intdres b® = —by, (A.2)

ing results regarding the physics of the MRI, several imgoatrt
aspects can only be addressed by global modelling. Thdetbta
dependence of the geometry of the magnetic field at sataratio _27(y - Yo) - /2
e.g., may depend strongly on the global dynamics and on the po = v sin .
sition of the box inside the core. Our simulations did notantd
for any of these factors: the background was in hydrostgti-e Here,a denotes the initial width of the flux sheet, avjds equal
librium, and we simulated models only in the equatorialoegi to one half of the Alfvén velocitg} corresponding td. The
Since the field geometry is of crucial importance for the globpresence of the (shear-free!) initielelocity is not essential, as
dynamics, e.qg., for the generation of jet-like outflows itlayp- it changes the growth rates of the instability only littleowever,
sars, conclusions on the dynamic influence of the MRI based asiwe observe this kind of a velocity in channel flows, we have
local simulations cannot be drawn easily. They require globincluded it in our simulations.
models. We perturbed the sheet by a small randgmelocity (1072 x

The inclusion of the MRI and itsfiects in global simula- c}). The parameters of the model are chosen to mimic the situa-
tions requires a considerably careful treatment. The atlyre tions encountered in MRI simulations (see TablA.1). Toatm®l
used approach of artificially enhancing the initial fielcesigth the dependence of the growth rates on the physical and numeri
by a constant factor is questionable. On the other handpiindical parameters, we varied the initial magnetic field strieyig,
a better prescription relies on unraveling the dependehsato the initial density,0p, the width of the current sheet, and the
urated MRI driven turbulence on thefidirent parameters of thegrid resolutiongx = (x; — Xg)/my. We chose the grid resolution

f’:\nd having a velocity irx-direction given by

(A.3)
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Table A.1. Parameters of the 2D current sheets simulated to de-
termine the growth rates of resistive instabilities. Théuoms
give from left to right the edge length of the square simolati
box, the number of grid zones per dimension, the initial dgns
(in units of 132 g/cm™2), the sound speed (in units of 4eys),

the magnetic field (in units of 6G), the wavelength of the ini-
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tial field, and the growth rate, respectively.

