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Observations of distant supernovae indicate that the Universe is now in a 
phase of accelerated expansion1,2 the physical cause of which is a mystery3. 
Formally, this requires the inclusion of a term acting as a negative pressure 
in the equations of cosmic expansion, accounting for about 75 per cent of 
the total energy density in the Universe. The simplest option for this ‘dark 
energy’ corresponds to a ‘cosmological constant’, perhaps related to the 
quantum vacuum energy. Physically viable alternatives invoke either the 
presence of a scalar field with an evolving equation of state, or extensions 
of general relativity involving higher-order curvature terms or extra 
dimensions4-8. Although they produce similar expansion rates, different 
models predict measurable differences in the growth rate of large-scale 
structure with cosmic time9. A fingerprint of this growth is provided by 
coherent galaxy motions, which introduce a radial anisotropy in the 
clustering pattern reconstructed by galaxy redshift surveys10. Here we 
report a measurement of this effect at a redshift of 0.8. Using a new survey 
of more than 10,000 faint galaxies11,12, we measure the anisotropy parameter 
b = 0.70 ± 0.26, which corresponds to a growth rate of structure at that time 
of f = 0.91 ± 0.36. This is consistent with the standard cosmological-
constant model with low matter density and flat geometry, although the 
error bars are still too large to distinguish among alternative origins for the 
accelerated expansion. This could be achieved with a further factor-of-ten 
increase in the sampled volume at similar redshift. 
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A relevant consequence of the presence of a dominant form of dark energy in the 

Universe, in addition to its primary effect on the expansion rate, is to modify the 

gravitational assembly of matter from which the observed large-scale structure originated. 

In linear perturbation theory, it is possible to describe the growth of a generic small-

amplitude density fluctuation through a second-order differential equation. This equation 

depends on the expansion rate H(z), but also on the theory of gravity. From its solutions, 

we can define a linear growth rate f that measures how rapidly structure is being 

assembled in the Universe as a function of cosmic time, or, equivalently, of the redshift. 

The redshift z = λmeas/λemis − 1 of the radiation emitted by a distant object is a measure of 

the time of emission through its dependence on the cosmic scale factor a(t), which is 

1 + z = 1/a(temis). f(z) essentially depends on the value of the mass density parameter at the 

given epoch, Ωm(z), which is defined as the ratio of the matter density 〈ρ(z)〉 to the 

‘critical’ density required to halt the expansion ρc = 3H(z)2/8πG, where G is Newton’s 

constant.  For the cosmological-constant model (in which the total density in matter and 

dark energy is Ωm+ΩΛ = 1) the dependence9 is 

! 

f (z) " #m(z)[ ]
0.55. However, this is not 

valid if the observed acceleration originates from a modification of the equations of the 

general theory of relativity; for example, in the Dvali-Gabadadze-Porrati (DGP) 

braneworld theory, an extra-dimensional modification of gravity13, 

! 

f (z) " #m(z)[ ]
0.68. In 

general, a fitting form

! 

f (z) " #m(z)[ ]
$  has been shown to be an accurate description for a 

wide range of models9,14 (for which Ωm(z) itself, not only γ, depends on the model). Thus, 

models with the same expansion history H(z) but a different gravity theory will have a 

different growth rate evolution f(z) and index γ (refs 9, 15). A discrepancy between the 

measured value of the growth rate and that computed independently (assuming the general 

theory of relativity applies) from the H(z) yielded by type Ia supernovae would point to 

modifications of gravity6-8, rather than to exotic new ingredients in the physical content of 

the Universe4,5. 

A few observational techniques have been suggested to measure f(z) at different 

redshifts9,16. Redshift-space distortions, that is, the imprint of large-scale peculiar 

velocities on observed galaxy maps, have not yet been considered in this context. Gravity-

driven coherent motions are in fact a direct consequence of the growth of structure. The 

anisotropy they induce in the observed galaxy clustering when redshifts are used as a 

measure of galaxy distances can be quantified by means of the redshift-space two-point 

correlation function ξ(rp,π). Here, rp and π are respectively the transverse and line-of-sight 
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components of galaxy separations17 (see Supplementary Information for definitions). The 

anisotropy of ξ(rp,π) has a characteristic shape at large rp that depends on the 

parameter18,19 β = f/bL. In practice, we observe a compression that is proportional to the 

growth rate, weighted by the factor bL, the linear bias parameter of the specific class of 

galaxies being analysed. bL measures how closely galaxies trace the mass density field, 

and is quantified by the ratio of the root-mean-square fluctuations in the galaxy and mass 

distributions on linear scales20. Using this technique, a value of β = 0.49 ± 0.09 has been 

measured at z ≈ 0.15 using the  2dF Galaxy Redshift Survey (2dFGRS) sample of 220,000 

galaxies with bias10,21 bL = 1.0 ± 0.1, corresponding to a growth rate of f = 0.49 ± 0.14. 

We have measured the parameter β at an effective redshift z = 0.77, using new 

spectroscopic data from the Wide part of the  VIMOS-VLT Deep Survey (VVDS)11,12. 

The redshift-space correlation function ξ(rp,π) has been estimated from a recently 

completed subset of 5,895 faint galaxy redshifts between z = 0.6 and z = 1.2, covering an 

area of 4 square degrees (the F22 field; see Supplementary Information for more details). 

This corresponds to an effective sampling volume of 6.35 × 106h−3 Mpc3, at a median 

epoch of ~7 Gyr, that is, about half the age of the Universe. ξ(rp,π) has been estimated in 

the conventional way by comparing the number of galaxy pairs at different separations 

(rp,π) to that in a random sample with an identical geometry and sampling pattern (Fig. 

1a). The evident ellipsoidal shape (that is, the compression of the iso-correlation contours 

along the line of sight—the vertical direction) is the fingerprint of galaxy streaming 

motions. The corresponding value of β can be measured by expanding the observed 

ξ(rp,π) in spherical harmonics; the coefficients of the expansion can be theoretically 

expressed as functions of β and the best value of this parameter obtained through different 

fitting techniques18,19. We have directly tested these methods on fully realistic simulations 

of our data (M.P. et al., manuscript in preparation); we obtained the least biased and most 

stable results through a direct maximum-likelihood fit of the full spherical harmonic 

model for ξ(rp,π), convolved with an exponential function that accounts for the small-

scale nonlinear contribution21 (see Supplementary Information for details). This model is 

characterized by two free parameters, the linear compression β and the root-mean-square 

velocity dispersion of galaxy pairs σ12, describing the small-scale incoherent motions in 

groups and clusters. The model that maximizes the likelihood, given our data, has β = 0.70 

and σ12 = 412 km s−1 (corresponding to the superimposed contours in Fig. 1a).  
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To estimate realistic errors for these values, we applied the same procedure to 100 

independent mock replicas of our survey constructed from the Millennium simulation22 

including the full observing strategy, selection mask and redshift errors of the VVDS. 

