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ABSTRACT

It is well known that cosmic rays contribute significantly to the pressure of the interstellar medium in our own Galaxy, suggesting
that they may play an important role in regulating star formation during the formation and evolution of galaxies. We here discuss
a novel numerical treatment of the physics of cosmic rays and its implementation in the parallel smoothed particle hydrodynamics
code GADGET-2. In our methodology, the non-thermal cosmic ray population of each gaseous fluid element is approximated by a
simple power law spectrum in particle momentum, characterized by an amplitude, a cut-off, and a fixed slope. Adiabatic compression
and a number of physical source and sink terms are modelled which modify the cosmic ray pressure of each particle. The most
important sources considered are injection by supernovae and diffusive shock acceleration, while the primary sinks are thermalization
by Coulomb interactions, and catastrophic losses by hadronic interactions. We also include diffusion of cosmic rays. Using a number
of test problems, we show that our scheme is numerically robust and efficient, allowing us to carry out the first cosmological structure
formation simulations that account for cosmic ray physics, together with radiative cooling and star formation. In simulations of isolated
galaxies, we find that cosmic rays can significantly reduce the star formation efficiencies of small galaxies, with virial velocities below
∼80 km s−1, an effect that becomes progressively stronger towards low-mass scales. In cosmological simulations of the formation of
dwarf galaxies at high redshift, we find that the total mass-to-light ratio of small halos and the faint end of the luminosity function are
affected. The latter becomes slightly flatter. When cosmic ray acceleration in shock waves is followed as well, we find that up to 40%
of the energy dissipated at structure formation shocks can appear as cosmic ray pressure at redshifts around z ∼ 3−6, but this fraction
drops to ∼10% at low redshifts when the shock distribution becomes increasingly dominated by lower Mach numbers. Despite this
large cosmic ray energy content in the high-redshift intergalactic medium, the flux power spectrum of the Lyman-α forest is only
affected on very small scales of k > 0.1 km−1s, and at a weak level of 5−15%. Within virialized objects, we find lower contributions
of CR-pressure, due to the increased efficiency of loss processes at higher densities, the lower Mach numbers of shocks inside halos,
and the softer adiabatic index of CRs, which disadvantages them when a composite of thermal gas and cosmic rays is adiabatically
compressed. The total energy in cosmic rays relative to the thermal energy within the virial radius drops from 20% for 1012 h−1 M�
halos to 5% for rich galaxy clusters of mass 1015 h−1 M� in non-radiative simulations. Interestingly, the lower effective adiabatic index
also increases the compressibility of the intrahalo medium, an effect that slightly increases the central concentration of the gas and the
baryon fraction within the virial radius. We find that this can enhance the cooling rate onto central cluster galaxies, even though the
galaxies in the cluster periphery become slightly less luminous as a result of cosmic ray feedback.
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intergalactic medium

1. Introduction

In recent years, the ΛCDM model has emerged as a highly suc-
cessful “concordance” model for cosmological structure forma-
tion. It conjectures that the dominant mass component in the
universe consists of cold dark matter and that a cosmological
constant or dark energy field adds sufficient energy density to
yield a spatially flat spacetime. This model is impressively suc-
cessful in matching observational data on a wide range of scales
and epochs, including the cosmic microwave background fluctu-
ations (e.g. Spergel et al. 2003), galaxy clustering (e.g. Tegmark
et al. 2004; Cole et al. 2005), cosmic flows in the present uni-
verse (e.g. Willick et al. 1997; Hudson et al. 2004), or the obser-
vational data on distant supernovae (Riess et al. 1998; Perlmutter
et al. 1999).

While the dynamics of the dark matter component in the
ΛCDM model is now quite well understood and can be followed

with high accuracy in numerical simulations (Power et al. 2003;
Navarro et al. 2004; Heitmann et al. 2005), the baryonic pro-
cesses that regulate the formation of the luminous components of
galaxies are much less well understood. Direct hydrodynamical
simulations that follow the baryonic gas as well as the dark mat-
ter, face a number of “small-scale” problems. For example, they
tend to produce too many stars as a result of a “cooling catas-
trophe”, unless effects like galactic outflows are included in a
phenomenological way (e.g. Springel & Hernquist 2003b). They
lead to disk galaxies that are too concentrated (e.g. Abadi et al.
2003) and fail to reproduce the observed shape of the luminosity
function of galaxies in detail (Murali et al. 2002; Nagamine et al.
2004).

By invoking strong feedback processes, semi-analytic mod-
els of galaxy formation are able to overcome these prob-
lems and to explain a wide array of galaxy properties (White
& Frenk 1991; Kauffmann et al. 1993; Baugh et al. 1998;
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Somerville & Primack 1999; Cole et al. 2000; Croton et al.
2006). While this supports the notion that feedback is crucial
for the regulation of galaxy formation, it is unclear whether the
physical nature of the feedback processes is correctly identified
in the present semi-analytic models, or whether they merely give
a more or less correct account of the consequences of this feed-
back. Direct hydrodynamic simulations can in principle be used
to lift this ambiguity and to more directly constrain the physical
processes at work.

In most current models of galaxy formation, feedback ef-
fects due to supernovae explosions and due to a photoionizing
background are usually included, and more recently, some stud-
ies have considered quasar and radio activity by AGN as well
(e.g. Di Matteo et al. 2005; Sijacki & Springel 2006). However,
perhaps surprisingly, magnetic fields and non-thermal pressure
components from cosmic rays have received comparatively little
attention thus far (with notable exceptions, including Kang et al.
1996; Miniati 2001; Miniati et al. 2001; Miniati 2002, 2003; Ryu
& Kang 2003, 2004), despite the fact that cosmic rays are known
to contribute substantially to the pressure in the ISM of our own
Galaxy. This is probably at least in part due to the complexity of
the cosmic ray dynamics, which when coupled to the galaxy for-
mation process is very hard to describe analytically. Even when
numerical methods are invoked, the cosmic ray physics is so in-
volved that a number of simplifying approximations are required
to make it tractable in a cosmological simulation settings.

In recent years, a number of numerical studies have ad-
dressed this challenge, and provided very interesting results that
suggest an important role of cosmic ray production for the γ-ray
background and the structure of clusters of galaxies. Indeed,
Miniati et al. (2001) simulated cosmic ray production at struc-
ture formation shock waves and found that up to ∼45% of the
pressure in groups and clusters of galaxies could be due to cos-
mic rays. Similar results were also found by Ryu & Kang (2003)
who reported that the cosmic ray energy in the cluster ICM could
account for up to half of the thermal energy. However, so far
these numerical studies have focused on the acceleration process
in structure formation shocks. While some studies accounted for
CR transport and loss processes (e.g. Miniati 2001), they typi-
cally neglected radiative cooling and star formation that are im-
portant in forming individual galaxies.

In this study, our goal is to introduce the first cosmolog-
ical code of galaxy formation that treats cosmic rays during
the structure formation process. Our principal approach for cap-
turing the cosmic ray physics has been laid out in a compan-
ion paper (Enßlin et al. 2007), where we introduced a num-
ber of approximations to reduce the complexity of the problem.
Fundamentally, we model the cosmic ray population of each
fluid element with a power law spectrum in particle momentum,
characterized by an amplitude, a cut-off, and a fixed slope. Our
model then accounts for adiabatic advection of cosmic rays, and
for injection and loss terms due to a variety of physical sources.
Finally, we also include cosmic ray diffusion. The primary injec-
tion mechanisms we consider are supernova shocks and diffusive
shock acceleration at structure formation shock waves. Since the
efficiency of the latter is a sensitive function of the Mach number
of the shock, we have also developed an on-the-fly shock finder
for SPH calculations, which is described in a second companion
paper (Pfrommer et al. 2006).

In this paper, we use the theoretical model of Enßlin et al.
(2007) and cast it into a numerical formulation of cosmic
ray physics that we implement in the cosmological TreeSPH
code GADGET-2 (Springel et al. 2001; Springel 2005). We dis-
cuss our numerical approach in detail, including also various

C

q
Fig. 1. Schematic illustration of the cosmic ray momentum spectrum in
our two parameter model. We adopt a simple power-law description,
where the slope of the cosmic ray spectrum is given by a spectral in-
dex α, kept constant throughout our simulation. The normalization of
the spectrum is given by the variable C, and the low-momentum cut-
off is expressed in terms of a dimensionless variable q, in units of mpc
where mp is the proton rest mass.

optimisations needed to keep the scheme efficient and robust.
We then move on to show first results from applications of the
model, ranging from isolated galaxies of different sizes, to cos-
mological simulations of galaxy cluster formation, and of homo-
geneously sampled boxes. Interestingly, cosmic rays can have a
substantial effect on dwarf galaxies, suppressing their star for-
mation considerably. We show that this should leave a notice-
able imprint in the luminosity function of galaxies, leading to a
shallower faint-end slope.

This paper is laid out as follows. In Sect. 2, we describe
the details of our implementation of cosmic ray physics, and
in Sect. 3 we discuss our treatment of cosmic ray diffusion.
Section 4 presents a number of test problems, which we used
to verify the validity of results obtained by the code. We then
describe in Sect. 5 a first set of simulations of isolated galaxies
carried out with the new code. This establishes a number of prin-
cipal effects found for the model. In Sect. 6, we then extend our
analysis to more sophisticated, fully cosmological simulations of
structure formation. We consider both galaxy clusters and dwarf
galaxy formation at high redshift. Finally, Sect. 7 summarizes
our conclusions and gives an outlook for future studies of cos-
mic rays in a cosmological context.

2. Modelling cosmic ray physics

In Enßlin et al. (2007), we have introduce a new theoretical for-
malism for a simplified treatment of cosmic ray physics during
cosmological structure formation. We also gave a detailed dis-
cussion of the physical background and the relative importance
of various physical source and sink processes, and how they can
be incorporated within the simplified framework. In this section
of the present study, we describe the practical implementation
of this model within the Lagrangian TreeSPH code GADGET-2,
including also a concise summary of the those parts of the frame-
work of Enßlin et al. (2007) that we included in the code thus far.

2.1. The cosmic ray spectrum and its adiabatic evolution

As discussed in full detail in Enßlin et al. (2007), we assume
that the cosmic ray population of each fluid element is made up
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Fig. 2. The function βα(q) introduced in Eq. (5), for several different
values of the spectral slope α.

of relativistic protons with an isotropic momentum distribution
function of the form

d2N
dp dV

= Cp−α θ(p − q), (1)

where C gives the normalization, q is a low momentum cut-off,
and α is the power law slope. The momenta are expressed in di-
mensionless form in units of mpc, where mp is the proton mass.
For the purposes of this paper, we will generally take α to be
constant (α ∼ 2.5−2.8), which should be a reasonable first order
approximation in most cases relevant to galactic structure forma-
tion. We note however that α can in principle be made to vary in
our formalism, at the price of a substantially increased computa-
tional cost and complexity (Enßlin et al. 2007). The pressure of
this cosmic ray population is given by

PCR =
C mpc2

6
B 1

1+q2

(
α − 2

2
,

3 − α
2

)
, (2)

while the number density is simply nCR = C q1−α/(α − 1). Here

Bn(a, b) ≡
∫ n

0
xa−1(1 − x)b−1 dx (3)

denotes incomplete Beta functions. To describe the kinetic en-
ergy per cosmic ray particle for such a power-law population we
define the function

TCR(α, q) ≡
[
1
2

qα−1βα(q) +
√

1 + q2 − 1

]
mpc2, (4)

which will be of later use. The quantity

βα(q) ≡ B 1
1+q2

(
α − 2

2
,

3 − α
2

)
(5)

is here introduced as a convenient abbreviation for the incom-
plete Beta function. We show βα(q) as a function of q for a few
values of α in Fig. 2.

We here implement the cosmic ray model in a Lagrangian
simulation code, where the advection of the cosmic ray popula-
tion can be conveniently described simply in terms of the mo-
tion of gas particles. In this approach, the normalization of the
spectrum should be expressed in terms of a quantity normalized
to mass, instead of the volume-normalized quantity C, with the

translation between the two being simply given by the local gas
density ρ. In our case, it is convenient to absorb the proton mass
into a redefinition of the amplitude, so we define

C̃ = C
mp

ρ
(6)

as Lagrangian amplitude of the spectrum. Upon adiabatic
changes of the gas density, the normalization of the spectrum
changes according to

C̃(ρ) =

(
ρ

ρ0

) α−1
3

C̃0, (7)

while the momentum cut-off shifts as

q(ρ) =

(
ρ

ρ0

) 1
3

q0. (8)

Here, we introduced a reference density ρ0 (for example set
equal to the mean cosmic density) and a corresponding normal-
ization C̃0 and cut-off q0 at this density. In our numerical im-
plementation, we only have to follow the evolution of the adia-
batic invariants C̃0 and q0 due to non-trivial physical source and
sink processes, releasing us from the task to compute adiabatic
changes of the normalization and cut-off explicitly. Instead, they
are simply accounted for by Eqs. (7) and (8).

The number density nCR of relativistic CR protons can also
be conveniently expressed in terms of the total proton density1,
yielding

ñ = nCR
mp

ρ
= C̃

q1−α

α − 1
= C̃0

q1−α
0

α − 1
· (9)

We can thus interpret ñ as something like a “cosmic ray to baryon
ratio”. This quantity is an adiabatic invariant which can be fol-
lowed accurately in dynamical simulations with our Lagrangian
approach.

Note that in our model we do not explicitely remove baryons
from the reservoir of ordinary thermal matter when they are ac-
celerated to become relativistic cosmic ray particles. This is a
valid approximation, provided we have ñ � 1, which is always
expected in our applications. In the calculations we performed
so far, the fraction of protons contained in the relativistic phase
typically remained far below a maximum value of ñ ≈ 10−4. The
latter is already an exceptionally large value which we encoun-
tered only in our most extreme tests, but it is still small enough
that the reduction of the number density of thermal particles can
be safely neglected. We note that cosmic ray confinement by
magnetic fields holds in ideal magneto-hydrodynamics (MHD)
when the mass fraction in relativistic particles is small.

In a Lagrangian code, it is natural to express the cosmic ray
energy content in terms of energy per unit gas mass, ε̃, which is
given by

ε̃ = c2 C̃
α − 1

[
1
2
βα(q) + q1−α

(√
1 + q2 − 1

)]
. (10)

Note that ε̃ refers to the energy normalized by the total gas mass,
not by the mass of the cosmic ray particles alone. The specific
energy content can also be expressed as

ε̃ =
TCR nCR

ρ
=

TCR ñ
mp
· (11)

1 We here loosely call ρ/mp the proton density. In our cosmological
applications, we of course use the mean particle mass where appropriate
to account for the presence of heavier elements and the ionization state
of the gas.
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Fig. 3. The distribution of cosmic ray energy per unit logarithmic in-
terval of proton momentum, for several different values of the spectral
slope α. The distributions have been normalized to ε̃(0) in each case.