£
j=2
L my P0:13 Cs:9 bé;l“ a o % 26
[km] lgenm®] [ems?| [G] | [m] ms!| <
025 50 25 31 8 | 125 | 045 2 |
0.25 50 25 3.1 16 125 1.6 "
0.25 50 2.5 3.1 32 125 6.0
0.25 50 25 3.1 64 125 32
0.25 50 25 3.1 16 62.5 10 i i
025 50| 25 3.1 32| 625 | 23 N T T
025 100| 25 31 16 | 125 | 0.60 0 1 > 3 4
0.25 100 2.5 3.1 32 125 3.1 t[ms]
0.25 100 25 3.1 64 125 12
0.25 100] 25 31 128| 125 43 Fig. A.1. Evolution of the magnetic energy density of a current-
025 100| 25 31 16 | 625 3.7 sheet model simulated on a square computational grid (edge
0.25 100 2.5 3.1 32 | 625 14 length 0.25km; 200< 200 zones). The model has an initial
g'gg 188 gg g% 16248 gég 15100 densitypo = 2.5 x 10%gcenr?, and an initial field strength
02t T00T 0055 17 35T 6o E > by = 1.6 x 10"°G. The wavelength of the initially sinusoidally
025 100! 0.025 31 32| 625 15 varying magnetic field i = 31.25m. The black solid line and
025 100! 0025 6.1 32| 625 8.0 the green dashed line show the magnetic energy density-corre
0.25 100 25 1.4 32| 625 25 sponding to thex and they component of the magnetic field,
0.25 100| 25 3.1 32| 625 14 respectively.
0.25 100 25 14 6.1| 625 7.8
0.25 100 250 6.6 320| 625 7.4
0.25 100 250 3.1 320! 625 15 ing modes develop. Initially the growth rate is approxinhate
0.25 100 2.5 12.4 64 | 625 16 constant, but it increases by a factor-of4 towards saturation.
0.25 100 2.5 3.1 4 | 31.25 1.2 Simultaneously, th&-component of the magnetic field decreases
0.25 100 2.5 3.1 8 | 31.25| 5.9 strongly until it is of similar strength as tlyecomponent. At this
025 100| 25 31 16 | 31.25 | 20 point, the coherent current sheets are completely distuipye
025 1001 25 31 321 3125 | 53 the resistive instability.
025 100 2.5 3.1 64 | 31.25 | 110 We determined estimates of the growth rates of the resistive
8'32 288 gg gi 2421 gg g'g instability using _the time _derivati\_/e c_>f the transverse r_na'@
0.95 200 o5 31 128| 125 19 energy density, i.e., the time derivative of the magnetiergy
025 200 25 31 32| 625 54 density corresponding to thecomponent of the magnetic field.
025 200! 25 3.1 64 | 625 24 To find a scaling relation of the form
0.25 200 2.5 3.1 128 | 62.5 76 Ya
025 200 25 31 16 | 31.25 | 7.9 oo (cx)™ (cs)s (6% (a) (A.4)
0.25 200| 25 3.1 32| 3125 | 28 _ _ _
0.25 200 25 3.1 64 | 31.25 95 we define the following functions of the growth rate
0.25 200 25 3.1 128 | 31.25 250 v
025 200 25 3.1 4 [ 15625] 25 fea = o(ck) " (cs) 75 (67, (A.5)
025 200 25 31 o4|ises| o0 2= o T@7GX (#0)
g'g 188 gg gi gi ggg éé and adjust .the exponents, ys, Ya, andy; to determine the scal-
05 100 55 31 128| 250 0 ing pf o with the respective parameters. Our preferred set of
05 100| 25 31 16 | 125 | 1.0 scaling exponentsis
0.5 100 25 3.1 32 125 7.5
0.5 100 2.5 3.1 64 125 26 va =175 (A7)
05 100| 25 31 8 | 625 | 3.0 ys = -0.75 (A.8)
05 100| 25 3.1 16 | 625 10 Ya = =2, (A.9)
0.5 100 25 3.1 32 62.5 24
05 100| 25 31 64| 625 | 61 v =1 (A.10)
which implies the following scaling law:
such that the current sheet is covered by 12 to 100 zones. The (c, CAOX
initial pressure i = kpp. o« (CS) (?) (A.11)

We show one typlcal result for the evolution of our models
in Fig[A. After a short initial phase, the transverse n&gn
energy density (green line) grows roughly exponentiallieas-

