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M. Obergaulinger1, P. Cerdá-Durán1, E. Müller1, and M.A. Aloy2

1 Max-Planck-Institut für Astrophysik, Garching bei München
2 Departamento de Astronomı́a y Astrofı́sica, Universidad de Valencia, 46100 Burjassot, Spain

Received day month year/ Accepted day month year

ABSTRACT

Context. Possible effects of magnetic fields in core collapse supernovae rely on anefficient amplification of the weak pre-collapse
fields. The magneto-rotational instability (MRI) has been suggested to lead to a rapid growth of these weak seed fields. Although
plenty of MRI studies exist for accretion discs, the application of their results to core collapse supernovae is inhibited as the physics
of supernova cores is substantially different from that of accretion discs.
Aims. We address the problem of growth and saturation of the MRI in core collapse supernovae by studying its evolution by means
of semi-global simulations, which combine elements of global and local simulations by taking into account the presenceof global
background gradients and using a local computational grid.We investigate, in particular, the termination of the growth of the MRI
and the properties of the turbulence in the saturated state.
Methods. We analyze the dispersion relation of the MRI to identify different regimes of the instability. This analysis is complemented
by semi-global ideal MHD simulations, where we consider core matter in a local computational box (size∼ 1 km) rotating at sub-
Keplerian velocity, and where we allow for the presence of a radial entropy gradient.
Results. We identify six regimes of the MRI depending on the ratio of the entropy and angular velocity gradient. Our numerical models
confirm the instability criteria and growth rates for all regimes relevant to core collapse supernovae. The MRI grows exponentially on
time scales of milliseconds the flow and magnetic field geometries being dominated by channel flows. We find MHD turbulence and
efficient transport of angular momentum. The MRI growth ceases once the channels are disrupted by resistive instabilities (occurring
due to the finite conductivity of the numerical code), and MHDturbulence sets in. From an analysis of the growth rates of the resistive
instabilities, we deduce scaling laws for the termination amplitude of the MRI which agree well with our numerical models. We
determine the dependence of the development of large-scalecoherent flow structures in the saturated state on the aspectratio of the
simulation boxes.
Conclusions. The MRI can grow rapidly in core collapse supernovae leadingto fields exceeding 1015 G. More investigations are
required to cover the parameter space more comprehensively.

Key words. MHD - Instabilities - Supernovae: general - Stars: magneticfields

1. Introduction

The magneto-rotational instability (MRI) (Balbus & Hawley
1991) is a local linear instability of weakly magnetized differ-
entially rotating fluids. A large number of analytic as well as nu-
merical studies support the assertion that the MRI is the main
agent for the excitation of turbulence in Keplerian accretion
disks (for a review, see, e.g., Balbus & Hawley 1998). The MRI
amplifies seed perturbations exponentially with time untilturbu-
lence sets in. In the turbulent state, the magnetic field,b, gives
rise to a non-vanishing (spatial and temporal) mean Maxwell
stress tensorMi j = bib j. Simulations of accretion disks show a
large negative mean value of the componentM̟φ (where̟ and
φ are the radial and azimuthal coordinate of a cylindrical coor-
dinate system), which gives rise to an efficient outward transport
of angular momentum.

Akiyama et al. (2003) pointed out that the layers surround-
ing the nascent proto-neutron star quite generically fulfill the
MRI instability criteria. Consequently, any (weak) seed mag-
netic field will be amplified exponentially. In the saturatedstate
of the MRI instability, sustained magneto-hydrodynamic tur-
bulence might then provide an efficient means for an angu-
lar momentum redistribution, and for the conversion of rota-

tional energy into thermal energy of the gas. Imparting ad-
ditional thermal energy into the post-shock stellar matterthe
MRI might be thus of importance for the currently favored
neutrino-driven core collapse supernova explosion mechanism
(e.g. Thompson et al. 2005; Janka et al. 2007), although possibly
only for rapidly and strongly differentially rotating progenitors.
Furthermore, the growth of the magnetic field resulting fromthe
MRI may provide the adequate physical conditions in the col-
lapsed core to launch bipolar outflows, that result in gamma-ray
bursts (Aloy & Obergaulinger 2007). As the physical conditions
in accretion disks and stars differ significantly, and as only a few
analytic studies of the MRI in stars exist (e.g., Acheson 1978),
it remains unclear whether existing results on the MRI in disks
apply to stars, and particularly to supernovae, as well.

Numerical simulations of the MRI face a severe problem: the
growth rate of MRI-unstable modes depends on the product of
the initial field strength and the wave number of the mode. For
a weak field, only fairly short modes grow rapidly. Simulations
of astrophysical flows, on the other hand, often fail to resolve
just those modes, as it would require prohibitively large compu-
tational costs to cover spatial scales ranging from the global ex-
tent of the astrophysical system (which may be much larger than
the MRI-unstable region) down to the wavelengths of the fastest
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growing MRI modes. This dependence of the growth rate on the
wavelength of the mode suggests a twofold approximate numer-
ical approach: one either performs simulations which properly
cover the global scales of the astrophysical system foregoing to
resolve the small scales set by the wavelengths of the fastest
growing MRI modes (global simulations), or vice versa (local
simulations).

Local simulations evolve only a small part of the entire MRI-
unstable system, known as theshearing box. However, infor-
mation on the scales exceeding the size of the computational
grid has to be provided using suitably chosen boundary condi-
tions. No unique recipe exists for this procedure, but the use
of reflecting and periodic boundaries is a common practice.
In most studies of accretion disks, the boundary conditionsof
Hawley & Balbus (1992) are used in radial direction, which are
essentially periodic boundary conditions but account alsofor the
relative shear between the inner and the outer radial edge ofthe
grid. They are often combined with a Galilei transformationinto
a frame of reference co-rotating at the mean angular velocity
of the shearing box, and a linearizion of the angular velocity
within the box. Local (shearing box) simulations using thiskind
of boundary treatment are commonly calledshearing-sheetsim-
ulations.

The general drawback of local simulations obviously lies in
their inability to account accurately for large-scale phenomena.
In addition, there is only a limited possibility to model global
gradients other than differential rotation in shearing-sheet sim-
ulations. Independent of the boundary treatment only modes
with a wavelength less than the size of the grid can be ex-
cited, i.e. modes with a wavelength comparable to the dimen-
sions of the whole system cannot develop. Consequently, MRI-
driven turbulence may saturate at a level determined (at least par-
tially) by numerical rather than (only) by physical parameters. A
careful analysis is necessary to disentangle the respective influ-
ence (see e.g., Pessah et al. 2007; Fromang & Papaloizou 2007;
Regev & Umurhan 2007).

Global simulations, on the other hand, follow the evolution
of the entire system, albeit with a much coarser resolution than
local ones. Thus, they can account for the large-scale structure of
stars and disks, for the back-reaction of the MRI instigatedtur-
bulence on the global flow, and allow one to draw conclusions on
how the saturated state depends on global properties of the sys-
tem, e.g., the density or pressure stratification. However,fore-
going the ability to resolve short-wavelength modes, the growth
of the MRI will be underestimated or suppressed even entirely.
In many applications of numerical analysis, it is possible to use
suitable models for the unresolved physics on sub-grid scales,
e.g., sub-grid diffusivity. This requires a good knowledge of the
physics on these scales, and is facilitated greatly if processes at
the unresolved scales act merely as a sink for kinetic or mag-
netic energy cascading down from the integral scale. Duringthe
growth of the MRI, however, the power shifts gradually from
short to long modes. Thus, sub-grid models for global MRI sim-
ulations tend to be complex, and are not used widely.

As a remedy for this problem, global simulations may be
performed using unrealistically strong initial fields to guaran-
tee that the fastest growing MRI modes are resolved numeri-
cally. This approach presumes that the unresolved MRI modes
are able to amplify the much weaker actual initial fields to the
field strengths used as initial value in global simulations.This
assumption can be justified, if the MRI acting on the unre-
solved scales saturates at the initial field strengths imposed in
global simulations, i.e., if rapid amplification by the MRI takes
place over many orders of magnitude. However, this can only

be proven by high-resolution local simulations. Enhancingthe
initial magnetic field by a constant factor throughout the com-
putational domain, as it is often done in global simulations, is
problematic as the MRI is a local instability, i.e. it is not ex-
pected to cause a constant amplification of the field everywhere.
The ambiguities regarding differences between the topology of
this artificially enhanced field and that of a field amplified lo-
cally by the MRI add to the uncertainties clouding the influence
of magnetic fields on the overall dynamics.

Both the local and the global numerical approach has been
used for studying the MRI in accretion disks, and this combined
effort has led to the rapid development of the field. Simulations
of the MRI in core collapse supernovae, on the other hand, have
not yet reached this advanced stage, mainly because of the weak-
ness of the initial field of the progenitors. According to current
stellar evolution models (Heger et al. 2005), the canonicalpre-
collapse magnetic fields are so weak that they are unable to affect
the dynamics of the explosion unless they are amplified strongly.
Correspondingly, the wavelengths of the fastest growing MRI
modes are approximately a few meters at most .1 Thus, the pos-
sible importance of MHD effects in core collapse supernovae
depends on the existence of mechanisms which can amplify the
field efficiently during core collapse and the post-bounce phase.
The timescale available for the growth of the magnetic field is
set by the time required to turn the accretion of matter onto the
proto-neutron star into an explosion, i.e., a few hundreds of mil-
liseconds. As already mentioned above Akiyama et al. (2003)
suggested that the MRI might provide this mechanism. They
estimated the saturation field strength to be 1015 – 1016 G, i.e.,
clearly in excess of the artificially enhanced initial field strengths
used in global simulations.

Up to now, there exist only global simulations of MHD core
collapse supernovae, which evolve the entire core of a mas-
sive star through gravitational collapse, bounce, and explosion
(e.g., Kotake et al. 2004; Yamada & Sawai 2004; Takiwaki et al.
2004; Obergaulinger et al. 2006b,a; Burrows et al. 2007). These
global simulations fail to find the MRI unless they employ dras-
tically stronger initial fields. Obergaulinger et al. (2006b,a), e.g.,
require a pre-collapse field strength exceeding 1012 G to resolve
the MRI in the post-bounce state. The rationale behind the arti-
ficially increased initial field strengths is that, once triggered by
the differential rotation in the proto-neutron star, the MRI will
exponentially amplify a much weaker seed field up to the values
used in the simulations.

Due to the lack of local simulations, the importance of the
MRI in MHD core collapse models remains unclear. As a first
step to resolve this issue, we have performed high-resolution
simulations of small parts of simplified post-bounce, rotating,
magnetized cores. We have used a recently developed high-
resolution MHD code, and employedshearing-diskboundary
conditions (Klahr & Bodenheimer 2003). These boundary con-
ditions derive from the shearing-sheet boundary conditions of
Hawley & Balbus (1992), but allow one to consider global gra-
dients of, e.g., density or entropy. Combining elements of global
and local simulations, viz. the presence of global background
gradients, and a high-resolution local grid, we find it justified to
call our approachsemi-global(for more details see Sect. 3.2).

Differences in the physical conditions in disks and stars im-
pede the direct application of the MRI results from accretion
disks to supernovae. Most obviously, the geometry of both sys-

1 Note, however, that these predictions still involve uncertainties, and
hence rare, but much more strongly magnetized progenitors cannot be
excluded presently.
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tems differs strongly. Furthermore, while accretion discs are sta-
bilized against gravity by (Keplerian) rotation, stars aresup-
ported mainly by pressure gradients, with only a minor contribu-
tion from rotation, i.e. thermal stratification is much moreimpor-
tant in stars than in disks. Thus, entropy gradients can stabilize
an MRI-unstable region or modify the instability in convectively
unstable regions. Consequently, the problem of the MRI in core
collapse supernovae has to be addressed by simulations account-
ing for their specific properties, which is the goal of this study.
We investigate the growth of the MRI from initial fields compa-
rable to the ones expected from realistic stellar evolutionmod-
eling, and we seek to probe the possibility of MRI-driven field
amplification under typical conditions of supernova cores and
on timescales similar to the dynamic times of the system, (i.e.,
a few tens of milliseconds). Apart from the restrictions inher-
ent to local and semi-global simulations, several simplifications
limit our approach: we use simplified initial equilibrium mod-
els, a simplified equation of state, and neglect neutrino heating
and cooling. The main physical questions that we try to address
are: (i) does the MRI grow on sufficiently short time scales to
influence the explosion, i.e., within at most 100 msec, giventyp-
ical post-bounce rotation profiles and magnetic fields? (ii)How
does an entropy gradient affect the growth of the instability? (iii)
How does the saturated state of MRI-driven turbulence depend
on these factors? In particular, is the saturation field strength es-
timated by Akiyama et al. (2003), i.e., the conversion of most of
the rotational energy into magnetic energy, realistic?

Analogous questions are studied by local simulations of the
MRI in accretion disks. The answers may lead the way to for-
mulate a turbulence model to be used in global simulations. The
simplest model would provide a parametrization of the angu-
lar momentum transport by anα viscosity (Shakura & Syunyaev
1973), i.e., a turbulent viscosity proportional to the local sound
speed and the pressure scale height. However, despite a large
number of local simulations, no unique formulation of anα
model for accretion disks has been found up to now. Lacking
similar comprehensive local simulations, a turbulence model for
the MRI in supernovae is even less conceivable. Our simulations
intent to provide only a first step towards these highly desired
turbulence models.

The paper is organized as follows: after a discussion of the
main properties of the MRI in disks and stars (Sect. 2), we
outline our numerical method in Sect. 3, discuss our resultsin
Sect. 4, and summarize our main results and give conclusionsin
Sect. 5.

2. MRI in discs and stars

2.1. Physical model

We work in the limit of ideal magnetohydrodynamics (MHD),
solving the the equations of ideal MHD in the presence of an
external gravitational potentialϕ,

∂tρ + ∇ j

[

ρv j
]

= 0, (1)

∂t p
i + ∇ j

[

piv j + P⋆δ
i j − bib j

]

= ρ∇iϕ, (2)

∂te⋆ + ∇ j

[

(e⋆ + P⋆) v j − bivib
j
]

= ρv j∇ jϕ, (3)

∂tb = −c∇ × E, (4)

∇ jb
j = 0. (5)

Here,ρ, p, v, ande⋆ denote the mass density, momentum density,
velocity, total-energy density, of the gas, respectively;b is the
magnetic field. The total-energy density and the total pressure,
P⋆, are composed of fluid and magnetic contributions:e⋆ = ε +
1
2ρv

2 + 1
2 b2 andP⋆ = P + 1

2 b2 with the internal-energy density
ε and the gas pressureP = P(ρ, ε, . . .). The electric field,E, is
given byE = − v

c × b. Here,c = 2.998× 1010 cm s−1 is the speed
of light in vacuum and Einstein’s summation convention applies.

We use the hybrid equation of state (EOS) due to Keil et al.
(1996) as a rough model for neutron-star matter. Following this
EOS, the total gas pressure,P, consists of a barotropic part,Pb,
and a thermal part,Pth. The two parts are given by

Pb = κρ
Γb , (6)

Pth = (Γth − 1)εth. (7)

Here,Γb andκ refer to the barotropic adiabatic index, and the
polytropic constant of the EOS, respectively;εth = ε−Pb/(Γb−1)
is the thermal part of the internal energy, andΓth the corre-
sponding adiabatic index. Please note that we consider onlysub-
nuclear densities,ρ < ρnuc = 2×1014 g cm−3 here since the max-
imum density reached in our models is a few times 1013 g cm−3.

We define a pseudo-entropyS for this equation of state by

S =
Pth

Pb
. (8)

In the Schwarzschild criterion for convective stability (see be-
low), this quantity appears instead of the entropy of, e.g.,an ideal
gas.

A few quantities used frequently in the remainder of this pa-
per are:

1. the Alfvén velocity

cA =
|b|√
ρ
, (9)

2. the (local) magnetic energy density

emag=
b2

2
, (10)

and the corresponding volumetric mean value

emag=
1
V

∫

dV emag, (11)

3. the (local) Maxwell stress tensor

Mi j = bib j , (12)

and the corresponding volumetric mean value

Mi j =
1
V

∫

dVMi j . (13)

We will use most frequently the componentM̟φ which
governs the transport of angular momentum in radial direc-
tion, and we will sometimes refer to this component asthe
Maxwell stressfor short.

2.2. General properties of the MRI

The stability criteria for the MRI was first discovered by
Velikhov (1959); Chandrasekhar (1960) and further discussed by
Balbus & Hawley (1991) in a series of papers. These authors an-
alyze wave-like (WKB) perturbations of the form exp[i(k·r+ωt)]
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in a background equilibrium of the MHD equations. For con-
venience cylindrical coordinates(̟, φ, z) are used in the fol-
lowing equations. From the dispersion relation, they derive the
criteria for exponential growth and, if applicable, the growth
rates of WKB modes. Because the main astrophysical context
of this series of papers is accretion discs, some assumptions
are made which considerably simplify the analysis: i) weak
magnetic fields where|vA | ≪ min(cs, |vϕ|), ii) incompressible
gas (Boussinesq approximation), and iii) angular velocitycon-
stant on cylinders,Ω(̟). The discussion is mostly restricted to
thin discs (i.e., to equatorial regions and to a Keplerian rota-
tion law) and 5/3-polytropes. Under these assumptions the sta-
bility criterion for a differentially rotating magnetized fluid is
(Balbus & Hawley 1991)

R̟ ≡ ̟∂̟Ω2 > 0. (14)

If the criterion is not fulfilled only modes with (dimensionless)
wavenumber

k̂ <
√

−R̟̂ = k̂crit (15)

are unstable, wherêk ≡ k · vA/Ω, k̂crit ≡ kcrit · vA/Ω andR̟̂ ≡
R̟/Ω2. The (dimensional) growth rate of the fastest growing
mode is (Balbus & Hawley 1992)

ω̂FGM ≡ ωFGM/Ω = −R̟̂/4 (16)

which is independent of the magnetic field and corresponds to
(dimensionless) wave numbers close tok̂crit.