In Fig. 3, we show the distribution dε̃/d ln q of energy per
logarithmic momentum interval, normalized to a spectrum with
vanishingly small cut-off. For spectral indices in the range 2 <
α < 3, most of the energy is typically contained around q � 1,
unless the cut-off of the actual spectrum lies higher than that, in
which case the particles just above the cut-off will dominate the
total energy. Due to our assumption that the momentum distri-
bution extends as a power-law to infinity, the spectral index α
is restricted to α > 2, otherwise the energy would diverge. For
α < 3, the energy stays finite also for an arbitrarily low spectral
cut-off.

In our numerical scheme, every baryonic SPH particle car-
ries the adiabatic invariants q0 and C̃0 as internal degrees of
freedom for the description of the cosmic ray physics. These
variables are then used to compute all physical properties of the
cosmic ray sector, as required for the force evaluations. For the
gas dynamics, we are primarily interested in the effective pres-
sure term due to the relativistic particles, which are confined by
the ambient magnetic field. In our set of variables, this is com-
pactly given as

PCR =
C̃ρ c2

6
βα(q). (12)

In the calculation of the hydrodynamic accelerations with the
Euler equation, we can simply add this partial pressure due to
CRs to the ordinary thermal pressure (see Enßlin et al. 2007, for
further discussion). This makes the interface with the ordinary
hydrodynamical code conveniently small, requiring only a small
number of changes at well defined places.

The effective adiabatic index of the cosmic ray pressure com-
ponent upon local isentropic density changes is

γCR ≡ ∂ log PCR

∂ logρ
=
α + 2

3
− 2

3
q3−α

βα(q)
√

1 + q2
· (13)

On the other hand, when the pressure is expressed in terms of
the cosmic ray energy density, we obtain

PCR

ρ ε̃
=

(α − 1) βα(q)

3βα(q) + 6 q1−α(
√

1 + q2 − 1)
· (14)

In Fig. 4, we show the dependence of the right-hand-side of
Eq. (14) on the spectral cut-off q, for different values of the
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Fig. 4. Cosmic ray pressure in units of the cosmic ray energy density,
as a function of the spectral cut-off q. Except in the transition region
from non-relativistic to relativistic behaviour, the cosmic ray pressure
depends only weakly on q. In the ultra-relativistic regime, the ratio ap-
proaches PCR/(ρ ε̃) � (4/3 − 1), which is shown as the lower dotted
line. The upper dotted line gives the expected value of (5/3 − 1) for an
ideal gas. For the same energy content, cosmic rays always contribute
less pressure than thermal gas.

slope α. For large values of q we obtain PCR/(ρ ε̃) � (4/3 − 1),
as expected for particles in the ultra-relativistic regime, while for
low values of q the ratio is still significantly below the (5/3 − 1)
expected for an ideal gas. However, it is clear that for given cos-
mic ray energy density, the pressure depends only weakly on the
spectral cut-off; the value of ε̃ is hence much more important for
the dynamics than the value of α.

2.2. Including non-adiabatic CR processes

The adiabatic behaviour of cosmic rays that are locally locked
into the fluid by magnetic fields can be well traced with the
above prescriptions. However, there are also a multitude of phys-
ical processes that affect the CR spectrum of a gaseous mass-
element in a non-adiabatic fashion. For instance, particles can be
accelerated in strong shock waves to relativistic momenta and
become cosmic rays. This process of diffusive shock accelera-
tion should be particularly effective in high Mach number accre-
tion shocks during cosmological structure formation, which can
be traced by the hydrodynamical solver of our simulation code.
On sub-resolution scales, violent shocks due to supernova explo-
sions associated with stellar evolution may inject cosmic rays as
well. Other astrophysical sources include the ejection of high-
energy particles in a jet from an accreting black hole.

On the other hand, the cosmic ray population suffers a num-
ber of loss processes which will diminish the abundance over
time if there is no new supply of freshly injected or accelerated
protons. We shall here consider only the most prominent loss
processes in the form of Coloumb losses that thermalize the cos-
mic ray energy, catastrophic losses that let the energy escape as
radiation, and diffusion which washes out cosmic ray pressure
gradients.

As discussed above and in Enßlin et al. (2007), our cos-
mic ray model requires three parameters to describe the state
of the relativistic particle component of the gas. One param-
eter is the spectral index α, which we set to a constant value
throughout the simulation volume, specified at the start of the
simulation with a value motivated by the typically observed
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index in galactic systems. However, we do not restrict the range
of non-adiabatic processes we consider to those with a similar in-
jection index. Rather, we translate the injected cosmic ray prop-
erties into changes of amplitude and momentum cut-off within
the framework of our simplified, fixed-slope model for the cos-
mic ray spectrum. This translation is based on basic principles
of mass and energy conservation. Despite this considerable sim-
plification, it is clear that the thermodynamic state of CR gas is
considerably more complex than that of an ideal gas, where es-
sentially everything is determined by the specific entropy alone.

Given some changes within a simulation time step of the cos-
mic ray specific energy (dε̃) and relative CR density (dñ) asso-
ciated with a fluid element, these changes can be cast into vari-
ations of the adiabatic invariants q0 and C̃0 of the cosmic ray
population using a Jacobian matrix. We then obtain

dC̃0 =

(
ρ

ρ0

)− α−1
3

dC̃ = C̃0
mp dε̃ − Tp(q) dñ

mpε̃ − Tp(q) ñ
(15)

and

dq0 =

(
ρ

ρ0

)− 1
3

dq =
q0

α − 1

mp dε̃ − TCR dñ

mpε̃ − Tp(q) ñ
, (16)

where we used the mean kinetic energy per cosmic ray particle,
viz. TCR = ε̃mp/ñ, as given by Eq. (4), and defined

Tp(q) = (
√

1 + q2 − 1)mpc2 (17)

as the kinetic energy of a proton with normalized momentum q.
Recall that TCR only depends on q and α, but does not depend
on the normalization of the spectrum.

However, this simple and fast translation scheme will only
work for sufficiently small changes of the cosmic ray population.
In our implementation, we therefore apply Eqs. (15) and (16)
only if the relative changes in cosmic ray energy and number
density are less than a few percent. Otherwise, new cosmic ray
spectral parameters in terms of C̃0 and q0 are computed by ex-
plicitly solving Eqs. (9) and (10), after applying the principles of
energy and particle conservation. While (9) can be easily solved
for either q0 or C̃0, Eq. (10) for the specific energy needs to be
inverted numerically (see also the discussion in Sect. 4.1, and in
Enßlin et al. 2007).

Still, a naive application of energy and particle conserva-
tion when adding a newly injected CR component to the cur-
rent spectrum can cause unphysical results if the spectral cut-
offs involved are very different. The reason lies in the strong
dependence of the cosmic ray loss processes on particle momen-
tum, together with our simplified spectral representation. As we
will see, the life-time of cosmic ray particles grows monotoni-
cally with particle momentum. This dependence is particularly
steep in the non-relativistic regime (τlosses(p) ∼ p3), but becomes
much shallower and eventually nearly flat in the mildly relativis-
tic and strongly relativistic regimes. Simply injecting a CR com-
ponent with very low cut-off to one with high cut-off while en-
forcing total energy and CR particle number conservation will
then result in a new composite spectrum where many of the orig-
inal CR particles are represented as lower momentum particles.
Consequently, their cooling times would be artificially reduced.
Ultimately, this problem arises because the number density of
the injected particles is dominated by low momenta, and these
have cooling times much shorter than any relevant dynamical
timescale. If this is the case, then it would make more sense to

never inject this population to begin with, and to rather thermal-
ize it instantly, thereby avoiding an unphysical distortion of the
composite spectrum.

The two injection processes we consider in this paper
(shocks and supernova) both supply power-law distributions of
cosmic ray particles which start at very low thermal momenta.
For them, we define an injection cut-off qinj such that only the
particles and the energy above the cut-off are injected, while the
rest of the energy is instantly thermalized and added to the ther-
mal reservoir. The criterion we choose for defining qinj is

τlosses(qinj) = τinj(ε̃, qinj) (18)

where τlosses(q) is the cooling timescale

τlosses(q) ≡ ε̃

|dε̃/dt|losses
(19)

due to cosmic ray loss processes for a spectrum with cut-off at
q and spectral slope α. As we will see, this timescale is inde-
pendent of the normalization of the spectrum, and inversely pro-
portional to the density, provided the weak density-dependence
of the Coulomb logarithm in the Coulomb loss-rate is neglected.
Given the present cosmic ray energy content ε̃, the timescale

τinj(ε̃, qinj) ≡ ε̃

fαinj (q0, qinj) (dε̃/dt)inj
(20)

defines the current heating time due to the injection source, as-
suming that only the fraction f (q0, qinj) above qinj of the raw
energy input rate (dε̃/dt)inj contributes efficiently to the build up
of the cosmic ray population. Here q0 is the intrinsic injection
cut-off of the source, which typically lies at very small thermal
momenta, and αinj is the slope of the source process. The factor
fαinj (q0, qinj) is given by

fαinj (q0, qinj) =

(
qinj

q0

)1−αinj TCR(αinj, qinj)

TCR(αinj, q0)
(21)

for qinj ≥ q0, otherwise by unity.
Equation (18) simply says that we only inject cosmic ray

particles at momenta where a spectral component could grow,
given the rate of energy injection. It would be unphysical to as-
sume that a spectrum develops that extends as a power-law to
momenta lower than qinj. The addition of this injection rule is
hence necessary to make our simple model with a fixed spectral
shape physically well-behaved.

We note that Eq. (18) will typically have two solutions, or
may not have a solution at all if the current energy ε̃ in cosmic
rays is high enough. In the former case, the physical solution
is the smaller of the two, which lies at qinj ≤ qmax, where qmax
is the place where the expression τlosses(qinj) f (q0, qinj) attains its
maximum, i.e.

d
dq

[
τlosses(q) f (q0, q)

]∣∣∣∣∣
q=qmax

= 0 . (22)

In the latter case, we choose qinj = qmax, which comes closest
to solving Eq. (18) and naturally corresponds to the point where
one expects the largest amount of cosmic ray energy that can be
present as a power-law with a balance between loss and source
processes.
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2.3. Shock acceleration

In our present model, we consider two primary sources for cos-
mic rays, diffusive shock acceleration and supernovae. In the for-
mer, a small fraction of the particles streaming through a shock
front is assumed to diffuse back and forth over the shock inter-
face, experiencing multiple accelerations. This can only happen
to particles in the high-energy tail of the energy distribution, and
eventually results in a power-law momentum distribution func-
tion for the accelerated particles.

In the linear regime of CR acceleration, particles above
a threshold momentum qinj can be accelerated. They are re-
distributed into a power-law distribution in momentum that
smoothly joins the Maxwell-Boltzmann distribution of the ther-
mal post-shock gas. The slope of the injected CR spectrum is
given by

αinj =
r + 2
r − 1

, (23)

where r = ρ2/ρ1 is the density compression ratio at the shock
(Bell 1978a,b). If the shock is dominated by the thermal pres-
sure, the spectral index can also be expressed through the Mach
number M as

αinj =
4 − M2 + 3γM2

2(M2 − 1)
· (24)

The stronger the shock becomes, the flatter the spectrum of the
accelerated CR particles, and hence the more high-energy par-
ticles are produced. Weak shocks on the other hand produce
only rather steep spectra where most of the particles thermalize
quickly.

Due to the continuity between the power law and the thermal
spectrum, the injected cosmic ray spectrum is completely spec-
ified by the injection threshold q0, provided the shock strength
is known (Miniati 2001, and references therein). We will as-
sume that q0 is at a fixed multitude xinj of the average thermal

post-shock momentum, pth =

√
2kT2/(mpc2), i.e. q0 = xinj pth.

In this case, the fraction of particles that experience shock accel-
eration does not depend on the post-shock temperature T2, and
is given by

∆ñlin =
4√
π

x3
inj

αinj − 1
e−x2

inj . (25)

We will typically adopt a fixed value of xinj � 3.5, motivated by
theoretical studies of shocks in galactic supernova remnants (e.g.
Drury et al. 1989). The fraction of injected supernovae particles
in strong shocks is then a few times 10−4 (Drury et al. 1989;
Jones & Kang 1993; Kang & Jones 1995).

In the linear regime of CR acceleration, the specific en-
ergy per unit gas mass in the injected cosmic ray population is
given by

∆ε̃lin =
TCR(αinj, qinj)∆ñlin

mp
· (26)

We can use this value to define a shock injection efficiency for
CRs by relating the injected energy to the dissipated energy per
unit mass at the shock front. The latter appears as extra thermal
energy above the adiabatic compression at the shock and is given
by ∆udiss = u2 − u1rγ−1, where u1 and u2 are the thermal ener-
gies per unit mass before and after the shock, respectively. The
injection efficiency of linear theory is then given by

ζlin ≡ ∆ε̃lin

∆udiss
· (27)

However, the shock acceleration effect experiences saturation
when the dynamical CR becomes comparable to the upstream
ram pressure ρ1v

2
1 of the flow. We account for this by adopting

the limiter suggested by Enßlin et al. (2007), and define as final
acceleration efficiency

ζinj =

[
1 − exp

(
− ζlin
ζmax

)]
ζmax. (28)

We will adopt ζmax = 0.5 for the results of this study. Thus, we
take the injected energy to be

∆ε̃inj = ζinj∆udiss, (29)

and correspondingly, the injected particle number is given by

∆ñinj =
mp ∆ε̃inj

TCR(αinj, q0)
, (30)

where TCR(αinj, q0) is the mean kinetic energy of the accelerated
cosmic ray particles. In practice, both∆ε̃inj and ∆ñinj will be low-
ered when we shift the actual injection point from q0 to qinj, as
determined by Eq. (18), with the difference of the energies fed
to the thermal reservoir directly.

It is clear that the efficiency of CR particle acceleration de-
pends strongly on the compression ratio, or equivalently on the
Mach number of shocks. Interestingly, accretion shocks dur-
ing cosmological structure formation can be particularly strong.
Here we hence expect potentially interesting effects both for the
forming intragroup and intracluster media, as well as for the
intergalactic medium. However, in order to accurately account
for the cosmic ray injection by structure formation shocks, we
somehow need to be able to estimate the strength of shocks in
SPH simulations. As SPH captures shocks with an artificial vis-
cosity instead of an explicit shock detection scheme, this is a
non-trivial problem.

In Pfrommer et al. (2006), our second companion paper to
this study, we have proposed a practical solution to this problem
and developed a novel method for measuring the Mach number
of shocks on the fly during cosmological SPH calculation. The
method relies on the entropy formulation for SPH by Springel
& Hernquist (2002), and uses the current rate of entropy in-
jection due to viscosity, together with an approximation for the
numerical shock transit time, to estimate the shock Mach num-
ber. The scheme works better than one may have expected, and
it is in fact capable of producing quite accurate Mach number
estimates, even for the case of composite gases with a thermal
and a cosmic ray pressure component. In cosmological simula-
tions, the method delivers Mach number statistics which agree
well with results obtained with hydrodynamical mesh codes that
use explicit Riemann solvers (Ryu et al. 2003; Pfrommer et al.
2006).