We demonstrate the quality of the fit parameters in[Eig. A.2
showing fca as a function of the initial Alfvén velocity (left
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panel), andf, as a function of the width of the current sheeBodo, G., Mignone, A., Cattaneo, F., Rossi, P., & Ferrari, 2808, ArXiv e-
(middle panel) and of the grid resolution (right panel). Nari prints, 805 _
the groups of models representing the variation of one petem BU7OVs: A Dessart L, Livne, £, O, €. D., & Murphy, D@, ApJ, 664,
((?IIS_tIﬂgUIShed by a ﬁe_rem color and symbol 'n_the figure) €X-Chandrasekhar, S. 1960, Proceedings of the National Acagdér@cience, 46,
hibits a strong trend witlsa, a or 6x, i.e., our scaling exponents 253
provide an adequate fit to the data. Evans, C. R. & Hawley, J. F. 1988, ApJ, 332, 659
Due to a relatively large scatter in the growth rates, thé scgf(f)’g:f;‘:agﬁsj 8; %p%migghlé%%é /-Z\rélzse-prmtsy 705
ing relation, Eq[{A.#), should not be taken too literallye Wote, Harten, A. 1983, J. Comput. Phys.. 49, 357
howevgr, .thalt our cgmputed rates are .co.mpatlble with thbserQuiey, J. F. & Balbus, S. A. 1992, ApJ, 400, 595
the resistive instabilities (for fields of similar strength MRI  Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350
models, i.e., approxima’[e|y one millisecond ﬁgrw 10G. An Janka, H.-T., Langanke, K., Marek, A., Martinez-Pinedq,&Milller, B. 2007,
it in Qi _ Phys. Rep., 442, 38
ald(iljmgnal depe(rj\%ence ofon the dhqmam s]é.ell_,, cann?t D€ X~ 1 il W, Janka, H.-T, & Miller, E. 1996, ApJ, 473, L141
cluded, but we did not examine this possibility any furth@r i (1 H. & Bodenheimer, P. 2003, ApJ, 582, 869
smalla and coarse grids our scaling formula tends to overeskiotake, K., Yamada, S., Sato, K., et al. 2004, Phys. Rev. D188004
mate the growth rate for large initial Alfvén velocitie)cafor Lesur, G. & Ogilvie, G. 1. 2008, A&A, 488, 451 ‘
sound speeds much Iarger than the Alfvén velocity the des LeVeaue, R. J. 1992, Numerical Methods for Conservation 4,and edn.,
. ectures in mathematics - ETH Zurich (Birkhauser)
pend more strongly on t_he s_ound speed than predicted by 5}%)’ "D., Puppo, G., & RSSO, G. 2002, SIAM J. Sci. Comput, 4BD
formula. Because both situations do not apply to our MRI mo@tergaulinger, M., Aloy, M. A., Dimmelmeier, H., & MulleE. 2006a, A&A,
els, we did not pursue these issues any further. Our scalimg | 457, 209
loses its validity, if the Alfvén velocity exceeds the sdispeed. Obergaulinger, M., Aloy, M. A., & Miiller, E. 2006b, A&A, 450107

; ; ot rker, E. N. 1966, ApJ, 145, 811
Thus, we excluded two respective models in the derivation ﬁzssah, M. E.. Chan, C... & Psaltis, D. 2007, ApJ, 668, L51

our Scal'_ng f?|a“9“- L. . . Regev, O. & Umurhan, O. M. 2007, ArXiv e-prints, 711
Bearing in mind the uncertainties regarding the physicghno, T. & Inutsuka, S.-i. 2001, ApJ, 561, L179
meaning of a purely numerical resistivity and the precise vabhakura, N. 1. & Syunyaev, R. A. 1973, A&A, 24, 337
ues of the scaling we may try to interpret our result summ%&ﬁ;‘kﬁ%&g;ﬁgv E 1’\?297;1&?%“"95-8;23’5}5 éggf‘i 616, 1086
rized I,n EQ.M). As th? product Of_the Alfve,n, velocity dan Tassoul,'J. ’1978, T’hec;ry of rota‘ting’ stars (‘Princetor‘1 Se'rie:Astrophysics,
the grid spacinggadx, defines an fective resistivity, we may  princeton: University Press, 1978)
conclude that the growth time of the instability is set bytinge  Thompson, T. A, Quataert, E., & Burrows, A. 2005, ApJ, 628]. 8
scale for resistive diusion across the width of a current sheefloro, E. F. & Titarev, V. A. 2006, J. Comput. Phys., 216, 403
7 = a2/(cadX), modified by the ratio of the sound speed and thHPn V- A- 1996, MNRAS, 280, 149
, . . . . . elikhov, E. 1959, Sov. Phys. JETP, 36, 995
Alfven velocity. This interpretation has the nice progettat it yamada, s. & Sawai, H. 2004, ApJ, 608, 907
is consistent with the fact that the magnetic Reynolds nurisbe

proportional to the grid resolution.

Appendix B: List of models

In this appendix we provide a list of the models:

Tab[B.1 : This table contains a list of 2D models having a pos-
itive entropy gradient. Their initial rotation profile isvgin
by Qo = 1900s! andaq = —1.25, and their initial magnetic
field is uniform.

Tab[B.2 : This table contains a list of 2D models having a neg-
ative entropy gradient. The models rotate initially rigidir
differentially. The initial magnetic field is uniform.