These state-of-the-art simulations are highly successful in reproducing a wide range of 

galaxy and large-scale structure properties and can be considered in many respects as 

Monte Carlo realizations of our data. They allow us to include in the error budget a fair 

estimate of the finite sampling noise and of the ‘cosmic variance’ due to fluctuations on 

scales larger than the sampled volume. In Fig. 1b the contours correspond to the bivariate 

gaussian describing the distribution of the 100 mock measurements, centred on the best-fit 

(β,σ12) pair from the data. The mean values of both parameters from the 100 mock 

catalogues (β = 0.62 ± 0.03, σ12 = 382 ± 12 km s−1) are remarkably close to those 

measured from the data. This adds to our confidence in the overall realism of the 

simulations and consequently in the various tests performed to assess the robustness of our 

result (see Supplementary Information for details). Marginalizing over the root-mean-

square pairwise dispersion (that is, integrating along σ12), we obtain an estimate of the 

error on the compression parameter, such that β = 0.70 ± 0.26. 

Because both the growth rate and galaxy bias evolve with redshift, this value 

represents a mean over the redshift range 0.6 <z <1.2, weighted by the radial selection 

function of the sample. We take the effective redshift for this measurement to be z = 0.77, 

which corresponds to the mean value of the squared redshift distribution N2(z). This is a 

natural choice because ξ(rp,π) depends on the distribution of galaxy pairs. The goodness 

of this choice has then been verified using the mock samples, where both the value of 

Ωm(z) and bL(z) are known or can be directly recovered. In this way, the behaviour of 
0.55

m L( ) ( ) / ( )z z b z! "=  can be directly compared to the estimated global value from the 

whole redshift range. This shows that our estimate of β should coincide with β(z = 0.77) 

within 3%, which is well below our statistical errors (see Supplementary Information). 

This is the first measurement of β at a redshift approaching unity based on a fully 

homogeneous galaxy redshift survey over a large volume and with accurate control over 

selection biases, finite sampling and cosmic variance errors. The detection and 

quantitative measurement of galaxy streaming motions at an epoch when the Universe was 

significantly younger is an important observational result in itself, testifying to the gradual 

growth of structure and corroborating the gravitational instability picture. To translate this 

measurement into an estimate of the growth rate f = βbL, we need to know the effective 
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linear bias factor characterizing the mean relative clustering of our galaxies with respect to 

the underlying mass. With sufficient statistics, bL can be determined directly from the 

survey data, by measuring the higher-order details of the clustering pattern20, but this 

would require a survey several times larger than that used here.  

We thus adopt a different approach that has already been successfully applied to 

the Deep part of the VVDS survey23. This requires including additional information 

provided by independent observations, such as the level of anisotropy in the Cosmic 

Microwave Background24 or the mean number density of galaxy clusters25,26. Both of 

these measurements constrain the root-mean-square amplitude of mass density 

fluctuations on a given scale, conventionally measured in spheres of 8h−1 Mpc radius and 

indicated as σ8. The Cosmic Microwave Background data from the Wilkinson Microwave 

Anisotropy Probe (WMAP) experiment24 indicate that σ8
mass(z = 0) = 0.78 ± 0.03. This 

allows us to estimate bL = σ8
gal(z = 0.77)/σ 8

mass(z = 0.77). σ8
gal(z = 0.77) is measured 

directly from the sample by counting the number of galaxies in randomly placed spheres; 

the corresponding mass value is instead obtained by scaling the WMAP value to z = 0.77 

using linear theory in a self-consistent cosmology (which has a weak influence on the final 

result, for a flat geometry). In this way, we obtain bL = 1.3 ± 0.1, corresponding to a 

growth rate of f(z = 0.77) = βbL = 0.91 ± 0.36. 

It is interesting to compare this measurement to available model predictions (Fig. 

2). These include the standard flat (Ωm0 = 0.25, ΩΛ0 = 0.75) cosmological-constant model, 

an open model with the same Ωm0 but no cosmological constant Λ, the DGP braneworld 

modification of gravitational theory7 and two cases in which the dark matter component 

interacts with the dark energy field5. Clearly, error bars on this measurement alone are still 

too large to discriminate among these models. We also show in Fig. 2 the few existing 

measurements of f at lower redshift. These include a value at z ≈ 0.15 from the 2dFGRS21 

and another estimate at z = 0.55 that we have computed using a recent measurement of β 

from a survey of luminous red galaxies27. This value can only be taken as indicative, as it 

was obtained by an analysis that tries to account for extra distortions due to the geometric 

Alcock–Paczynski effect28 and imposes the additional constraint of Ωm matching the 

evolution of clustering to z ≈ 0 (see Fig. 2 caption and Supplementary Information).  

With these caveats in mind, it is nevertheless encouraging to observe a coherent 

trend in the measurements. In particular, considering the standard general theory of 

relativity framework, even with the current error bars the evolution of the growth rate 
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evidently disfavours a Universe with open geometry containing only matter (at the level of 

~25% of the critical density  as measured by several independent probes10,21,25,26). This is a 

relevant result, as it represents an indication, independent of the Cosmic Microwave 

Background24, of the need of extra dark energy to bring the curvature close to zero. We 

note that a purely illustrative χ2 fit of the three data points to the functional form 

f(z) = [Ωm(z)]γ would indeed favour the flat cosmological constant model with growth 

index γ ≈ 0.55–0.6, although with rather low confidence.  

To discriminate among different dark energy or modified-gravity models at a finer 

level will require more precise estimates of β and bL or a larger number of independent 

measurements with similar precision. Ongoing and planned redshift surveys are expected 

to fulfil this need in the near future, both in quantity and quality (see Supplementary 