Having a reliable Mach number estimator solves an impor-
tant problem when trying to account for cosmic ray injection
by shocks in SPH. Another complication is posed by the shock
broadening inherent in SPH, which implies a finite shock tran-
sit time for particles, i.e. a SPH particle may require several
timesteps before it has passed through a shock and received the
full dissipative heating. Note that the number of these steps de-
pends on the timestep criterion employed, and can in principle
be made very large for a sufficiently conservative choice of the
Courant coefficient. Unlike assumed in the above treatment of
diffusive shock acceleration, we hence are not dealing with a
discrete injection event, but rather need to formulate the cosmic
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ray acceleration in a “continuous fashion”, in parallel to the ther-
mal dissipation, such that the final result does not depend on how
many timesteps are taken to resolve a broadened shock front.

Fortunately, the above treatment can be easily adjusted to
these conditions. We can simply insert for ∆udiss in Eq. (29) the
dissipated energy in the current timestep. This quantity is com-
puted in the SPH formalism anyway, and in fact, we know that
SPH will integrate ∆udiss correctly through the shock profile, in-
dependent of the number of steps taken. This is because the cor-
rect pre- and post-shock state of the gas are enforced by the con-
servation laws, which are fulfilled by the conservative SPH code.
For the same reason, the Rankine-Hugoniot jump conditions
are reproduced across the broadened shock. Note however that
for computing the linear shock injection efficiency according to
Eq. (27), we need to continue to use an estimate for the total
energy dissipated across the shock, based on the Mach number
finder.

For simplified test calculation with the code, we have also
implemented an option where we assume a constant injection
efficiency of the shock acceleration process, along with a con-
stant spectral index and momentum cut-off parameter. Values for
these parameters can then be chosen to represent the energeti-
cally most important types of shocks in the environment to be
simulated. Such a simplified injection mechanism can then also
be used to get an idea about the importance of the Mach-number
dependence of the shock acceleration for different environments.

2.4. Injection of cosmic rays by supernovae

Strong shock waves associated with supernovae explosions are
believed to be one of the most important cosmic ray injection
mechanisms in the interstellar medium. However, similar to star
formation itself, individual supernovae are far below our resolu-
tion limit in cosmological simulations where we need to repre-
sent whole galaxies, or more challenging still, sizable parts of the
observable universe. We therefore resort to a subresolution treat-
ment for star formation and its regulation by supernovae (Yepes
et al. 1997; Springel & Hernquist 2003a). In this model, the in-
terstellar medium is pictured as a multiphase medium composed
of dense, cold clouds, embedded in a tenuous hot phase. The
clouds form by thermal instability out of the diffuse medium,
and are the sites of star formation. The massive stars of each
formed stellar population are assumed to explode instantly, heat-
ing the hot phase, and evaporating some of the cold clouds. In
this way, a tight self-regulation cycle for star formation in the
ISM is established. In simulations where we include star forma-
tion, we employ the default parameters of Springel & Hernquist
(2003a), for which stars can form above a threshold gas density
ρ� = 8.55 × 106 h−2 M� kpc−3, and 10% of the stellar mass is
formed in massive stars that explode as supernovae. With these
settings, the model reproduces the observed “Kennicutt Law”
(Kennicutt 1989) of star formation in low-redshift disk galaxies.

To model the generation of cosmic rays, we assume that a
certain fraction ζSN � 0.1−0.3 of the supernova energy appears
as a cosmic ray population (Aharonian et al. 2006; Kang & Jones
2006). The total rate of energy injection by supernovae for a
given star formation rate ρ̇� depends on the IMF. Assuming a
Salpeter IMF and that stars above a mass of 8 M� explode as
supernova with a canonical energy release of 1051 erg, we obtain
roughly one supernova per 250 M� of stellar mass formed, trans-
lating to an energy injection rate per unit volume of εSNρ̇�, with

εSN = 4 × 1048 erg M−1� . We then model the CR energy injection
per timestep of a gas particle as

∆ε̃SN = ζSNεSN ṁ� ∆t, (31)

where ṁ� = ρ̇�/ρ is the particle’s star formation rate per unit
mass. Note that uncertainties in the IMF are not really important
here as we have introduced a free parameter, ζSN, to control the
amount of energy that is fed into cosmic rays.

For the slope of the injected cosmic ray power-law we as-
sume a plausible value of αSN = 2.4 (Aharonian et al. 2004,
2006), and for the cut-off qSN, we can adopt the thermal mo-

mentum qSN =

√
kTSN/(mpc2) for a fiducial supernova tem-

perature characteristic for the involved shock acceleration. Our
choice of αSN = 2.4 for the injection slope is motivated by the
observed slope of ∼2.75 in the ISM, and the realization that mo-
mentum dependent diffusion in a turbulent magnetic field with
a Kolmogorov-type spectrum on small scales should steepen the
injected spectrum by p−1/3 in equilibrium. Our results do not
depend on the particular choice for TSN, provided qSN � 1. The
change of the particle number density can then be computed with
the mean kinetic energy TCR(αSN, qSN) of the injected power law.
Using Eqs. (4) and (11), this results in

∆ñ = mp
ζSNεSNṁ�

TCR(αSN, qSN)
∆t. (32)

We note that in the formalism of Springel & Hernquist (2003a),
we need to reduce the supernovae energy injected into thermal
feedback (and to an optional wind model if used) by the frac-
tion ζSN that we assume powers cosmic ray acceleration. Also,
similar to our treatment of shock injection, ∆ñ will be lowered in
practice when we shift the actual injection point from qSN to qinj,
as determined by Eq. (18). The resulting difference of the ener-
gies is fed directly to the thermal reservoir, contributing to the
ordinary supernova feedback modelled by the simulation code.

2.5. Coulomb cooling and catastrophic losses

Charged particles moving through a plasma will gradually dissi-
pate their kinetic energy and transfer it to the surrounding ions
and electrons by Coulomb interactions. The rate of this energy
loss depends both on the physical properties of the surrounding
medium and on the detailed momentum spectrum of the cosmic
ray population. The latter in particular complicates an accurate
determination of the Coulomb loss rate.

Since particles with low momenta are most strongly affected
by the Coulomb interactions, a qualitative consequence of this
effect is that it induces a flattening of the spectrum; the high-
momentum tail remains unchanged while the low-momentum
cosmic ray particles dissipate their energy effectively to the ther-
mal gas, and eventually drop out of the cosmic ray population
altogether.

In our model, we have deliberately abandoned a detailed rep-
resentation of the cosmic ray spectrum of each fluid element, in
favour of the high computational speed and low memory con-
sumption allowed by our simplified spectral model. We even
opted to use a globally fixed spectral index, which means that we
cannot represent a spectral flattening in detail. However, we can
account for the effect of thermalization of the low-momentum
particles in a simple and efficient way. To this end, we com-
pute the energy loss by Coulomb-cooling over the entire spec-
trum, and then shift the low-momentum cutoff of our spectral
model such that just the right amount of energy is removed
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in low-momentum particles, keeping the high-momentum part
unaffected.

More specifically, we follow Enßlin et al. (2007) and esti-
mate the Coulomb loss rate of the CR population as
(

dε̃
dt

)
C

= −2πC̃e4 ne

mempc

[
ln

(
2mec2 〈βp〉
�ω

)

×B 1
1+q2

(
α−1

2
,−α

2

)
− 1

2
B 1

1+q2

(
α−1

2
,−α−2

2

)]
· (33)

Here ne is the electron abundance, ω =
√

4πe2ne/me the plasma
frequency, and 〈βp〉 = 3PCR/(ρñc2) is a mean value for our
assumed spectrum. We also define a cooling timescale due to
Coulomb cooling as

τC(q) =
ε̃

|dε̃/dt|C , (34)

which depends only on the spectral cut-off q, and is inversely
proportional to density, modulo a very weak additional loga-
rithmic density-dependence through the plasma frequency. For
a given energy loss ∆ε̃C in a timestep based on this rate, we can
then estimate the corresponding change in cosmic ray number
density as

∆ñC = ∆ε̃C
mp

Tp(q)
, (35)

i.e. we assume that the particles are removed at the low momen-
tum cut-off q. From Eqs. (15) and (16), we can see that this will
result in a gradual rise of the spectral cutoff q while the nor-
malization will remain unchanged. The corresponding energy
loss ∆ε̃C is added to the thermal energy in the ordinary gas com-
ponent, i.e. the Coulomb cooling process leaves the total energy
content of the gas unaffected. We note that for large Coulomb
cooling rates, we use an implicit solver to compute the new po-
sition of the spectral cut-off, leaving the amplitude parameter ex-
actly invariant. This ensures stability even if the cut-off increases
substantially in one timestep.

Another class of loss processes for cosmic rays results occurs
through inelastic collisions with atoms of the ambient gas, result-
ing in the hadronic production of pions, which subsequently de-
cay into γ-rays, secondary electrons, and neutrinos. In this case,
the energy is ultimately dissipated into photons which tend to
escape. So here the net effect is a loss of energy from the sys-
tem, unlike in the case of Coulomb losses, where the dissipated
cosmic ray energy heats the thermal reservoir.

However, these “catastrophic losses” can only proceed effi-
ciently when the cosmic ray particles exceed the energy thresh-
old of qthrmpc2 = 0.78 GeV for pion production (qthr = 0.83).
The total loss rate can then be described by (Enßlin et al. 2007)
(

dε̃
dt

)
had

= −c ρσpp C̃ q1−α
� TCR(α, q�)

2(α − 1) m2
p

, (36)

where σpp � 32 mbarn is the averaged pion production cross
section, and q� denotes q� = max {q, qthr}. The number density
of cosmic ray particles stays constant, however, due to conser-
vation of baryon number in strong and electroweak interactions,
i.e. we have ∆ñhad = 0. This condition in turn implies that the
changes of amplitude and cut-off of our spectral model due to
this cooling process are related by

∆C̃

C̃
= (α − 1)

∆q
q
· (37)
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Fig. 5. The top panel shows the cooling times due to Coulomb losses
(rising solid line) and hadronic dissipation (nearly horizontal line) as a
function of the spectral cut-off. The dot-dashed line gives the total cool-
ing time, while the vertical dashed lines marks the asymptotic equilib-
rium cut-off reached by the CR spectrum when no sources are present.
The bottom panel shows the cooling time of ordinary thermal gas due
to radiative cooling (for primordial metallicity), as a function of tem-
perature. The horizontal dashed line marks the cooling time of CRs
with a high momentum cut-off (q  1), for comparison. In both pan-
els, the times have been computed for a gas density of ρ = 2.386 ×
10−25 g cm−3, which corresponds to the density threshold for star for-
mation that we usually adopt. Note however that the cooling times all
scale as τ ∝ 1/ρ, i.e. for different densities only the vertical scale would
change but the relative position of the lines would remain unaltered.

As before, we also define a cooling timescale due to catastrophic
losses, which is given by

τhad(q) ≡ ε̃

|dε̃/dt|had
=

2 mp

cρσpp

TCR(α, q)
TCR(α, q�)

(
q

q�

)1−α
· (38)

Note that τhad becomes constant for q ≥ qthr.
In the top panel of Fig. 5, we show the cooling timescales

for Coulomb and catastrophic losses as a function of the cut-
off parameter q, at a fiducial density corresponding to our star
formation threshold, assuming a spectral index α = 2.5. As ex-
pected, catastrophic losses dominate for high momentum cut-
offs, and therefore limit the lifetime of any cosmic ray popula-
tion to τ ∼ 2 mp/(cρσpp), unless an injection process provides a
resupply. For small cut-offs, Coulomb losses dominate and will
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Fig. 6. The total cooling time due to Coulomb losses and hadronic
dissipation as a function of the spectral cut-off, for different assump-
tions about the slope of the spectrum (α = 2.01, 2.1, 2.5 and 2.99,
as labelled). For low values of the cut-off, in the regime dominated
by Coulomb cooling, the cooling time depends quite sensitively on α.
However, after a relatively short time, the cut-off of a cooling popula-
tion moves to q ∼ 1 and beyond, at which point the cooling shifts into
the hadronically dominated regime, where it does not depend strongly
on α any more.

rapidly thermalize the low momentum cosmic rays. The dot-
dashed line shows the total loss timescale, defined by

1
τlosses(q)

=
1
τC(q)

+
1

τhad(q)
· (39)

This timescale is monotonically rising with q. In Fig. 6, we
show how this total cooling timescale depends on the assumed
slope α. For low values of the cut-off, in the regime dominated
by Coulomb cooling, the cooling time depends quite sensitively
on α. However, after a relatively short time, the cut-off of a cool-
ing population moves to q ∼ 1 and beyond, at which point the
cooling shifts into the hadronically dominated regime, where it
does not depend strongly on α any more. If our prescribed α
should not match the real slope of the CR spectrum well, there
may hence be significant inaccuracies in the prompt cooling of
the population, but the long-term errors should still be quite
moderate.

In the absence of any injection, the cosmic ray population
will always evolve towards a fixed cut-off qfix, driven by the ten-
dency of Coulomb cooling to increase the cut-off, while catas-
trophic losses tend to lower it. A balance is reached at the solu-
tion of the equation

1 +
τC(qfix)
τhad(qfix)

=
TCR(α, qfix)

Tp(qfix)
, (40)

which follows from Eqs. (15) and (16). The vertical dotted line
in Fig. 5 marks this equilibrium point at qfix = 1.685 for α = 2.5.
Once this fix-point is reached, only the spectral amplitude de-
cays due to the cosmic ray cooling and dissipation processes.
Finally, note that both the Coulomb cooling and the hadronic
cooling time are inversely proportional to density. This also
means that the fix-point qfix is density independent, but whether
it can be reached in the available time at low density is a separate
question.

It is also interesting to compare the cosmic ray loss timescale
to the thermal cooling timescale of primordial gas. The latter is
also inversely proportional to density, but has in addition a strong

temperature dependence. In the bottom panel of Fig. 5, we show
the thermal cooling timescale as a function of temperature, at the
same fiducial density used in the top panel. For comparison, we
show the asymptotic cosmic ray dissipation time scale (dashed
line), which is reached if the cosmic ray population is dominated
by the relativistic regime. In this case, cosmic rays decay much
slower than the thermal gas pressure in the intermediate temper-
ature regime. This could be interesting for cooling flows in halos
or clusters. Even a moderate cosmic ray pressure contribution in
the diffuse gas in a halo of temperature Tvir ∼ 105−107 K should
tend to survive longer than the thermal gas pressure, which could
influence the cooling rate. We will examine this question explic-
itly in our numerical simulations of isolated halos.

2.6. Equilibrium between source and sink terms

The above considerations lead to an interesting question: What
will the cosmic ray spectrum look like for a fluid element at a
density ρ high enough to allow star formation, such that is fed at
a constant rate by supernova injection? We expect that after some
time, a balance will be established between the supernova input
on one hand and the cosmic ray losses due to Coulomb cooling
and hadronic processes on the other hand. The energy content in
the cosmic rays at this equilibrium point will then determine the
CR pressure, and comparison of this pressure with the thermal
pressure of the ISM will show whether “cosmic ray feedback”
could be important in regulating star formation in galaxies.