Tab[B.3 and Tab.Bl4 : This table contains a list of 3D models
having diferent initial magnetic field strengths, entropy gra-
dients, initial rotation laws, and simulated in computaib
boxes of various size with both types (with and without ve-
locity damping) of radial boundary conditions.
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Fig. A.2. Dependence of the growth rate of resistive instabilitigson various parameters of 2D current sheet models. The panel
show fca as a function of the initial Alfvén velocitycf; left panel), andf, as a function of the width of the current sheat (
middle panel) and of the grid resolutiofix{ right panel). The left panel shows groups of models witfiedénta: 250 m (pink
plus sign), 125 m (blue diamond), 62.5m (green triangle23fn (orange square), and 15.625m (red cross). The othgranels
show groups of models with fierent Alfvén velocity (in units of 1%m s1): 0.8 (black asterisk), 1.6 (pink plus sign), 3.2 (blue
diamond), 6.4 (green triangle), 12.8 (orange square), arl(2ed cross) respectively.
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Table B.1.List of 2D models having a positive entropy gradient and atiairrotation profile given by, = 1900s! andaq =
—1.25. The columns give (from left to right) the number of grichesm,, x m;, (the box has an edge lendth = L, = 1km), the type
of boundary condition which was applied (d: velocity dantpip: periodic), the adiabatic index of the g&simodels computed
with an ideal-gas equation of state instead of the hybridemaenarked “id”), the initial entropy;o, and the radial entropy gradient,
0-S. The next three columns give the paramételetermining the instability regime (see Hg.l(24)), the teé&oal growth rateg,
and the strength of the initially uniform magnetic fielg, The last two columns list the numerical growth rateand the value of
the Maxwell stress componekt/™ at MRI termination.