Information). Overall, these results suggest that redshift-space distortions will become a 

primary method in the quest to identify the nature of cosmic acceleration. 
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Figure 1 Estimate of the degree of distortion induced by coherent motions on the 
measured large-scale distribution of galaxies at high redshift. For a given mean 
density of matter, this depends on the amount of dark energy and is quantified by the level 
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of anisotropy in the galaxy correlation function ξ(rp,π). a, Colour-coded representation of 
ξ(rp,π) as measured using ~6,000 galaxy redshifts with 0.6 < z < 1.2 (effective redshift 
〈z〉 = 0.77) in the VVDS-Wide survey. The intensity describe the measured degree of 
correlation as a function of the transverse (rp) and radial (π) separation of galaxy pairs. 
ξ(rp,π) has been computed in pixels of 1h−1 Mpc per side and smoothed with a gaussian 
kernel before plotting. The actual measurement is replicated over four quadrants to show 
the deviations from circular symmetry. Galaxy peculiar velocities combine with the 
cosmological expansion, producing the distorted pattern when the redshift is used as a 
distance measure. In the absence of peculiar motions, the contours would be perfect 
circles. The effect of galaxy infall caused by the growth of large-scale structure is evident 
in the flattening of the blue–green large-scale levels, while the small-scale elongation 
along π (white–yellow–red contours) is the result of the high-velocity-dispersion pairs in 
group and clusters of galaxies (‘fingers of God’). The superimposed solid contours 
correspond to the best-fitting distortion model with a compression parameter β = 0.70 and 
a pairwise dispersion σ12 = 412 km s−1, obtained by maximizing the model likelihood 
given the data. b, Confidence levels for the compression parameter β and the dispersion of 
relative velocities of galaxy pairs, σ12; the contours correspond to the bivariate gaussian 
that best reproduces the distribution of 100 Monte Carlo measurements on fully realistic 
mock realizations of the data, constructed from numerical simulations (see Supplementary 
Information). The solid lines correspond to one-parameter confidence levels of 68%, 95% 
and 99%, such that marginalizing over σ12, we obtain the root-mean-square uncertainty on 
β. 
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Figure 2 Estimates of the growth rate of cosmic structure compared to predictions 
from various theoretical models. Values of f = βbL are plotted as a function of the 
inverse of the cosmic expansion factor 1 + z = a(t)−1. Our new measurement at z = 0.77 
from the VVDS-Wide survey (red circle) is shown together with that from the 2dFGRS, 
computed from the published21 value of β; to do this, we adopted the bias value 
bL = 1.0 ± 0.1 estimated from higher-order clustering in the same survey20. We have also 
used very recent measurements from the 2dF-SDSS LRG and QSO (2SLAQ) survey of 
luminous red galaxies27 (blue open square) to add one further point at z = 0.55. In this 
case, however, the values of β and bL are not fully independent, because they have been 
obtained by imposing simultaneous consistency with the clustering measured at z = 0. In 
practice, this forces the resulting f towards the flat Λ model, that is, ~Ωm

0.55. A more 
appropriate treatment would require an independent estimate of the bias for this sample23; 
this uncertainty is accounted for by the error bars, which in all cases correspond to 68% 
confidence intervals. The solid red line gives the growth rate for the standard 
cosmological-constant flat (Ωm0 = 0.25, ΩΛ0 = 0.75) model, while the dashed red line is 
the corresponding open model with the same matter density but no cosmological constant; 
the blue and green dashed curves describe models in which dark energy is coupled to dark 
matter5; the black dot-dashed line is the DGP braneworld model, an extra-dimensional 
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modification of the gravitation theory7. For reference, the red horizontal dotted line 
( ) 1f z !  corresponds to the constant growth rate we expect in a critical-density Einstein–

De Sitter model, in which the flat geometry is due to matter only (Ωm0 = 1). Interestingly, 
despite the large error bars, the available measurements coherently indicate the need for a 
low Ωm, but at the same time disfavour an open model, thus requiring the presence of a 
cosmological constant or dark energy. We also provide an example of the accuracy 
achievable by future surveys in discriminating which kind of dark energy model is correct: 
the small black error bars on the standard Λ curve (red) show forecasts for measurements 
in bins of size Δz = 0.2 from an all-sky survey of a half-billion infrared-selected (H < 23) 
galaxies, as recently proposed to the ESA Cosmic Vision programme by the SPACE  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



 A test of the nature of cosmic acceleration using redshift space distortions 
 

13  

Supplementary Information: A test of the nature of cosmic 
acceleration using galaxy redshift distortions  
 

THE STANDARD MODEL OF COSMOLOGY 

An unprecedented convergence of observational results over the last few years indicates that we 

live in a low-density, expanding Universe with spatially flat geometry, that, quite surprisingly, 

appears to have recently entered a phase of accelerated expansion.  This latter evidence emerged 

consistently from independent observations of the light dimming in distant supernovae, used as 

“standard candles” to probe the expansion history of the Universe1,2.  At the same time, the 

spectrum of anisotropies in the Cosmic Microwave Background (CMB)3 implies to high accuracy 

that the metric of the Universe as a whole is Euclidean, i.e. corresponding to an effective cosmic 

density parameter ΩTOT=1  [defined, at any epoch, as the ratio of the total average density TOT to 

the “critical” density c = 3H(t)2/8G, where H(t) is the value of the Hubble parameter 

! 

H(t) = d lna(t) /dt  , G is Newton’s gravitational constant and a(t) is the cosmic expansion 

factor]. Several direct determinations of the contribution of matter, Ωm , to the global mass-

energy budget indicate, on the other hand, that Ωm ≈ 0.25, with only ~4% of the cosmic density 

provided by conventional “baryonic” matter, and ~21% in the form of a “dark matter” of unknown 

nature4,5. The flat geometry indicated by the CMB anisotropy spectrum therefore requires that 

“something else”, neither conventional nor dark matter, must be providing the missing mass-

energy needed to have ΩTOT=1.  Remarkably, although its nature is completely mysterious, the 

physical entity producing the acceleration deduced by the observations of distant supernovae is 

capable of filling this gap, providing a “dark energy” density parameter ΩΛ ≈ 0.75.   Current 

observations are compatible with this extra contribution corresponding simply to a non-zero 

cosmological constant in the equations of General Relativity (GR).  This term was originally 

introduced by A. Einstein to obtain a static solution when applying his theory to the Universe as a 

whole, but soon discarded after E. Hubble’s discovery of universal expansion. The current 

evidence for cosmic acceleration emerges from measurements of the Hubble expansion parameter 

H(z) [where the redshift 

! 

z(t ) = a
"1
(t )"1], that for a flat geometry can be written as 

 

                               

! 

H
2
(z) = H

0

2
"

m0
1+ z( )

3
+"# 0

X(z)[ ]   ,                   (S1) 
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with 

                             

! 

X(z) = exp 3 1+ z( )
"1
1+ w

X
(z)[ ]dz

0

z

#{ }   .                   (S2) 

 

Here X(z) corresponds to an extra component of “dark energy” with generic equation of state 

! 

wx(z) = px(z) c
2"(z) ; the cosmological constant case corresponds to wX(z)≡−1, but any fluid 

with wX(z)<-1/3 would also lead to an accelerated expansion. High-redshift Type Ia supernovae 

used as standard candles probe H(z) via their cosmological luminosity distance1,2. Similarly, 

proposed new experiments based on detecting the imprint of Baryonic Acoustic Oscillations (BAO) 

in the clustering of galaxies 6,7, use the typical scale of BAO as a “standard rod”, probing H(z) 

through the angular-diameter distance8. 