To derive this equilibrium point, we first note that from the
conditions ∆ε̃SN + ∆ε̃C + ∆ε̃had = 0 and ∆ñSN + ∆ñC = 02 it
directly follows that the mean energy per injected particle due to
supernovae in equilibrium must be

TCR(αSN, qinj) = Tp(qeq)

[
1 +
τC(qeq)

τhad(qeq)

]
· (41)

This is a relation between the effective injection cut-off of the su-
pernova feeding, and the equilibrium cut-off qeq of the CR spec-
trum. In equilibrium, we also know that the supernova input will
just balance the cooling losses for the spectrum with equilibrium
cut-off qeq, yielding

ε̃ = τlosses(qeq) f (qSN, qinj)

(
dε̃
dt

)
SN

· (42)

On the other hand, our injection criterion of Eq. (18) tells us
that ε̃ = τlosses(qinj) f (qSN, qinj)

(
dε̃
dt

)
SN

, provided a solution for
Eq. (18) actually exists when the system is in the dynamic
equilibrium. Assuming this for the moment, it follows that the
CR loss timescales at qinj and qeq are equal, which in turn im-
plies qinj = qeq. In other words, the injection cut-off coincides
with the cut-off of the equilibrium spectrum. The location of the
equilibrium cut-off itself is given as solution of

1 +
τC(qeq)

τhad(qeq)
=

TCR(αSN, qeq)

Tp(qeq)
· (43)

This is almost identical to Eq. (40) which describes the fix-point
of the cut-off if there is no injection. The only difference is
the occurrence of αSN instead of just α in the argument of the
TCR function. The result of this will be a slight shift of the equi-
librium position once the assumed spectral indices for supernova
injection and the general cosmic ray population differ, while for
αSN = α, there will be no difference. At first sight it may seem

2 Note that we always have ∆ñhad = 0.
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surprising that the equilibrium position can be shifted away from
the fix-point by an arbitrarily small supernova injection rate.
However, recall that in the injection case we have described a
truly invariant spectrum with a fixed amplitude (which may take
very long time to be established), while in the case without in-
jection, the amplitude keeps falling on the cooling timescale.

The above assumed that the injection condition (18) has a
solution in equilibrium. This will be the case if qeq determined
by Eq. (43) is smaller or equal than qmax as given by Eq. (22).
Otherwise the injection cut-off is given by qinj = qmax, and the
position of the equilibrium cut off is determined by Eq. (42). A
detailed comparison of the steady-state CR spectrum with and
without our approximate description is provided by Enßlin et al.
(2007). There it is shown that dynamically important quantities
like cosmic ray pressure and energy are calculated with ∼10%
accuracy by our formalism.

Of primary importance for us is the equilibrium value of the
cosmic ray energy content, because this will directly determine
the CR pressure and hence the strength of potential feedback ef-
fects on star formation. The total cosmic ray energy injection rate
by supernovae is related to the star formation rate by Eq. (31).
Once the equilibrium cut-off qeq is known, the energy content
in equilibrium will be given by Eq. (42), so that the pressure is
fully specified. For example, in the case of qeq ≤ qmax, the final
pressure is therefore given by

PCR =
(α − 1)βα(qeq) τloss(qeq) fαSN (qSN, qeq)

3βα(qeq) + 6 q1−α
eq (

√
1 + q2

eq − 1)
ζSNεSNρ̇�. (44)

In our simulations, we combine the cosmic ray formalism with
the subresolution multiphase model for the regulation of star for-
mation by Springel & Hernquist (2003a). In the latter, the mean
star formation rate is determined by the local density, and scales
approximately as ρ̇� ∝ ρ1.5 above a density threshold for the
onset of star formation. A detailed discussion of the multiphase
model together with the precise density dependence of the star
formation rate is given in Springel & Hernquist (2003a). These
authors also derive an effective equation of state for the ISM,
which governs the assumed two-phase structure of the ISM.

In Fig. 7, we show this effective pressure as a function of
density, using the parameters for gas consumption timescale, ini-
tial mass function, and cloud evaporation efficiency discussed
by Springel & Hernquist (2003a), which result in a star forma-
tion threshold of ρth = 2.4 × 10−25 g cm−3. We also plot the
expected cosmic ray pressure in the same diagram, for two dif-
ferent injection efficiencies of ζSN = 0.1 and ζSN = 0.3. Quite
interestingly, the cosmic ray pressure exceeds the thermal pres-
sure at the threshold density for star formation, but due to the
shallow dependence of the equilibrium pressure on density, with
approximately PCR ∼ ρ0.5 (note that τlosses ∝ ρ−1), we find that
the pressure of cosmic rays only plays a role for the low density
part of the ISM model, while regions with very high specific star
formation rates should be at most weakly affected.

For small efficiencies ζSN ≤ 0.01, we essentially expect
no significant influence of cosmic rays from supernova on the
regulation of star formation whatsoever. Even for the fiducial
choice of ζSN = 1, the influence would vanish for densities
ρ > 100ρth. Based on these findings, we expect that galaxies
which form most of their stars at comparatively low densities
should be potentially strongly affected by the cosmic ray feed-
back, while this influence should be weak or absent for vigor-
ously star-forming galaxies with higher typical ISM densities.
Our numerical results presented later will confirm this picture.
The fact that CR-pressure seems to become dominant around
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Fig. 7. Pressure of the cosmic ray population predicted for equilib-
rium between supernova injection on one hand, and Coulomb cool-
ing and catastrophic losses on the other hand. The solid lines mark
the pressure as a function of overdensity for two values of the injec-
tion efficiency ζSN. The assumed threshold density for star formation,
ρ0 = 2.4 × 10−25 g cm−3, is derived from the multiphase model of
Springel & Hernquist (2003a). The latter also predicts an effective equa-
tion of state for the star forming phase, shown as a dot-dashed line. The
part below the threshold is an isothermal equation of state with temper-
ature 104 K.

the star formation threshold may even suggest that cosmic rays
could play an active role in defining this threshold.

3. Cosmic ray diffusion

Our treatment is based on the notion that the cosmic ray popula-
tion is approximately locked into a gas fluid element by a locally
present magnetic field. Even a weak ambient field makes the
charged particle gyrate around the field lines, preventing them
from freely travelling over macroscopic distances with their in-
trinsic velocity close to to the speed of light. The cosmic ray
particles may move slowly along the field lines, but their per-
pendicular transport is strongly suppressed.

However, occasional scattering of particles on magnetic ir-
regularities of MHD waves can displace the gyrocentres of par-
ticles, such that a particle effectively “changes its field line”,
allowing it to move perpendicular to the field. Since realistic
magnetic field configurations are often highly tangled, or even
chaotic, this can lead to sizable cross-field speeds of the par-
ticles. From a macroscopic point of view, the motion of the
cosmic ray population can be described as a diffusion process,
which is anisotropic with respect to the local magnetic field con-
figuration. The theory of the respective diffusion coefficients is
complicated, and uncertain for the case of turbulent magnetic
field configurations (e.g. Rechester & Rosenbluth 1978; Duffy
et al. 1995; Bieber & Matthaeus 1997; Giacalone & Jokipii
1999; Narayan & Medvedev 2001; Enßlin 2003).

In principle, one could try to simulate the magnetic field in
SPH and then treat the diffusion in an anisotropic fashion. While
recent advances in modelling MHD with SPH are promising
(Dolag et al. 1999; Price & Monaghan 2004), these techniques
still face severe numerical challenges when applied to simula-
tions with radiative cooling. We therefore defer such an approach
to future work and model the diffusion isotropically. Also, since
we have no direct information about the local magnetic field
strength and field configuration, we will invoke a phenomeno-
logical approach to estimate the effective diffusion coefficient as
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a function of the local conditions of the gas. It would be easy
however to refine the spatial dependence of the diffusion coeffi-
cient once a more detailed physical scenario becomes available.

Assuming isotropy, the diffusion in the CR distribution func-
tion f (p, x, t) can be written as

∂ f
∂t
= ∇(κ∇ f ). (45)

The diffusion coefficient κ itself depends on the particle momen-
tum (more energetic particles diffuse faster), and on the local
magnetic field configuration. For definiteness we assume that the
underlying MHD is turbulent with a Kolmogorov power spec-
trum, in which case the momentum dependence of κ is given by

κ(p) = κ̃ p
1
3 , (46)

where we assumed relativistic particle velocities with v � c.
Integrating the diffusion equation over particle momenta then
yields

∂nCR

∂t

∣∣∣∣∣
diff
=
α − 1

α − 4
3

∇κ̃∇(q
1
3 nCR), (47)

where q is the spectral cut-off. Because more energetic particles
diffuse faster, we expect that the diffusion speed for the cosmic
ray energy density will be a bit higher than for the number den-
sity itself. To account for this effect, we first multiply the dif-
fusion Eq. (45) with Tp(p), and then integrate over the particle
momenta. This results in

∂εCR

∂t

∣∣∣∣∣
diff
=
α − 1

α − 4
3

∇κ̃∇
⎛⎜⎜⎜⎜⎜⎝q 1

3
TCR(α − 1

3 , q)

TCR(α, q)
εCR

⎞⎟⎟⎟⎟⎟⎠ , (48)

where εCR = ρε̃ is the cosmic ray energy density per unit vol-
ume. The factor TCR(α − 1

3 , q)/TCR(α, q) is larger than unity and
encodes the fact that the diffusion in energy density proceeds
faster than in particle number density. In Enßlin et al. (2007), we
also give more general formulae for different power-law depen-
dences of the diffusivity, and provide a more accurate treatment
where the reduction of the diffusion rate at sub-relativistic ener-
gies is accounted for.

3.1. Modelling the diffusivity

Due to the lack of direct local information about the magnetic
field strength in our present numerical models, we parameterize
the dependence of the diffusion coefficient on local gas proper-
ties in terms of a fiducial power-law dependence on the local gas
density and gas temperature. In particular, we make the ansatz

κ̃ = κ0

(
ρ

ρ0

)nρ ( T
T0

)nT

, (49)

for the diffusion constant, which is effectively a three parame-
ter model for the diffusivity, specified by the overall strength κ0
of the diffusion at a reference density and temperature, and by
the power-law slopes nρ and nT for the density and temperature
dependence, respectively.

While clearly a schematic simplification, this parameteriza-
tion is general enough to allow an analysis of a number of inter-
esting cases, including models where the typical magnetic field
strength has a simple density dependence, which can be a rea-
sonable first order approximation for some systems, for example
for the diffuse gas in cluster atmospheres (Dolag et al. 2004b).

For definiteness, we now construct such a very simple model,
which will be the fiducial choice for the results on diffusion
presented in this study. In Kolmogorov-like MHD turbulence,
the dominant parallel diffusivity is expected to scale as (Enßlin
2003)

κ̃ ∝ lB
2/3 B−1/3, (50)

where lB gives a characteristic length scale for the magnetic field
of strength B. We start out by assuming that the magnetic energy
density is a fixed fraction of the thermal energy content, which
corresponds to

B ∝ ρ1/2T 1/2. (51)

An appropriate length scale for lB is more difficult to estimate, as
it will sensitively depend on the level of local MHD turbulence,
and on the build up of the magnetic field due to structure for-
mation processes. For simplicity, we here assume that the length
scale is related to the local Jeans scale, which may be appropri-
ate for the conditions of a multiphase interstellar medium where
local density fluctuations constantly form clouds of order a Jeans
mass, which are then in part dispersed by supernova-driven tur-
bulence. This then gives a scaling of the form

lB ∝ ρ−1/2T 1/2. (52)

Combining Eqs. (51) and (52), we obtain a model for the con-
ductivity in the form κ̃ ∝ T 1/6ρ−1/2, i.e. nT = 1/6 and nρ = −1/2.
We fix the overall strength by alluding to measurements in our
own Galaxy (Berezinskii et al. 1990; Schlickeiser 2002), which
estimate a diffusivity along the magnetic field lines in the inter-
stellar medium of approximately

κISM ≈ 3 × 1027 cm2

s
≈ 10

kpc2

Gyr
· (53)

Adopting our typical temperature and density values of the ISM
as reference values, we end up with the following model for the
diffusivity

κ̃ = 10
kpc2

Gyr

( T
104 K

)1/6 (
ρ

106 M� kpc−3

)−1/2

· (54)

We will use this parameterization in the simulations with diffu-
sion analysed in the this study. It is clear however that this model
needs to be interpreted with a lot of caution, as the real diffusiv-
ity is highly uncertain, and may vary widely between different
parts of the Universe. Improving the physical understanding of
the strength of the diffusion will therefore remain an important
goal for cosmic ray physics in the future.

3.2. Discretizing the diffusion equation

We still have to discuss how we numerically implement diffusion
in our Lagrangian SPH code. We here follow a similar strategy
as in Jubelgas et al. (2004), where a new treatment of thermal
conduction in SPH was discussed and applied to simulations of
clusters of galaxies. In essence, the very same techniques that
can be used to solved the heat diffusion equation can also be
applied to the cosmic ray diffusion needed here.

We first rewrite the diffusion equations into a Lagrangian
form that is matched to the variables evolved in our simulation
code. This results in

ρ
dε̃
dt
= ∇κ̃∇Dε (55)
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and

ρ
dñ
dt
= ∇κ̃∇Dn, (56)

where we have defined the abbreviations

Dε =
α − 1

α − 4
3

ρ q1/3
TCR(α − 1

3 , q)

TCR(α, q)
ε̃ (57)

and

Dn =
α − 1

α − 4
3

ρ q1/3 ñ (58)

respectively. Our method for representing these equations in
SPH is based on a discretisation scheme for the Laplace op-
erator that avoids second order derivatives of the SPH kernel
(Brookshaw 1985; Monaghan 1992), which makes the scheme
robust against particle disorder and numerical noise. This gives
us an evolution equation in the form of

dε̃i

dt
=

∑
j

m j

ρiρ j

2κi j(Dε, j − Dε,i)

|xi j|2 xi j∇iWi j, (59)

and similarly for the cosmic ray number density. We here intro-
duced a symmetrization of the diffusivities according to

κi j = 2
κ̃iκ̃ j

κ̃i + κ̃ j
, (60)

based on the suggestion by Cleary & Monaghan (1999).
Furthermore, we replaced one of the Dε terms in the pairwise
diffusion term by the kernel interpolant

Dε, j =
∑

k

mkDε,k
ρk

W jk. (61)

As Jubelgas et al. (2004) show, such a mixed formulation
between intrinsic particle variables and SPH-smoothed inter-
polants substantially improves the numerical stability against
small-scale particle noise. The smoothing process suppresses
strong small-scale gradients, while long-range variations and
their diffusive evolution remain unchanged. Since we use an ex-
plicit time integration scheme, this behaviour prevents stability
problems due to the typical “overshooting” problem that other-
wise may arise due to strong local gradients from local outliers.

Nevertheless, we still need to impose a comparatively strict
timestep criterion to ensure proper integration of the diffusion.
For the thermal conduction problem, we employed a simple cri-
terion that limits the relative change of thermal energy of a parti-
cle within a single timestep. Although the diffusion studied here
is in principle very similar to the conduction problem, an equiv-
alent criterion is not a good choice, simply because unlike for
thermal conduction, the relevant reservoir can often be empty. In
fact, we typically start simulations from initial conditions where
all the cosmic ray particle densities are identical to zero.