However in the context of core collapse supernovae some of
these assumptions do not apply: entropy and composition gradi-
ents are important, more general rotation lawsΩ(̟, z) have to
be considered, and the analysis can no longer be restricted to
equatorial regions. In this general case the dispersion relation of
WKB modes is (cf. Balbus 1995; Urpin 1996),
(

ω̂2 − k̂2
)2 −

(

ω̂2 − k̂2
) (

ω̂2
G + ω̂

2
R + 4 cos2 θk

)

(17)

− 4 k̂2 cos2 θk = 0 (18)

whereω̂ = ω/Ω is the dimensionless growth rate of the insta-
bility, andθk is the angle betweenk and thez-axis. The (dimen-
sionless) frequencies related to buoyancy terms and differential
rotation are

ω̂2
G =

1
Ω2

[

G · B − (k · B)(k · G)
k2

]

(19)

and

ω̂2
R =

1
Ω2

[

R · e̟ −
(k · e̟)(k · R)

k2

]

, (20)

respectively, wheree̟ is the unit vector in̟ - direction,

G ≡ ∇P
ρ

(21)

R ≡ ̟∇Ω2 (22)

B ≡ ∇ρ
ρ
− ∇P
Γ1P
= − 1
Γ1

∂ ln P
∂s

∣

∣

∣

∣

∣

ρ

∇s (23)

are the gravitational, rotational, and buoyancy terms, respec-
tively, andΓ1 ≡ ∂ ln P/∂ lnρ|s. It is convenient for the mode
analysis and if cosθk , 0 to define the quantity

C ≡
ω̂2

G + ω̂
2
R

cos2 θk
= (GzBz tan2 θk − 2B̟Gz tanθk + G̟B̟ + R̟)/Ω2, (24)

where the curl of Eq. (2), i.e. the vorticity equation, has been
used to simplify the expression ofC. Note that this quantity de-
pends on the direction of the perturbationθk, but not onk2 itself.
If cosθk = 0, which corresponds to velocity perturbations par-
allel to the rotation axis, the value ofC diverges, but all length
scales and growth rates of the discussion below are finite, and
can be computed by taking the limit cosθk → 0.

In the absence of a magnetic field, i.e.k̂2 = 0, the stabil-
ity condition is simplyC + 4 > 0, which is equivalent to the
Solberg-Høiland stability criteria for a non-magnetized rotating
fluid (Tassoul 1978).

Because we want to study instabilities of magnetized fluids,
we consider hereafter only the casek̂ , 0. Then the stability
condition isC > 0, which corresponds to that of Balbus (1995),

G · B + R · e̟ ≥ 0 (25)

(G × e̟) · (B × R) ≥ 0 . (26)

Modes with wave numbers smaller than the (dimensionless) crit-
ical wavenumber

k̂crit = cosθk
√
−C (27)

are unstable and grow. The critical wavenumber depends on the
angleθk in a complicated way involving, in general, the rotation
profile,R, the thermal structure,B, and the stratification,G.
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Fig. 1. Imaginary part of the growth rate normalized to the imag-
inary part of the maximum growth rate,ℑ(ω̂)/ℑ( ˆωFGM) as a
function of C and k̂/ cosθk ≡ k · vA/(Ω cosθk). The dashed
line shows the value of̂k corresponding to the fastest growing
mode,ℑ(ω̂)/ℑ( ˆωFGM) = 1, the solid line gives the boundary be-
tween the two branches of unstable modes (Alfvén and Buoyant
modes), and the dash-dotted line corresponds to the stability
limit ( k̂ = k̂crit). For−4 < C < 0 only Alfvén modes appear, with
a narrow spectrum of fast growing modes close tok̂crit (dash-
dotted line). ForC < −4 buoyant modes appear and become
dominant forC < −8. In the latter case the spectrum of fast
growing modes is much wider covering the entire region from
k̂crit to 0.

Two branches of unstable modes arise from the dispersion
relation with k̂ , 0 (Urpin 1996): the branch of Alfvén modes
appearing forC < 0, and the branch of buoyant modes which
only appear forC + 4 < 0 (Fig. 1).
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For a givenθk the fastest growing mode is obtained from the
condition∂k̂ω̂ = 0. For−8 < C < 0 it has a (dimensionless)
wavenumber

k̂FGM = cosθk

√
−C(C + 8)

4
, (28)

and a (dimensionless) growth rate

ω̂FGM = cosθk

√
−C2

4
. (29)

If C ≤ −8, the fastest growing mode corresponds tok̂FGM = 0,
i.e. it is dominated by buoyant modes with a (dimensionless)
growth rate

ω̂FGM = cosθk
√
C + 4. (30)

Thus, there exist two different instability regimes depend-
ing on the value ofC. For −4 < C < 0 only Alfvén modes
are possible. Thismagneto-shear regimewas discussed by
Balbus & Hawley (1991). A mixed regime is found for−8 < C <
−4, where both Alfvén and buoyant modes compete. ForC < −8
the buoyant modes completely dominate the growth of the insta-
bility, and this regime is thus calledmagneto-convectiveregime.
It is similar to the convective regime, but the critical wavenum-
ber is determined by the strength of the magnetic field.

Note that for a given fluid element the behavior of the unsta-
ble modes depends on the angleθk. Thus, different regimes can
hold in different directions. To find the absolute fastest growing
mode of a fluid element, i.e. not considering a fixed angleθk, one
has to determine the zeros of∂ω̂/∂θk, which involves the solu-
tion of a quartic equation. This fact makes a more detailed study
of the instability difficult.

To simplify the analysis, we restrict ourselves in the follow-
ing discussion to regions near the equator, where it is reasonable
to assume only a radial dependence of the hydrodynamic quan-
tities and a vertical magnetic field. Therefore,

C90 = (N2 + R̟)/Ω2 , (31)

whereN2 ≡ B·G is the square of the Brunt-Väisälä or buoyancy
frequency. BecauseC90 does not depend onθk, all modes of the
considered fluid element belong to the same branch of modes,
i.e. they are either buoyant modes or Alfvén modes. All modes
with wavelengths shorter than

λcrit ≡
2π
kcrit
=

2π |vA |
√

−(N2 + R̟)
, (32)

are stabilized by magnetic tension. It is easy to show that the
modes grow faster whenk is parallel to thez-axis (θk = 0),
i.e. velocity and magnetic field perturbations grow in direc-
tion perpendicular to the rotation axis. The stability criterion,
N2 + R̟ > 0, can easily be interpreted according to the relative
size of the buoyancy term,N2, and the shear term,R̟. Several
different regimes result (Fig. 2):

– Magneto-shear instability (MSI):R̟ ≪ N2 and−4Ω2 <
N2 + R̟ < 0. All modes longer thanλcrit are unstable al-
beit with a vanishing growth rate as their wavelengthλ ap-
proaches infinity. The growth rate peaks for

λMRI ≡ 2π/kFGM ∼
√

2λcrit, (33)

where the limit |C| ≪ 8 is used to obtain the second ex-
pression. It is important to note thatλMRI, which scales with

the background field strengthb0, becomes small for weak
initial fields. Hence, in the limit of a pure shear instability,
only relatively strong initial fields are accessible by numer-
ical simulations due to the restrictive constraint on the grid
size imposed by the requirement to resolveλMRI by at least
several grid zones.

– Magneto-buoyant instability (MBI): 2 N2 ≪ R̟ and−4Ω2 <
N2 + R̟ < 0. This regime resembles the magneto-shear
regime, but the instability is not driven by the shear, but
rather by the unstable stratification.

– Magneto-convective instability: N2 ≪ R̟ andN2 + R̟ <
−4Ω2. This regime corresponds to magnetized convective
flow. The main difference is the stabilization of short modes
(λ < λcrit) due to the magnetic tension. The more important
the negative entropy gradient becomes with respect to the an-
gular velocity gradient, the faster is the growth of infinitely
long modes compared to the growth rate atλMRI.

– Hydrodynamic shear instability:R̟ ≪ N2 andN2 + R̟ <
−4Ω2. This case is not of interest in core collapse since for
the differential rotation of PNS we always findR̟ > 1.5Ω2.

Core collapse occurs in general in amixed regime, where Alfvén
modes and buoyant modes compete. Therefore, none of the
above mentioned pure regimes holds for the MHD instabilities
appearing during core collapse.
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2 The reader should not confuse this instability with the magnetic
buoyancy or Parker instability (Parker 1966), related to the magnetic
field strength gradients.
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3. Method

3.1. Code

We use a newly developed three-dimensional Eulerian MHD
code (Obergaulinger et al., in preparation) to solve the MHD
equations, Eqs. (1)–(5). The code is based on a flux-conservative
finite-volume formulation of the MHD equations and the
constraint-transport scheme to maintain a divergence-free mag-
netic field (Evans & Hawley 1988). Using high-resolution shock
capturing methods (e.g., LeVeque 1992), it employs vari-
ous optional high-order reconstruction algorithms including a
total-variation diminishing piecewise-linear (TVD-PL) recon-
struction of second-order accuracy, a fifth-order monotonicity-
preserving (MP5) scheme (Suresh & Huynh 1997), and a fourth-
order weighted essentially non-oscillatory (WENO4) scheme
(Levy et al. 2002), and approximate Riemann solvers based on
the multi-stage (MUSTA) method (Toro & Titarev 2006). The
simulations reported here are performed with the MP5 scheme
and a MUSTA solver based on the HLL Riemann solver (Harten
1983).

The simulations are performed using cylindrical coordinates,
and include both three-dimensional and two-dimensional (i.e.,
axisymmetric) models. The computational grid covers a region
of a few (typically one or two) kilometers aside resolved by at
least 26 and at most 800 zones per dimension, corresponding to
a resolution between 40 and 0.625 m.

3.2. Boundary conditions

In local simulations, the choice of boundary conditions is acru-
cial issue, with possibly subtle effects on the flow geometry. The
standard technique for local simulations of the MRI in accre-
tion disks is theshearing-sheetmethod due to Hawley & Balbus
(1992). This approach consists of two important ingredients: (i) a
transformation into a frame of reference co-rotating at themean
angular velocity of the shearing box,Ω0, and the linearizion
of the rotation profile aroundΩ0; (ii) the use of shearing-sheet
boundaries in the radial direction, and (in most cases) periodic
boundary conditions in the perpendicular directions.

Periodic boundary conditions are often used in simulations
of a small, representative sub-volume of a larger system. These
boundary conditions are based on the idea that the entire sys-
tem is covered by a homogeneous (e.g., cubic) lattice of iden-
tical sub-volumes. Consequently, the, e.g., left boundaryof the
simulated sub-volume is identified with the right boundary of an
identical sub-volume translated by one lattice width.

A shearing box represents only a small part of the entire
system. The influence of larger scales is considered by suit-
able boundary conditions, the most natural choice being periodic
ones. These boundary conditions, however, do not allow one to
impose global gradients throughout the shearing box, e.g.,for
differential rotation (∂̟Ω , 0). This shortcoming is eliminated
by the linearization of the rotation profile and the transformation
into the co-rotating frame since, in this case, the deviation from
the background profile,δΩ, is the dynamical variable rather than
Ω itself. Thus, it is possible to use periodic boundary conditions
in the radial direction accounting for differential rotation by an
offsetδφ(t) = t (Ωout −Ωinn), as described by (Hawley & Balbus
1992), whereΩout,inn are the angular velocities at the outer and
inner radial surface of the shearing box, respectively.

In contrast to accretion disks, thermodynamic variables in
stars may have global gradients both in the direction per-
pendicular and parallel to the gradient ofΩ. Thus, standard

shearing-sheet boundaries cannot be used. Instead, we follow
Klahr & Bodenheimer (2003) and employshearing-discbound-
ary conditions. We abandon the transformation into the co-
rotating frame and assume radial periodicity of the deviation,
δq ≡ q−q0, of a variableq from a given background distribution
q0, instead of periodicity ofq itself. We define the background
distributionq0 by its distribution at the initial timet = 0, i.e.
q0 ≡ q(̟; t = 0). This recipe is applied to density, momen-
tum, and entropy. As Klahr & Bodenheimer (2003), we observe
the development of resonant radial oscillations which are sup-
pressed, however, by damping the radial velocity in the firstn
(we usen = 2) computational zones at both radial boundaries.
We point out that shearing-disc simulations allow for large-scale
modifications of global gradients. In particular, angular momen-
tum transport may modify the global rotation profile, and change
the angular momentum and rotational energy of the matter in
the computational volume. This process can eliminate the dif-
ferential rotation causing the instability, and thus, terminate the
growth of the MRI.

As we will show later, the evolution of our models depends
crucially on whether we do or do not apply this damping term.
However, we note here that the artificial oscillations prevented
by the damping do not have a strong influence on the evolu-
tion of the MRI. We use, if at all, a damping ofv̟ by 1.25%
in the innermost and outermost two zones of the grid, which
is a considerably weaker damping than in the simulations of
Klahr & Bodenheimer (2003). Despite its relative weakness,the
damping term is able to suppress weak radial motions across
the boundary. Thus, it introduces a preferred length scale (the
radial size of the box) into the otherwise shear-periodic simula-
tion. Comparing simulations with and without damping (we will
refer to these boundary conditions byd andp, respectively), we
can study the influence of a preferred scale on the MRI.

The box size of standard shearing-sheet simulations does not
define a preferred length scale, i.e., these simulations arescale
free and entirely local. In shearing-disc simulations, in contrast,
the scale height of the thermodynamic variables introducesa
physical length scale into the simulation. If this preferred length
scale is smaller than the entire size of the star or disk, the simu-
lations can be characterized as being semi-global.

The semi-global approach falls in between a purely local and
a global one sharing merits and drawbacks with both methods.
Similar to local simulations, semi-global simulations allow one
to resolve a small part of the entire system better. Because they
rely on a fixed lab frame and do not eliminate the mean rotation,
the basic time scales are the same as in a global simulation of
the same resolution. In a Keplerian disk dominated by rotation
this might add a major difficulty to the numerical treatment of
the problem. On the other hand, with pressure dominating over
kinetic energy, the time step of our simulations is governedby
the sound speed rather than the rotational velocity. As there is no
way of eliminating the sound speed, we do not feel a need to use
a shearing-sheet transformation.

We expect the MRI in core collapse to grow and reach
saturation within several tens of milliseconds. The time step
δt . δx/cS, on the other hand, is much smaller because of the
large value of the sound speed in a post-collapse core (cS ∼
1010 cm s−1), whereδx is the width of the computational zone.
Thus, we have to perform a large number (typically several mil-
lions) of time steps, which implies a limit on the grid resolution
we can afford in the simulations, although the resolution is still
much better than that of a global simulation.
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Fig. 3.Hydrostatic structure of the initial models. The panels show the radial profiles of the gravitational potentialϕ19 = ϕ × 10−19

(left), the densityρ13 = ρ × 10−13 (middle), and the angular velocityΩ (right), respectively. The entropy profile of this specific
model is assumed to be flat.

3.3. Initial conditions

We use equilibrium initial models based on post-bounce cores
from Obergaulinger et al. (2006b). We extract the radial pro-
file of the gravitational potential along the equator of their
model A1B3G3, and construct from that the density stratifica-
tion within our shearing box solving the equation of hydrostatic
equilibrium

0 = ρ∂̟ϕ − ∂̟P+̟ρΩ2 (34)

for a given rotation profile

Ω(̟) = Ω0̟
αΩ , (35)

whereΩ0 andαΩ are constants. The pressure is determined using
the hybrid equation of state in the form

P = (S + 1)ργ , (36)

assuming an entropy profile of the form

S(̟) = S0 + S1(̟ −̟0) (37)

with constantsS0 andS1. Eq. (34) is solved in a radial domain of
size,∆̟, which is either one or two kilometers large, centered
at̟0 = 15.5 km. The structure of an initial model, characterized
by the set of parametersΩ0 = 1900 s−1,αΩ = −1.25,S0 = 0, and
S1 = 0, is shown in Fig. 3. This model has a radial density scale
height ofHρ = P

∂̟P ≈ 3.8 km, i.e., our computational grid covers
a significant fraction of a density scale height. The rotation rate
of ∼ 2 000 s−1 corresponds to that of a rapidly rotating proto-
neutron star with a rotational period of∼ 3 ms.

Assuming that the background gravitational potential is a
function of̟ only, we construct cylindrically symmetric ini-
tial models. This approximation is justified by the small size of
the simulation box inz-direction (1 km) compared to its radial
position (15 km).

We added three different types of initial magnetic fields to
the initial hydrostatic model:

ModelUZ: a uniform B-field inz-direction,b =
(

0, 0, bz
0

)T
.

ModelVZ: a B-field inz direction with vanishing net flux,b =
(

0, 0, bz
0 sin(2π(̟ −̟0)/∆̟)

)T
.

In all models, the initial field is weak, both in compaison with the
thermal and the rotational energy of the models. The weakness
of the associated Lorentz force justifies the use ofhydrostatic
instead ofhydromagneticequilibria as initial conditions.

From Eq. (33) and the values of typical model parameters we
obtain the following estimate for the MRI wavelength

λFGM ∼ 6.9 km

(

b
1015 G

) (

ρ

2.5 1013g cm−3

)− 1
2
(

Ω

1900 s−1

)−1

.(38)

To properly simulate the evolution of the MRI,λMRI should be
resolved by at least a few grid zones. Using a grid resolution
of 10 m or 20 m, we thus can follow the growth of the MRI for
magnetic fields exceeding several 1012 G (Obergaulinger et al.
2006b,a). To trigger the instability, we impose a small random
radial velocity perturbation with an amplitude of a few times
10−4..−2 of the rotational velocity.

4. Results

4.1. General considerations

In axisymmetry, the growth of the MRI requires a non-vanishing
poloidal initial field. Axisymmetry restricts the dynamicsof the
MRI, suppressing a class of instabilities that affect the evolu-
tion of MRI-unstable modes (see below). Consequently, the pre-
dictive power of axisymmetric simulations for the evolution of
the MRI is limited, and we cannot rely on them in determining
the saturation amplitude of the instability in supernova cores.
The growth of the instability does, however, not differ strongly
from full 3D models. Thus, we can use 2D models to determine
growth rates, while detailed conclusions can only be drawn from
3D models.

In axisymmetry, the flow is dominated bychannel modes,
a pattern of predominantly radial3 flows of alternating direc-
tion stacked inzdirection (Balbus & Hawley 1991). As the MRI
grows, the channels start to merge and their characteristiclength
scales increase, but they survive as coherent flow structures
throughout the entire evolution and, particularly, do not dissolve
into turbulence.

The analysis of Goodman & Xu (1994) shows that channel
modes are an exact nonlinear solution of the axisymmetric MHD

3 In general, the channels are oriented parallel to the gradient of Ω,
wherever it points to.
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equations, which explains their stability observed in manynu-
merical simulations. They are, on the other hand, unstable to
genuinely 3Dparasitic instabilities of, e.g., Kelvin-Helmholtz
type. Consequently, in 3D, the channel modes appearing during
the early growth phase of the MRI, do not persist until satura-
tion. Instead, the channels decay due to the growing parasitic
instabilities, and turbulence develops.

This basic picture emerged from many simulations of the
MRI in accretion disks. As we will discuss in the following, our
simulations confirm this result for the MRI in supernova cores.