 

GROWTH OF DENSITY PERTURBATIONS 

In the limit of small perturbations, the equations describing the evolution of density fluctuations in 

an expanding Universe can be linearized, obtaining the well-known growth equation 9,10 

                                            

! 

˙ ̇ " + 2H(t) ˙ " = 4#G $ "     ,                             (S3) 

where dots indicate time derivatives, H(t) is the cosmic expansion parameter and 

  

! 

"(
r 
x ,t) = #(

r 
x ,t) $ #(t)( ) #(t) .  This differential equation has a growing solution 

  

! 

"+
(
r 
x ,t) = ˆ " (

r 
x )D(t) (ref. 11). The equation of mass conservation, if the mass distribution is 

modelled as a continuous pressureless fluid, is  

                                           
  

! 

"#

"t
+
1

a
$ • (1+ #)

r 
v = 0      ,                            (S4) 

which, inserting the growing solution   

! 

ˆ " (
r 
x )D(t) yields a peculiar velocity field 
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where the factor 

                                                  

! 

f =
d lnD

d lna
                                       (S6)

 

 

is the linear growth rate  of fluctuations.   The growth rate essentially depends on the value of the 

cosmic matter density at the given epoch Ωm(z) (refs. 11, 15).  In fact, it has been shown that for 
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a wide range of dark energy and modified gravity models, one can write to very good accuracy 

that 

! 

f " #m

$
 , where γ=0.55+0.05[1+w(z=1)]  and w is the effective equation of state.    

This leads (e.g. Figure 2, main paper), to γ=0.55 for the cosmological constant model in a GR 

background and γ=0.68 for the DGP “braneworld” model (see refs. 15 and 16 and further in 

main paper).  The growth rate is directly related to the linear redshift distortion parameter we 

measure in this work as 

! 

" = f /bL, where bL is the linear bias value, that can be defined as the 

ratio between the root-mean-squared density contrasts in the galaxy and mass distributions on 

scales R where linear theory applies: bL = R
gal/ R

mass . 

 

THE VLT-VIMOS DEEP SURVEY 

The VIMOS-VLT Deep Survey (VVDS) was designed to probe the combined evolution of galaxies 

and large scale structure to z∼2, (reaching up to z ∼ 4.5 for the most extreme objects17), 

measuring of the order of 100,000 faint galaxy redshifts. The VVDS is built around the VIMOS 

multi-object spectrograph at the ESO VLT, capable of collecting simultaneously up to ~600 

spectra18.  The survey is composed of two distinct parts with complementary science goals: VVDS-

Deep, currently covering 0.5 deg2 to an apparent red magnitude IAB = 24 (5-hour exposures), 

focused on studying galaxy evolution and clustering on relatively small scale, and VVDS-Wide, 

covering ~7 deg2 to IAB = 22.5 (1-hour exposures), focused on measuring galaxy clustering at z~1 

on scales approaching ~100 h-1 Mpc 19.  Virtually all results published so far are based on the 

“First Epoch” set of 6530 reliable (> 80% confidence) redshifts from the “F02” field of VVDS-

Deep.  The shallower Wide survey is ongoing and has so far collected ∼30,000 spectra.  The 

results presented in this paper are based on the first complete subset of VVDS-Wide redshifts, 

centred on the F22 Wide field which covers 4 deg2 and includes 11,400 galaxy redshifts between 

z=0 and z~1.3, spanning a total volume of 7.9 x 106 h-3 Mpc3.  Both the VVDS-Deep and VVDS-

Wide spectra were collected during the guaranteed-time observations awarded to the VVDS 

Consortium for the construction of VIMOS.  
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REDSHIFT- AND REAL-SPACE CORRELATION FUNCTIONS 

The simplest statistic for studying the inhomogeneity of the galaxy distribution is the two-point 

correlation function (s). This measures the excess probability above random of finding a pair of 

galaxies with separation 
  

! 

r 
s .  Galaxy distances are proportional to the observed red-shift of 

emission/absorption lines in their spectra with respect to their laboratory value. This provides us 

with a mean to re-construct the 3D distribution of galaxies, and thus measure their relative 

separations.  However, galaxy peculiar velocities add a Doppler component to the cosmological 

redshift, thus shifting the apparent galaxy position with respect to its correct, real-space position. 

This distorts galaxy redshift maps and modifies the measured two-point correlations.  To measure 

this peculiar velocity contribution, it is convenient to separate  into a function of two variables, 

de-composing   

! 

r 
s  as 

  

! 

r 
s =

r 
r p +

r 
" , where rp and  are respectively perpendicular and parallel to 

the line-of-sight 20. Peculiar motions will thus affect the variable  only, and the resulting 

correlation map (rp,) will show distortions along the ordinate axis only21.   In practice, (rp,) is 

estimated from the data by counting the number of galaxy pairs in bins of size (rp, ) over a 

grid of separations (rp,), and comparing them to those from a random sample with the same 

geometry and selection function; the counts of galaxy and random pairs are combined through 

appropriate estimators that allow the inclusion of normalized weights to account for observational 

effects (see next section)22.  Here we use the widely applied minimum-variance estimator of 

Landy and Szalay23.   Once (rp,) has been estimated, one can then recover the undistorted real-

space correlation function (r) by projecting (rp,) along the line of sight direction, constructing 

the projected function 

                            

! 

wp(rp ) " 2 #(rp ,$ )
0

%

& d$ = 2
y#r (y)dy

y
2 ' rp

2( )rp

%

&      ,                           (S7) 

where in the last term r(y) is the real-space 1-dimensional correlation function we are looking for, 

given the independence of the variable rp on the redshift distortions.  This integral can be inverted 

numerically to recover r (refs. 24, 25). The accuracy of this operation is crucial for the estimate of 

, as r describes the reference clustering value in the linear distortion model.  We have tested 

directly on our mock surveys that the inversion of wp(rp) provides the best estimate of the 

spatial correlation function, with respect to other methods [as assuming a power-law form or 

other approximations to r(r)], that tend to bias the final value of  25,26 . 
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ESTIMATING DYNAMICAL QUANTITIES FROM REDSHIFT-SPACE DISTORTIONS 

The best way to extract quantitative dynamical information contained in the redshift-space 

correlation function ξ(rp,π), is to expand it using a base of spherical harmonics, a procedure 

commonly used in physics when dealing with problems that present a spherical or circular 

symmetry 27,28 

                                

! 