However, a closer look at the Green’s function G(x, t) =
(4πκt)−3/2 exp[−x2/(4κt)] of the diffusion process shows that dif-
ferences between two points with a distance of |x| are diffused
away with a characteristic timescale x2/κ. Using the mean in-
terparticle separation of SPH particles for the distance, this sug-
gests the definition of a diffusion timescale in the form

tdiff =
1
κ

(
m
ρ

)2/3

· (62)

We use this to limit the maximum timestep for particles to be
constrained by

∆t < ε tdiff = ε
1
κ

(
m
ρ

)2/3

(63)

where we used ε = 0.1 for the simulations presented in this
study. This has provided us with a numerically stable cosmic ray
diffusion while at the same time timesteps are prevented from
becoming impractically small.

As an additional refinement to the implementation of diffu-
sion, we have implemented the method proposed by Jubelgas
et al. (2004) to obtain a manifestly conservative scheme for cos-
mic ray energy and particle number, even when individual and
adaptive timesteps are used. To this end, we rewrite Eq. (59) as

mi
dε̃i

dt
=

∑
j

dEi j

dt
, (64)

where we have defined a pairwise exchange term of cosmic ray
energy in the form

dEi j

dt
=

mim j

ρiρ j

2κi j(Dε, j − Dε,i)

|xi j|2 xi j∇iWi j. (65)

In each system step, we now determine the change of the cosmic
ray energy of particle i according to

mi∆ε̃i =
1
2

∑
jk

∆t j(δi j − δik)
dE jk

dt
· (66)

The double sum on the right can be simply evaluated by the
ordinary SPH sums over the active particles, provided that for
each neighbour j found for a particle i one records a change of
(∆ti/2) dEi j/dt for i, and a change of−(∆ti/2) dEi j/dt for the par-
ticle j. We then apply the accumulated changes of the cosmic ray
energy (or particle number) to all particles at the end of the step,
i.e. not only to the ones that are active on the current timestep.
In this way, we arrive at a scheme that manifestly conserves total
cosmic ray energy and number density for each diffusive step.

Finally, we note that we have implemented a further refine-
ment in order to cope with technical problems associated with
the situation in which isolated CR-pressurized particles are em-
bedded in a background of particles with zero CR pressure. In
the neighbourhood of such an isolated particle, the smoothed
cosmic ray energy field Dε, j will be non-zero for particles that
have themselves no CR component (yet). This can then in turn
lead to exchange terms Ei j between particles which both have
zero cosmic ray pressure, leading to unphysical negative values
for the energy in one of them. We found that this can be avoided
if we limit the value of the interpolant Dε,i to be no more than
a factor χ � 2.0 larger than the value Dε,i for the particle itself.
With this change, we recovered numerical stability of the diffu-
sion in this situation.

4. Numerical details and tests

The numerical framework for cosmic ray physics presented
above allows for very complex dynamics that interacts in non-
linear and rather non-trivial manner with different aspects of
ordinary hydrodynamics, and in particular with the physics of
radiative cooling and star formation included in GADGET-2 to
describe galaxy formation. Together with the nearly complete
absence of analytic solutions, this makes a direct validation of
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the numerical implementation of cosmic ray physics in the sim-
ulation code particularly hard.

However, there are a few areas where the careful checks of
individual subroutines of the code that we carried out can be
augmented with tests of problems where analytical solutions are
known. One such area are hydrodynamical shock waves that in-
volve a cosmic ray pressure component. This allows us to test
one of the most interesting dynamical aspects of cosmic ray
physics which is the introduction of a variable adiabatic index γ.
Note that the pressure of a “hybrid gas” with a thermal and a
cosmic ray energy density can no longer be described with the
simple parameterizations used for a polytropic gas. In particular,
both the relative contribution of the cosmic ray pressure and the
adiabatic index of the CR pressure component itself will change
during an adiabatic compression, and in addition, new cosmic
rays can be accelerated at a shock front. While more complex
than for an ideal gas, the Riemann problem for a shocks in such a
composite gas can be solved analytically (Pfrommer et al. 2006),
and we will use this as a test for our numerical treatment.

Another aspect which can be tested with simple toy set-ups
is the diffusion of cosmic rays. To this end we will consider a ge-
ometrically simple initial cosmic ray distribution, together with
the gas being forced to be at rest. This allows us to test the correct
diffusion speed, and the conservative properties of the diffusion
process.

4.1. Implementation issues

When the mean CR energy is updated, we need to numerically
invert the specific energy TCR of Eq. (10) for q, which we do
efficiently by means of pre-computed look-up tables, avoiding
the need to frequently evaluate costly incomplete beta functions.
Once the spectral cutoff and injected CR-to-baryon fraction is
found, the new spectral normalization C̃ can be computed from
Eq. (9). As a final step, we can then update the effective hydro-
dynamic pressure due to cosmic rays of the particle in question.

For treating Coulomb losses in an accurate and robust way,
we use an implicit scheme because of the very sensitive depen-
dence of the cooling rate on the spectral cut-off q. In fact, in
order to ensure that this cooling process leaves the normaliza-
tion of the spectrum constant and only increases the cut-off q,
we solve the following implicit equation

ε̃(q′, C̃) = ε̃(q, C̃) − ε̃(q
′, C̃)

τC(q′)
∆t (67)

for a new spectral cut-off q′ when the cooling lasts for a time in-
terval ∆t. This scheme is robust also in cases where ∆t exceeds
τC(q). Unlike the Coulomb losses, the timescale of hadronic
losses is comparatively long and varies little with the spectral
cut-off, as seen in Fig. 5. It therefore is easier to integrate accu-
rately and does not require an implicit solver.

4.2. Shocks in cosmic ray pressurized gas

We performed a number of three-dimensional test simulations
that follow a shock wave in a rectangular slab of gas, which is
extended along one spatial dimension. Periodic boundary condi-
tions in the directions perpendicular to this axis are used to make
sure that no boundary-effects occur. This allows us to simulate a
planar shock in 3D which can then be compared to a correspond-
ing one-dimensional analytic solution. The initial conditions of
our shock-tube tests were set-up with relaxed “glass” structures
of particles initially at rest, and by giving the two halves of the

slab different temperatures and cosmic ray pressures. The par-
ticle mass was constant and chosen such that the mean particle
spacing was 1 length unit in the high-density regime. While a
reduction of the particle mass in the low-density region would
have resulted in an increased spatial resolution there, our con-
stant particle mass set-up is more appropriate for the conditions
encountered in cosmological simulations. We used 64 smooth-
ing neighbours in the SPH calculations.

In the left panel of Fig. 8, we show the state of a shock-tube
test after a time of t = 0.3, for an initial density contrast of 5,
a total pressure ratio of 35.674, a homogeneous mixture of 1/3
cosmic ray pressure and 2/3 thermal pressure contribution on
the left-hand side, and pressure equilibrium between CRs and
thermal gas on the right-hand side. A shock with Mach number
M = 3 travelling to the right, a rarefaction wave to the left, and
a contact discontinuity in between develop for these initial con-
ditions. In this test, no new CRs were accelerated at the shock
front. The analytically predicted shock front position and den-
sity distribution are matched nicely by the simulation. Due to
the smooth nature of SPH simulations, the density jump at the
shock at x � 430 is not a sharp discontinuity, but stretches over a
small number of mean interparticle spacings. The contact dis-
continuity at x � 375 is reproduced well, with only a small
“blip” seen in both the density and the pressure profile, which
is characteristic for SPH in shock tube tests. Note that cosmic
ray pressure dominates over thermal pressure on the left side
of the contact discontinuity due to adiabatic rarefaction of the
initially CR-dominated state on the left-hand side, while this is
reversed on the other side because CRs are adiabatically com-
pressed at the shock while the thermal gas experiences entropy
injection. The rarefaction wave traveling to the left shows the
expected behaviour over most of its extent, only in the leftmost
parts at x � 100 some small differences between the analytic and
numerical solution are seen. However, the overall agreement is
very reassuring, despite the fact that here a shock in a compos-
ite gas was simulated. The right panel of Fig. 8 shows another
shock-tube test were the gas was initially made purely thermal,
and the pressure ratio was increased to obtain a stronger shock
wave of Mach numberM = 30. In this simulation we have ac-
counted for the acceleration of CRs at the shock, visible as a
significant CR population in the post-shock region. Again, the
match between the analytic solution and the simulation result is
very satisfactory. Note that the density jump at the shock is larger
than 4 (the maximum value for a purely thermal gas) due to the
significant post-shock pressure support by freshly injected CRs
that have a soft equation of state, which makes the composite gas
more compressible compared to a plain thermal gas.

This shows that the simulation code is able to correctly fol-
low rapid compressions and rarefactions in a gas with substan-
tial cosmic ray pressure support, including shocks that feed their
dissipated energy both into the thermal component and into the
cosmic ray population. We also note that our shock detection
technique (Pfrommer et al. 2006) is able to correctly identify
the shock location on-the-fly during the simulation, and returns
the right Mach number in the peak of the shock profile, where
most of the energy is dissipated. We can use this to accurately
describe the Mach-number dependent shock-injection efficiency
of cosmic rays in shocks.

4.3. Cosmic ray diffusion

In order to test the diffusion part of the code, we use a system
of gas particles that are at rest, which avoids the complications
that would otherwise occur due to the motions of particles. We
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Fig. 8. Shock-tube tests for a gas with thermal and cosmic ray pressure components. The simulations are carried out in a three-dimensional periodic
box which is longer in the x-direction than in the other two dimensions. The numerical result of the averaged hydrodynamical quantities of all
SPH particles within bins with a spacing equal to the interparticle separation of the denser medium is shown in black and compared with the
analytic result in colour. The typical rms-scatter in each bin among the particles is ∼10%, reflecting the typical level of SPH noise for irregular
particle distributions. The particle mass was constant and chosen such that the mean particle spacing was 1 length unit in the high-density regime
(meaning that there were initially 250 particles along the x-axis in the left half and 146 in the right half of the tube). In the test shown on the left,
the relative CR pressure is XCR = PCR/Pth = 2 in the left half-space (x < 250), while we assume pressure equilibrium between CRs and thermal
gas for x > 250. The evolution then produces a Mach numberM = 3 shock wave. In this test, CR acceleration was disregarded at the shock front,
so the cosmic ray component is merely adiabatically compressed by the shock. In the test shown on the right, the shock-tube was initially filled
with purely thermal gas (γ = 5/3), and with a higher pressure ratio of 4625 at the initial interface. A shock with Mach numberM = 30 develops
and propagates to the right, and here we include cosmic ray acceleration at the shock front. We see that our numerical method correctly captures
the production of cosmic rays by the shock, as the good agreement with the analytic solution of the Riemann problem demonstrates. To derive
the latter (see Pfrommer et al. 2007, in preparation), we assumed a sufficiently strong shock that injects a hard population of CRs for which their
ultra-relativistic equation of state holds.

achieve this by setting all particle accelerations to zero, imply-
ing that the densities remain constant over time. All variations in
the distribution of cosmic rays are then entirely due to diffusive
transport (we also switched off the Coloumb and catastrophic
losses for this test). For this idealized situation, analytic solu-
tions for the diffusion problem can be derived which can then be
readily compared with numerical results.

For definiteness, we set up a periodic slab of matter with
density 1010 M� kpc−3, spanning a basic volume of 10 × 10 ×
100 kpc3. The periodicity across the short dimensions ensures
the absence of boundary effects, such that we can compare the

numerical results to effectively one-dimensional analytic solu-
tions. The cosmic ray distribution was initialized such that the
energy density due to relativistic particles has a sharp step, be-
ing equal to ε̃1 for x < 0, and equal to ε̃2 = ε̃1/4 for x ≥ 0. The
spectral cutoff at both sides of the step was set equal to q = 0.3 in
the test discussed here, but we note that identical results are also
obtained for different choices. Again, we used an irregular glass-
like configuration as initial particle distribution in order to real-
istically model the noise properties in density fields encountered
in cosmological applications, and we employed 64 neighbours in
the SPH calculations. Note that small-scale numerical noise can
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Fig. 9. Time evolution of a step function in cosmic ray energy density due to diffusion, for a gas that is at rest. The times shown in the different
panels are (from top left to bottom right): t = 0, 0.1, 0.2, 0.5, 1.0 and 2.0 Gyr. Black dots give particle values at the corresponding time, while the
red line shows the analytical solution. The initial distribution is indicated by a thin dashed line. The diffusivity κ̃ is constant at 1 kpc2 Gyr−1 on the
left hand side, and four times higher on the right hand side. A “glass” like particle distribution was used with a mean particle separation of 1 kpc. A
constant spectral cut-off and slope was assumed throughout the volume. The maximum deviation of SPH particles from the analytic results drops
from L∞ = 0.33 at t = 0.1 Gyr to L∞ = 0.039 at t = 2.0 Gyr, while the mean relative error per particle in the range −10 kpc ≤ x ≤ 10 kpc is always
below L1 ≤ 0.01.

be problematic for our treatment of diffusion (e.g. Jubelgas et al.
2004), so this is an important aspect for testing the robustness of
the implemented scheme.

In real physical applications, the diffusion implementation
will have to deal with a spatially varying diffusion coefficient.
In particular, there will be steep gradients in the diffusivity at
phase transition between the cold, dense gas and the hot, yet
thin ambient intergalactic and intra-cluster medium. It is there-
fore advisable to verify that the implemented numerical scheme
for the diffusion is well behaved at sharp jumps of the diffu-
sivity. We incorporate this aspect into our test scenario by in-
troducing a step in the diffusivity at the initial interface, with
κ1 = 1.0 kpc2 Gyr−1 in the left half of the slab, and a four times
higher value of κ2 = 4.0 kpc2 Gyr−1 for the right half of the
slab. In order to be able to compute an analytic solution, we will
assume here that this diffusivity applies both to the CR energy
density and CR number density.

In Fig. 9, we present the time evolution of this diffusion prob-
lem obtained with our numerical implementation. The simula-
tion was run over a time span of 2 Gyr, and for a number of
times in between, we compare the spatial distribution of the cos-
mic ray energy density obtained numerically with the analytical
solution for the problem, which is given by

ε̃(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ε̃1 +

ε̃2−ε̃1
1+
√
κ̃1/κ̃2

[
erf

(
x√
4κ̃1t

)
+ 1

]
for x < 0

ε̃2 +
ε̃2−ε̃1

1+
√
κ̃2/κ̃1

[
erf

(
x√
4κ̃2t

)
− 1

]
for x ≥ 0.

(68)

While some noticeable differences occur in the very early evolu-
tion of the initial discontinuity, the match of the numerical result
and the analytic solution becomes quite good at later times. In
fact, after t = 1 Gyr, we no longer see any significant devia-
tion between the numerical solution and the analytical one. The
fact that large differences occur in the very early phases of the

evolution is not unexpected, given that SPH cannot easily repre-
sent sharp discontinuities. As a result of the smoothing inherent
in SPH and of our diffusion formulation, sharp gradients on very
small-scales are only washed out with some delay, but errors
caused by this do not propagate to larger scales, such that the
diffusion speed of large-scale gradients is quite accurate never-
theless. We note that we have verified the good accuracy of the
diffusion results for a wide range of matter densities and dif-
fusivities, including also cases with stronger spatial variations in
diffusivity. We are hence confident that our numerical implemen-
tation should produce accurate and robust results in full cosmo-
logical simulations, where the diffusivity can show non-trivial
spatial dependences.