4.2. Axisymmetric models with no entropy gradient

4.2.1. Uniform initial magnetic fields

Our models having no entropy gradient show the same dynam-
ics as that observed in previous simulations of the MRI in accre-
tion discs (see, e.g., Balbus & Hawley 1998). We discuss firstthe
models with a uniform initial fieldbz

0 in z-direction (model series
UZ2) focusing on models with a rotational law given byΩ0 =

1900 s−1 andαΩ = −1.25 (see Eq.35). The evolution of these
models is characterized by an exponential growth of the mag-
netic field, see e.g., Fig. 4 for a model withbz

0 = 2× 1013 G. The
fastest growing MRI mode is well resolved in this model, and
its growth rateσMRI = 1.08 ms−1 is found to be close to the the-
oretical predictionσMRI ≡ ℑ(ωFGM) ≈ |αΩΩ0/2| = 1.14 ms−1

(see Eq. (29)). The magnetic field reaches a maximum value of
about 1015 G at t ≈ 15 ms, and the mean Maxwell stress com-
ponentM̟φ (see Eq. (13)) becomes large enough to alter the
rotation profile considerably within a few tens of milliseconds.
Consequently, the angular momentum of the gas drops drasti-
cally at t ≈ 25 ms.

10 20 30 40
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ϖ
φ   
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Fig. 4. Evolution of the mean magnetic energy densityemag

(solid black line), the mean energy densities corresponding to
the̟ (dotted red),φ (dashed brown), andz (dash-dotted green)
component of the magnetic field, and the absolute value of the
mean Maxwell stress componentM̟,φ (dashed blue line) for
an axisymmetric model with an initially uniform magnetic field
bz

0 = 2 × 1013 G in z-direction, and a rotation law given by
Ω0 = 1900 s−1 andαΩ = −1.25. The model was computed in
a box ofL̟ × Lz = 1km× 1km with a grid resolution of 5m.

The growth of the MRI proceeds via channel flows, whose
vertical extent and number depends on the initial magnetic field.
Two typical channel flows are shown in Fig. 5. During the early
phase of the instability (t = 10.6 ms; upper panel) eight distinct
channels are present each one consisting of a pair of up- and
down-flows in radial direction. The magnetic field is organized
into eight elongated radial sheets, and this pattern is alsoim-
printed onto the distribution ofΩ, as the magnetic field enforces
co-rotation along field lines.

A flow topology dominated by channel modes implies a
phase of exponential growth of the magnetic field, which ends
when the channel modes are disrupted and a less organized, more
turbulent state ensues (in Fig. 4 this happens att ≈ 11 ms). In
most axisymmetric models, the turbulent state is only of tran-
sient nature, because after some time coherent channel flows
form again leading to a secondary phase of exponential growth
(see Fig. 4 att ≈ 23 ms).

Very late in the evolution (t = 30.7 ms; lower panel of
Fig. 5) we find only one large-scale channel flow which ex-
tends across the entire domain in radial direction. The mag-
netic field is now predominantly radial and is concentrated near
the channel boundary. This coherent flow pattern is the result
of a strong transport of mean angular momentum by Maxwell
stresses. The stresses enforce co-rotation along field lines, and
consequently turn the rotation profile, initially constanton cylin-
ders̟ = const., by 90 degrees, so thatΩ becomes a function of
z only. We can distinguish two regions of slow and fast rota-
tion inside and outsidez ∈ [−0.15; 0.25], respectively. Inside the
slowly rotating channel matter is accreting towards the center
with v̟ ∼ 4× 108 cm−1, while the rapidly rotating gas outside
the channel has much slower, random velocities.

To investigate the dependence of the channel geometry on
the initial magnetic field and the grid resolution we compute
Fourier spectra of the radial component of the magnetic field,
b̟, for models withΩ0 = 1900 s−1 andαΩ = −1.25, and an
initial field strength of 4, 10, and 20× 1012 G, respectively. The
simulations are performed in a box of either 1×1 km2 or 2×2 km2

using a 4002 grid (Fig. 6). At each radius we Fourier-transform
b̟(z), and the resulting spectrab̟(kz) (wherekz is the vertical
wave number) are then averaged over radius. We applied this
procedure to the models during the growth phase of the instabil-
ity at t ≈ 7.5 ms. The first set of models (1 km2 domain, 2.5 m
spatial resolution) exhibits growth rates close to the theoretical
values, while this only partially holds for the models of thesec-
ond set of models (4 km2 domain, 5 m spatial resolution). Due
to insufficient spatial resolution the MRI in the model with the
weakest initial field (bz

0 = 4×1012G) grows slower than theoret-
ically predicted. However, for the two more strongly magnetized
models of this set (bz

0 = 10, and 2× 1013 G) the fastest growing
modes are well resolved, and the MRI growth rates agree with
the theoretical ones.

For each model the spectrum shows a distinct maximum cor-
responding to a dominant vertical length scale given by the width
of one channel mode. The position of this maximum is a func-
tion of the initial magnetic field only,kmax ∝ b−1

0 , and thus does
neither depend on the size of the computational domain nor on
the resolution. A dependence on the last quantities is only ob-
served, if the fastest growing mode is under-resolved. In this
case, we recover the low-k wing of the spectral peak, but find
a truncated spectral distribution at higher wave numbers/smaller
length scales.

MRI theory predicts that the growth rate is independent of
the initial field strength. Neglecting magneto-convectivemodes,
we can expect to observe this behavior in numerical simulations
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Fig. 5. The channel modes present in two snapshots taken from
the model for which Fig. 4 shows the time evolution. The snap-
shots are taken att = 10.6 ms (upper panel) andt = 30.7 ms
(lower panel), respectively. The panels show the color coded an-
gular velocityΩ, the magnetic field lines (white), and the flow
field. The colors of the velocity vectors indicate the magnitude
and the direction of the flow: up- and down-flows are represented
by blue and red vectors, respectively, their color intensity corre-
sponding to the absolute value of the (poloiodal) velocity (the
darker the larger). The maximum velocities are 2.7× 107 cm s−1

(upper panel), and 8.8× 108 cm s−1 (lower panel), respectively.

only if the grid is sufficiently fine to resolve the fastest grow-
ing modes close toλMRI. Otherwise, if the grid is too coarse the
growth rate should be much smaller. Our simulations reproduce
this behavior. We show a comparison of the maximum growth
rates from linear analysis (σFGM = ℑ(ωFGM) ≈ | 12αωΩ0|) and
the numerical ones for models with different initial rotation laws
(Ω0 ranging from 950 s−1 to 1900 s−1, andαΩ from -1 to -1.25)
in Fig. 7. If λMRI is under resolved for a given initial fieldb0, the
growth rate increases withb0, but once the MRI wavelength is
well resolved, the growth rate becomes constant as theoretically
predicted. Fig. 7 implies the following criterion for a sufficient
resolution of the MRI:∆̟ & 2Ω0/cA. The growth rate of the
instability does not depend on the size of the computationaldo-
main. For models with strong initial fields the computed MRI
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k / 2π [km−1]
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Fig. 6.Radially averaged Fourier spectra of the radial component
of the magnetic field,b̟(z), for different uniform-field models
at t ≈ 7.5 ms. Models withb0 = 4 × 1012 G, 1012 G, and 2×
1013 G are shown by the red dash-dotted, the blue dashed, and
the black solid line, respectively. Thick and thin lines refer to a
computational domain of 1 km2 and 2 km2, respectively. For all
models a grid of 4002 zones is used.

growth rate is smaller thanσFGM, because the MRI wavelength,
i.e., the wavelength of the fastest growing mode, exceeds the box
size. Thus, we can only properly simulate the slower growth of
shorter modes.
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Fig. 7. Growth rateσ of the MRI for axisymmetric mod-
els with uniform initial field as a function of the initial
Alfvén speed normalized to the rotational velocity and the
grid resolution,cA/(δxΩ0). The colored symbols distinguish
different initial rotational laws, where(Ω0, αΩ) are equal to
(1900 s−1,−1.25) [black plus signs], (1900 s−1,−1) [red di-
amonds], (950 s−1,−1.25) [green squares], and (950 s−1,−1)
[brown triangles], respectively.
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4.2.2. Channel disruption and MRI termination

As long as the dynamics of the model is dominated by channel
modes, the MRI grows exponentially. We observe a termination
of its initial exponential growth – henceforth calledMRI termi-
nation– as soon as the coherent channels are disrupted. Further
MRI growth occurs after an eventual reformation of the channel
flows. To understand these processes better, we study MRI termi-
nation in a large number of axisymmetric models with different
initial magnetic fields, boxes of different size and grid resolution,
and different boundary conditions.

Fig. 8 shows the value of the mean Maxwell stress compo-
nentMterm

̟,φ at MRI termination as a function of the initial mag-
netic field strength,b0 for models with a rotational lawΩ =
1900 s−1̟−1.25 and a vanishing entropy gradient. We can dis-
tinguish two classes of models according to the boundary condi-
tions applied in the simulations (see section 3.2), the qualitative
difference between the models with and without velocity damp-
ing near the boundaries being quite remarkable given the weak
damping we apply. In models with dampingMterm

̟,φ grows with
increasing initial field strength until it levels off at a grid size
dependent value (colored bands in Fig. 8). For the same models,
when simulated without damping, we find thatMterm

̟,φ ∝ b16/7
0

(gray band in Fig. 8) independent of the grid size. The “outliers”
in the upper part of the figure correspond to models computed
with a higher grid resolution than most other models. We will
discuss this fact below.

To determine whether the radial or the vertical size of the
computational grid is responsible for the leveling off of the
Maxwell stress in the runs with radial damping we simulate two
models with a grid of 0.5 km×2 km (for short calledhighmodels
in the following), and 2 km×0.5 km (longmodels), respectively.
Our results show that the determining factor for the growth is pri-
marily the radial rather than the vertical box size, as both models
follow the behavior ofM̟,φ as a function ofb0 for the respec-
tive radial grid sizes. The two classes of models also exhibit re-
markably different post-growth dynamics. In the high models, a
few channel modes reappear from the turbulent state, and a sec-
ondary phase of exponential growth ofM̟,φ sets in. Eventually,
two of the newly formed channel modes merge. By this process,
which occurs repeatedly, the number of channels decreases,and
the final state of the flow is dominated by one short but wide
channel mode. In the long models, on the other hand, no sec-
ondary exponential growth is observed, and the Maxwell stress
remains approximately constant, albeit oscillating considerably
due to the temporary presence of coherent flow patterns.

To interpret these results, one has to analyze the mechanism
responsible for the disruption of the channel modes. We discuss
this mechanism for an undamped model withΩ0 = 1900 s−1,
αΩ = −1.25, and an initial magnetic field strengthb0 = 4×1013G
using a box of 0.5 km× 0.5 km and a resolution of 100× 100
zones. During the growth of the instability a few large chan-
nels are present, which are disrupted at MRI termination (at
≈ 15.9 ms).

Fig. 9 illustrates the disruption of one of the channel flows
in some detail. Att = 15.850 ms, the channel flow is still in-
tact (left panel), and one recognizes two broad streams of in-
flowing and out-flowing gas both permeated by a strong radial
magnetic field of opposite polarity. A broad current sheet sep-
arates the two flow regions. Owing to small-scale fluctuations
in the flow, the field lines are not perfectly (anti-)parallel, and
the current sheet is slightly deformed. These deformationsact
as seed perturbations for resistive instabilities of thetearing-
modetype. Although we evolve the equations ofideal MHD
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Fig. 8. Volume-averaged Maxwell stress componentMterm
̟φ at

MRI termination as a function of the initial magnetic field
strength, b0, for axisymmetric models with uniform initial
magnetic field in z-direction , a rotational profileΩ =

1900 s−1̟−1.25, and a vanishing entropy gradient for a set of
axisymmetric models. Blue, green, orange, and red symbols cor-
respond to models computed in a square box having an edge size
of 0.5, 1, 2, and 4 km, respectively. Models computed with and
without velocity damping at the radial boundaries are denoted by
asterisks and diamonds, respectively. The latter models show a
box size independent scalingMterm

̟φ ∼ (bz
0)

16/7 (gray band), while
in models with dampingMterm

̟φ saturates at high field strengths
the saturation value depending on the box size (colored horizon-
tal bands).

neglecting resistivity, the presence ofnumericalresistivity en-
ables the growth of these instabilities, leading to a reconnection
of anti-parallel field lines. As a consequence, the elongated cur-
rent sheet dissolves into a configuration ofX andO points (lo-
cated at̟ ∼ 15.25 km and∼ 15.5 km, respectively; see middle
panel of Fig. 9). When field lines reconnect near the X point, the
fluid is accelerated away from the reconnection point towards the
O point. This causes the intense gas flow in positive radial direc-
tion at (̟ , z) ∼ (15.35, 0.1) km. The change of the topology of
the magnetic field and of the flow continues shortly afterward
(at t = 16.078 ms; right panel of Fig. 9). The O point has grown
in size, and the fluid is in vortical motion. As the vortex grows,
field lines in the vortex are advected towards field lines of oppo-
site polarity belonging to an adjacent channel flow (centered at
z ≈ −0.15 km), where reconnection occurs. Note the formation
of a second X point at (̟ , z) ≈ (15.38,−0.03) km (Fig. 9, right
panel).

To demonstrate the growth of the tearing-mode instability
and to support its importance for MRI termination, we compare
the evolution of the mean Maxwell stress componentM̟φ and of
the magnetic energy density of the z-component of the magnetic
field, ez

mag of the model (see Fig. 10). Before the tearing mode
grows M̟φ andez

mag increase, their growth rates being similar
to that of the MRI. Att = 15.850 ms, the growth rate ofez

mag
becomes larger than that of the MRI by one order of magni-
tude within less than 0.2 ms, whereasM̟φ approaches a maxi-
mum. Once the tearing mode is fully operative (t = 15.983 ms),
the growth ofez

mag becomes slower but still continues due to the
appearance of more tearing modes (see, e.g., the right panelof
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Fig. 9.The disruption of a channel mode in an axisymmetric uniform-field model. We show a section of a model with an initial field
b0 = 4× 1013 G computed on a grid of 0.5× 0.5 km2. The left, middle, and right panels display the color-codedradial component
of the magnetic fieldb̟ (top) and the current densityjφ = (∇ × b)φ (bottom) before (t = 15.850 ms), during (t = 15.983 ms), and
after (t = 16.078 ms) the violent disruption of the channel flow, respectively. Additionally, magnetic field lines (black lines), and the
velocity field (arrows; top only) are shown. The arrows are color-coded according to the magnitude and direction of the flow. Inflows
and outflows are shown by gray and green vectors, respectively. The longest vector corresponds to a velocity of|v| = 7× 108 cm/s.

Fig. 10 at (̟ , z) ≈ (15.38,−0.03) km).Subsequently,ez
magbegins

to decrease as the tearing modes saturate.
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Fig. 10. Temporal evolution of the absolute value of the mean
Maxwell stress componentM̟φ (solid line; the line is colored
black whereM̟φ < 0, and green otherwise), and of the mag-
netic energy density of the z-component of the magnetic field,
ez

mag (dashed red line) of the model shown in Fig. 9. The vertical
yellow lines mark the times of the snapshots shown in Fig. 9.

According to the previous discussion the dynamics of the
channel flows is dominated by the interplay between their
growth due to the MRI and their destruction by resistive insta-
bilities. Channel flows are unstable against tearing-mode-type
instabilities at any point in their evolution. To study these insta-

bilities in more detail, we have performed a set of simulations
(see App. A) using simplified models of channel flows. We reca-
pitulate our results, summarized in Eq. (A.11), here:

σr ∝ (cA)7/4 (cS)−3/4 (a)−2 (δx)1 , (39)

whereσr, cA , cS, a, andδx are the growth rate of the instabil-
ity, the Alfvén velocity corresponding to the channel magnetic
field, the sound speed, the width of the channel, and the grid
resolution, respectively. because the instability is not based on a
physical resistivity, but is of purely numerical origin, nophysi-
cal transport coefficient appears in Eq. (39). However, our results
can be interpreted in terms of an effective resistivitycAδx, as de-
tailed in App. A. In our models the width of the channel flow,a,
is set by the MRI wavelength corresponding to the initial vertical
magnetic field:

λMRI ∝ bz
0/

√

R̟ ∝ bz
0/(
√
αΩΩ0) (40)

(see Eq. (32), Eq. (33), and Eq. (35)). The width remains con-
stant during the growth, as only mergers of adjacent channels
occurring as a result of resistive instabilities can changethe field
topology.

Our basic proposition for MRI termination is that channel
flows are disrupted once the growth rate of the resistive instabil-
ity exceeds the MRI growth rate:

σr > σMRI ⇒ MRI termination. (41)

Using in addition the functional dependence ofσr (Eq. (39)),
we can establish scaling laws for MRI termination for a given
hydrodynamic background model. As the channel width scales
with the MRI wavelength,a ∝ λMRI, and as the MRI growth rate
is given byσMRI ≡ ℑ(ωFGM) ∝ αΩΩ0 (see Eq. (29)), we find for
the Alfvén speed at MRI termination

cterm
A ∝ (cS)3/7

(

bz
0

)8/7
(Ω0)−4/7 (δx)−4/7 , (42)
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Fig. 11. Average Alfvén velocity – of models with uniform initial magnetic field and without velocity damping near the radial
boundaries – corresponding to the radial magnetic field at MRI termination normalized to (δx)−4/7 (left) and (bz

0)8/7 (right) as
a function of the initial magnetic field strength,bz

0 (left), and the grid resolutionδx (right). The light gray lines represent the
power laws expected from our analysis of resistive instabilities (see Eq. (42)). Note that we only consider well-resolved models
(σMRI ≥ 0.95 ms−1) here.

and for the corresponding Maxwell stress

Mterm
̟φ ∝ (cS)6/7

(

bz
0

)16/7
(Ω0)−8/7 (δx)−8/7 . (43)

The latter equation implies thatMterm
̟φ decreases with faster rota-

tion. Two effects play a role in explaining this behavior. Firstly,
slower rotation leads to slower MRI growth (σMRI ∝ Ω0), and
hence weaker magnetic fields are required for the tearing modes
to overcome the MRI growth. Secondly, slower rotation implies
wider channel flows (a ∝ (Ω0)−1), i.e., resistive instabilities grow
slower asσr ∝ a−2 ∝ (Ω0)2 (see Eq. (39)).

The qualitative features of these scaling relations are:

1. Stronger initial vertical fields and correspondingly
wider channels tend to suppress resistive instabilities.
Consequently, MRI termination requires more strongly
magnetized channel flows.

2. Finer grid resolution implies less numerical viscosity,and
hence larger values forcterm

A andMterm
̟φ .

3. The scaling ofMterm
̟φ with the sound speed implies a pro-

portionality between the Maxwell stress and the background
pressure:P ∝ c2

S, and thusMterm
̟φ ∝ P3/7. This scaling is rem-

iniscent of theα-law in accretion discs according to which
the (MRI-generated) viscosity is proportional to the gas pres-
sure.

Fig. 11 shows that the average Alfvén velocity correspond-
ing to the radial4 magnetic field at MRI termination is well de-
scribed by the scaling law given in Eq. (42). Similarly, Fig.8 and
Fig. 12 (upper panel) confirm that the data forMterm

̟φ obey the
corresponding scaling law (Eq. (43)), too. The upper panel of
the latter figure showsMterm

̟φ as a function of the initial magnetic
field strength for models with different initial rotational laws.