"L (rp ,# ) = "
0
(s)P

0
(µ)+"

2
(s)P

2
(µ)+"

4
(s)P

4
(µ)  .          (S8) 

Here 

! 

µ = ˆ r • ˆ "  is the cosine of the angle between the separation vector and the line of sight, 

! 

P
n
(µ)  is the Legendre Polynomial of order n and 

! 

"
n
(s)  the corresponding moment of 

! 

"(s) .  β 

can be extracted via appropriate combinations of these moments, or through direct modelling of 

ξ(rp,π).  The suffix L of L(rp,π) indicates that this model includes only the linear distortions, i.e. 

those related to large-scale coherent motions. To be complete, the model for 

! 

"(rp,# ) needs to 

include the non-linear distortion due to high-velocity pairs in groups and clusters of galaxies, that 

on galaxy maps transforms these spherical agglomerates into cigar-like structures known as 

“Fingers of God”. This effect is responsible for the elongation of the contours at small rp in Fig.1 of 

the main paper. This is modelled by convolving the linear L(s) with the distribution function of 1-

dimensional relative velocities of galaxy pairs along the line of sight 

! 

"(v) . Observations and 

numerical simulations indicate that this function is well described by a normalized  exponential 

! 

"(v) = #12 2( )
$1

exp $ 2 v#12

$1{ } . In this expression, 12 is the 1-dimensional pairwise velocity 

dispersion describing the strength of small-scale “thermal” random galaxy motions29.  Including 

this contribution, the model for ξ(rp,π) is complete and becomes 

 

                                

! 

"(rp,# ) = "L
$%

%

& rp ,# $
v(1+ z)

H (z)

' 

( 
) 

* 

+ 
, -(v)dv      ,                    (S9) 

where H(z) is the Hubble parameter (eq. 1) and the (1+z)/H(z) factor properly accounts for 

the conversion of velocity shifts into comoving coordinate shifts at 

! 

z >> 0 .   The model therefore 

depends on two free parameters, the linear compression  and the velocity dispersion 12.  We 

therefore define a likelihood function L of the model and the observed (rp,), as 
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! 

"2lnL = # 2 =
yij
(mod ) " yij

(obs )( )
2

$ ij

2

j

%
i

%     ,                 (S10) 

where 

 

                                          

! 

yij
(x ) = log 1+ " (x )(rpi ,# j ){ }                             (S11) 

 

and the errors 2
ij are computed from the scatter of yij among 100 mock samples (see below). 

The best-fit values for  and 12 are then found by maximizing the likelihood of the model, given 

our measurements. This expression of the likelihood, involving the logarithm of the excess number 

of pairs in each bin (1+), has been shown to perform better than a direct likelihood fit on the 

values of , as it reduces the weight of the small, non-linear scales where (rp,) has the largest 

values 30.   This is confirmed by our Monte Carlo experiments (see next section), that show that 

this estimator is unbiased at the level of accuracy reachable in this work.   This is particularly 

important, as in applying eq. S10 we are implicitly assuming that the covariance matrix of the data 

is diagonal, i.e. that the values of (rp,) in different bins are independent, which is known not to 

be the case.  Estimating properly the off-diagonal elements of the covariance matrix using mock 

samples or other techniques is neither straightforward nor computationally easy given the size the 

matrix has for a bi-dimensional quantity like (rp,).  Our accurate mock samples allow us to 

overcome this difficulty in a pragmatic way, i.e. by testing directly whether our estimator is biased 

by this assumption.  In fact, the mean value from the 100 mock samples – analysed in exactly the 

same way – turns out to be unbiased to better than 3%, which allows us to conclude that the 

effect of non-diagonal terms on the estimate of  is negligible, at least at this level.   

 

The same tests also indicate that only bins with rp<20 h-1 Mpc and  <20 h-1 Mpc can be 

conveniently used in the fit, to recover  with minimum bias.  Above these scales ξ(rp,π) is 

dominated by the noise.  Following previous analyses 30 , we have also checked the effect of 

excluding from the fit the strongly non-linear scales at small separations.  Our estimate turns out 

to be rather insensitive to inclusion or exclusion of the bins with rp<3 h-1 Mpc, with a tendency to 

bias β slightly high when these are excluded.  This limited sensitivity to the non-linear contribution 
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is related to our observing strategy, which significantly under-samples the small scale high-velocity 

pairs.  Typical of large redshift surveys performed with multi-slit or fiber-optic spectrographs, 

VIMOS observations tend to be biased against very close pairs on the sky: galaxies closer than 

~10 arcsec cannot both be measured within the same observation, due to the physical size of the 

slits on the VIMOS multi-object mask. The effect on the measured clustering can be corrected 

statistically in an effective way through the inclusion of appropriate weights in the correlation 

function estimator22,26 .  After experimenting directly with the mock samples – which precisely 

include the same under-counting of small pairs, having been “observed” through the same SSPOC 

software used to prepare the observations – we decided not to apply here any of our usual 

corrections, apart from the obvious ones accounting for the global selection function. Our 

thoroughly tested VVDS weighting scheme 22 was designed to recover missing clustering on scales 

<2 h-1 Mpc and is relevant if one is interested in measuring the shape of (r) at these separations.  

However, this also has the consequence of enhancing the non-linear contribution to (rp,) (i.e. 

that due to very close pairs in galaxy clusters), which for this analysis is only a nuisance.  In fact, 

our tests show that under-sampling of close pairs (particularly effective in the F22-Wide data used 

here, for which VIMOS visited only once every point of the field), has in fact a beneficial effect on 

the stability of our measurement of β by artificially reducing the statistical weight of dense, 

virialized regions.  This implies that the measured value of the pairwise dispersion 12 is certainly 

underestimated, but this is not a problem for this analysis.  Rather, this “forced sparse-sampled” 

strategy, which under-weights the strongly non-linear scales, appears to be particularly 

appropriate for measuring  using the convolution model (eq. S8), in which the treatment of non-

linear distortions is inevitably an approximation 29.   It should also be noted, however, that the 

value of the pairwise dispersion σ12 we obtain by applying the same procedure to the Millennium 

mock catalogues is very close to that we obtain from the data.   This implies that, at least after 

filtering on ~2 h-1 Mpc scales, the simulations provide a very good description of the observed 

dynamics of galaxies at z~1, both in their linear and non-linear components. 
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MONTE CARLO ESTIMATE OF ERRORS AND STATISTICAL SIGNIFICANCE 

The error quoted on our measurement of  has been estimated from the scatter within a set of 