5. Simulations of isolated galaxies and halos

We now turn to a discussion of the effects of our cosmic ray
model on the galaxy formation process. Due to the complexity
of the involved physics, which couples radiative cooling, star
formation, supernova feedback, cosmic ray physics, self-gravity,
and ordinary hydrodynamics, it is clear however that our analy-
sis cannot be fully exhaustive in this methodology paper. Instead,
our strategy is to provide a first exploration of the most impor-
tant effects using a set of simulations with idealized initial condi-
tions, and a restricted set of full cosmological simulations. This
can then guide further in-depth studies of the individual effects.

One of the possible effects of cosmic ray physics is that the
injection of CRs due to supernovae may alter the regulation of
star formation by feedback, which may directly translate into ob-
servable differences in forming galaxies. Since CR-pressurized
gas has a different equation of state than ordinary thermal gas,
it may rise buoyantly from star-forming regions, which could
perhaps help to produce outflows from galactic halos. Also, be-
cause energy stored in cosmic rays will be subject to different
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dissipative losses than thermal gas, we expect that the radiative
cooling of galaxies could be altered. Of special importance is
also whether the strength of any of these effects shows a depen-
dence on halo mass, because a change of the efficiency of galaxy
formation as a function of halo mass is expected to modify the
shape of the resulting galaxy luminosity function.

Another intriguing possibility is that the total baryonic frac-
tion ending up in galactic halos could be modified by the ad-
ditional pressure component provided by the relativistic par-
ticle population. In particular, the softer equation of state of
the cosmic-ray gas component (its adiabatic index varies in the
range 4/3 < γCR < 5/3) could increase the concentration of
baryonic matter in dark matter potential wells, because the pres-
sure increases less strongly when the composite CR/thermal gas
is compressed. On the other hand, a partial cosmic ray pressure
support might reduce the overall cooling efficiency of gas in ha-
los, causing a reduction of the condensated phase of cold gas in
the centres.

To examine the non-linear interplay of all these effects, we
will study them in a number of different scenarios. We first use
isolated galaxy models which allow a precise control over the
initial conditions and an easy analysis and interpretation of the
results. Next, we use non-radiative cosmological simulations to
investigate the efficiency of CR production at structure formation
shock waves. We then use high-resolution cosmological simula-
tions that include radiative cooling and star formation to study
the formation of dwarf galaxies, with the aim to see whether
our identified mass trends are also present in the full cosmo-
logical setting. We also use these simulations to investigate
whether CRs influence the absorption properties of the inter-
galactic medium at high redshift. Finally, we use high-resolution
“zoomed” simulations of the formation of clusters of galaxies
to study how CR injection by accretion shocks and supernovae
modifies the thermodynamic properties of the gas within halos.

5.1. Formation of disk galaxies in isolation

As a simple model for the effects of cosmic ray feedback on
disk galaxy formation, we consider the time evolution of the gas
atmospheres inside isolated dark matter halos. The initial condi-
tions consist of a dark matter potential with a structure motivated
from cosmological simulations, combined with a hydrostatic gas
distribution initially in equilibrium within the halo. The halo car-
ries a small amount of angular momentum, described by a spin
parameter λ = 0.05, which is close to the median found in cos-
mological simulations. We then consider the evolution of this
system under radiative cooling, star formation and cosmic ray
production by supernovae. We expect that the gas in the cen-
tre looses its pressure support by cooling, and then collapses
into a rotationally supported disk that forms inside-out (Fall &
Efstathiou 1980).

It is clear that this is a highly idealized model for disk galaxy
formation, which glosses over the fact that in a more realistic
cosmological setting galaxies originate in a hierarchical pro-
cess from the gravitational amplification of density fluctuation
in the primordial mass distribution, gradually growing by accre-
tion and merging with other halos into larger objects. However,
the simplified approach we adopt here should still be able to cap-
ture some of the basic processes affecting this hierarchy, and it
does so in a particular clean way that should allow us to identify
trends with galaxy mass due to cosmic rays.

We model the dark matter and baryonic content of our iso-
lated halos as NFW density profiles (Navarro et al. 1996), which
we slightly soften at the centre to introduce a core into the gas

density, with a maximum density value lying below the threshold
for star formation, allowing for a “quiet” start of the simulations.
The velocity dispersion of the dark matter and the temperature
of the gas were chosen such that the halos are in equilibrium
initially, i.e. when evolved without radiative cooling, the model
halos are perfectly stable for times of order the Hubble time. We
also impart angular momentum onto the halo with a distribution
inside the halo consistent with results obtained from full cosmo-
logical simulations (Bullock et al. 2001).

We simulated a series of host halos with masses varying sys-
tematically between 109 h−1 M� and 1012 h−1 M�. In all cases,
we adopted a baryon fraction of Ωb/Ωm = 0.133, and a mat-
ter density of Ωm = 0.3. We typically represented the gas with
105 particles and the dark matter with twice as many. In some
of our simulations, we also replaced the live dark halo with an
equivalent static dark matter potential to speed up the calcula-
tions. In this case, the contraction of the dark matter due to bary-
onic infall is not accounted for, but this has a negligible influence
on our results. We have kept the concentration of the NFW halos
fixed at a value of c = 12 along the mass sequence, such that the
initial conditions are scaled versions of each other which would
evolve in a self-similar way if only gravity and ideal hydrody-
namics were considered. However, this scale-invariance is bro-
ken by the physics of cooling, star formation and cosmic rays.

When one of these halos is evolved forward in time, radiative
cooling leads to a pressure loss of the gas in the centre, which
then collapses and settles into a rotationally supported cold disk.
In the disk, the gas is compressed by self-gravity to such high
densities that star formation ensues. Unfortunately, the physics
of star formation is not understood in detail yet, and we also lack
the huge dynamic range that would be necessary do directly fol-
low the formation and fragmentation of individual star-forming
molecular clouds in simulations of whole galaxies. In this study,
we therefore invoke a sub-resolution treatment for star forma-
tion, in the form described by Springel & Hernquist (2003a). The
model assumes that the dense interstellar medium can be approx-
imately described as a two-phase medium where cold clouds
form by thermal instability out of a diffuse gaseous phase. The
clouds are the sites of star formation, while the supernovae that
accompany the star formation heat the diffuse medium, and, in
particular, evaporate some of the cold clouds. In this way, a self-
regulation cycle for star formation is established.

When our new cosmic ray model is included in our simu-
lation code, a fraction of the deposited supernova energy is in-
vested into the acceleration of relativistic protons, and hence is
lost to the ordinary feedback cycle. While this energy no longer
directly influences the star formation rate, it has an indirect ef-
fect on the star-forming gas by providing a pressure component
that is not subject to the usual radiative cooling. If this pressure
component prevails sufficiently long, it can cause the gas to ex-
pand and to lower its density, thereby reducing the rate of star
formation.

In Fig. 10, we show the time evolution of the star formation
rate for four different halos masses, ranging from 109 h−1 M�
to 1012 h−1 M�. For each halo mass, we compare three differ-
ent cases, a reference simulation where the ordinary model of
Springel & Hernquist (2003a) without cosmic rays was used, and
two simulations where cosmic ray production by supernovae was
included (without allowing for diffusion), differing only in the
assumed efficiency of ζSN = 0.1 and ζSN = 0.3 for this process,
respectively. The CR population was represented with a constant
slope of α = 2.5. Interestingly, the simulations with cosmic rays
show a substantial reduction of the star formation rate in the
two small mass systems, but already for the 1011 h−1 M� halo
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Fig. 10. Time evolution of the star formation rate in isolated halos of different mass which are initially in virial equilibrium. In each panel,
we compare the star formation rate in simulations without cosmic ray physics (solid red line) to two runs with different injection efficiency of
cosmic rays by supernovae, ζSN = 0.1 (blue lines) and ζSN = 0.3 (green lines), respectively. From top left to bottom right, results for halos of
virial mass 109 h−1 M� to 1012 h−1 M� are shown, as indicated in the panels. Efficient production of cosmic rays can significantly reduce the star
formation rate in very small galaxies, but it has no effect in massive systems.

the effects becomes comparatively small, while for the massive
halo of mass 1012 h−1 M�, no significant differences can be de-
tected. Clearly, the ability of cosmic ray feedback to counter-
act star formation shows a rather strong mass dependence, with
small systems being affected most. For higher efficiencies ζSN of
CR-production by supernovae, the reduction of the star forma-
tion rate becomes larger, as expected.

Figure 11 provides an explanation for this result, and also
elucidates the origin of the oscillatory behaviour of the SFR in
the CR-suppressed cases. In the figure, we show phase-space di-
agrams of the gas particles of the 109 h−1 M� and 1012 h−1 M�
halos, respectively, in a plane of effective temperature versus
density. We plot the thermal pressure and the cosmic ray pres-
sure separately. In order to cleanly show whether a dynamical
effect of cosmic rays can be expected, we here use a fiducial
simulation where the cosmic ray pressure is ignored in the equa-
tions of motion, but is otherwise computed with the full dy-
namical model. As Fig. 11 demonstrates, the bulk of the star-
forming gas in the massive halo lies at much higher density and
higher effective pressure than in the low mass halo. Because the

cosmic ray pressure exceeds the effective thermal pressure of the
multi-phase ISM only for moderate overdensities relative to the
star formation threshold, most of the gas in the 1012 h−1 M� halo
is simply too dense to be affected by the cosmic ray pressure.
We note that the relative sizes of the two pressure components
are consistent with the analytic expectations shown in Fig. 7. In
fact, these expectations are replicated as dashed lines in Fig. 11
and are traced well by the bulk of the particles. Because the shal-
lower potential wells in low-mass halos cannot compress the gas
against the effective pressure of the ISM to comparably high
overdensities as in high-mass halos, it is therefore not surpris-
ing that the cosmic ray pressure becomes dynamically important
only in small systems.

Figure 11 also makes it clear that in the regime where cos-
mic ray pressure may dominate we cannot expect a dynamically
stable quasi-equilibrium with a quiescent evolution of the star
formation rate. This is simply due to the decline of the effec-
tive cosmic ray “temperature” PCR/ρ with increasing density
of the ISM, a situation which cannot result in a stable equilib-
rium configuration where self-gravity is balanced by the cosmic
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Fig. 11. Phase-space diagram of the star-forming phase in two simulations with halos of different mass. In these fiducial simulations, we included
cosmic ray physics but ignored the cosmic ray pressure in the equations of motion, i.e. there is no dynamical feedback by cosmic rays. However,
a comparison of the cosmic ray pressure and the thermal pressure allows us to clearly identify regions where the cosmic rays should have had an
effect. For graphical clarity, we plot the pressures in terms of a corresponding effective temperature, Teff = (µ/k)P/ρ. Above the star formation
threshold, the small galaxy of mass 109 h−1 M� shown in the left panel has a lot of gas in the low-density arm of the effective equation of state,
shown by the curved dashed line. On the other hand, the massive 1012 h−1 M� galaxy shown on the right has characteristically higher densities in
the ISM. As a result, the cosmic ray pressure is insufficient to affect this galaxy significantly. Note that the falling dashed line marks the expected
location where cosmic ray loss processes balance the production of cosmic rays by supernovae. We show the systems at time t = 2.0 Gyr after the
start of the evolution.

ray pressure. Instead, the system should be intrinsically unstable
in this regime. When some gas becomes dense enough to start
star formation, it will first have no cosmic ray pressure support
but it will be stabilized against collapse by the thermal pressure
of the ISM that is quickly established by supernova feedback.
After some time, the ongoing star formation builds up a cosmic
ray pressure component, which eventually starts to dominate, at
which point the gas is driven to lower density. As a result, the star
formation rate declines strongly. After some time, the CR pres-
sure is dissipated such that the gas can collapse again. Star for-
mation will then start again and the “cycle” can repeat. This sce-
nario schematically describes the origin of the oscillations in the
star formation rate seen in the results for the 109 h−1 M� and
1010 h−1 M� halos when cosmic rays are included.

Another view of the halo mass dependence of the effects of
cosmic ray feedback on star formation is given by Fig. 12. Here
we show the integrated stellar mass formed up to time t = 3 Gyr,
normalized by the total baryonic mass. Again, we compare two
different injection efficiencies (ζSN = 0.1 and ζSN = 0.3) with
a reference case where no cosmic ray physics is included. In
general, star formation is found to be most efficient on interme-
diate mass scales of ∼1011 M� in these simulations. However,
the simulations with cosmic ray production show a clear reduc-
tion of their integrated star formation rate for halos with mass
below a few times 1011 h−1 M�, an effect that becomes progres-
sively stronger towards lower mass scales. For the 109 h−1 M�
halo, the suppression reaches more than an order of magnitude
for ζSN = 0.3.

In Fig. 13, we take a closer look at the spatial distribution of
the cosmic ray pressure in the different cases, and the profiles of
the stellar disks that form. To this end, we show the projected gas
density distribution in an edge-on projection at time t = 2.0 Gyr,
comparing the case without cosmic rays (left column) to the
case with cosmic rays (middle column), for a range of halo
masses from 109 h−1 M� to 1012 h−1 M�. For the simulation with

Fig. 12. Efficiency of star formation as a function of halo mass in our
isolated disk formation simulations. We show the ratio of the stellar
mass formed to the total baryonic mass in each halo, at time t = 3.0 Gyr
after the start of the simulations, and for two different efficiencies of
cosmic ray production by supernovae. Comparison with the case with-
out cosmic ray physics shows that star formation is strongly suppressed
in small halos, by up to a factor ∼10−20, but large systems are essen-
tially unaffected.

cosmic rays, we overlay contours for the relative contribution
of the projected cosmic ray energy to the total projected en-
ergy density. This illustrates, in particular, the spatial extent the
cosmic ray pressure reaches relative to the star-forming region.
Finally, the panels on the right compare surface density profiles
of the stellar mass that has formed up to this time.

Consistent with our earlier results, the stellar density profiles
of the low mass halos show a significant suppression when cos-
mic rays are included, while they are essentially unaffected in
the high mass case. Interestingly, we also see that the gaseous
disks in the low mass halos appear to be “puffed up” by the
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Fig. 13. Effect of cosmic ray feedback on star formation in simulations of isolated disk galaxy formation. Each row shows results for a different
halo mass, for Mhalo = 109, 1010, 1011 and 1012 h−1 M� from top to bottom. We compare the projected gas density fields at time t = 2.0 Gyr of
runs without cosmic ray feedback (left column) to that of runs with cosmic ray production by supernovae (middle column). The gas density field
is colour-coded on a logarithmic scale. For the simulation with cosmic rays, we overplot contours that show the contribution of the projected
cosmic ray energy density to the total projected energy density (i.e. thermal plus cosmic rays), with contour levels as indicated in the panels.
Finally, the right column compares the azimuthally averaged stellar surface density profiles at time t = 2.0 Gyr for these runs. Results for
simulations without cosmic ray physics are shown with a solid line, those for simulations with CR feedback with a dot-dashed line.

additional pressure of the cosmic rays. It is remarkable that in
the two low-mass systems there is substantial CR pressure found
significantly above the star-forming regions, at densities much
below the star formation threshold. This is despite the fact the
acceleration of relativistic particles only occurs in star-forming
regions of high density within the galactic disk in these simu-
lations. Presumably, some of the CR-pressurized gas rises from

the star-forming disk into the halo, a process that is suppressed
by the stronger gravitational field in the high mass systems.