Obviously, the proportionalityMterm
̟φ ∝

(

bz
0

)16/7
(light gray lines)

4 The radial field is typical for all three components. Thus theAlfvén
velocity corresponding to the total magnetic field shows thesame de-
pendence.

provides a good approximation to the behavior of the models.
Due to the small number of models the results should be taken
with care, but a strong anti-correlation ofMterm

̟φ with Ω0 is sug-
gested. The data also do not support any dependence ofMterm

̟φ

onαΩ. Finally, in Fig. 8 we noticed earlier some outliers at large
values ofMterm

̟φ which correspond to models computed on a fine
grid. However, considering that MRI termination depends on
grid resolution, all models lie within a narrow band which cor-
roborates our scaling laws and provides more evidence of the
importance of resistive instabilities in understanding the MRI.
Consequently, physical (instead of numerical) transport coeffi-
cients should be used in MRI simulations, which may give rise
to different scaling laws considering the growth rate of tearing
modes.

Models with velocity damping In models with uniform initial
magnetic fields where the radial velocity is damped near the in-
ner and outer radial boundary, i.e., in models located in thehor-
izontal bands in Fig. 8, MRI termination happens earlier than
predicted by our scaling laws, and the Maxwell stresses saturate
for strong initial magnetic fields, the saturation value ofMterm

̟φ

being smaller for slower rotation (see lower panel of Fig. 12).
This is due to the reconnection instability occurring closeto the
radial boundaries well before the theoretically predictedtime
of MRI termination. This premature reconnection is caused by
the field geometry: due to the suppressed motion across the in-
ner and outer radial boundary field lines must bent there inz-
direction. Consequently, field lines of opposite polarity approach
each other much earlier than in models without velocity damp-
ing, and efficient reconnection ensues. In this case, the onset of
reconnection is determined by the field geometry rather thanby
the initial field strength. With reconnection occurring in the bent
flux sheets near the radial boundaries instead between parallel
flow sheets in the bulk volume as for non-damping boundaries,
the width of a flux sheet is less important in determining the
resistive growth rates. Thus, a slower MRI growth and smaller
Maxwell stresses are found for slower rotating models when ve-
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Fig. 12. Maxwell stress,Mterm
̟φ at MRI termination as a function

of the initial magnetic field strength,bz
0 for models with different

initial rotational profiles. The upper and lower panels showmod-
els with non-damping and damping boundary condition, respec-
tively. The colored symbols distinguish different initial rotational
laws where(Ω0, αΩ) are equal to (1900 s−1,−1.25) [blue dia-
monds], (1900 s−1,−1) [green diamonds], (950 s−1,−1.25) [yel-
low asterisks], and (950 s−1,−1) [red asterisks], respectively.
Note that only models with a box sizeL̟ × Lz = 1 × 1 km2

and a resolution of 50, 100, or 200 zones (per dimension) are
considered here. The light gray lines in the upper panel illustrate

power laws∝
(

bz
0

)16/7
.

locity damping is imposed. Apart from the dependence ofMterm
̟φ

onΩ0, we also find a dependence onαΩ. Both dependences to-
gether give rise to a monotone relation between the strong-field
limit of Mterm

̟φ and the MRI growth rate,σMRI, which qualita-
tively agrees with the above reasoning.

Once the initial channel flows are disrupted and the field ge-
ometry is changed by reconnection, the mean magnetic and ki-
netic energies, and the absolute value of the Maxwell stresses
begin to fluctuate strongly around roughly constant values (see
the phase between 11 ms and 23 ms in Fig. 4). Subsequently, a
second phase of exponential MRI growth is possible, exhibiting
a similar dynamics but involving less channel flows than the pre-
vious growth phase. The reduced number of channels is probably
due to the strong increase in the vertical magnetic field during
the growth of the tearing modes. Similarly to their predecessors,

the newly formed channels are also unstable against resistive in-
stabilities, but due to their larger width their disruptionrequires
much larger Alfvén velocities, i.e., the MRI can lead to much
larger Maxwell stresses in the second generation of channels.
In principle, this process of formation and merger of channels
can continue until only one single channel flow remains cover-
ing the entire box. We note that in later growth phases, the radial
velocity and the magnetic field strength are typically so large
that damping at the radial boundaries, if applied, does not lead
to early saturation.
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Fig. 13. An early state (t = 12.1 ms) in the evolution of a model
with bz

0 = 2 × 1013 G computed in a box ofL̟ × Lz = 1 km2

covered by 200× 200 grid zones. Shown are the same variables
as in Fig. 5. The maximum velocity is 1.1× 107cm s−1.

4.2.3. Models with non-uniform initial magnetic fields

Models having a non-uniform initial magnetic field exhibit a
different evolution (see also Balbus & Hawley 1998). To study
this evolution we simulated a set of models varying the initial
magnetic field configuration and the boundary condition (apply-
ing velocity damping or not; see previous subsection). All mod-
els rotate initially according to the law given in Eq. (35) with
Ω0 = 1900 s−1 andαΩ = −1.25.

We considered three types of non-uniform initial magnetic
fields all of which have only az-component. The first one

bz
ZNF = bz

0 sin

(

2π̟

λb
̟

)

× ̟
̟0

(44)

varies sinusoidally with radius and scales in addition as∝ ̟ to
guarantee that the net magnetic flux through the surfaces of the
computational box atz= z0,1 vanishes. This is the standard zero
flux field used in most MRI simulations. The second type of a
non-uniform initial field considered by us is given by

bz
Abs =

∣

∣

∣bz
ZNF

∣

∣

∣ . (45)

Finally, the third type also has a vanishing net magnetic flux, as
bz

ZNF, but a step-like dependence on̟, i.e.,

bz
step= bz

0Θ (̟ −̟c)
̟

̟0
, (46)
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whereΘ and̟c denote the Heaviside step function and the ra-
dial coordinate of the center of the box, respectively.

For the first type of models the MRI starts growing via a
multitude of channel modes giving rise to less amplificationof
the magnetic field than in models with a uniform initial field.
Separate channels develop in the two radial regions of negative
and positivebz (see Fig. 13), whereas the channels span the full
radial extent if the initial field is uniform. The channel flows
do not merge to form a few large-scale channels, but are de-
stroyed by turbulence. After reaching a transient maximum,the
magnetic energy and the Maxwell stress level off at values much
less than for uniform-field models. The magnetic field becomes
strongest right after MRI termination (∼ 1015 G). After 60 ms the
maximum field strengths are about 2× 1014 G, and decrease to
1014 G until the end of the simulation. Fields of this strength can
change theΩ profile significantly only on time scales of many
tens of milliseconds, i.e., at the end of the simulation the rotation
profile is basically unchanged.

Fig. 14 shows a comparison of the maximum Maxwell stress
at MRI termination for the models with a non-uniform initial
magnetic field. When velocity damping is applied the value of
Mterm
̟φ does not depend on the initial field geometry, and is deter-

mined by reconnection of anti-parallel field lines occurring close
to the boundaries. If no velocity damping is applied, the evolu-
tion is similar to that of uniform field models, but depends onthe
field geometry. This finding can be understood in the light of our
previous discussion of re-connective instabilities, and by the fact
thatMterm

̟φ is determined by reconnection in the bulk volume, and
not by reconnection near the boundaries.

Models without velocity damping and the initial field,bz
Abs

develop large Maxwell stresses which increase with the initial
field strength. The evolution of these models and the geometry of
their channel flows are similar to those of models with uniform
initial fields, i.e., the growth rates of tearing-modes are similar
for both classes of models. For models in which the net magnetic
flux vanishes initially we find thatMterm

̟φ is roughly constant for
sufficiently strong initial fields, the stress being slightly larger
for sinusoidal (bz

ZNF) than for step-like initial fields (bz
step). The

models develop a more complex field morphology with more
intense current sheets and more potential sites for reconnection
than uniform field models. Thus, the growth rates of the resistive
instabilities are comparable to those of the MRI for much weaker
fields than in the uniform-field models. MRI termination also
occurs at smaller values ofMterm

̟φ .

4.3. Axisymmetric models with entropy gradients

We also simulated some axisymmetric models imposing an ad-
ditional entropy gradient. In this case, the instability criterion
is more complicated and various instability regimes exist (see
Sect. 2): (magnetic) shear instability, convection, and magneto-
buoyant instability. Otherwise unstable modes may be stabilized
by a stable thermal stratification or by fast (not necessarily differ-
ential) rotation. Tables B.1 (models with a positive entropy gra-
dient) and B.2 (models with a negative entropy gradient) provide
a list of the simulated models. Note that all models discussed in
this subsection have a uniform initial magnetic field.

4.3.1. Positive entropy gradients

We first discuss differentially rotating models having a stabiliz-
ing entropy gradient comparing models with and without mag-
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Fig. 14.Maxwell stressMterm
̟φ at MRI termination as a function

of the initial magnetic field strengthbz
0 for models with non-

uniform initial fields. Models with and without velocity damp-
ing are shown by asterisks and diamonds, respectively. The blue,
green and red symbols denote models where thez-component of
the initial magnetic field is given bybz

ZNF (see Eq. (44)),bz
step(see

Eq. (46)), andbz
Abs (see Eq. (45)), respectively. The light gray

lines illustrate power laws∝
(

bz
0

)16/7
.

netic field. The non-magnetic models are stable due to the posi-
tive entropy gradient, i.e. initial perturbations do not grow.

The models with a magnetic field belong to the MSI regime
(cf. Fig. 2), their MRI growth rates being reduced compared to
models with no entropy gradient. We simulated models with dif-
ferent entropy gradients (∂̟S = 0.02, 0.04, 0.08 km−1) and dif-
ferent adiabatic index of the equation of state (Γb = 1.31, 5/3).
Generally, we find a good agreement between the analytic pre-
dictions and the numerical results. For∂̟S < 0.08 the mod-
els are unstable belonging to the MSI regime, whereas an en-
tropy gradient of∂̟S = 0.08 suffices to stabilize the model. The
growth rates agree well with the analytic ones, and the numer-
ical models show the typical dependence of the growth rate of
the MRI on the initial magnetic field strength. However, there
exists one interesting difference:σ increases from small values
for weak initial fields for whichλMRI is under resolved and con-
verges to the correct growth rate for strong fields for whichλMRI
exceeds the grid resolution significantly. Unlike for models with-
out entropy gradient, the growth rate becomes largest for mag-
netic fields for which the MRI wavelength is similar to the grid
resolution, and at these field strengths the numerical growth rates
can exceed the theoretical ones.

Dynamically the models behave similarly as models without
an entropy gradient. Channel flows develop during the growth
phase of the MRI, their width being set by the MRI wavelength.
MRI termination occurs due to the growth of tearing-mode-like
resistive instabilities. When velocity damping is applied, the
maximum Maxwell stress at MRI termination,Mterm

̟φ , is deter-
mined by the box size. Comparing models with a positive en-
tropy gradient and with no entropy gradient we find a common
linear relation betweenMterm

̟φ andσMRI , indicating a common
reason for MRI termination (see Fig. 15).

According to Eq. (28), the channels are wider in models with
larger entropy gradients. As wider channels are less prone to re-
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Fig. 15. Maxwell stress at MRI termination,Mterm
̟φ , as a function

of the MRI growth rate,σMRI , for models with zero (diamonds)
and positive (plus signs) entropy gradients.

sistive instabilities, they can support stronger fields before be-
ing disrupted (see discussion above), i.e.Mterm

̟φ is larger in mod-
els with larger entropy gradients. The MRI growth rate, on the
other hand, is smaller for larger entropy gradients (see Eq.(29))
implying thatMterm

̟φ decreases with increasing entropy gradient.
Both effects taken together suggest a weak anti-correlation of
Mterm
̟φ with the size of the (positive) entropy gradient. An anti-

correlation is also suggested by our numerical results, although
more models are needed to confirm it. It is unclear, for exam-
ple, whether the growth rates of resistive instabilities derived in
Sect. 4.2.2 also hold for stably stratified media, and whether the
boundary conditions have an influence in models with large en-
tropy gradients. Small perturbations of the quasi-periodic (be-
cause of global gradients) radial entropy distribution mayleave
their imprint on MRI termination by enforcing a preferred length
scale, thus clouding effects due to a variation of∂̟S.

We have also simulated a few of the models using an ideal-
gas equation of state,P = (Γ − 1)ε, instead of the hybrid EOS
finding, however, no effect on the evolution of the models.

4.3.2. Negative entropy gradients

Convection can develop in models having a negative entropy gra-
dient, but it can be suppressed by rapid rigid or differential rota-
tion. If a magnetic field is added to a convectively unstable sys-
tem which cannot be stabilized by rotation, the system is located
in the “convection” regime of Fig. 2. In a situation where rota-
tion suffices to suppress the convective instability, the addition
of a weak magnetic field puts the system into the “MBI” regime,
and a magneto-buoyant instability similar to the standard (i.e.,
∂̟S = 0) MRI develops. When∂̟S < 0 the equivalent of the
standard MRI corresponds to the “MSI” regime in Fig. 2.

Before discussing our results (see Tab. B.2 for a list of the
simulated models), we need to comment on the boundary con-
ditions. Allowing for radial transport of energy shearing-disc
boundaries can, in principle, lead to a transport of entropyacross
the pseudo-periodic boundaries, thus modifying the initial en-
tropy profile. By comparing shearing-disc models and models
with reflecting boundary conditions, we verified that none of

these boundary conditions suppresses the growth of the MRI,
and that both give similar results.

Let us first consider a non-magnetic model which rotates
rigidly with an angular velocityΩ0 = 1000 s−1 and has an en-
tropy profile given byS0 = 0.2 and∂̟S = −0.075 km−1 (see
Eq. (37)). WithN2/Ω2

0 ≈ −14 andR̟/Ω2
0 = 0, the model be-

longs to the convective regime. Buoyant modes are unstable
and grow at a theoretical rateσth = 3.4 ms−1. Simulated on a
grid with 2.5 m spatial resolution, the model is unstable with
a numerical growth rateσ = 2.7 ms−1, and convection sets in
quickly. The flow is dominated by a few (one or two) fairly cir-
cular convective rolls. Due to the transport of entropy and an-
gular momentum by the overturning fluid, the model develops
complementary entropy and rotation profiles characterizedby
“cold” (i.e., low-entropy), rapidly rotating matter in down-flows
and “hot” (i.e., high-entropy), slowly rotating matter in up-flows.
The redistribution of angular momentum and entropy leads toan
average (with respect to thez-coordinate) rotational profile of
the formΩ ∝ ̟−2, i.e., constant specific angular momentum
(see Fig. 16), and a flat entropy profile.

For a faster rotation rate ofΩ0 = 1500 s−1, corresponding to
N2/Ω2

0 ≈ −5.7, i.e., still in the convective regime, the evolution
is similar except for a reduced growth rate (σ ≈ 1.6 ms−1) due to
rotational stabilization. The model develops differential rotation
with the same̟ -dependence as in the case of slower rotation. If
we increase the rotation rate toΩ0 = 1900 s−1 (N2/Ω2

0 ≈ −3.2)
buoyant modes are stabilized by rotation.

The above results also hold if the initial model is rotating
differentially. In particular, convection (i.e., the negativeinitial
entropy gradient) gives also rise to a rotation law of the form
Ω ∝ ̟−2, and a flat entropy profile.

15 15.2 15.4 15.6 15.8 16
 ϖ [ km ] 

1400

1450

1500

1550

1600

Ω
 [ 

s 
−

1  ] 

Fig. 16. Ω, averaged overz, as a function of̟ for non-magnetic
convective models att = 51.9 ms (green dashed), with an initial
magnetic fieldbz

0 = 1012 G at t = 51.9 ms (red dash-dotted), and
an initial fieldbz

0 = 1013 G (blue solid lines), respectively. For the
latter model the different symbols indicate different epochs:t =
11.5 ms (plus signs),t = 20.8 ms (diamonds), andt = 41.7 ms
(squares). The dotted black lines show the initial rotationlaw
(Ω0 = 1500 s−1, and a power-law profileΩ ∝ ̟−2.

Adding a magnetic field ofbz
0 = 1013G to a convective

model, i.e., to a model with a negative entropy gradient ro-
tating sufficiently slowly (in our case, for rigid rotation with
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Ω0 <∼ 1500s−1) prevents the development of convection. Initial
perturbations are amplified rapidly, but saturation sets inwithin
6 milliseconds the growth rate being slightly larger than inthe
non-magnetic models. WithN2/Ω2

0 ≈ −5.7, the model is domi-
nated by buoyant modes, but there still exists some influenceof
the Alfvén modes. In particular, although infinitely long modes
grow rapidly, the fastest growing modes are Alfvén modes offi-
nite wavenumber which depends onbz

0. For sufficiently strong
initial fields (or sufficiently fine resolution), these modes are nu-
merically resolved, and have a growth rate exceeding that ofthe
corresponding non-magnetic model. The magnetic field strength
increases exponentially as the instability develops, and at the on-
set of saturation large convective rolls develop. In the saturation
phase the flow geometry differs considerably from that of the
corresponding non-magnetic model. It consists of down-drafts
of cold material and up-flows of hot gas forming small-scale
structures rather than large circular convective rolls. Like in the
non-magnetic model, cold and hot regions correspond to regions
of low and high angular velocity, respectively. Differential rota-
tion with constant specific angular momentum,Ω ∝ ̟−2, de-
velops due to hydrodynamic transport of angular momentum in
convective overturns. The magnetic energy related to the radial
component of the magnetic field and the Maxwell stress compo-
nentM̟φ remain large during saturation, i.e. angular momentum
transport converts the̟−2 rotation law prevailing at early epochs
into nearly rigid rotation (Fig. 16).

If for the same initially rigidly rotating model the initialmag-
netic field is too weak to resolveλMRI (we simulated two mod-
els with b0 = 104 and 1012, respectively) convection develops.
The growth rates are similar to those of non-magnetic models.
The weakest initial field,bz

0 = 104 G, has no impact at all, and
the evolution of the model with an initial field of 1012 G differs
only slightly from that of the non-magnetic model. The magnetic
field increases exponentially as the instability grows. Large per-
sistent convective rolls form, and differential rotation develops.
After an initial exponential growth the mean magnetic energy re-
mains large, but the contribution of the radial component ofthe
magnetic field and the mean Maxwell stress componentM̟φ de-
crease almost by four and two orders of magnitude, respectively.
Consequently, no significant angular momentum transport oc-
curs due to magnetic stresses, and similar to the non-magnetized
model aΩ ∝ ̟−2 rotation law develops. Fig. 16).