100 fully realistic mock VVDS surveys.  These were constructed by “observing”, under exactly the 

same conditions as the real data, a set of simulated galaxy catalogues obtained by applying a 

semi-analytic model of galaxy formation 31 to the dark-matter halos identified in “light-cones” from 

the Millennium Simulation 32.  This combination of fairly large simulation size (each time step is a 

box of 500 h-1 Mpc side), mass resolution and accurate semi-analytic modelling represents the 

current state-of-the-art for this type of simulated surveys; these specific models have been shown 

to correctly reproduce, at least to z~1.2, several key observational properties of galaxies, such as 

their number counts, luminosity function and redshift distribution 33.  It is reasonable to think, 

therefore, that our error estimates include both statistical errors and cosmic variance (i.e. the 

scatter in the measurements expected if N other samples of the same size were observed and 

analyzed).  Rigorously speaking, given the total volume of the Millennium simulation and that of 

our survey, the number of independent mock samples that can be accommodated within the 

volume of the computational box is 21.   However, the probabilistic assignment of semi-analytic 

galaxies to dark-matter halos identified in the simulation and the simulated flux-limited 

“observation” add further variance to each mock sample.  Different factors contribute to this.  For 

example, even if the same portion of simulation volume is included in different light-cones, the 

corresponding dark-matter halos might or might not correspond to galaxies in the final mock 

surveys. This will in fact depend on the relative distance to the observer and thus on the apparent 

magnitude of the object; if this is fainter than the survey flux limit, it will be excluded from the 

sample.   Another even more important source of variance among the mock catalogues for this 

specific analysis is due to the very nature of our measurement: the same volume of the simulation 

will give completely independent linear distortions (and thus a different estimate of ), depending 

on the direction under which it is observed.  This increases de facto by a factor of 3 the degrees 

of freedom on  for mocks extracted from a fixed volume, given that the light cones are 

constructed by stacking randomly oriented simulation boxes37.  Taken together, these factors 

more than justify our claim that the 100 simulated catalogues used here can be considered as 

substantially independent realizations of our survey.   
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These Monte Carlo experiments allow us also to assess the contribution of observational 

systematic effects and quantify any bias in our modelling of redshift distortions 25,26.  The main 

results from this exercise are shown in Supplementary Figure 1. We find that our estimator of  is 

substantially unbiased within the statistical error, with a mean expectation value from 100 mocks 

of =0.62±0.03. This is well within one standard deviation of the “true” value of the parent 

Millennium simulation, =0.64±0.03 (where the latter error comes entirely from the estimate of 

galaxy bias in the simulation). This reference value is obtained directly from the relation 

! 

"(z) =#m

0.55
(z) / bL (z) , with 

! 

"
m
(z) = 1+ (1#"

m,0
) / "

m,0
(1+ z)3[ ]{ }

#1

, knowing that 

Ω m,0=0.25, and estimating the bias directly as bL = 8
gal(z=0.77)/ 8

mass(z=0.77), where 

both rms fluctuations in galaxies and mass are clearly known a priori in the case of the simulation.  

Interestingly, we also find that a significant reduction of the rms error (about a factor of 3), is 

obtained when in our model (eq. S8) we use the “true” spatial correlation function ξ(r) (directly 

estimated in the case of the simulation), instead of the de-projected one from eq. S7.  This 

information is obviously not available for the real data, but this exercise indicates that there is 

room for a significant gain in the accuracy of the estimate of , if our knowledge of the underlying 

correlation function can be improved, e.g. via independent data or modelling.  

 

SELF-CONSISTENCY OF DISTANCE-REDSHIFT CONVERSIONS: THE ALCOCK-

PACZYNSKI EFFECT 

To perform the measurements presented here, the measured redshifts from our galaxy catalogue 

have been converted into co-moving coordinates assuming a “concordance” model with matter 

density m=0.3 and time-independent (w = -1) dark energy density =0.7.  This means 

assuming a priori a cosmological model, which on the other hand is what in the end one is trying 

to constrain through .  Adopting the wrong cosmology would induce a distortion on the resulting 

correlation maps that adds to the effect of peculiar velocities we aim to measure. This was first 

noted by Alcock & Paczynski 35 and proposed as a method to estimate the cosmological 

parameters.  The problem is that this effect and the dynamical distortion produced by peculiar 

velocities are in principle super-imposed in the observed correlation function.  A method to model 

both effects simultaneously has been proposed 36, but practical applications show a strong 
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degeneracy between the parameters involved 37.  We adopted a more practical approach and 

tested our ability to separate out the Alcock & Paczynski effect using our extended set of 

simulations (which were built for a Universe with m=0.25, =0.75).  We re-computed co-

moving distances assuming incorrect cosmologies corresponding to values of m(z=0) between 

0.1 and 1 in steps of 0.1 (in a flat cosmology, =1-m).  Then, for this set of 10 samples with 

slightly different comoving distances, we re-computed (rp,) and estimated the corresponding .  

In GR cosmology (as used to run the simulation) and knowing the bias, each value of  yielded, in 

turn, a new value of m(z=0), which we used to re-compute distances, and so on.  The 

encouraging (and somewhat surprising) result of this exercise is that m(z=0) rapidly converges 

to the true value of the simulation, whatever the starting value was.  This is true independently of 

whether the initial value is larger or smaller than the true one.  Thus, we conclude that our 

measurement of  (m) at z=0.77 is robust against the Alcock-Paczynski distortion.  At the same 

time, this seems to imply that it is difficult in practice to use the Alcock-Paczynski effect to extract 

cosmological parameters from (rp,), at least at these redshifts, the dynamical effect of peculiar 

velocities being dominant 37.  

 

PROSPECTS FOR ONGOING AND FUTURE REDSHIFT SURVEYS 

The method proposed here to map the growth rate as a function of redshift has a few specific 

advantages and will be fully exploited by the next generation of deep/wide redshift surveys.  One 

advantage is that galaxies are used simply as test particles to probe a velocity field that depends 

on the mass distributed well outside the survey volume; for a given survey size, this makes the 

technique less sensitive to incompleteness or non-trivial selection effects.  These have, for 

example, to be kept strictly under control when trying to measure the shape of the power 

spectrum of galaxy fluctuations on scales where the signal is just a few percent of the mean 

density (e.g. for measuring BAO).  Secondly, it can be applied to relatively low-resolution 

spectroscopic surveys (requiring smaller amounts of telescope time), since it depends on a bulk 

effect and does not require a high precision in the measurement of each galaxy redshift.    There 

are several ongoing redshift surveys that can be expected to be able shortly to provide 

independent measurements of f(z) at different redshifts, with accuracy similar to the VVDS-F22 
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estimate of this paper.  These data sets include at high redshift the full VVDS-Wide survey, for 

which another ~4 deg2 will soon become available, the similar Z-Cosmos survey 38 over 2 deg2 

and the deeper DEEP2 survey 39 over 3 deg2.  Additionally, estimates of  from the clustering of 

colour-selected QSO’s have been recently obtained at z~1.4 using the same technique (and with 

the same drawbacks) of the red galaxies of Fig. 2 in the main paper 40, but need to be 

complemented with a more robust estimate of the bias to yield a reliable value of f.  Finally, at 

z~0 a second reliable and fully independent measurement should be within easy reach using the 

nearly one million redshifts of the Sloan Digital Sky Survey 41.    