m, xm, | BC T So 05S C Tth bj o Mf;m
[km™] [ms‘ll [1012 G] [ms‘ll [1028 Gzcm‘3]
100x 100 | d 131 0.20 0.020 -1.7 0.73 10 0.72 1.1
100x 100 | d 1.31 0.20 0.020 -1.7 0.73 20 0.71 1.3
100x 100 | d 1.31 0.20 0.020 -1.7 0.73 40 0.70 1.6
100x 100 | d 1.31 0.20 0.020 -1.7 0.73 80 0.60 1.8
200x200 | d 1.31 0.20 0.020 -1.7 0.73 10 0.71 1.3
400x400 | d 131 0.20 0.020 -1.7 0.73 10 0.67 1.2
400%x 400 | d 1.31 0.20 0.020 -1.7 0.73 20 0.69 1.5
50x 50 d 5/3 0.20 0.040 -1.1 0.49 10 0.46 0.97
50x 50 d 5/3 0.20 0.040 -1.1 0.49 20 0.61 1.7
50x 50 d 5/3 0.20 0.040 -1.1 0.49 40 0.48 0.87
50x 50 d 5/3 0.20 0.040 -1.1 0.49 80 0.39 0.93
50x 50 d 1.31,id 020 0.040 -0.69 0.32 20 0.50 0.53
50x 50 d 1.31,id 0.20 0.040 -0.69 0.32 40 0.30 0.27
50x 50 d 1.31,id 0.20 0.040 -0.69 0.32 80 0.28 0.22
50x 50 d 1.31 0.20 0.040 -0.69 0.32 4 0.25 0.21
50x 50 d 1.31 0.20 0.040 -0.69 0.32 20 0.49 0.50
50x 50 d 1.31 0.20 0.040 -0.69 0.32 40 0.28 0.24
50x 50 d 1.31 0.20 0.040 -0.69 0.32 80 0.28 0.22
100x 100 | d 131 0.20 0.040 -0.69 0.32 10 0.49 0.55
100x 100 | d 1.31 0.20 0.040 -0.69 0.32 20 0.30 0.29
100x 100 | d 1.31 0.20 0.040 -0.69 0.32 40 0.30 0.29
100x 100 | d 1.31 0.20 0.040 -0.69 0.32 80 0.28 0.22
200x200 | d 1.31 0.20 0.040 -0.69 0.32 4 0.53 0.40
200x200 | d 1.31 0.20 0.040 -0.69 0.32 10 0.30 0.20
200x200 | d 1.31 0.20 0.040 -0.69 0.32 20 0.30 0.22
200x200 | d 1.31 0.20 0.040 -0.69 0.32 40 0.30 0.30
200x200 | d 1.31 0.20 0.040 -0.69 0.32 80 0.26 0.18
100x 100 | d 1.31 0.20 0.080 1.1 0 20 | <001
200x200 | d 1.31 0.20 0.080 1.1 0 10 | <0.05
100x100] p | 5/3 0.20 0.020 -1.8 0.82 20 | 0.79 4.9
100x 100 | p 1.31 0.20 0.020 -1.7 0.73 10 0.73 1.9
100x 100 | p 1.31 0.20 0.020 -1.7 0.73 20 0.71 33
100x 100 | p 1.31 0.20 0.020 -1.7 0.73 40 0.72 202
100x 100 | p 1.31 0.20 0.020 -1.7 0.73 80 0.62 411
50x 50 p 1.31 0.20 0.040 -0.69 0.32 20 0.51 1.7
50x 50 p 1.31 0.20 0.040 -0.69 0.32 40 0.31 90
50x 50 p 1.31 0.20 0.040 -0.69 0.32 80 0.32 159
100x 100 | p 1.31 0.20 0.040 -0.69 0.32 10 0.53 0.64
100x 100 | p 1.31 0.20 0.040 -0.69 0.32 20 0.30 6.8
100x 100 | p 1.31 0.20 0.040 -0.69 0.32 40 0.30 98
100x 100 | p 1.31 0.20 0.040 -0.69 0.32 80 0.31 201
50x 50 p 5/3 0.20 0.040 -1.1 0.49 10 0.45 0.55
50x 50 p 5/3 0.20 0.040 -1.1 0.49 20 0.59 3.1
50x 50 p 5/3 0.20 0.040 -1.1 0.49 40 0.47 201
50x 50 p 5/3 0.20 0.040 -1.1 0.49 80 0.38 139
100x 100 | p 5/3 0.20 0.040 -1.1 0.49 4 0.40 0.43
100x 100 | p 5/3 0.20 0.040 -1.1 0.49 10 0.63 0.83
100x 100 | p 5/3 0.20 0.040 -1.1 0.49 20 0.49 5.0
100x 100 | p 5/3 0.20 0.040 -1.1 0.49 40 0.47 262
100x 100 | p 5/3 0.20 0.040 -1.1 0.49 80 0.45 978
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Table B.2.List of 2D models having a negative initial entropy gradiéltie columns give (from left to right) the number of grid
zonesm, x m, (the box has an edge length, = L, = 1km), the type of boundary condition which was applied (dowity
damping; p: periodic), the rotation law (“d”: fierential rotation withQg = 1900s* andeq = —1.25; “r*” rigid rotation with an
angular velocity of2), the adiabatic index of the gds, the initial entropySo, the radial entropy gradieri,S, and the strength of
the initially uniform magnetic fieldp]. The next columns give the three quantiﬂe,s/Qg, NZ/QS andC determining the instability
regime (see Eq.(24)), followed by the theoretical growtie re,, and the type of the instability. The last two columns lis th
numerical growth rater, and the value of the Maxwell stress comporimfg;m at MRI termination.