We now consider theMBI regime (see Fig. 2) and discuss
models rotating initially rigidly withΩ0 = 1900 s−1 and hav-
ing an initial entropy gradient∂̟S = −0.1 km−1 (see Tab. B.2),
which impliesN2/Ω2

0 ≈ −3.6. Without magnetic field, the insta-
bility of the buoyant modes is suppressed by the fast rotation.
However, if a weak magnetic field is added, an instability of the
MBI type develops, i.e., the Alfvén modes become unstable.The
numerical growth rates show a similar dependence on the mag-
netic field strength as in case of the standard (i.e.,∂̟S = 0)
MRI, becauseλMRI is resolved. The instability grows rapidly
(σ ∼ 1.4 ms−1, similar to the theoretical valueσth ≈ 1.7 ms−1).
During the growth phase channel modes appear, which lead to a
transport of both angular momentum and entropy. After an expo-
nential initial growth and some decrease after MRI termination
the mean magnetic energies contained in the total magnetic field
and all three field components remain large (corresponding to
field strengths of∼ 1014 G), but the mean Maxwell stress com-
ponentM̟φ drops to zero within ten milliseconds oscillating af-
terward with decreasing amplitude between positive and nega-
tive values. Hence, large-scale angular momentum transport is
limited. At the end of the simulation, the model shows consid-

erable variations inΩ, but there is no clear indication of a mean
differential rotation of the formΩ = Ω(̟). The entropy profile
in the saturated state is almost flat.

Finally, we summarize a few common features of the mod-
els having a negative entropy gradient (see Tab. B.2). All models
develop instabilities in accordance with the flow regime to be
expected from their model parameters. The growth rates of all
models are, within the uncertainties, similar to the theoretical
predictions. As for the dynamics, we have to distinguish mod-
els in the convective regime from those in the mixed and MBI
regimes. The former class of models shows convective mush-
rooms and large-scale overturns with only little influence of the
magnetic field, whereas the last class is dominated by channel
flows. Consequently, angular momentum transport by hydrody-
namic flow leads to a rotational profileΩ = ̟−2 for models in
the convective regime, while models in the mixed-type regime
tends towards rigid rotation the angular momentum transport
being dominated by magnetic fields. Termination of the insta-
bility growth occurs for models both in the MBI and mixed-type
regime analogously to that of models in the MSI regime without
entropy gradient, i.e., by reconnection in resistive instabilities al-
tering the topology of the channel flows. Consequently, we find
similar dependencies on the initial field strength, the gridreso-
lution, and the type of boundary conditions. The instability in
convective models, on the other hand, saturates when the initial
entropy gradient is removed by vigorous entropy transport due
to overturning fluid motions.

4.4. Three-dimensional models

The results of the axisymmetric simulations discussed in the pre-
vious section demonstrate the possibility of MRI-driven field
amplification in core collapse supernovae, and provide some
insight into the evolution of MRI unstable layers in the core.
However, to address the MRI problem in full generality, one has
to consider three-dimensional models, because the assumption
of axisymmetry implies severe restrictions for the dynamics of
the magnetic and kinetic fields. The most important limitations
are that, in axisymmetry, a toroidal field cannot be converted into
a poloidal one, and that the disruption of the channel flows re-
quires non-axisymmetric parasitic instabilities (Goodman & Xu
1994).

As 3D simulations are computationally much more expen-
sive than 2D ones, we could not perform a comprehensive study,
but had to focus on a few selected models. We simulated mod-
els with different field geometries and varied the initial field
strength, the entropy profile, and the grid size (see Tab. B.3and
Tab. B.4).

4.4.1. Uniform initial magnetic fields, no entropy gradient

We first discuss models which have a uniform initial magnetic
field bz

0 in z-direction, no entropy gradient, and rotate differen-
tially with Ω0 = 1900 s−1 andαΩ = −1.25 (see Eq. (35)). If the
MRI wavelength is well resolved (e.g., for models with initial
field strengths of 2×1013G and 4×1013G simulated at a grid res-
olution of δ̟ = 20 m), the growth rate is large and independent
of bz

0 . Under-resolved models (e.g., models withbz
0 = 1013 G

simulated at the same resolution) exhibit a slower growth ofthe
MRI. From the growth rates of the MRI, we infer that in 3D the
same resolution criterion applies as in the case of axisymmetry.

During early epochs the evolution is similar to that of the cor-
responding axisymmetric models: a number of radially aligned
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channels appear. Strong differential rotation causes significant
wind-up of flow features leading to structures elongated inφ-
direction, i.e., there exists only a modest variation of theMHD
variables with azimuthal angle at this stage. Sheet-like struc-
tures dominate the field geometry. The rotational profile begins
to show distortions due to the transport of angular momentum
by Maxwell stresses (see left panel of Fig. 17). At later epochs
the flow in 3D is more complex than in axisymmetry. Although
coherent structures, i.e., flux sheets, are still present, their geom-
etry is more tangled and twisted, and less isotropic than earlier
in the evolution (see middle panel of Fig. 17).

An evolution from coherent channel flows to a more tur-
bulent state is characteristic for all three-dimensional models
with a uniform initial magnetic field. However, as pointed out
by Sano & Inutsuka (2001), channel flows can develop again
from the turbulent state. Consequently, the magnetic field can
continue growing, and the angular momentum transport will
be enhanced strongly. In the most extreme cases, the evolu-
tion is similar to that of a corresponding axisymmetric model.
This is exactly what we observe for some models at late times,
t & 30 ms (see right panel of Fig. 17), when a dominant chan-
nel flow forms. These model enter again a state of exponential
growth, and a large part of the angular momentum is extractedby
Maxwell stresses. The field strengths reach several 1015 G, peak-
ing at 1016 G, and the mean Maxwell stress componentM̟φ ex-
ceeds 1030 erg cm−3 (see middle panel of Fig. 18), and compare
with the corresponding axisymmetric model in the left panel).
Despite a qualitative similarity between the evolution of the 3D
and axisymmetric models, we note that the secondary exponen-
tial growth is slower in three dimensions.

The emergence of a large-scale structure of the magnetic
field from a turbulent state can be seen in Fig. 19 comparing
the field structure att = 26.8ms andt = 42.5ms, respectively.
At the earlier time (left panel), we find a small-scale field dom-
inated by slender flux tubes. Field lines of different polarity (in-
dicated by different colors) are lying close to each other. After
the development of the channel flow (right panel), the field is
dominated by a large-scale pattern. A smooth surface perme-
ating the box at nearly constantz-coordinate separates in two
large regions field lines of different polarity from each other. In
each of the two regions, we find one broad flux sheet where most
of the magnetic energy is concentrated. The separation layer is
filled by gas rotating nearly uniformly at a ow angular veloc-
ity (Ω ∼ 1500s−1). The surrounding gas rotates uniformly as
well, but at a much higher velocity (Ω ∼ 1800s−1). The two
flux sheets form a thin transition region between both rotational
states. Thus, the dynamics is similar to that of the corresponding
axisymmetric model.

Because our boundary conditions allow for a loss of angular
momentum, and thus for the total disruption of the differential
rotation profile by transport through the radial boundaries, this
stage represents the end of the evolution, just as it did in ax-
isymmetry: the instability has used up its free-energy reservoir.
Hence, the later evolution consists only of violent oscillations.

Only a subset of our models show a prominent re-appearance
of single channel flows, and most of them do not exhibit a sec-
ondary exponential growth phase. Instead, the mean magnetic
energy and the Maxwell stress remain roughly constant dur-
ing saturation, albeit fluctuating strongly (see the right panel
of Fig. 18). Angular momentum transport is less efficient for
these models, and their initial rotation profiles remain nearly
unchanged. A turbulent flow and magnetic field persist during
saturation, and coherent, channel-like structures develop tran-
siently. The structure of the magnetic field of a model with

bz
0 = 4 × 1013G computed on a grid of 50× 100× 50 zones is

displayed at two different epochs in Fig. 20. Att = 21.5 ms (left
panel) one recognizes a turbulent state, while large-scalepatterns
(right panel; yellow structures) dominate the flow att = 37.2ms
when the magnetic field strength is largest, and the Maxwell
stress is strongest. Unlike in the model discussed above, the co-
herent flow is unstable and becomes turbulent within a few mil-
liseconds, and the absolute value of the Maxwell stress

∣

∣

∣M̟φ
∣

∣

∣

decreases.

Channel modes and parasitic instabilities: The appearance
and stability of single large-scale flows that lead to a secondary
exponential growth phase and eventually to the disruption of the
rotation profile depend on the geometry of the simulated domain
as well as on the ratio of the grid resolution and the fastest grow-
ing mode.

Models, which are computed in a box of 1km3 with a res-
olution of 20m and where velocity damping is applied, develop
secondary stable channels, if the initial magnetic field is stronger
than 2× 1013G. The MRI growth rates found for these models
(σ = {0.76, 1.03, 1.10}ms−1 for b0 = {1, 2, 4} × 1013G, respec-
tively) indicate that the grid resolution is sufficiently fine to re-
solve the fastest growing MRI mode for the two most strongly
magnetized models. However, it is too coarse for the model with
the weakest initial field, because the theoretical growth rate for
the fastest growing MRI mode isσMRI = 1.14 ms−1 for these
models (see Sect. 4.2.1).

To investigate the stability properties of large-scale channel
modes as a function of the box geometry, we simulated mod-
els with an initially uniform magnetic field using boxes of dif-
ferent size and shape. The models were rotating according to
Ω0 = 1900 s−1 andαΩ = −1.25, and their initial magnetic field
wasbz

0 = 4 × 1013G when applying velocity damping bound-
aries, andbz

0 = 2×1013G otherwise. We varied both the ratio be-
tween the radial and vertical,L̟/Lz, and the radial and toroidal
size,Lφ/L̟, size of the box. The grid resolution was 20 m (see
Tab. B.3). Plotting the stress ratiosMmax

̟φ /M
term
̟φ (Fig. 21; damp-

ing boundaries) and〈M̟φ〉/Mterm
̟φ (Fig. 22; non-damping bound-

aries) as a function of the aspect ratio of the computationalbox,
provides some indication of the range ofM̟φ values prevail-
ing during the post-growth phase. The ratios allow one to dis-
tinguish models with a strong variability due to the dominant
re-appearance of channel modes from those models exhibiting a
smooth evolution without dominant large-scale coherent struc-
tures.

We find that models with a radial aspect ratioL̟/Lz = 1
and a toroidal aspect ratioLφ/Lz ≥ 2 are unstable against par-
asitic instabilities, independent of the grid resolution in toroidal
direction. Turbulence develops and leads to a flow structureas
shown in Fig. 20. Models having the same radial aspect ratio,
but a smaller toroidal one are stable and evolve similarly asax-
isymmetric models, i.e., parasitic instabilities do not grow and
a dominant large-scale channel flow develops, which gives rise
to a morphology of the type presented in Fig. 20. These find-
ings do not depend on how the growth of the MRI ends, i.e.,
whether velocity damping is applied and reconnection between
adjacent channels occurs inside the box, or whether no damp-
ing is imposed and reconnection occurs near the surface of the
computational box.

These results can be understood from the analysis of par-
asitic instabilities by Goodman & Xu (1994), who argued that
three-dimensional flows are unstable against parasitic instabili-
ties, but these instabilities can be suppressed by the geometry of
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Fig. 17. Structure of a 3D model withbz
0 = 2 × 1013 G computed on a grid of 1 km3 at a resolution of 20 m att = 16.2 ms (left),

t = 26.8 ms (middle), andt = 42.5 ms (right), respectively. Shown is the volume rendered magnetic field strength (blue to green),
and a red-orange iso-Ω surface corresponding toΩ = 1820 s−1 (left and middle) andΩ = 1680 s−1 (right), respectively. The red,
green, and blue axes point into̟, φ, andzdirection, respectively. Channel flows can be identified as green sheet-like structures.
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Fig. 18. Evolution of the mean magnetic energy densityemag (solid black line), the mean energy densities corresponding to the
̟ (dotted red),φ (dashed brown), andz (dash-dotted green) component of the magnetic field, and theabsolute value of the mean
Maxwell stress componentM̟,φ (dashed blue line) for models with an initially uniform magnetic fieldbz

0 = 2×1013G in z-direction,
and a rotation law given byΩ0 = 1900 s−1 andαΩ = −1.25. The panels show a 2D model computed in a box ofL̟×Lz = 1km×1km
(left), a 3D model computed in a box ofL̟ × Lφ × Lz = 1km× 1km× 1km (middle), and a 3D model computed in a box of
L̟ × Lφ × Lz = 1km× 2km× 1km (right), respectively. The grid resolution is 20m in allthree cases.

Fig. 19.Same as middle and right panel of Fig. 17, but showing besidesthe volume rendered magnetic field strength (blue to green)
also the magnetic field lines, which are obtained by startingthe integration of the magnetic field at two surfaces of constantφ-
coordinate (i.e., orthogonal to the green axis) at the left and right hand side of the domain. The field lines originating from the
left and right surface are plotted in red and yellow, respectively. The right panel shows, in addition, the isosurfacebφ = 0 (i.e. the
magneto-pause).
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Fig. 20. Volume rendered magnetic field strength of a model withbz
0 = 4 × 1013 G computed in a box of 1× 2 × 1 km3 with a

resolution of 20m att = 21.5ms (left) andt = 37.2ms (right), respectively. The coordinate directions are indicated as in Fig. 17.

the computational box. According to their analysis, the growth
rate of the parasitic instabilities is largest for modes with half
the wave number of the unstable MRI modes they are feeding
off. Hence, if a channel flow forms at late times with a wave-
length equal to the box size inz-direction,Lz, unstable parasitic
modes must have a toroidal wavelength∼ 2Lz to grow rapidly.
Thus results in the criterion for the channel flow instability we
have found in our simulations.

In accordance with simulations presented recently by
Bodo et al. (2008), we find that models with a radial aspect ra-
tio L̟/Lz ≤ 1 experience a second exponential growth phase as
described in Sect. 4.2 (note the large ratios ofMmax

̟φ and Mterm
̟φ

for the corresponding models in Fig. 21), whereas a larger ra-
dial aspect ratio appears to favor a less violent post-growth phase
where coherent channel modes can appear but are disrupted after
a short time. Bodo et al. (2008) obtained this result for simula-
tions performed with a toroidal aspect ratioLφ/Lz = 4.

We confirm a similar dependence of the dynamics on the ra-
dial aspect ratio also in axisymmetry and for three-dimensional
boxes with smallerLφ/Lz. In this case, parasitic instabilities are
unable to disrupt the channel modes. Consequently, the MRI
experiences a second exponential growth phase dominated by
just one (two in a few cases) large channel mode of widtha
which is determined by the size of the computational box in
z-direction. The maximum Maxwell stress that can be reached
is limited by the onset of resistive instabilities. The dependence
on the channel width (Eq. (A.11)) explains why the maximum
Maxwell stress varies withLz: larger boxes allow for wider chan-
nels for which the resistive instabilities grow slower, thus requir-
ing higher Alfvén velocities for a growth rate comparable to the
one of the MRI. Hence, the MRI reaches stronger fields for larger
(in zdirection) boxes.

Despite the differences in the MRI termination process, the
behavior of models with and without velocity damping is quite
similar, because the velocity damping does not affect the sec-
ond generation of vigorous channel flows significantly. Thus, the
breakup of these channels and the values of the corresponding
maximum Maxwell stress do not depend strongly on the choice
of the boundary condition. On the other hand, MRI termination
(the termination of the initial exponential growth of the MRI)
does depend on whether velocity damping is applied or not, and
thus the ratioMmax

̟φ /M
term
̟φ , too.

For boxes having a large toroidal aspect ratio,Lφ/Lz ≥ 2, we
observe a quiet evolution during the non-linear saturationphase
of the MRI when varying the radial aspect ratio,L̟/Lz. In par-
ticular, the fluctuations ofM̟φ are small after MRI termination
for models where both aspect ratios are large. The models in the
upper right corner of Fig. 21 have values of〈M̟φ〉/Mterm

̟φ close
to unity.

We may try to infer some consequences from these results
for the MRI in supernova cores. Close to the core’s equator the
region, where the MRI develops, can have to a small radial size,
L̟, ranging from a few to a few hundred kilometers determined
by the gradients ofΩ andS in the core. The vertical extent of
the unstable region,Lz, can be expected to be of similar size.
The azimuthal extent of the MRI unstable region,Lφ, will be
significantly larger, leading to a non-violent evolution ofthe sat-
urated state of the MRI. The geometry is different close to the
pole. However, we cannot apply our results there without modi-
fications as we have considered only cases where the gradients of
Ω and of all thermodynamic quantities are aligned – a situation
which does not apply near the poles.

Effects of resolution and initial magnetic fields in 3D vs 2D:
After having discussed how the aspect ratios of the simulation
box determine the Maxwell stress at MRI termination and during
the subsequent saturation phase, we will now compare whether
the behavior of 3D models differs from that of 2D models. The
models discussed in this paragraph are listed in Tab. B.3 andB.4.

First, we note that in 3D, as in axisymmetry, the growth rate
of the instability is not affected by the choice of the grid provided
the fastest growing mode is resolved.

Fig. 23 demonstrates that in 3D the dependence ofMterm
̟φ on

the initial magnetic field strength is well described by the same
power law as in axisymmetry: models without damping of the
radial velocity line up along a band∝ (bz

0)16/7, and models with
velocity damping are characterized by a roughly constant value
of Mterm

̟φ , which depends on the size of the radial box (compare
with Fig. 8). This agreement is to be expected as the growth and
the resistive disruption of channel flows are essentially axisym-
metric processes, which are, thus, not significantly modified by
three-dimensional effects.

After MRI termination the evolution ofM̟φ depends on the
aspect ratio of the computational box (see discussion above).
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Fig. 21.The left panel shows the ratio of the maximum Maxwell
stress per unit volume,Mmax

̟φ , and its value at MRI termina-
tion, Mterm

̟φ , as a function of the toroidal and radial aspect ra-
tios,Lφ/Lz andL̟/Lz for the models listed in Tab. B.3. The right
panel shows the ratio ofM̟φ averaged over the saturation phase
and the value at MRI termination. Each model is represented by
a symbol its color reflecting its maximum Maxwell stress. All
models are computed imposing velocity damping at the radial
grid boundaries.
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Fig. 22.Same as Fig. 21, but for models where no velocity damp-
ing is applied at the radial grid boundaries.

When averaging the fluctuating Maxwell stresses over the sat-
uration phase, we find values for〈M̟φ〉 which differ consider-
ably from those ofMterm

̟φ . Lacking a thorough understanding of
the instabilities involved in the MRI saturation process, and hav-
ing only a imited set of 3D models at hand, one is not yet in a
position to formulate a better description of the dependence of
the evolution after MRI termination on the aspect ratio of the
box, and to provide a unified description of MRI saturation am-
plitudes.
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Fig. 23. Volume-averaged Maxwell stress componentMterm
̟φ at

MRI termination as a function of the initial magnetic field
strength,b0, for axisymmetric models with uniform initial mag-
netic field inz-direction, a rotational profileΩ = 1900 s−1̟−1.25,
and a vanishing entropy gradient for a set of 3D models com-
puted with (asterisks) and without (diamonds) velocity damping
at the radial boundaries. Models computed in a box with a radial
size of 1 km and 0.5 km are shown with green and blue symbols,
respectively. The colored bands are the same as in Fig. 8.