Looking more to the distant future, we have used our suite of mock surveys to produce some 

forecasts for the errors on β achievable by future redshift surveys with characteristics similar to 

VVDS Wide, but covering larger areas (Suppl. Fig. 2).  One finds that enlarging the survey volume 

(while keeping the galaxy density fixed), the rms error on  scales as the square root of the 

volume.  The gain is slightly less effective if the density of sampling (i.e. the fraction of galaxies 

that are observed among all those brighter than the survey limit) is increased by the same factor.   

These dependencies can be combined into a useful empirical expression that we calibrated with 

the simulation results, as a function of the sampling rate fs, the total mean density of objects 

expected <n> (in h3 Mpc-3) and its volume V (in h-3 Mpc3).  The relative error can be expressed as 

! 

"# $ 50 / fs n( )
0.44

V
0.5( ) . In the case of our z=[0.6-1.2] sample, the values fs=0.2, <n>~5 x 10-

3 h3 Mpc-3 and V=6.35 x 106 h-3 Mpc3, correspond to the error estimated from the mocks.  Note 

that, interestingly, the total number of galaxies in the sample being 

! 

N = fs n Vol , this formula 

indicates that the error scales almost as the square root of the number of galaxies.  

These computations show that an extension of currently ongoing surveys will be able to push the 

statistical error on measurements of  at z~1 below 10% (as e.g. in the case of the planned 

extension of VVDS-Wide to 16 deg2).  More ambitiously, a survey with the same depth (magnitude 

I<22.5) and sampling rate (~20%), but covering 100 times more area than F22 (400 deg2), would 

yield  at z=0.8 to better than 4%.   Projects this size, however, will only be possible through new 

and dedicated instrumentation.  Several ideas are under discussion, including both ground-based 

and space-borne observatories.  Particularly attractive are the predictions on the accuracy 

achievable on f(z) from an infrared-selected all-sky spectroscopic survey of ~109 galaxies (the 
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SPACE project 42), reported for comparison as the very small error bars over the standard model 

in Fig. 2 of the main paper.   These errors assume precise knowledge of the galaxy bias factor, at 

the level expected from these larger surveys where it will be possible to apply higher-order 

statistics to measure it directly43.  It is also very important to stress that measurements of the 

growth rate using redshift distortions will be possible from the same redshift surveys aiming at 

measuring the expansion history H(z) using BAO, but with different systematics.  Additionally, it 

is expected that future large multi-band imaging surveys will provide estimates of the growth rate 

of mass fluctuations through gravitational lensing “tomography” 44.  Overall, therefore, an optimal 

strategy for a combined attack on the problem of explaining the cosmic acceleration over the next 

decade would seem to be that of having two complementary experiments, possibly both from 

space: an imaging survey capable of discovering large numbers of distant supernovae with 

accurate photometry, while making accurate weak lensing measurements, plus an infrared-

selected all-sky spectroscopic survey to z~1.5-2, capable of measuring simultaneously to high 

precision both Baryonic Acoustic Oscillations (from the galaxy power spectrum) and the growth 

rate (using the technique proposed in this paper) within several redshift bins.   
 
 
 
1. Riess A. G. et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. 

Astron. J. 116, 1009-1038 (1998).  

2. Perlmutter, S. et al. Measurements of Omega and Lambda from 42 high-redshift supernovae.  Astrophys. J. 517, 565-

586 (1999). 

3. Spergel D.N. et al. Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for 

Cosmology. Astrophys. J. Supp. 170, 377-408 (2007). 

4. Peacock, J.A. et al. A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift 

Survey.  Nature  410, 169-173 (2001). 

5. Peebles P.J.E., Dark matter and the origin of galaxies and globular star clusters. Astrophys. J. 277, 470-477 (1984). 

6. Eisenstein D.J. et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous 

Red Galaxies.  Astrophys. J. 633, 560-574 (2005). 

7. Cole, S. et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological 

implications. Mon. Not. R. Astr. Soc. 362, 505-534 (2005). 

8. Angulo R. et al. The detectability of baryonic acoustic oscillations in future galaxy surveys. Mon. Not. R. Astr. Soc. 383, 

755-776 (2008). 

9. Peebles, P.J.E. The large-scale structure of the universe.  Princeton: Princeton University Press (1980). 



 A test of the nature of cosmic acceleration using redshift space distortions 
 

25  

10. Longair, M. Galaxy Formation, Berlin: Springer (2008). 

11. Heath, D.J. The growth of density perturbations in zero pressure Friedmann-Lemaitre universes. Mon. Not. R. astr. Soc. 

179, 351-358 (1977). 

12. Lahav, O., Lilje, P.B., Primack, J.R. & Rees, M.J. Dynamical effects of the cosmological constant. Mon. Not. R. astr. Soc. 

251, 128-136 (1991). 

13. Lightman A.P. & Schechter P.L. The Omega dependence of peculiar velocities induced by spherical density 

perturbations. Astrophys. J. Suppl. 74, 831-832 (1990). 

14. Hamilton A. J. S. Formulae for growth factors in expanding universes containing matter and a cosmological constant.  

Mon. Not. R. astr. Soc. 322, 419-425 (2001). 

15. Linder, E.V. Cosmic growth history and expansion history. Phys.Rev D 72, 043529 (2005). 

16. Lue, A., Scoccimarro, R. & Starkman, G.D. Probing Newton’s constant on vast scales: Dvali-Gabadadze-Porrati gravity, 

cosmic acceleration and large-scale structure. Phys. Rev. D 69, 124015 (2004). 

17. Le Fevre, O. et al. A large population of galaxies 9 to 12 billion years back in the history of the Universe. Nature 437, 

519-521 (2005). 

18. Le Fevre, O. et al. The VIMOS VLT Deep Survey. First epoch VVDS-deep survey: 11 564 spectra with 17.5 ≤ IAB ≤ 24, 

and the redshift distribution over 0 ≤ z ≤ 5.  A&A, 439, 845-862 (2005). 