As a final analysis of our isolated disk simulations, we exam-
ine how well our simulation methodology for cosmic ray feed-
back converges when the numerical resolution is varied. To this
end we repeat one of the simulations with cosmic ray feedback
(ζSN = 0.1) of the 1011 h−1 M� halo using both much lower and



52 M. Jubelgas et al.: Cosmic rays in hydrodynamical simulations

Fig. 14. Resolution study of the star formation rate during the formation
of a galactic disk in a halo of mass 1010 h−1 M�, including production
of CRs with an efficiency of ζSN = 0.1. We compare results computed
with 103, 104, 105, 4 × 105, and 1.6 × 106 gas particles, respectively.

much higher number of gas particles, namely 103, 4 × 105 and
1.6 × 106, respectively. In Fig. 14, we compare the resulting star
formation rates. While there are some small fluctuations when
the resolution is varied, there is clearly no systematic trend with
resolution, and the results appear to be quite robust. In particular,
the star formation rates for the simulations with 105 and 1.6 ×
106 particles are in very good agreement with each other despite
a variation of the mass resolution by a factor of 16. In fact, even
the simulation with just 103 produces a result that is still quite
close to the high-resolution simulations. Note also that the os-
cillations are reproduced by all five resolutions, but they are not
exactly in phase. Overall, this resolution test is very promising
and suggests that the numerical model is well posed and can be
applied to cosmological simulations where the first generation
of galaxies is typically only poorly resolved. We can still expect
meaningful results under these conditions.

5.2. Cooling in isolated halos

The comparison of the maximum cosmic ray cooling timescale
with the thermal cooling time in the bottom panel of Fig. 5 has
shown that for a relatively wide temperature range, the lifetime
of CRs is larger than the thermal cooling time. In a composite
gas with a substantial cosmic ray pressure component, this could
potentially stabilize the gas temporarily and reduce the rate at
which gas cools and accumulates at the bottom of the potential
well of a halo. Also, models have been conjectured where the
temperature structure of the intracluster medium, with its char-
acteristic observed minimum of one-third of the ambient cluster
temperature, could be explained by a strong CR component in
the intracluster medium Cen (2005).

We here want to get an idea about the potential strength of
this effect, and examine to this end a small set of toy simula-
tions. To this end we consider a series of self-similar dark matter
halos with a gas component that is initially in hydrostatic equi-
librium, just as before in Sect. 5.1. In fact, we use the same initial
conditions as before, except that we replace a fraction of the ini-
tial thermal pressure with cosmic ray pressure, keeping the total
pressure constant. For definiteness, we choose a spectral cut-off
of q = 1.685 and a spectral indexα = 2.5 for the initial CR popu-
lation. We then evolve the halos forward in time, including radia-
tive cooling processes for the thermal gas as well as cosmic ray

Fig. 15. Relative suppression of star formation in simulations of isolated
halos when a fraction of 0.3 of the initial thermal pressure is replaced
by a CR component of equal pressure. We show results as a function
of halo virial mass for two different times after the simulations were
started, for t = 1.0 Gyr (solid line), and for t = 3.0 Gyr (dot-dashed).
For halos of low mass, the cosmic ray pressure contribution can delay
the cooling in the halos.

loss processes, but we disregard any sources of new cosmic ray
populations. We are interested in the question whether the cool-
ing flows that develop in these halos are modified by the pres-
ence of the cosmic rays. Note that some studies have predicted
cosmic ray pressure contributions of up to ∼50 per cent in clus-
ters of galaxies (Miniati et al. 2001; Ryu et al. 2003). These fidu-
cial test simulations can give a first indication of the size of the
change of the cooling rates if these claims are indeed realistic.

In Fig. 15, we show the results of these simulations as a func-
tion of halo mass, in the form of the integrated star formation
rate relative to an equivalent simulation without initial CR pop-
ulation. The cumulative star formation activity can here be taken
as a proxy for the integrated strength of the cooling flow in the
halo. We see that the total star formation for cluster halos of
mass 1015 h−1 M� is essentially unchanged in the first 1−2 Gyr
of evolution, while at late times, it is even slightly increased. For
systems of significantly lower mass, the star formation rates are
however reduced in the CR case, by up to ∼40 per cent. This
can be qualitatively understood based on a comparison of the
thermal radiative cooling time with the CR dissipative cooling
time. As the lower panel of Fig. 5 has shown, the timescales
are comparable at the virial temperature corresponding to the
1015 h−1 M� halo, but are quite different for lower temperatures,
where the radiative cooling is significantly faster. In fact, a naive
comparison of these timescales would perhaps suggest an even
stronger suppression of the cooling efficiency in systems of in-
termediate mass. In reality, the effect turns out to be much more
moderate. This can be understood based on the softer equation
of state of the CR component, combined with the fact that its
cooling timescale typically declines faster than that of thermal
gas when a composite gas is compressed. As a result, the ability
of a CR pressure component to delay thermal collapse for a long
time is quite limited, unless perhaps active sources for new pop-
ulations of CR particles are present. Also, if metal line cooling
is taken into account for the thermal gas, the relative influence of
CRs may increase because the CR cooling time can then exceed
the thermal cooling time at still higher temperatures, although
the effect may be quite limited for very high gas temperatures,



M. Jubelgas et al.: Cosmic rays in hydrodynamical simulations 53

Table 1. Cosmological simulations of structure formation analysed in this study.

Name Physics L Resolution mDM mgas εgrav

[h−1 Mpc] [h−1 M�] [h−1 M�] [h−1 kpc]

S1 non-radiative, no star formation (SF) 100 2 × 2563 4.30 × 109 6.62 × 108 15.0

S2 CR-injection at shocks with ζinj = 0.5,
αinj = 2.5, no star formation

100 2 × 2563 4.30 × 109 6.62 × 108 15.0

S3 Mach-number dependent CR injection at
shocks, no star formation

100 2 × 2563 4.30 × 109 6.62 × 108 15.0

D1 radiative cooling, star formation (SF), no
cosmic rays

10 2 × 2563 4.30 × 106 6.62 × 105 1.3

D2 radiative cooling, SF, CRs from supernovae
(SNe)

10 2 × 2563 4.30 × 106 6.62 × 105 1.3

D3 radiative cooling, SF, CRs from SNe and
shocks (according to Mach-number)

10 2 × 2563 4.30 × 106 6.62 × 105 1.3

where bremsstrahlung cooling dominates even in the presence of
metals.

6. Cosmological simulations

Previous simulation work on the effects of cosmic rays on struc-
ture formation has not accounted for the dynamical effects due
to cosmic ray pressure, i.e. the effectiveness of cosmic ray pro-
duction has only been estimated passively. Interestingly though,
these works suggested that the cosmic ray production may be
quite efficient, with up to ∼50% of the pressure being due to CRs
(Miniati et al. 2001; Ryu et al. 2003; Ryu & Kang 2003, 2004).
Here we present the first cosmological simulations of CR pro-
duction that also account for the dynamical effects of cosmic
rays. We first study the global efficiency of cosmic ray produc-
tion at structure formation shocks. We then study the influence
of cosmic ray feedback on star formation in cosmological sim-
ulations, and on possible modifications of the Lyman-α forest.
Finally, we study the modification of the thermodynamic prop-
erties of the intracluster medium in high-resolution simulations
of the formation of a cluster of galaxies. In all cosmological sim-
ulations were we included CRs, the cosmic ray population of the
SPH particles was modelled with a constant slope of α = 2.5.

6.1. Cosmic ray production in structure formation shocks

In this subsection, we examine the efficiency of cosmic ray pro-
duction at structure formation shock waves. To this end, we
use simulations that include cosmic ray production injection at
shocks and the cosmic ray loss processes (i.e. Coulomb cooling
and hadronic losses), but we disregard radiative cooling and star
formation. The cosmological model we have simulated is a con-
cordance ΛCDM model with parameters ΛCDM model, with
parameters Ω0 = 0.3, σ8 = 0.84, baryon density Ωb = 0.04. We
have picked a comoving box of side-length L = 100 h−1 Mpc,
and simulated each of our models at two resolutions, with
2 × 1283 and 2 × 2563 particles, respectively. The results of the
two resolutions are in good agreement with each other, so we
restrict ourselves to reporting the results of the higher resolution
runs with 2 × 2563 particles in the following.

We compare three simulations that differ in the treatment
of the cosmic ray physics. In our “full model”, we account
for shock injection using the Mach number estimator of our
companion paper (Pfrommer et al. 2006) to determine the en-
ergy content and the slope of the proton populations accelerated
at each shock front. This simulation hence represents our best

estimate for the overall efficiency of the CR production process
due to structure formation shocks. We contrast this simulation
with a model where the CR injection has been artificially max-
imized by adopting a fixed efficiency ζinj = 0.5 and a fixed in-
jection slope αinj = 2.5 for all shocks. Note that this high effi-
ciency is normally only reached as limiting case for high Mach
number shocks, so that this model also allows us to assess the
importance of the dependence of the shock injection efficiency
on Mach number. Finally, we compare these two models with a
reference simulation where no cosmic ray physics was included.
This reference simulation is hence a standard non-radiative cal-
culation where only shock-heating is included and the gas be-
haves adiabatically otherwise.

Table 1 lists the different cosmological simulations consid-
ered in this section, which are organized into two series of runs.
Simulations S1−S3 focus on the effects of cosmic ray production
at structure formation shocks, using a large cosmological box.
Simulation S1 is a non-radiative reference run, while S2 includes
CR production at structure formation shocks with a fixed high
injection efficiency. In run S3, the injection efficiency is deter-
mined directly from the measured Mach numbers of the shocks.
In the second series, D1−D3, we consider a much smaller vol-
ume at better resolution in order to study effects of CRs on the
star formation rate in small galaxies. Simulation D1 is again a
reference run with radiative cooling, star formation and ordinary
supernova feedback, but no cosmic rays. Simulation D2 includes
also CR injection by supernovae, while run D3 accounts for CR-
production both from supernovae and shocks. We note that we
have also simulated lower resolution versions with 2 × 1283 par-
ticles of the same runs to check for numerical convergence.

In Fig. 16, we compare the time evolution of the mean mass-
weighted temperature of the full cosmic ray model to that in the
ordinary non-radiative simulation. We also include a measure-
ment of the mean energy in cosmic rays, converted to a fiducial
temperature using the same factor that converts thermal energy
per unit mass to temperature. Interestingly, at high redshift the
cosmic ray energy content evolves nearly in parallel to the ther-
mal energy, and both are roughly half what is obtained in the
simulation without cosmic rays. Apparently, the thermalization
of gas is dominated by strong shocks which reach the asymp-
totic injection efficiency of 50 percent. At late times, however,
the CR energy does not grow as quickly as the thermal energy
content any more, and the thermal energy in the CR simulation
becomes closer to the thermal energy in the ordinary simulation.

These trends become more explicit when the energy content
in CRs and in the thermal reservoir of the full CR simulation is
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Fig. 16. Time evolution of the mean thermal energy and the cosmic ray
energy content of the gas in non-radiative cosmological simulations. In
the top panel, the solid thick line shows the mass-weighted temperature
for a simulation where the efficiency of cosmic ray production at struc-
ture formation shocks is treated based on our on-the-fly Mach number
estimator. The dashed line is the corresponding mean cosmic ray en-
ergy, which we here converted to a fiducial mean temperature by apply-
ing the same factor that converts thermal energy per unit mass to tem-
perature. For comparison, the thin solid line shows the evolution of the
mean mass-weighted temperature in an ordinary non-radiative simula-
tion without cosmic ray physics. In the bottom panel, we show the ratio
of the mean thermal energy in the cosmic ray case relative to the energy
in the simulation without cosmic rays (solid line), while the dashed line
is the corresponding ratio for the cosmic ray component. Finally, the
dotted line gives the total energy in the cosmic ray simulation relative
to the ordinary simulation without cosmic rays.

divided by the thermal energy content of the reference simula-
tion, as shown in the bottom panel of Fig. 16. Around redshifts
z ∼ 6−10, the CR energy content nearly reaches the same value
as the thermal energy in the full CR-model, and their sum is
essentially equal to the thermal energy in the simulation with-
out cosmic rays. Over time, the relative importance of the cos-
mic rays declines, however, and the thermal energy in the full
CR model slowly climbs back to the value obtained in the non-
radiative reference simulation. At the same time, the sum of cos-
mic ray and thermal energy obtained in the full model becomes a
few percent higher at the end than that in the simulation without
cosmic rays, despite the fact that the CR simulation loses some
energy to radiation via the hadronic decay channels. Apparently,
the simulation with cosmic rays extracts slightly more energy
out of the gravitational potential wells of the dark matter. An ex-
planation for this behaviour could derive from the fact that more
energy needs to be invested into CRs to reach the same pres-
sure compared with ordinary thermal gas. This should allow the
gas in CR simulations to fall deeper into gravitational potential

wells before it is stopped by shocks and pressure forces, such
that more gravitational energy is liberated overall.

It is also interesting to ask how the relative importance of
cosmic rays depends on gas density. This is addressed by Fig. 17,
where we show the relative contribution of cosmic rays to the
total gas pressure, as a function of baryonic overdensity, sepa-
rately for different redshifts. We give results both for the simula-
tion with Mach-number dependent shock injection (left panel),
and for the one where we imposed a constant injection efficiency
(right panel). In general, the importance of cosmic rays is largest
for densities around the mean cosmic density, and declines to-
wards higher densities. This is consistent with the expectation
that the strongest shocks occur at low to moderate overdensities
in the accretion regions around halos and filaments (Kang et al.
1996; Quilis et al. 1998; Miniati et al. 2000; Miniati 2002; Ryu
et al. 2003; Pfrommer et al. 2006), and also with the growing im-
portance of cosmic ray loss processes at high densities. Another
interesting trend found in our simulation with Mach-number
dependent injection (the “full model”) is that cosmic rays are
particularly important at high redshift, with a gradual decline
towards lower redshift, suggesting that the mean dissipation-
weighted Mach number of shocks becomes lower at later times,
as is indeed confirmed by studies of the cosmic Mach number
distribution (Ryu et al. 2003; Pfrommer et al. 2006). Note that
this trend is reversed in our fiducial simulation with a fixed shock
injection efficiency, where at all overdensities the relative im-
portance of CRs grows with cosmic time. This emphasizes that
a correct accounting of the shock strengths is highly important
even at a qualitative level to correctly model the evolution of
the cosmic ray pressure distribution. We note that an implicit
assumption we made in the above analysis is that weak mag-
netic fields are ubiquitous in the universe, even at low density.
Whether they really exist and where they ultimately come from
is an open question however.