4.4.2. Uniform bz field, entropy gradients

Mixed regime: Let us first consider models from the mixed
regime having an initial rotation law given byΩ0 = 1900s−1

andαΩ = −1.25, and an entropy distribution given byS0 = 0.2
and∂̟S = −0.038 (i.e, with a negative entropy gradient). In
axisymmetry the MRI grows in these models with a rate of
σMRI ≈ 1.7ms−1, i.e., close to the theoretical value of≈ 2.0ms−1.
The 3D models show the same growth rate provided the spatial
grid resolution is sufficiently high.

The long-term evolution (i.e., many rotational periods into
the non-linear phase) of the models depends strongly on the
choice of the radial boundary conditions. If the entropy at the
inner and outer boundary is allowed to change (i.e., using reflec-
tive boundaries), a flat entropy profile develops after a short time.
To reduce the influence of boundary effects, one could employ a
technique widely used in simulations of convective layers:add
a cooling layer on top of and an overshoot layer below the con-
vection zone. However, exploring this approach was beyond the
scope of the present work.

For models having a negative entropy gradient the growth
of the MRI is not influenced by 3D effects, if the fastest grow-
ing mode is resolved. Thus, their behavior is similar to thatof
models with no entropy gradient. The Maxwell stress at MRI
termination also does not differ significantly from that of the
corresponding axisymmetric models, and due to the boundary
conditions applied in the models (velocity damping) its value is
set by recombination of field lines close to the inner and outer
radial boundary.

Contrary to axisymmetric models, the saturated state of the
3D models does not show any sign of a late exponential growth
phase characterized by the re-appearance of channel modes,and
the saturated MRI stresses are smaller in magnitude thanMterm

̟φ ,
i.e., the maximum Maxwell stress is reached at MRI termination
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Fig. 24. Evolution of the mean magnetic energy densityemag

(solid black line), the mean energy densities corresponding to
the̟ (dotted red),φ (dashed brown), andz (dash-dotted green)
component of the magnetic field, and the absolute value of the
mean Maxwell stress componentM̟,φ (dashed blue line) for a
3D model belonging to the mixed regime. The model rotates dif-
ferentially withΩ0 = 1900s−1 andαΩ = −1.25. The initial en-
tropy gradient is∂̟S = −0.038 km−1, and the initial magnetic
field strength isbz

0 = 2 × 1013G. The model was simulated in
a box of sizeL̟ × Lφ × Lz = 1 × 2 × 1 km−3 and on a grid of
50× 100× 50 zones.

(see Fig. 24 and compare with Fig. 4). The evolution of the av-
erage radial entropy profile profile, computed as the averageof
S(̟, φ, z) at constant̟ , is shown in Fig. 25. Until the saturation
of the instability (att ≈ 11ms), the initial linear profileS(̟)
is basically unchanged. However, afterward the entropy profile
flattens,S becoming nearly constant for 15.2km≤ ̟ ≤ 15.8km.
Close to both radial boundaries, the entropy profile develops ex-
trema, which are most likely an artifact of our boundary condi-
tions. The flat entropy profile is stable and does not vary strongly
with time. TheΩ profile flattens after the initial growth phase,
too. The velocity field in the saturated state is dominated bya
rich small-scale structure, while the magnetic field is organized
in a multitude of flux tubes.

MBI regime: Next we consider a few models that, in axisym-
metry, belong to the MBI regime. Initially, the models rotate
rigidly with Ω = 1900 s−1 and possess an entropy gradient
∂̟S = −0.10km−1 (i.e.,C = −3.6). We computed models for
bz

0 = 10G, 1010G, and 2× 1013G, respectively. All models are
simulated in a box of sizeL̟ × Lφ × Lz = 1× 2× ×1 km−3 and
on a a grid of 50× 100× 50 zones.

Contrary to their axisymmetric counterparts (see Sect. 4.2),
these models develop convective modes even when no mag-
netic field is present. As described, e.g., by Tassoul (1978), ro-
tation can stabilize axisymmetric modes in a convectively sta-
ble environment, but non-axisymmetric modes can nevertheless
grow in that situation. The model with the weakest initial field
(bz

0 = 10G) shows a growth of non-axisymmetric MBI modes,
but these modes cannot be resolved due to the extremely weak
initial field. Thus, the model behaves essentially similar to an un-
magnetized one, but can serve as a reference model for initially
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Fig. 25. Average radial entropy profile as a function of time for
the model shown in Fig. 24.

more strongly magnetized models where we can resolveλMRI.
The growing convective modes eventually extend over the en-
tire domain in radial andz-direction, while having a small wave-
length inφ direction (see Fig. 26, upper panel). The exponen-
tial growth of the convective instability saturates att ≈ 7ms.
During this growth phase the mean magnetic energy increasesat
the same rate as does the kinetic energy. After MRI termination
the structure of the model is characterized by two large, roughly
cubic convective cells with a size of about 1 km3 instead of a
multitude of elongated structures (see (Fig. 26, lower panel), and
an essentially flat entropy profile. The magnetic field is subject
to kinematic amplification at a smaller growth rate than before
MRI termination due to stretching in the convective vortices. At
much later epochs the typical size of structures in the velocity
field decreases again, leading to more turbulent fields. The mag-
netic field, which is too weak to affect the dynamics, is passively
advected with the flow.

For the model having the strongest initial magnetic field
bz

0 = 2 × 1013G we can resolveλMRI. The axisymmetric ver-
sion of this model showed a MBI growth a rate close to the
theoretical one (σMRI ∼ 1.7ms−1). For the 3D model we find
σconv ∼ 2.6ms−1), i.e., its evolution is dominated by convection
(although we are able to resolve the MBI), and the MBI growth
rate is similar to that of a weakly magnetized model (see previ-
ous paragraph). MBI growth is mediated by non-axisymmetric
modes having the same elongated geometry as those in the es-
sentially unmagnetized model. After saturation, a few large vor-
tices of approximately cubic shape form, which later decay into
small-scale structures again. An intermediate stage of this de-
cay process is displayed in Fig. 27, when one large vortex is still
present in the right half of the box, while its left half is dom-
inated by spatially less coherent fields. At even later timesthe
vortex disappears and the structure of the whole model is simi-
lar to that shown in the left half of the box. The mean magnetic
energy and Maxwell stress are small compared to typical MSI
or mixed models. Compared to a differentially rotating model
(Ω0 = 1900s−1, αΩ = −1.25) with a vanishing entropy gradient,
the maximum magnetic fields are reduced by a factor of. 2, and
the mean magnetic energies and Maxwell stresses by a factor of
∼ 10, but we still find a slow growth at the end of the simulation.
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Fig. 26. Flow structure of a MBI model withbz
0 = 10G at

t = 4.86ms (upper panel), andt = 14.4ms (lower panel), re-
spectively. The solid black lines are stream lines of the velocity
field computed in a frame co-rotating with the mean angular ve-
locity, and regions of positive and negative radial velocity are
colored in red and green, respectively. The colored arrows point
into the same coordinate directions as in Fig. 17.

Finally, we add a few comments on a model where we cannot
resolveλMRI (bz

0 = 1010G), but where the magnetic field satu-
rates within∼ 60ms after the onset of convection. The model
evolves similarly to the essentially unmagnetized one, butat
t ≈ 60ms the energy of the kinematically amplified magnetic
field becomes almost as large as the convective kinetic energy.
The amplification process ceases, and the magnetic energy lev-
els off. Close to the end of the simulation convective transport
gives rise to a rotation lawΩ ≈ const..

4.4.3. Magnetic fields with zero net flux

Many results discussed above also apply analogously to models
where the initial magnetic field has a vanishing net flux through
the surface of the computational box. We simulated models with
Ω = 1900s−1 andαΩ = −1.25, and find a basically axisymmetric
growth of channel flows, which decay due to resistive instabili-
ties at a level consistent with axisymmetric models. The late evo-
lution of the models is dominated by turbulent fields. Contrary
to uniform-field models, there is no second phase of channel ac-
tivity. Hence, the mean magnetic energies and Maxwell stresses
do not fluctuate violently in the saturated state, and - even when
no velocity damping is applied - the maximum values of, e.g.,
∣

∣

∣M̟φ
∣

∣

∣, are reached at MRI termination. Later on
∣

∣

∣M̟φ
∣

∣

∣ decreases
by a factor of a few, and stays roughly constant subsequently.

Fig. 27.Structure of a rigidly rotating model withbz
0 = 2×1013G

at t = 19.3ms. The figure shows a volume rendering of the mag-
netic field strength (blue – green), the value of the angular veloc-
ity, Ω, at three slices parallel to the coordinate axes (red – yel-
low), and stream lines of the velocity field in a co-rotating frame
(black lines). In the right half of the figure, one can identify one
large convective cell, whereas the features of, e.g., the velocity
field in the left half are of considerably smaller scale. The mag-
netic field is comparably weak inside the convective cell, and
strongest in the flux tubes both at the boundaries of the convec-
tive cell and in the left part. The colored arrows point into the
same coordinate directions as in Fig. 17.

Performing similar simulations Lesur & Ogilvie (2008) pro-
posed a non-linear dynamo that balances the dissipation of the
magnetic energy in MRI models with zero net flux. In the tur-
bulent saturated state, they identified large-scale spatially (over
a sizable fraction of the box) and temporally (over several rota-
tional periods) coherent patterns of the toroidal magneticfield.
To study this process, we looked for similar patterns in our mod-
els.

An example is shown in Fig. 28 for a model withbz
0 =

2 × 1013G simulated in a box of 1km3 on a grid of 503 zones
applying no velocity damping. The figure shows the mean value
of the toroidal field componentbφav (i.e. bφ averaged over̟ and
φ) as a function ofz and time. Fort . 14ms the early channels
flows can be identified in which the magnetic field grows. At
t ≈ 14ms, the channels are disrupted, and the growth of the field
seizes. In the saturated state that follows, the mean (vertical) size
of the structures is larger: at any time, we find only a few (typi-
cally two) regions of opposite field polarity (blue and red),which
remain stable for a few rotational periods (Ω−1 ≈ 0.53ms). Thus,
we make similar observations as Lesur & Ogilvie (2008) do for
their models.

We also simulated a few 3D models with zero-flux fields
in the mixed regime. The results are analogous to those ob-
tained if the initial fields are uniform(see, e.g., Fig. 29).The
MRI growth rates are similar to those of the corresponding 2D
models, and the mean Maxwell stress in the saturated state is
somewhat smaller. In the saturated state, both the entropy (up-
per panel) and the angular velocity profiles become flat rapidly.
The spatially and temporally coherent large-scale structures in
the magnetic field are even more pronounced than in MSI mod-
els (compare the lower panel of Fig. 29 with Fig. 28). They con-
sist of two large regions characterized by an opposite sign of
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Fig. 28.Evolution of large-scale coherent patterns exhibited by
the mean (i.e., averaged over a plane at constantz-coordinate)
toroidal field component of a 3D model having an initial mag-
netic field of zero flux and strengthbz

0 = 2× 1013G. The model
was simulated in a box of 1km3 covered by 503 zones with
no velocity damping applied. This figure is similar to Fig. 1 of
Lesur & Ogilvie (2008).

bφ, which persist for the entire simulation of the saturated state
(≈ 140ms), subject only to a slow drift in vertical direction. The
implications of this behavior for the presence and properties of
a nonlinear dynamo of the type proposed by Lesur & Ogilvie
(2008) remain to be explored.

5. Summary and conclusions

We have studied the possible amplification of seed perturbations
in supernova cores by the magneto-rotational instability.If the
MRI grows on dynamically relevant time scales (a few tens of
milliseconds), it can lead to MHD turbulence and efficient trans-
port of angular momentum. Because the growth of the magnetic
field and the associated Maxwell stresses is exponential in time,
the MRI is one of the most promising mechanisms to amplify the
– most likely weak – magnetic field of the supernova progenitor
up to dynamically relevant strengths.

As pointed out by Akiyama et al. (2003), the conditions for
the instability are fulfilled in typical post-collapse supernova
cores. Under the assumption that the MRI converts most of
the energy contained in differential rotation into magnetic en-
ergy, these authors predicted saturation fields of approximately
1015G. This prediction derived from a semi-analytic analysis
and 1D simulations can only be confirmed by detailed multi-
dimensional numerical simulations. The reliability of global
simulations of the entire core, however, is limited due to the ne-
cessity to resolve accurately small length scales (a few meters,
at most) leading to impracticable computational costs.

Traditionally, the MRI is studied in great detail in accretion
discs, i.e., in systems dominated by Keplerian rotation. Because
typical post-collapse supernova cores differ from these systems
in many respects, e.g., by the importance of the thermal strati-
fication and the sub-Keplerian rotation, we investigated the in-
stability under more general physical conditions. Analyzing the
MRI dispersion relation of Balbus (1995); Urpin (1996), we
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Fig. 29. Evolution of a mixed-regime 3D model with zero net
flux (bz

0 = 2× 1013G), an entropy gradient∂̟S = −0.038km−1,
and a rotation law given byΩ = 1900s−1 andαΩ = −1.25. The
upper panel shows the entropy of the model averaged over planes
of constant̟ as a function of radius and time. The lower panel
shows, similarly to Fig. 28, the average ofbφ over planes of con-
stantzas a function ofzand time.

identified the regimes of the instability relevant to supernova
cores.

We distinguish betweenAlfvén and buoyantmodes of the
MRI. The former ones are generalizations of the standard MRI
modes, and the latter ones resemble standard convective modes.
Buoyant modes are unstable only in systems dominated by a
negative entropy gradient, whereas Alfvén modes prevail if dif-
ferential rotation is the main agent of the instability. Whereas
Alfvén modes are rapidly amplified only for a small range of
wave numbers, buoyant modes grow at essentially the same rate
for a wide range of wave numbers,k ≤ kmax.

We have identified six regimes of the MRI depending on the
ratio of the entropy and angular velocity gradient. These MRI
regimes and their properties can be summarized as follows:

1. Sufficiently large positive gradients of the angular velocity or
of the entropy define thestable regimewith oscillatory rather
than growing modes.
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2. For sufficiently strong differential rotation and small entropy
gradients (or small buoyancy frequencies), we find theshear
regime, corresponding to the hydrodynamic shear instability.

3. If negative entropy gradients dominate the system, it is lo-
cated in theconvective regime, which resembles ordinary
hydrodynamic convection potentially modified in the non-
linear phase by the presence of a magnetic field.

4. A small degree of differential rotation (e.g., Keplerian) and a
small entropy gradient (if present at all) are the conditions for
themagneto-shear (MSI) regime, well studied for accretion
discs.

5. When fast (nearly) rigid rotation suppresses convection, its
stabilizing effect can be overridden by a weak magnetic field,
giving rise tomagneto-buoyant (MBI)modes. This regime is
only encountered in axisymmetric flows as rotation can sta-
bilize only axisymmetric modes of convection, i.e., in three
dimensions convection may grow faster than the MBI.

6. Finally, amixed regimeexists which shares properties of all
unstable regimes listed above.

To substantiate our stability analysis, we performed a set
of more than 200 models of semi-global high-resolution simu-
lations of the MRI in simplified models of post-bounce cores.
Our novel semi-global simulations combine elements of both
global and local simulations by taking into account the pres-
ence of global background gradients and by providing high local
spatial resolution. In particular, we employed the shearing-disc
boundary conditions proposed by Klahr & Bodenheimer (2003),
which allow for the treatment of global gradients of, e.g., den-
sity or entropy, and studied the influence of a thermal stratifica-
tion on the MRI assuming various (radial) entropy profiles. The
presence of gradients constitutes an important difference of our
setting from that of accretion discs. We used a newly developed
Eulerian high-resolution MHD code to evolve the flow in a com-
putational box having an edge length of a few kilometers. The
box was located in the equatorial plane of the core at a distance
of 15 km. The initial data were computed assuming hydrostatic
equilibrium of differentially rotating matter described by a sim-
plified equation of state. The gas in the box was endowed with a
weak initial magnetic field of different topology and strength. In
most of the simulations, the magnetic field of the progenitorhad
a strength of approximately 1010G. We neglected the effects of
neutrino radiation and assumed an ideal MHD flow.

The main results of our simulations are agree well with both
our mode analysis and with local simulations of the MRI in ac-
cretion discs. They also confirm the estimates of Akiyama et al.
(2003), and they are consistent with the results of global MHD
simulations of core collapse (e.g., Obergaulinger et al. 2006b,a).
We summarize our results as follows:

1. The MRI can act in supernova cores amplifying an initial
magnetic field strongly. The growth times are approximately
equal to the rotational period of the core, which for rapidly
rotating cores is sufficiently fast to influence the dynamics.

2. Due to our relatively fine numerical grids, we were able
to resolve the fastest growing MRI modes for initial field
strengths larger than a few 1012G. This threshold is consider-
ably lower than the one of previous global simulations (e.g.,
Obergaulinger et al. 2006b,a), enabling us to probe the MRI
in a parameter range inaccessible to global simulations.

3. The growth of the instability is accompanied by the devel-
opment of channel flows, predominantly radial flows of al-
ternating direction stacked up in thez-direction. This flow
pattern is characteristic of both axisymmetric and three-

dimensional simulations. The width of the channels is set
by the wave length of the fastest growing MRI modes.

4. At MRI termination (i.e., at the end of the first exponential
growth phase of the instability) the channels dissolve into
a turbulent flow having a complex magnetic field topology.
During the subsequent evolution secondary generations of
channel flows can (re-) appear which characterize secondary
phases of exponential growth.

5. We identified the mechanism responsible for the breakup of
the channel flows and MRI termination in our simulations.
Despite the absence of a physical resistivity in our model
equations, we find that resistive MRI instabilities of the
tearing-mode type develop due to the finite numerical resis-
tivity of our MHD code. A main characteristic of the channel
flows is the presence of prominent current sheets immersed
between layers of opposite magnetic polarity, which are un-
stable against current-driven instabilities. Using a simplified
model of this kind of flows, we investigated the growth rates,
σr, of the resistive instabilities, and derived an approximate
law for the scaling ofσr with the magnetic field strength
present in the channels, the channel width, and the grid res-
olution. Comparing these growth rates with the MRI ones,
we find that the MRI ceases to grow once the tearing modes
grow faster than the MRI. Using this criterion, we are able to
explain the dependence of the conditions (i.e., field strength,
Maxwell stresses) at MRI termination on, e.g., the initial
field strength, the grid resolution, and the initial rotation pro-
file.
Strictly speaking, there should be no reconnection without
physical resistivity, and the behavior of a magnetized ideal
fluid subject to numerical resistivity may be quite differ-
ent from that of a fluid having a large but finite conductiv-
ity. Consequently, our results and their implications cannot
replace a rigorous treatment of MRI growth in supernova
cores with a non-ideal MHD model. In particular, we have
to be careful when drawing conclusions for the MRI in non-
ideal plasmas. Nevertheless, our results provide some qual-
itative insight into the basic processes of MRI saturation,
highlighting the importance of tearing-mode-like instabili-
ties. Quantitative conclusions, as e.g., the scaling laws for the
field strengths and the Maxwell stresses at MRI termination
as a function of the initial magnetic field strength, should
be taken with a grain of salt. These depend on the dissipa-
tive properties of the numerical scheme employed, which are
likely to change when physical resistivity is considerd.