19. Garilli, B., et al. The VIMOS VLT Deep Survey.  First data release of the IAB<22.5 Wide survey. A&A, submitted (2008) 

20. Fisher, K., et al. Clustering in the 1.2-JY IRAS Galaxy Redshift Survey - Part Two - Redshift Distortions and (rp,). 

Mon. Not. R. astr. Soc. 267, 927-948 (1994). 

21. Davis, M. & Peebles, P.J.E.  A survey of galaxy redshifts. V - The two-point position and velocity correlations. 

Astrophys. J. 267, 465-482 (1983). 

22. Pollo, A. et al. The VIMOS VLT deep survey. Computing the two point correlation statistics and associated 

uncertainties. Astron. & Astrophys. 439, 887-900 (2005). 

23. Landy, S.D., & Szalay, A.S. Bias and variance of angular correlation functions. Astrophys. J. 412, 64-71 (1993). 

24. Saunders, W., Rowan-Robinson, M. & Lawrence, A. The spatial correlation function of IRAS galaxies on small and 

intermediate scales. Mon. Not. R. astr. Soc. 258, 134-146 (1992). 

25. Pierleoni, M. et al. 2008, in preparation. 

26. Pierleoni, M., Laurea Thesis, University of Bologna (2006). 

27. Kaiser, N. Clustering in real space and in redshift space. Mon. Not. R. Astr. Soc. 227, 1–21 (1987). 

28. Hamilton A.J.S. in The Evolving Universe, Dordrecht: Kluwer Academic Publishers, ASSL Series 231, 185-276 (1998). 

29. Fisher, K.B. On the validity of the streaming model for the redshift-space correlation function in the linear regime. 

Astrophys. J.  448, 494-499 (1995). 

30. Hawkins, E. et al. The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of 

the Universe. Mon. Not. R. astr. Soc. 346, 78-96 (2003). 

31. De Lucia, G. & Blaizot, J. The hierarchical formation of the brightest cluster galaxies. Mon. Not. R. Astr. Soc. 375, 2-14 

(2007). 

32. Springel, V., Frenk, C.S. & White, S.D.M. The large-scale structure of the Universe. Nature 440, 1137-1144 (2006). 



L. Guzzo et al. 

26 

33. Kitzbichler, M. & White, S.D.M. The high-redshift galaxy population in hierarchical galaxy formation models.  Mon. Not. 

R. astr. Soc. 376, 2-12 (2007) 

34. Blaizot F. et al. MoMaF: the Mock Map Facility. Mon. Not. R. astr. Soc. 360, 159-175 (2005). 

35. Alcock, C. & Paczynski, B. An evolution free test for non-zero cosmological constant, Nature 281, 358-359 (1979). 

36. Ballinger, W.A., Peacock, J.A. & Heavens, A.F. Measuring the cosmological constant with redshift surveys. Mon. Not. R. 

astr. Soc. 282, 877-888 (1996). 

37. Ross, N.P. et al. The 2dF-SDSS LRG and QSO Survey: The LRG 2-Point Correlation Function and Redshift-Space 

Distortions.  Mon. Not. R. Astr. Soc. 381, 573-588 (2007). 

38. Lilly, S. et al. zCOSMOS: a large VLT/VIMOS redshift survey covering 0<z<3 in the COSMOS field. Astrophys. J. Suppl. 

172, 70-85 (2007). 

39. Coil, A.L. et al. The DEEP2 Galaxy Redshift Survey: Clustering of Quasars and Galaxies at z = 1. Astrophys. J. 654, 

115-124 (2007). 

40. Da Angela, J., et al. The 2dF-SDSS LRG and QSO survey: QSO clustering and the L-z degeneracy. Mon. Not. R. Astr. 

Soc. 383, 565-580 (2008). 

41. Zehavi, I., et al. The Luminosity and Color Dependence of the Galaxy Correlation Function. Astrophys. J. 630, 1-27 

(2005). 

42. http://urania.bo.astro.it/cimatti/space/  

43. Verde, L. et al. The 2dF Galaxy Redshift Survey: the bias of galaxies and the density of the Universe. Mon. Not. R. Astr. 

Soc. 335, 432-440 (2002). 

44. Massey, R. et al. Dark matter maps reveal cosmic scaffolding.  Nature 445, 286-290 (2007). 

 



 A test of the nature of cosmic acceleration using redshift space distortions 
 

27  

 
Supplementary Figure 1. Estimates of the linear compression parameter   and 
pairwise velocity dispersion 12 from 100 VVDS-like mock surveys. Each measurement 
has been obtained by applying our model fitting procedure to mock samples that accurately 
reproduce the selection function and statistical properties of the actual F22 VVDS-Wide field.   
These have been constructed as “light-cones” 34 from the state-of-the-art Millennium Simulation 
32, by applying a semi-analytic model of galaxy formation that correctly reproduces a large 
number of observed properties of galaxies and of their spatial distribution 31,33 . With this same 
set of mock surveys, we have also thoroughly explored the effectiveness of other methods of 
estimating  from the moments of ξ(rp,π) (refs. 28, 30), concluding that for our data the direct fit 
using the de-projected spatial function gives the most stable and unbiased estimate.   The colour 
scale gives the likelihood levels for the bi-variate Gaussian distribution that best describes the 
data.  The red lines correspond to the standard loci for 1-parameter confidence levels of 68%, 
95% and 99%, in the sense that their projection onto the two axes gives the corresponding 
intervals for the two parameters separately. 
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Supplementary Figure 2. Dependence of the rms error of   on the survey size.  The 
values have been obtained using mock surveys with a sampling of ~20% to a magnitude IAB=22.5 
and a redshift interval between z=0.6 and z=1.2, as for the VVDS survey data used in this paper.  
Points correspond to sky areas of 4, 16, 64 and 400 deg2, respectively.  The dashed band gives a 
±5% error around the fiducial value of  in the simulation.  Red error bars correspond to using in 
the model for ξ(rp,π) (eq. S8) the real space function ξ(r) obtained through de-projection of the 
observed ξ(rp,π) (eq. S7).  Blue error bars show instead the ideal case in which the true real space 
function ξ(r) (directly available in the case of the simulations) is used.  This results in a factor of 
~3 improvement, showing that a significant fraction of the error on  is due to inaccuracies in our 
description of the intrinsic spatial clustering. Obviously, the true ξ(r) is not known a priori for the 
data, but this result indicates that there is significant room for improving the measurement of , 
also from current samples, provided we obtain a more precise estimate of ξ(r).  It should also be 
remarked that when statistical errors on  approach the 3-5% level, as in the case of a 400 deg2 
survey, they become comparable to the estimated systematic errors.  More detailed exploration of 
systematic effects and further optimization of the estimator would certainly be needed in this 
high-precision regime to understand how to reduce the errors even further. 

 