m,xm, | BC| Rot T So 05S g R.1Q3 N?/Q5 C Tih regime o Mf;’“
[km™] [1012 G] [ms‘l] [msl] [1028 Gzcm‘3]
100x 100 d d 1.31 0.20 -0.019 0 -2.5 -0.90 -3.4 1.6 mix 0 0
100x 100 | d d 1.31 0.20 -0.019 10 -2.5 -0.90 -3.4 1.6 mix 1.2 2.6
100x 100 d d 1.31 0.20 -0.019 20 -2.5 -0.90 -3.4 1.6 miXx 1.3 3.4
100x 100 | d d 1.31 0.20 -0.019 40 -2.5 -0.90 -3.4 1.6 mix 1.4 5.7
100x 100 d d 1.31 0.20 -0.019 80 -2.5 -0.90 -3.4 1.6 mix 1.3 6.0
50x 50 d d 1.31 0.20 -0.038 20 -2.5 -1.8 -4.3 2.0 mix 1.6 4.2
100x 100 d d 1.31 0.20 -0.038 0 -2.5 -1.8 -4.3 2.0 mix 0 0
100x 100 | d d 1.31 0.20 -0.038 10 -2.5 -1.8 -4.3 2.0 mix 1.5 3.3
100x 100 d d 1.31 0.20 -0.038 20 -2.5 -1.8 -4.3 2.0 mix 1.7 5.3
100x 100 | d d 1.31 0.20 -0.038 40 -2.5 -1.8 -4.3 2.0 mix 1.7 7.8
100x 100 d d 1.31 0.20 -0.038 80 -2.5 -1.8 -4.3 2.0 mix 1.7 9.5
100x 100 | d d 1.31 0.20 -0.075 0 -2.5 -3.6 -6.1 2.8 mix 0 0
100x 100 d d 1.31 0.20 -0.075 10 -2.5 -3.6 -6.1 2.8 mix 2.4 1.3
100x 100 | d d 1.31 0.20 -0.075 20 -2.5 -3.6 -6.1 2.8 mix 2.6 4.8
100x 100 d d 1.31 0.20 -0.075 40 -2.5 -3.6 -6.1 2.8 mix 2.5 9.7
100x 100 d d 1.31 0.20 -0.15 0 -2.5 -7.2 -9.7 4.4 conv 3.0 0
100x 100 | d d 1.31 0.20 -0.15 20 -2.5 -7.2 -9.7 4.4 conv 4.0 1.2
100x 100 d d 1.31 0.20 -0.15 40 -2.5 -7.2 -9.7 4.4 conv 3.8 3.7
T00x100| p | d 53 020 0019 20 | 25 070 32 15 mix | 1.3 6.0
100x 100 p d 53 0.20 -0.019 40 -2.5 -0.70 -3.2 1.5 mix 1.4 50
50x 50 p d 1.31 0.20 -0.038 20 -2.5 -1.8 -4.3 2.0 mix 1.6 12
50x 50 p d 1.31 0.20 -0.038 40 -2.5 -1.8 -4.3 2.0 mix 1.7 19.5
100x 100 | p d 1.31 0.20 -0.038 20 -2.5 -1.8 -4.3 2.0 mix 1.7 27
100x 100 p d 1.31 0.20 -0.038 40 -2.5 -1.8 -4.3 2.0 mix 1.7 22
100x 100 | d (1000 131 0.20 -0.075 0 0 -14 -14 3.4 conv 2.7
100x 100 | d r1%00 131 0.20 -0.075 0 0 -5.7 -5.7 2.1 conv 1.6
100x 100 d r1%0 131 0.20 -0.075 0 0 -3.2 -3.2 1.5 MBI 0
100x 100 d %0 131 0.20 -0.075 1§ 0 -5.7 -5.7 2.1 conv 1.5 14x 10
100x 100 d r1%0 131 0.20 -0.075 1 0 -5.7 -5.7 2.1 conv 1.5 0.013
100x 100 d r15%00 131 0.20 -0.075 10 0 -5.7 -5.7 2.1 conv 1.8 1.7
100x 100 d %00 131 0.40 -0.10 4 0 -3.6 -3.6 1.7 MBI 1.1 0.22
100x 100 d r1%0 131 0.40 -0.10 8 0 -3.6 -3.6 1.7 MBI 1.2 1.6
100x 100 | d r1%00 131 0.40 -0.10 10 0 -3.6 -3.6 1.7 MBI 1.1 1.6
100x 100 d r1%0 131 0.40 -0.10 20 0 -3.6 -3.6 1.7 MBI 1.4 5.2
100x 100 d r1%0 131 0.40 -0.10 40 0 -3.6 -3.6 1.7 MBI
200x 200 d %00 131 0.40 -0.10 0 0 -3.6 -3.6 1.7 MBI 0 0
200x 200 d r1%0 131 0.40 -0.10 0.01 0 -3.6 -3.6 1.7 MBI | <0.006
200x 200 | d r1%00 131 0.40 -0.10 4 0 -3.6 -3.6 1.7 MBI 1.0 0.99
200x 200 d r1%0 131 0.40 -0.10 8 0 -3.6 -3.6 1.7 MBI 1.4 1.4
200x 200 d r1%0 131 0.40 -0.10 10 0 -3.6 -3.6 1.7 MBI 1.4 2.1
200x 200 | d r1%00 131 0.40 -0.10 20 0 -3.6 -3.6 1.7 MBI 1.5 5.6