6. The saturation phase of the MRI differs considerably be-
tween axisymmetric and unrestricted 3D models, and be-
tween models having a different initial field configuration.
In 2D the flow does not break down into small-scale turbu-
lence, instead the channel flows merge until they form one
pair of large-scale coherent up- and down-flows. When the
strength of the magnetic field exceeds 1015G, the rotational
profile is modified within a few tens of milliseconds.

7. Axisymmetric models having an initial magnetic field with
a vanishing net flux through the computational box become
turbulent after a growth phase dominated by channel flows.
The saturation fields are considerably smaller than 1015G.

8. The previous finding also holds for 3D models. Turbulence
develops, but a spontaneous reorganization of the flow may
lead to a re-appearance of channel modes, resulting in
Maxwell stresses comparable to those found for axisymmet-
ric models. In models which do not develop late-stage chan-
nel flows, field strengths up to several 1014G are encoun-
tered. The field is predominantely toroidal. The extent of
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the late-time channel activity depends on the development
of secondary (parasitic) instabilities, both flow-driven (e.g.,
Kelvin-Helmholtz) and current-driven (e.g., tearing modes),
which feed off the channel flows. The presence of these insta-
bilities is determined to a large degree by the the aspect ratio
of the computational box, i.e., we observe a strong depen-
dence of the saturated state on the aspect ratio. For magneto-
rotational core collapse, our results suggest that secondary
instabilities are fairly efficient in suppressing coherent chan-
nel flows during saturation.

9. For models having an initial entropy gradient, we find an im-
portant influence of convective stabilization or destabiliza-
tion on the evolution of the MRI. We confirm the instabil-
ity regimes predicted by our linear analysis with numerical
simulations, the numerical growth rates being in accordance
with the theoretical ones. The MRI is suppressed in con-
vectively stable regions, the growth rates are reduced, and
the geometry of the flow changes favoring radially less ex-
tended patterns. In the mixed regime, convectively unstable
regions with comparably large entropy gradients are domi-
nated by flows similar to volume-filling hydrodynamic con-
vection. The magnetic field is expelled from convective cells
and accumulates near the box boundaries. We note that the
entropy gradients required for these effects are fairly shallow
∼ 0.1km−1. We confirm the existence of the MBI regime for
axisymmetric models, whereas the same models, computed
in 3D, experience the growth of non-axisymmetric modes.

10. In 3D models having a zero net magnetic flux we observe
the development of large-scale coherent field patterns similar
those seen by Lesur & Ogilvie (2008), despite the turbulent
nature of the velocity and magnetic fields. We also find dif-
ferences in the flow patterns between MSI and mixed regime
models. The tentative connection to a non-linear dynamo op-
erating in the models remains to investigated further.

These results allow us to draw a few conclusions. Firstly,
the MRI has the potential to play an important role for the dy-
namics of supernova explosions, at least for relatively fast rotat-
ing progenitors. The details of the evolution of the MRI depend
crucially on the properties of the core, in particular its thermal
stratification. This makes the study of the MRI in supernovaea
subject of its own, related to the MRI in accretion discs but also
quite different from it. Hence, there is a need for more inves-
tigations focusing on MRI properties specific to core collapse
supernovae.

While local (or semi-global) simulations can yield interest-
ing results regarding the physics of the MRI, several important
aspects can only be addressed by global modelling. The detailed
dependence of the geometry of the magnetic field at saturation,
e.g., may depend strongly on the global dynamics and on the po-
sition of the box inside the core. Our simulations did not account
for any of these factors: the background was in hydrostatic equi-
librium, and we simulated models only in the equatorial region.
Since the field geometry is of crucial importance for the global
dynamics, e.g., for the generation of jet-like outflows in collap-
sars, conclusions on the dynamic influence of the MRI based on
local simulations cannot be drawn easily. They require global
models.

The inclusion of the MRI and its effects in global simula-
tions requires a considerably careful treatment. The currently
used approach of artificially enhancing the initial field strength
by a constant factor is questionable. On the other hand, finding
a better prescription relies on unraveling the dependence of sat-
urated MRI driven turbulence on the different parameters of the

system, as e.g., the rotation law, the thermodynamic conditions,
and probably also the neutrino transport.

With our current simulations we are unfortunately not yet
able to go beyond the stage of a qualitative proof of principle and
to address important open questions of the MRI in core collapse
supernovae. This would require additional 3D high-resolution
non-ideal MHD simulations covering a large parameter spaceof
possible rotation profiles, thermal stratifications, and magnetic
field geometries. We are planning to address these issues in fu-
ture work.
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Appendix A: Growth rates of resistive instabilities

Our simulations of the MRI indicate that the termination of the
growth of the instability is determined, at least partially, by resis-
tive instabilities of the tearing-mode type. Although there exist
detailed investigations of this kind of resistive instabilities (see,
e.g., Biskamp 2000), the application of the results to our study
is hampered by the completely different type of dissipative ef-
fects we are facing here: all previous results hold for instabilities
due tophysicalresistivity, whereas ourideal MHD simulations
are affected bynumericalresistivity, only. Hence, we had to de-
termine the growth rates of resistive instabilities from numerical
experiments without referring to analytic results – although, as
we will see, there exist certain similarities.

We simulated the evolution of two-dimensional current-sheet
models on a Cartesian grid [x0, x1] × [y0, y1] with mx ×my zones
imposing periodic boundary conditions. The fluid is described
by an ideal-gas equation of state with an adiabatic indexΓ = 4/3.
We used initial data mimicking MRI-generated channel flows:
the initial magnetic field varies sinusoidally in a gas of constant
densityρ0 and pressureP0,

bx = bx
0 sin

2π(y− y0)
a

, (A.1)

bz = −bx
0, (A.2)

and having a velocity inx-direction given by

vx = vx
0 sin

2π(y− y0) − π/2
a

. (A.3)

Here,a denotes the initial width of the flux sheet, andvx
0 is equal

to one half of the Alfvén velocitycx
A corresponding tobx

0. The
presence of the (shear-free!) initialx-velocity is not essential, as
it changes the growth rates of the instability only little. However,
as we observe this kind of a velocity in channel flows, we have
included it in our simulations.

We perturbed the sheet by a small randomy-velocity (10−2×
cx

A). The parameters of the model are chosen to mimic the situa-
tions encountered in MRI simulations (see Tab. A.1). To isolate
the dependence of the growth rates on the physical and numeri-
cal parameters, we varied the initial magnetic field strength, bx

0,
the initial density,ρ0, the width of the current sheet,a, and the
grid resolution,δx = (x1 − x0)/mx. We chose the grid resolution
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Table A.1.Parameters of the 2D current sheets simulated to de-
termine the growth rates of resistive instabilities. The columns
give from left to right the edge length of the square simulation
box, the number of grid zones per dimension, the initial density
(in units of 1013 g/cm−3), the sound speed (in units of 109 cm/s),
the magnetic field (in units of 1014 G), the wavelength of the ini-
tial field, and the growth rate, respectively.

L mx ρ0;13 cS;9 bx
0;14 a σ

[km]
[

g cm−3
] [

cm s−1
]

[G] [m]
[

ms−1
]

0.25 50 2.5 3.1 8 125 0.45
0.25 50 2.5 3.1 16 125 1.6
0.25 50 2.5 3.1 32 125 6.0
0.25 50 2.5 3.1 64 125 32
0.25 50 2.5 3.1 16 62.5 10
0.25 50 2.5 3.1 32 62.5 23
0.25 100 2.5 3.1 16 125 0.60
0.25 100 2.5 3.1 32 125 3.1
0.25 100 2.5 3.1 64 125 12
0.25 100 2.5 3.1 128 125 43
0.25 100 2.5 3.1 16 62.5 3.7
0.25 100 2.5 3.1 32 62.5 14
0.25 100 2.5 3.1 64 62.5 50
0.25 100 2.5 3.1 128 62.5 110
0.25 100 0.025 1.4 3.2 62.5 25
0.25 100 0.025 3.1 3.2 62.5 15
0.25 100 0.025 6.1 3.2 62.5 8.0
0.25 100 2.5 1.4 32 62.5 25
0.25 100 2.5 3.1 32 62.5 14
0.25 100 2.5 1.4 6.1 62.5 7.8
0.25 100 250 6.6 320 62.5 7.4
0.25 100 250 3.1 320 62.5 15
0.25 100 2.5 12.4 64 62.5 16
0.25 100 2.5 3.1 4 31.25 1.2
0.25 100 2.5 3.1 8 31.25 5.9
0.25 100 2.5 3.1 16 31.25 20
0.25 100 2.5 3.1 32 31.25 53
0.25 100 2.5 3.1 64 31.25 110
0.25 200 2.5 3.1 32 125 0.9
0.25 200 2.5 3.1 64 125 4.6
0.25 200 2.5 3.1 128 125 19
0.25 200 2.5 3.1 32 62.5 5.4
0.25 200 2.5 3.1 64 62.5 24
0.25 200 2.5 3.1 128 62.5 76
0.25 200 2.5 3.1 16 31.25 7.9
0.25 200 2.5 3.1 32 31.25 28
0.25 200 2.5 3.1 64 31.25 95
0.25 200 2.5 3.1 128 31.25 250
0.25 200 2.5 3.1 4 15.625 2.5
0.25 200 2.5 3.1 16 15.625 40
0.25 200 2.5 3.1 64 15.625 260
0.5 100 2.5 3.1 32 250 1.2
0.5 100 2.5 3.1 64 250 5.6
0.5 100 2.5 3.1 128 250 20
0.5 100 2.5 3.1 16 125 1.9
0.5 100 2.5 3.1 32 125 7.5
0.5 100 2.5 3.1 64 125 26
0.5 100 2.5 3.1 8 62.5 3.0
0.5 100 2.5 3.1 16 62.5 10
0.5 100 2.5 3.1 32 62.5 24
0.5 100 2.5 3.1 64 62.5 61

such that the current sheet is covered by 12 to 100 zones. The
initial pressure isP0 = κρ

Γ
0.

We show one typical result for the evolution of our models
in Fig. A.1. After a short initial phase, the transverse magnetic
energy density (green line) grows roughly exponentially astear-
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Fig. A.1. Evolution of the magnetic energy density of a current-
sheet model simulated on a square computational grid (edge
length 0.25 km; 200× 200 zones). The model has an initial
density ρ0 = 2.5 × 1013g cm−3, and an initial field strength
bx

0 = 1.6 × 1015G. The wavelength of the initially sinusoidally
varying magnetic field isa = 31.25m. The black solid line and
the green dashed line show the magnetic energy density corre-
sponding to thex and they component of the magnetic field,
respectively.

ing modes develop. Initially the growth rate is approximately
constant, but it increases by a factor of∼ 4 towards saturation.
Simultaneously, thex-component of the magnetic field decreases
strongly until it is of similar strength as they-component. At this
point, the coherent current sheets are completely disrupted by
the resistive instability.

We determined estimates of the growth rates of the resistive
instability using the time derivative of the transverse magnetic
energy density, i.e., the time derivative of the magnetic energy
density corresponding to they-component of the magnetic field.
To find a scaling relation of the form

σ ∝
(

cx
A

)γA
(cS)γS (δx)γδ (a)γa (A.4)

we define the following functions of the growth rateσ,

fcA = σ
(

cx
A

)−γA
(cS)−γS (δx)−γδ , (A.5)

fa = σ (cS)−γS (a)−γa (δx)−γδ , (A.6)

and adjust the exponentsγA , γS, γa, andγδ to determine the scal-
ing of σ with the respective parameters. Our preferred set of
scaling exponents is

γA = 1.75, (A.7)

γS = −0.75, (A.8)

γa = −2, (A.9)

γδ = 1, (A.10)

which implies the following scaling law:

σ ∝
(

cA

cS

)0.75 (cAδx
a2

)

. (A.11)

We demonstrate the quality of the fit parameters in Fig. A.2
showing fcA as a function of the initial Alfvén velocity (left
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panel), andfa as a function of the width of the current sheet
(middle panel) and of the grid resolution (right panel). None of
the groups of models representing the variation of one parameter
(distinguished by a different color and symbol in the figure) ex-
hibits a strong trend withcA, a or δx, i.e., our scaling exponents
provide an adequate fit to the data.

Due to a relatively large scatter in the growth rates, the scal-
ing relation, Eq. (A.4), should not be taken too literally. We note,
however, that our computed rates are compatible with those of
the resistive instabilities (for fields of similar strength) in MRI
models, i.e., approximately one millisecond forbx

0 ∼ 1015G. An
additional dependence ofσ on the domain size,L, cannot be ex-
cluded, but we did not examine this possibility any further.For
small a and coarse grids our scaling formula tends to overesti-
mate the growth rate for large initial Alfvén velocities, and for
sound speeds much larger than the Alfvén velocity the ratesde-
pend more strongly on the sound speed than predicted by our
formula. Because both situations do not apply to our MRI mod-
els, we did not pursue these issues any further. Our scaling law
loses its validity, if the Alfvén velocity exceeds the sound speed.
Thus, we excluded two respective models in the derivation of
our scaling relation.

Bearing in mind the uncertainties regarding the physical
meaning of a purely numerical resistivity and the precise val-
ues of the scaling we may try to interpret our result summa-
rized in Eq. (A.11). As the product of the Alfvén velocity and
the grid spacing,cAδx, defines an effective resistivity, we may
conclude that the growth time of the instability is set by thetime
scale for resistive diffusion across the width of a current sheet,
τr = a2/(cAδx), modified by the ratio of the sound speed and the
Alfvén velocity. This interpretation has the nice property that it
is consistent with the fact that the magnetic Reynolds number is
proportional to the grid resolution.

Appendix B: List of models

In this appendix we provide a list of the models:

Tab. B.1 : This table contains a list of 2D models having a pos-
itive entropy gradient. Their initial rotation profile is given
byΩ0 = 1900s−1 andαΩ = −1.25, and their initial magnetic
field is uniform.

Tab. B.2 : This table contains a list of 2D models having a neg-
ative entropy gradient. The models rotate initially rigidly or
differentially. The initial magnetic field is uniform.

Tab. B.3 and Tab. B.4 : This table contains a list of 3D models
having different initial magnetic field strengths, entropy gra-
dients, initial rotation laws, and simulated in computational
boxes of various size with both types (with and without ve-
locity damping) of radial boundary conditions.

References
Acheson, D. J. 1978, Royal Society of London Philosophical Transactions Series

A, 289, 459
Akiyama, S., Wheeler, J. C., Meier, D. L., & Lichtenstadt, I.2003, ApJ, 584,

954
Aloy, M. A. & Obergaulinger, M. 2007, in Revista Mexicana de Astronomia y

Astrofisica Conference Series, Vol. 30, 96–103
Balbus, S. A. 1995, ApJ, 453, 380
Balbus, S. A. & Hawley, J. F. 1991, ApJ, 376, 214
Balbus, S. A. & Hawley, J. F. 1992, ApJ, 392, 662
Balbus, S. A. & Hawley, J. F. 1998, Reviews of Modern Physics,70, 1
Biskamp, D. 2000, Magnetic Reconnection in Plasmas (Magnetic reconnec-

tion in plasmas, Cambridge, UK: Cambridge University Press, 2000 xiv, 387
p. Cambridge monographs on plasma physics, vol. 3, ISBN 0521582881)

Bodo, G., Mignone, A., Cattaneo, F., Rossi, P., & Ferrari, A.2008, ArXiv e-
prints, 805

Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J. 2007, ApJ, 664,
416

Chandrasekhar, S. 1960, Proceedings of the National Academy of Science, 46,
253

Evans, C. R. & Hawley, J. F. 1988, ApJ, 332, 659
Fromang, S. & Papaloizou, J. 2007, ArXiv e-prints, 705
Goodman, J. & Xu, G. 1994, ApJ, 432, 213
Harten, A. 1983, J. Comput. Phys., 49, 357
Hawley, J. F. & Balbus, S. A. 1992, ApJ, 400, 595
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350
Janka, H.-T., Langanke, K., Marek, A., Martı́nez-Pinedo, G., & Müller, B. 2007,

Phys. Rep., 442, 38
Keil, W., Janka, H.-T., & Müller, E. 1996, ApJ, 473, L111+
Klahr, H. H. & Bodenheimer, P. 2003, ApJ, 582, 869
Kotake, K., Yamada, S., Sato, K., et al. 2004, Phys. Rev. D, 69, 124004
Lesur, G. & Ogilvie, G. I. 2008, A&A, 488, 451
LeVeque, R. J. 1992, Numerical Methods for Conservation Laws, 2nd edn.,

Lectures in mathematics - ETH Zürich (Birkhäuser)
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Fig. A.2. Dependence of the growth rate of resistive instabilities,σ, on various parameters of 2D current sheet models. The panels
show fcA as a function of the initial Alfvén velocity (cx

A ; left panel), andfa as a function of the width of the current sheet (a;
middle panel) and of the grid resolution (δx; right panel). The left panel shows groups of models with differenta: 250 m (pink
plus sign), 125 m (blue diamond), 62.5 m (green triangle), 32.25 m (orange square), and 15.625 m (red cross). The other twopanels
show groups of models with different Alfvén velocity (in units of 108cm s−1): 0.8 (black asterisk), 1.6 (pink plus sign), 3.2 (blue
diamond), 6.4 (green triangle), 12.8 (orange square), and 25.6 (red cross) respectively.
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Table B.1.List of 2D models having a positive entropy gradient and an initial rotation profile given byΩ0 = 1900s−1 andαΩ =
−1.25. The columns give (from left to right) the number of grid zonesm̟×mz (the box has an edge lengthL̟ = Lz = 1km), the type
of boundary condition which was applied (d: velocity damping; p: periodic), the adiabatic index of the gas,Γ (models computed
with an ideal-gas equation of state instead of the hybrid oneare marked “id”), the initial entropy,S0, and the radial entropy gradient,
∂̟S. The next three columns give the parameterC determining the instability regime (see Eq. (24)), the theoretical growth rate,σth,
and the strength of the initially uniform magnetic field,bz

0. The last two columns list the numerical growth rate,σ, and the value of
the Maxwell stress componentMterm

̟φ at MRI termination.