M. Obergaulinger et al.: MRI in core collapse supernovae 31

Table B.3.List of 3D models. The first column (from left to right) giveset geometry of the initial field (“U”: uniform; “V” zero-
flux). The next two columns show the box size,(x L, x L;) and the number of grid zonesi x m, X my). The next four columns
list the rotation law (“d”: diferential rotation withQg = 1900s? andaq = —1.25; “r*” rigid rotation with an angular velocity of
Q), the entropy gradiend, (o = 0.2), the strength of the initial magnetic fielof, and the type of boundary condition which was
applied (d: velocity damping; p: periodic). The remainingif columns give the growth rate of the MRt, and the Maxwell stress
componenM;e;m at MRI termination, its maximum value, and its time averagade, respectively.

field grid size resolution | Rot  9,S 53 BC| o mem Mmax (Moy)
[kmd] [km™] [10?G] [ms?] [108GZem®] [10°GPem®|  [107°GZem?
U3 0.5x0.25x 0.5 26x 12x 26 d 0 40 d 0.98 0.47 298 47
0.5%x0.5x%x0.5 26x 26 x 26 d 0 40 d 0.96 0.45 211 36
0.5x1x0.5 26x 50x 26 d 0 40 d 0.96 0.45 16 29
05x2x0.5 26x 100x 26 d 0 40 d 0.92 0.44 5.0 15
1x05x1 50x 26 x 50 d 0 20 d 1.05 31 924 69
1x05x1 50x 26 x 50 d 0 40 d 1.10 3.7 553 68
Ix1x1 50x 50 x 50 d 0 10 d 0.76 15 2.7 1.1
Ix1x1 50x 50 x 50 d 0 20 d 1.03 3.1 347 44
Ix1x1 50x 50 x 50 d 0 40 d 1.09 3.1 482 63
Ix2x1 50x 50 x 50 d 0 10 d 0.75 1.3 1.3 0.47
1x2x1 50x 50 x 50 d 0 20 d 1.03 3.0 6.5 2.9
Ix2x1 50x 50 x 50 d 0 40 d 1.09 29 22 5.8
1x2x1 50x 100x 50 d 0 20 d 1.02 3.1 9.5 3.4
Ix2x1 50x 100x 50 d 0 40 d 1.09 2.8 60 9.2
Ix4x1 50x 200x 50 d 0 20 d 1.03 29 4.4 2.3
1x4x1 50x 200x 50 d 0 40 d 1.08 3.0 10.5 3.4
I1x4x1 50x 200x 50 d 0 80 d 1.01 2.7 45 9.0
1x4x1 100x 400x 100 | d 0 20 d 1.05 35 6.5 25
I1x4x1 100x 400x 100 | d 0 40 d 1.09 35 28 8.2
05x0.25x 1 26x12x 50 d 0 40 d 1.04 0.44 325 64
05x05x1 26x 26 x 50 d 0 40 d 1.03 0.52 227 40
05x1x1 26x50x% 50 d 0 40 d 1.00 0.42 298 33
05x2x1 26x 100x 50 d 0 40 d 0.96 0.50 289 38
1x0.25x 0.5 50x 12 x 26 d 0 40 d 1.08 2.9 310 59
1x0.38x05 50x 18 x 26 d 0 40 d 1.08 3.0 234 45
1x05x05 50x 26 x 26 d 0 40 d 1.07 2.9 16 6.2
1x1x0.5 50x 50 x 26 d 0 40 d 1.07 3.1 9.0 2.3
1x2x05 50x 100x 26 d 0 40 d 1.06 3.0 3.4 1.8
0.5%x0.25x 0.5 26x 12x 26 d 0 20 p 1.07 97 2940 145
0.5x0.5x%x0.5 26x 26 % 26 d 0 20 p 0.99 64 4196 335
0.5x1x0.5 26x 50x 26 d 0 20 p 1.06 60 535 19
05x2x0.5 26x 100x 26 d 0 20 p 1.08 66 66 8.7
1x025x1 50x 12x 50 d 0 20 p 1.02 13 1316 110
1x05x1 50x 26 x 50 d 0 20 p 1.02 8.8 1424 60
Ix1x1 50x 50x 50 d 0 20 p 0.98 42 2570 128
1x2x1 50x 100x 50 d 0 20 p 1.04 16.5 736 79
1x4x1 50x 200x 50 d 0 20 p 1.05 22.5 59 6.5
I1x4x1 50x 200x 50 d 0 40 p 1.09 40.4 361 18
1x4x1 50x 200x 50 d 0 80 p 1.09 254 254 5.5
1x4x1 100x 400x 100 | d 0 20 p 1.08 14.9 27.6 6.4
I1x4x1 100x 400x 100 | d 0 40 p 1.11 88 88 11
05x0.25x 1 26x12x 50 d 0 20 p 1.04 64 2182 146
05x025x%x1 26x 26 x 50 d 0 20 p 1.03 31 1540 170
05x1x1 26x50x% 50 d 0 20 p 1.01 8.9 1735 102
05x2x1 26x 100x 50 d 0 20 p 1.05 30 825 72
05x4x1 26x 200x 50 d 0 20 p 1.04 27 103 15
1x0.25x05 50x 12x 26 d 0 20 p 1.07 32 1654 171
1x05x0.5 50x 26 x 26 d 0 20 p 1.06 8.5 2902 170
1x1x05 50x 50 x 26 d 0 20 p 1.05 14 682 13
1x2x0.5 50x 100x 26 d 0 20 p 1.06 14 14 4.0
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Table B.4. Continuation of Taly. BI3. For the MBI model witi§ = 10G, we do not provide values for the Maxwell stress, because
the magnetic field behaves similar to a purely passive field.