m̟ ×mz BC Γ S0 ∂̟S C σth bz
0 σ Mterm

̟φ

[km−1]
[

ms−1
] [

1012 G
] [

ms−1
] [

1028 G2cm−3
]

100× 100 d 1.31 0.20 0.020 -1.7 0.73 10 0.72 1.1
100× 100 d 1.31 0.20 0.020 -1.7 0.73 20 0.71 1.3
100× 100 d 1.31 0.20 0.020 -1.7 0.73 40 0.70 1.6
100× 100 d 1.31 0.20 0.020 -1.7 0.73 80 0.60 1.8
200× 200 d 1.31 0.20 0.020 -1.7 0.73 10 0.71 1.3
400× 400 d 1.31 0.20 0.020 -1.7 0.73 10 0.67 1.2
400× 400 d 1.31 0.20 0.020 -1.7 0.73 20 0.69 1.5
50× 50 d 5/3 0.20 0.040 -1.1 0.49 10 0.46 0.97
50× 50 d 5/3 0.20 0.040 -1.1 0.49 20 0.61 1.7
50× 50 d 5/3 0.20 0.040 -1.1 0.49 40 0.48 0.87
50× 50 d 5/3 0.20 0.040 -1.1 0.49 80 0.39 0.93
50× 50 d 1.31, id 0.20 0.040 -0.69 0.32 20 0.50 0.53
50× 50 d 1.31, id 0.20 0.040 -0.69 0.32 40 0.30 0.27
50× 50 d 1.31, id 0.20 0.040 -0.69 0.32 80 0.28 0.22
50× 50 d 1.31 0.20 0.040 -0.69 0.32 4 0.25 0.21
50× 50 d 1.31 0.20 0.040 -0.69 0.32 20 0.49 0.50
50× 50 d 1.31 0.20 0.040 -0.69 0.32 40 0.28 0.24
50× 50 d 1.31 0.20 0.040 -0.69 0.32 80 0.28 0.22

100× 100 d 1.31 0.20 0.040 -0.69 0.32 10 0.49 0.55
100× 100 d 1.31 0.20 0.040 -0.69 0.32 20 0.30 0.29
100× 100 d 1.31 0.20 0.040 -0.69 0.32 40 0.30 0.29
100× 100 d 1.31 0.20 0.040 -0.69 0.32 80 0.28 0.22
200× 200 d 1.31 0.20 0.040 -0.69 0.32 4 0.53 0.40
200× 200 d 1.31 0.20 0.040 -0.69 0.32 10 0.30 0.20
200× 200 d 1.31 0.20 0.040 -0.69 0.32 20 0.30 0.22
200× 200 d 1.31 0.20 0.040 -0.69 0.32 40 0.30 0.30
200× 200 d 1.31 0.20 0.040 -0.69 0.32 80 0.26 0.18
100× 100 d 1.31 0.20 0.080 1.1 0 20 < 0.01
200× 200 d 1.31 0.20 0.080 1.1 0 10 < 0.05
100× 100 p 5/3 0.20 0.020 -1.8 0.82 20 0.79 4.9
100× 100 p 1.31 0.20 0.020 -1.7 0.73 10 0.73 1.9
100× 100 p 1.31 0.20 0.020 -1.7 0.73 20 0.71 33
100× 100 p 1.31 0.20 0.020 -1.7 0.73 40 0.72 202
100× 100 p 1.31 0.20 0.020 -1.7 0.73 80 0.62 411
50× 50 p 1.31 0.20 0.040 -0.69 0.32 20 0.51 1.7
50× 50 p 1.31 0.20 0.040 -0.69 0.32 40 0.31 90
50× 50 p 1.31 0.20 0.040 -0.69 0.32 80 0.32 159

100× 100 p 1.31 0.20 0.040 -0.69 0.32 10 0.53 0.64
100× 100 p 1.31 0.20 0.040 -0.69 0.32 20 0.30 6.8
100× 100 p 1.31 0.20 0.040 -0.69 0.32 40 0.30 98
100× 100 p 1.31 0.20 0.040 -0.69 0.32 80 0.31 201
50× 50 p 5/3 0.20 0.040 -1.1 0.49 10 0.45 0.55
50× 50 p 5/3 0.20 0.040 -1.1 0.49 20 0.59 3.1
50× 50 p 5/3 0.20 0.040 -1.1 0.49 40 0.47 201
50× 50 p 5/3 0.20 0.040 -1.1 0.49 80 0.38 139

100× 100 p 5/3 0.20 0.040 -1.1 0.49 4 0.40 0.43
100× 100 p 5/3 0.20 0.040 -1.1 0.49 10 0.63 0.83
100× 100 p 5/3 0.20 0.040 -1.1 0.49 20 0.49 5.0
100× 100 p 5/3 0.20 0.040 -1.1 0.49 40 0.47 262
100× 100 p 5/3 0.20 0.040 -1.1 0.49 80 0.45 978
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Table B.2.List of 2D models having a negative initial entropy gradient. The columns give (from left to right) the number of grid
zonesm̟ × mz (the box has an edge lengthL̟ = Lz = 1km), the type of boundary condition which was applied (d: velocity
damping; p: periodic), the rotation law (“d”: differential rotation withΩ0 = 1900s−1 andαΩ = −1.25; “rΩ” rigid rotation with an
angular velocity ofΩ), the adiabatic index of the gas,Γ, the initial entropy,S0, the radial entropy gradient,∂̟S, and the strength of
the initially uniform magnetic field,bz

0. The next columns give the three quantitiesR̟/Ω2
0, N2/Ω2

0 andC determining the instability
regime (see Eq. (24)), followed by the theoretical growth rate,σth, and the type of the instability. The last two columns list the
numerical growth rate,σ, and the value of the Maxwell stress componentMterm

̟φ at MRI termination.

m̟ ×mz BC Rot Γ S0 ∂̟S bz
0 R̟/Ω2

0 N2/Ω2
0 C σth regime σ Mterm

̟φ

[km−1]
[

1012 G
] [

ms−1
] [

ms−1
] [

1028 G2cm−3
]

100× 100 d d 1.31 0.20 -0.019 0 -2.5 -0.90 -3.4 1.6 mix 0 0
100× 100 d d 1.31 0.20 -0.019 10 -2.5 -0.90 -3.4 1.6 mix 1.2 2.6
100× 100 d d 1.31 0.20 -0.019 20 -2.5 -0.90 -3.4 1.6 mix 1.3 3.4
100× 100 d d 1.31 0.20 -0.019 40 -2.5 -0.90 -3.4 1.6 mix 1.4 5.7
100× 100 d d 1.31 0.20 -0.019 80 -2.5 -0.90 -3.4 1.6 mix 1.3 6.0
50× 50 d d 1.31 0.20 -0.038 20 -2.5 -1.8 -4.3 2.0 mix 1.6 4.2

100× 100 d d 1.31 0.20 -0.038 0 -2.5 -1.8 -4.3 2.0 mix 0 0
100× 100 d d 1.31 0.20 -0.038 10 -2.5 -1.8 -4.3 2.0 mix 1.5 3.3
100× 100 d d 1.31 0.20 -0.038 20 -2.5 -1.8 -4.3 2.0 mix 1.7 5.3
100× 100 d d 1.31 0.20 -0.038 40 -2.5 -1.8 -4.3 2.0 mix 1.7 7.8
100× 100 d d 1.31 0.20 -0.038 80 -2.5 -1.8 -4.3 2.0 mix 1.7 9.5
100× 100 d d 1.31 0.20 -0.075 0 -2.5 -3.6 -6.1 2.8 mix 0 0
100× 100 d d 1.31 0.20 -0.075 10 -2.5 -3.6 -6.1 2.8 mix 2.4 1.3
100× 100 d d 1.31 0.20 -0.075 20 -2.5 -3.6 -6.1 2.8 mix 2.6 4.8
100× 100 d d 1.31 0.20 -0.075 40 -2.5 -3.6 -6.1 2.8 mix 2.5 9.7
100× 100 d d 1.31 0.20 -0.15 0 -2.5 -7.2 -9.7 4.4 conv 3.0 0
100× 100 d d 1.31 0.20 -0.15 20 -2.5 -7.2 -9.7 4.4 conv 4.0 1.2
100× 100 d d 1.31 0.20 -0.15 40 -2.5 -7.2 -9.7 4.4 conv 3.8 3.7
100× 100 p d 5/3 0.20 -0.019 20 -2.5 -0.70 -3.2 1.5 mix 1.3 6.0
100× 100 p d 5/3 0.20 -0.019 40 -2.5 -0.70 -3.2 1.5 mix 1.4 50
50× 50 p d 1.31 0.20 -0.038 20 -2.5 -1.8 -4.3 2.0 mix 1.6 12
50× 50 p d 1.31 0.20 -0.038 40 -2.5 -1.8 -4.3 2.0 mix 1.7 19.5

100× 100 p d 1.31 0.20 -0.038 20 -2.5 -1.8 -4.3 2.0 mix 1.7 27
100× 100 p d 1.31 0.20 -0.038 40 -2.5 -1.8 -4.3 2.0 mix 1.7 22

100× 100 d r1000 1.31 0.20 -0.075 0 0 -14 -14 3.4 conv 2.7
100× 100 d r1500 1.31 0.20 -0.075 0 0 -5.7 -5.7 2.1 conv 1.6
100× 100 d r1900 1.31 0.20 -0.075 0 0 -3.2 -3.2 1.5 MBI 0
100× 100 d r1500 1.31 0.20 -0.075 10−8 0 -5.7 -5.7 2.1 conv 1.5 1.4× 10−18

100× 100 d r1500 1.31 0.20 -0.075 1 0 -5.7 -5.7 2.1 conv 1.5 0.013
100× 100 d r1500 1.31 0.20 -0.075 10 0 -5.7 -5.7 2.1 conv 1.8 1.7
100× 100 d r1900 1.31 0.40 -0.10 4 0 -3.6 -3.6 1.7 MBI 1.1 0.22
100× 100 d r1900 1.31 0.40 -0.10 8 0 -3.6 -3.6 1.7 MBI 1.2 1.6
100× 100 d r1900 1.31 0.40 -0.10 10 0 -3.6 -3.6 1.7 MBI 1.1 1.6
100× 100 d r1900 1.31 0.40 -0.10 20 0 -3.6 -3.6 1.7 MBI 1.4 5.2
100× 100 d r1900 1.31 0.40 -0.10 40 0 -3.6 -3.6 1.7 MBI
200× 200 d r1900 1.31 0.40 -0.10 0 0 -3.6 -3.6 1.7 MBI 0 0
200× 200 d r1900 1.31 0.40 -0.10 0.01 0 -3.6 -3.6 1.7 MBI . 0.006
200× 200 d r1900 1.31 0.40 -0.10 4 0 -3.6 -3.6 1.7 MBI 1.0 0.99
200× 200 d r1900 1.31 0.40 -0.10 8 0 -3.6 -3.6 1.7 MBI 1.4 1.4
200× 200 d r1900 1.31 0.40 -0.10 10 0 -3.6 -3.6 1.7 MBI 1.4 2.1
200× 200 d r1900 1.31 0.40 -0.10 20 0 -3.6 -3.6 1.7 MBI 1.5 5.6
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Table B.3.List of 3D models. The first column (from left to right) gives the geometry of the initial field (“U”: uniform; “V” zero-
flux). The next two columns show the box size (L̟ × Lφ × Lz) and the number of grid zones (m̟ ×mφ ×mz). The next four columns
list the rotation law (“d”: differential rotation withΩ0 = 1900s−1 andαΩ = −1.25; “rΩ” rigid rotation with an angular velocity of
Ω), the entropy gradient,∂̟ (s0 = 0.2), the strength of the initial magnetic field,bz

0, and the type of boundary condition which was
applied (d: velocity damping; p: periodic). The remaining four columns give the growth rate of the MRI,σ, and the Maxwell stress
componentMterm

̟φ at MRI termination, its maximum value, and its time averagedvalue, respectively.

field grid size resolution Rot ∂̟S bz
0 BC σ Mterm

̟φ Mmax
̟φ

〈

M̟φ
〉

[km3]
[

km−1
] [

1012 G
] [

ms−1
] [

1028 G2 cm−3
] [

1028 G2 cm−3
] [

1028 G2 cm−3
]

U3 0.5× 0.25× 0.5 26× 12× 26 d 0 40 d 0.98 0.47 298 47
0.5× 0.5× 0.5 26× 26× 26 d 0 40 d 0.96 0.45 211 36
0.5× 1× 0.5 26× 50× 26 d 0 40 d 0.96 0.45 16 2.9
0.5× 2× 0.5 26× 100× 26 d 0 40 d 0.92 0.44 5.0 1.5
1× 0.5× 1 50× 26× 50 d 0 20 d 1.05 3.1 924 69
1× 0.5× 1 50× 26× 50 d 0 40 d 1.10 3.7 553 68
1× 1× 1 50× 50× 50 d 0 10 d 0.76 1.5 2.7 1.1
1× 1× 1 50× 50× 50 d 0 20 d 1.03 3.1 347 44
1× 1× 1 50× 50× 50 d 0 40 d 1.09 3.1 482 63
1× 2× 1 50× 50× 50 d 0 10 d 0.75 1.3 1.3 0.47
1× 2× 1 50× 50× 50 d 0 20 d 1.03 3.0 6.5 2.9
1× 2× 1 50× 50× 50 d 0 40 d 1.09 2.9 22 5.8
1× 2× 1 50× 100× 50 d 0 20 d 1.02 3.1 9.5 3.4
1× 2× 1 50× 100× 50 d 0 40 d 1.09 2.8 60 9.2
1× 4× 1 50× 200× 50 d 0 20 d 1.03 2.9 4.4 2.3
1× 4× 1 50× 200× 50 d 0 40 d 1.08 3.0 10.5 3.4
1× 4× 1 50× 200× 50 d 0 80 d 1.01 2.7 45 9.0
1× 4× 1 100× 400× 100 d 0 20 d 1.05 3.5 6.5 2.5
1× 4× 1 100× 400× 100 d 0 40 d 1.09 3.5 28 8.2

0.5× 0.25× 1 26× 12× 50 d 0 40 d 1.04 0.44 325 64
0.5× 0.5× 1 26× 26× 50 d 0 40 d 1.03 0.52 227 40
0.5× 1× 1 26× 50× 50 d 0 40 d 1.00 0.42 298 33
0.5× 2× 1 26× 100× 50 d 0 40 d 0.96 0.50 289 38

1× 0.25× 0.5 50× 12× 26 d 0 40 d 1.08 2.9 310 59
1× 0.38× 0.5 50× 18× 26 d 0 40 d 1.08 3.0 234 45
1× 0.5× 0.5 50× 26× 26 d 0 40 d 1.07 2.9 16 6.2
1× 1× 0.5 50× 50× 26 d 0 40 d 1.07 3.1 9.0 2.3
1× 2× 0.5 50× 100× 26 d 0 40 d 1.06 3.0 3.4 1.8

0.5× 0.25× 0.5 26× 12× 26 d 0 20 p 1.07 97 2940 145
0.5× 0.5× 0.5 26× 26× 26 d 0 20 p 0.99 64 4196 335
0.5× 1× 0.5 26× 50× 26 d 0 20 p 1.06 60 535 19
0.5× 2× 0.5 26× 100× 26 d 0 20 p 1.08 66 66 8.7
1× 0.25× 1 50× 12× 50 d 0 20 p 1.02 13 1316 110
1× 0.5× 1 50× 26× 50 d 0 20 p 1.02 8.8 1424 60
1× 1× 1 50× 50× 50 d 0 20 p 0.98 42 2570 128
1× 2× 1 50× 100× 50 d 0 20 p 1.04 16.5 736 79
1× 4× 1 50× 200× 50 d 0 20 p 1.05 22.5 59 6.5
1× 4× 1 50× 200× 50 d 0 40 p 1.09 40.4 361 18
1× 4× 1 50× 200× 50 d 0 80 p 1.09 254 254 5.5
1× 4× 1 100× 400× 100 d 0 20 p 1.08 14.9 27.6 6.4
1× 4× 1 100× 400× 100 d 0 40 p 1.11 88 88 11

0.5× 0.25× 1 26× 12× 50 d 0 20 p 1.04 64 2182 146
0.5× 0.25× 1 26× 26× 50 d 0 20 p 1.03 31 1540 170

0.5× 1× 1 26× 50× 50 d 0 20 p 1.01 8.9 1735 102
0.5× 2× 1 26× 100× 50 d 0 20 p 1.05 30 825 72
0.5× 4× 1 26× 200× 50 d 0 20 p 1.04 27 103 15

1× 0.25× 0.5 50× 12× 26 d 0 20 p 1.07 32 1654 171
1× 0.5× 0.5 50× 26× 26 d 0 20 p 1.06 8.5 2902 170
1× 1× 0.5 50× 50× 26 d 0 20 p 1.05 14 682 13
1× 2× 0.5 50× 100× 26 d 0 20 p 1.06 14 14 4.0
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Table B.4.Continuation of Tab. B.3. For the MBI model withbz
0 = 10G, we do not provide values for the Maxwell stress, because

the magnetic field behaves similar to a purely passive field.

field grid size resolution Rot ∂̟S bz
0 BC σ Mterm

̟φ Mmax
̟φ

〈

M̟φ
〉

[km3]
[

km−1
] [

1012 G
] [

ms−1
] [

1028 G2 cm−3
] [

1028 G2 cm−3
] [

1028 G2 cm−3
]

V3 1× 1× 1 50× 50× 50 d 0 10 d 0.66 0.13 0.24 0.16
1× 1× 1 50× 50× 50 d 0 20 d 0.96 0.53 0.53 0.21
1× 1× 1 50× 50× 50 d 0 40 d 1.03 1.5 1.5 0.27
1× 4× 1 50× 200× 50 d 0 10 d 0.66 0.13 0.52 0.24
1× 4× 1 50× 200× 50 d 0 20 d 0.90 0.36 0.80 0.43
1× 4× 1 100× 400× 100 d 0 20 d 1.08 1.1 1.1 0.20
1× 4× 1 100× 400× 100 d 0 20 p 1.08 1.5 1.5 0.21

U3 1× 2× 1 26× 50× 26 d −0.038 20 d 1.5 1.9 5.3 0.83
1× 2× 1 26× 50× 26 d −0.038 40 d 1.7 4.1 7.2 1.1
1× 2× 1 50× 100× 50 d −0.038 20 d 1.7 3.1 3.1 0.16
1× 2× 1 50× 100× 50 d −0.038 40 d 1.9 4.4 4.4 0.23

1× 2× 1 50× 100× 50 r1900 −0.10 10−11 d 2.6
1× 2× 1 50× 100× 50 r1900 −0.10 0.01 d 2.6 2.3× 10−8 0.11 0.040
1× 2× 1 50× 100× 50 r1900 −0.10 20 d 2.6 0.060 0.87 0.30

V3 1× 2× 1 50× 100× 50 d −0.038 20 d 1.6 0.54 0.54 0.011
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