field | grid size resolution | Rot  4,S [ BC| o Merm Mmax (M)
[kmq] [km?] [102G] [mst] [108GPem®] [10PG2em?| 1078 G%em |
V3 1x1x1 50x 50x 50 d 0 10 d 0.66 0.13 0.24 0.16
Ix1x1 50x 50x 50 d 0 20 d 0.96 0.53 0.53 0.21
1x1x1 50x 50x 50 d 0 40 d 1.03 15 1.5 0.27
I1x4x1 50x 200x 50 d 0 10 d 0.66 0.13 0.52 0.24
1x4x1 50x 200x 50 d 0 20 d 0.90 0.36 0.80 0.43
1x4x1 100x400x 100 d 0 20 d 1.08 1.1 1.1 0.20
1x4x1 100x400x 100 d 0 20 p 1.08 1.5 1.5 0.21
U3 Ix2x1 26x 50x% 26 d -0.038 20 d 1.5 1.9 5.3 0.83
1x2x1 26x50x% 26 d -0.038 40 d 1.7 4.1 7.2 1.1
1x2x1 50x 100x 50 d -0.038 20 d 1.7 3.1 3.1 0.16
1x2x1 50%x 100x 50 d -0.038 40 d 1.9 4.4 4.4 0.23
1x2x1 50x 100x 50 [ r0 _0.10 1018 d 2.6
1x2x1 50x 100x 50 rt%0  _0.10 0.01 d 2.6 23x 1078 0.11 0.040
1x2x1 50x 100x 50 rt%0  _0.10 20 d 2.6 0.060 0.87 0.30
V3 [ 1x2x1 50x100x50 | d 0038 20 d| 16 0.54 0.54 0.011
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