In Fig. 18, we show the projected gas density field in a slice
through the simulation box at z = 0. To highlight the relative
importance of cosmic rays, the panel on the right shows the ratio
of the projected cosmic ray energy density to the projected ther-
mal energy density. The relative importance of CRs is clearly
highest in the volume-filling gas at low density. In the accretion
regions around halos and filaments, the CR contribution is still
comparatively large, but the high-density regions inside massive
halos are avoided, in agreement with the results of Fig. 17. This
raises the interesting question whether cosmic rays may perhaps
modify the state of the intergalactic medium to the extent that
the properties of Lyman-α absorption systems are modified. The
latter arise primarily in gas that is largely unshocked, so that the
effects might be weak even though the CR pressure contributions
are predicted to be on average large exactly at overdensities of a
few. We will come back to this question in Sect. 6.3.

Another interesting question is whether the bulk proper-
ties of halos are modified by the CR production at large-scale
structure shocks. We are for example interested in the ques-
tion whether the concentration of gas in halos is changed, which
could manifest itself in a modification of the mean gas mass in-
side dark matter halos. To examine this question we determine
halo catalogues for our simulations by means of the FOF al-
gorithm with a standard linking-length of 0.2, and measure the
virial radii and masses by means of the spherical overdensity al-
gorithm. In Fig. 19, we show the mean baryonic mass fraction in
halos as a function of halo mass for the simulation with Mach-
number dependent CR injection and for the run without cosmic
ray physics. In both cases, the baryonic fraction within the virial
radius lies slightly below the universal baryon fraction, reaching
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Fig. 17. Mean relative contribution of the cosmic ray pressure to the total pressure, as a function of gas overdensity in non-radiative cosmological
simulations. We show measurements at epochs z = 0, 1, 3, and 6. The panel on the left gives our result for a simulation where the injection
efficiency and slope of the injected cosmic ray spectrum are determined based on our on-the-fly Mach number estimation scheme. For comparison,
the panel on the right shows the result for a simulation with a fixed injection efficiency ζlin = 0.5 and a soft spectral injection index of αinj = 2.9.
Clearly, the relative contribution of cosmic ray pressure becomes progressively smaller towards high densities. It is interesting that the trends with
redshift are reversed in the two cases.
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Fig. 18. Projected gas density field (left panel) in a slice of thickness 20 h−1 Mpc through a non-radiative cosmological simulation at z = 0. The
simulation includes cosmic ray production at structure formation shocks using Mach-number dependent efficiencies based on an on-the-fly Mach
number estimation scheme. The panel on the right shows the ratio of the projected cosmic ray energy density to the projected thermal energy
density. We clearly see that the local contribution of cosmic rays is largest in voids. It is also still large in the accretion regions around halos and
filaments, but is lower deep inside virialized objects.

∼0.91−0.94 of it, and for poorly resolved halos it drops a bit fur-
ther. Such a depression of the universal baryon fraction is gen-
erally found in non-radiative SPH simulations (e.g. Frenk et al.
1999). However, a comparison of the two simulations shows that
the halos in the run with CRs have systematically increased their
baryonic fraction, albeit by only about 1−2 per cent of the uni-
versal baryon fraction. This is consistent with expectations based
on the higher compressibility of a composite gas with thermal
and CR components.

Using the group catalogues, we can also measure the mean
cosmic ray energy content inside the virial radius of halos. In
Fig. 20, we show the ratio of cosmic ray to thermal energy as a
function of halo mass. For the simulation with a fiducial shock
injection efficiency of ζinj = 0.5 at all shocks, the ratio we obtain

is ∼0.2, independent of halo mass. Loss processes in the CR pop-
ulation and the shallower adiabatic index of the CR component
make this value much smaller than expected in this case for the
post-shock region of a single shock where one would expect
∼0.5. In the simulation with Mach-number dependent injection
of CRs, we find an interesting mass dependence where the ratio
of CR-to-thermal energy drops from about 0.2 for 1012 h−1 M�
halos to ∼0.05 for 1015 h−1 M� halos. Apparently, for building
up the thermal energy of clusters of galaxies, weaker shocks and
adiabatic compression are comparatively more important than
for galaxy-sized halos. We note that the value of ∼5−10% we
predict here for the CR energy content due to structure forma-
tion shocks in clusters of galaxies is quite a bit lower than pre-
vious estimates Miniati et al. (2001). Future work is required
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Fig. 19. Mean baryon fraction within the virial radius as a function of
halo mass, normalized by the universal baryon fraction. We compare
results for two non-radiative simulations, one with cosmic ray produc-
tion by shocks, the other without cosmic ray physics. The bars show
the 1σ scatter among the halos in each bin. When cosmic rays are in-
cluded, the compressibility of the gas in halos becomes larger, leading
to a slight increase of the enclosed baryon fraction.

to further investigate the origin of this difference, which could
partly be due to different parameterizations of the injection ef-
ficiency. However, it is in good agreement with CR constraints
from gamma ray and radio observations (Pfrommer & Enßlin
2003, 2004).

6.2. Dwarf galaxy formation

We now turn to studying the effects of cosmic ray feedback on
galaxy formation in cosmological simulations. We have already
found that small galaxies should be affected most. We hence ex-
pect small dwarf galaxies to be most susceptible to sizable ef-
fects of CR feedback from star formation. To reach a reasonably
good mass resolution, we simulate periodic boxes of side-length
10 h−1 Mpc, using 2 × 2563 particles. This gives a mass reso-
lution of 6.62 × 105 h−1 M� and 4.30 × 106 h−1 M� in the gas
and dark matter, respectively. We limit ourselves to evolving the
simulations to a redshift of z = 3, because at lower redshift the
fundamental mode of the small simulation volume would start
to evolve non-linearly, at which point the simulation as a whole
could not be taken as representative for the universe any more.
We are hence restricted to studying the high-redshift regime, but
we expect that our results are indicative for the trends that would
be seen in the dwarf galaxy population at lower redshifts as well,
provided sufficiently well resolved simulations are available.

We have simulated the same initial conditions three times,
varying the cosmic ray physics included. The first simulation is
a reference run where we only included radiative cooling and star
formation but no cosmic ray physics. The second simulation is
a model where we also considered cosmic ray production by the
supernovae associated with star formation, using an efficiency of
ζSN = 0.35. Finally, our third simulation is a model where we in
addition included cosmic ray production by structure formation
shocks, using the Mach-number dependent efficiencies derived
from our on-the-fly Mach number estimation scheme. The latter
simulation hence represents our best estimate for the total effect
of cosmic rays on dwarf galaxy formation.

In Fig. 21, we compare the cosmic star formation histo-
ries of the three simulations up to a redshift of z ∼ 2.9. The

Fig. 20. Ratio of energy in cosmic rays to thermal energy within the
virialized region of halos, shown as a function of halo mass. We com-
pare results for two different non-radiative simulations, one treating the
production of cosmic ray at shocks fronts using a Mach number estima-
tor, the other invoking a constant injection efficiency. The bars give the
1σ scatter among the halos in each bin. Interestingly, the Mach-number
dependent injection scheme predicts a lower CR energy content in more
massive systems. In contrast, a constant shock injection efficiency pro-
duced no significant trend of the CR energy content with halo mass.

incorporation of cosmic ray production by supernovae leads to a
significant reduction of the high redshift star formation activity,
but the shape of the star formation history, in particular its expo-
nential rise, is not changed significantly. At these high redshifts,
the star formation rate is dominated by small halos which are af-
fected strongly by CR feedback, so this result is not unexpected
given our previous findings. If CR production by structure for-
mation shocks is included as well, the star formation is reduced
further, although by only a small factor. This indicates that the
cosmic ray pressure component injected into forming halos in-
deed tends to slightly slow down the cooling rates, consistent
with the results we found for isolated halos. Towards redshift
z ∼ 3, the differences in the star formation rates become no-
ticeably smaller however, suggesting that the low redshift star
formation histories will differ at most by a small amount. Since
the bulk of the star formation shifts to ever larger mass scales
at low redshift (Springel & Hernquist 2003b), this can be easily
understood in terms of the smaller influence of CR feedback on
large halos.

In order to make the effects of CR feedback on small halos
more explicit, we determine halo catalogues in the simulations
using a group finder. We are especially interested in the question
how the efficiency of star formation is changed by the inclusion
of cosmic rays as a function of halo mass. In Fig. 22, we show
the total-to-stellar mass ratios of these groups as a function of
halo mass, both for the simulation with CR production by su-
pernovae, and for the simulation without cosmic ray feedback.
The simulation where also CR production by shocks is included
is quite similar on this plot to the simulation that only accounts
for CR from supernovae, and is therefore not shown. The sym-
bols show the mean total-to-stellar mass ratio in small logarith-
mic mass bins, while the bars indicate the scatter by marking
the central 68% percentile of the distribution of individual halos.
The results show clearly that the star formation is significantly
reduced by CRs for low-mass halos, by factors of up to ≈10 for
host halo masses of ∼1010 M� h−1 and below. On the other hand,
the amount of stars produced in massive halos is hardly changed.
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Fig. 21. Evolution of the cosmic star formation rate density in simula-
tions of galaxy formation at high redshift. We compare results for three
simulations that include different physics, a reference simulation with-
out cosmic ray physics, a simulation with CR production by supernovae,
and a third simulation which in addition accounts for CR acceleration at
structure formation shocks with an efficiency that depends on the local
Mach number.

It is particularly interesting that the effect of CRs manifests itself
in a gradual rise of the total-to-stellar mass ratio towards lower
masses. This can be interpreted as a prediction for a steeply ris-
ing “mass-to-light” ratio towards small halo masses, which is
exactly what appears to be needed to explain the observed lu-
minosity function of galaxies in the ΛCDM concordance model.
The problem is here that the halo mass function increases steeply
towards low mass scales. If the mass-to-light ratio is approxi-
mately constant for low masses, this leads to a steeply rising
faint end of the galaxy luminosity function, in conflict with ob-
servations. However, a steeply rising mean mass-to-light ratio
towards low mass halos could resolve this problem and provide
a suitable “translation” between the halo mass function and the
galaxy luminosity function.

We note that conditional luminosity function analysis of the
2 Degree Field Galaxy Redshift Survey (2dFGRS) has shown
(van den Bosch et al. 2003) that there appears to be a minimum
in the observed mass-to-light ratio of galaxies around a halo
mass of ≈3 × 1011 h−1 M�. This feature is reproduced surpris-
ingly well in our simulations, although even with CR feedback
included, the rise of the stellar mass to light ratio towards low
masses appears to be not as sharp as required based on their
analysis.

However, one needs to caution that the results of Fig. 22 can-
not be naively translated into changes of the faint-end slope of
the luminosity function, as seen when we directly compare the
K-band luminosity functions at z = 3. To determine those, we
identify individual groups of stars as galaxies using a modifi-
cation of the SUBFIND algorithm (Springel et al. 2001) for de-
tecting bound substructures in halos. For each of the galaxies,
we estimate magnitudes in standard observational band based
on Bruzual & Charlot (2003) population synthesis models. In
Fig. 23, we compare the resulting rest-frame K-band luminos-
ity functions at z = 3 for the simulations with CR feedback by
supernovae and the simulation without any cosmic ray physics.
We see that both luminosity functions are well fit by Schechter
functions, with faint-end slopes of α = 1.15 and α = 1.10,
respectively, for the cases without and with CR feedback. We
hence find that CRs only mildly reduce the faint-end slope

Fig. 22. Comparison of the averaged total mass-to-light-ratio within the
virial radius of halos formed in two high-resolution cosmological sim-
ulations up to z = 3. Both simulations follow radiative cooling and
star formation, but one also includes CR-feedback in the form of cos-
mic production by supernovae, with an efficiency of ζSN = 0.35 and
an injection slope of αSN = 2.4. The bars indicate the scatter among
halos in the logarithmic mass bins (68% of the objects lie within the
range marked by the bars). Clearly, for halo masses below 1011 h−1 M�,
CR feedback progressively reduces the overall star formation efficiency
in the halos.

despite their differential reduction of the star formation effi-
ciency towards low mass scales. The result needs to be taken
with a grain of salt though, as the faint-end slope could still be
influenced by resolution effects in these simulations. A final as-
sessment of the importance of CR feedback in shaping the faint-
end of the galaxy luminosity function needs therefore await fu-
ture simulations with substantially increased resolution.

6.3. Cosmic ray effects on the intergalactic medium

As the Mach number distribution is dominated by strong shocks
at high redshift, we expect that cosmic ray production is par-
ticularly efficient at early epochs and at the comparatively low
densities where the strongest shocks occur, provided sufficient
magnetization of the IGM existed to allow CR acceleration to
operate. Also, the thermalization time scales of cosmic rays are
quite long at low densities. Figure 17 has shown that the mean
energy content of cosmic rays can reach a sizable fraction of the
thermal energy content at around redshift z ∼ 3, suggesting a po-
tentially important influence on the intergalactic medium at this
epoch. Note however that in computing the results of Fig. 17 we
had neglected cosmic reionization, which will boost the thermal
energy relative to the cosmic ray content. Also, large parts of
the IGM at z = 3, particularly those responsible for the absorp-
tion seen in the Lyman-α forest, consist largely of unshocked
material. Whether the Lyman-α forest might show any trace of
the influence of cosmic rays is therefore an interesting and open
question.

To investigate this question further, we have computed
Ly-α absorption spectra for the cosmological simulations with
10 h−1 Mpc boxes analysed in the previous section. The two
simulations we have picked both include radiative cooling, star
formation, and heating by a spatially uniform UV background
based on a slightly modified Haardt & Madau (1996) model,
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Fig. 23. The K-band galaxy luminosity functions at z = 3 in two high-
resolution cosmological simulations. One of the simulations follows or-
dinary radiative cooling and star formation only (blue), the other addi-
tionally includes cosmic ray production by supernovae (red). The latter
reduces the faint-end slope of the Schechter function fit (solid lines) to
the data measured from the simulations (histograms). It is reduced from
−1.15 to −1.10 in this case.

with reionization at redshift z = 6. While one of the simulations
did not account for any cosmic ray physics, the other included
cosmic ray production by large-scale structure shocks and super-
novae, as well as dissipative loss processes in the CR population.

For both simulations, we computed Lyman-α absorption
spectra for 2048 lines of sights, along random directions parallel
to the principal axes of the simulation boxes. By slightly adjust-
ing the UV intensity, we have renormalized the spectra to the
same mean transmission of 〈τ〉 = 0.68. A direct comparison of
the spectra along the same lines-of-sight through the two sim-
ulations shows essentially perfect agreement, with very small
residuals. This already indicates that any systematic difference
between the simulations must be quite subtle, if present. To ob-
jectively quantify this, we have computed the average 1-d flux
power spectra for the two cases and compare them in Fig. 24.
The top panel compares the two flux spectra directly with each
other, and to observational data of McDonald et al. (2000). The
results for the two simulations lie essentially on top of each other
in this representation. The agreement with observational data
is good, apart from a small excess of power on small scales,
which can however be understood as a consequence of the too
cool temperature of the IGM in our simulations compared with
observations.

More interesting is perhaps an examination of the ratio of
the flux power spectrum with cosmic rays to that without cosmic
rays, as shown in the bottom panel of Fig. 24. While for large-
scale modes with k < 0.1 km−1s, no noticeable differences are
seen, there is a 5–15% reduction of power in the wave-length
range 0.1 km−1s < k < 0.7 km−1s, and at still smaller scales, the
difference changes sign and turns into a growing excess of power
in the CR simulation. These effects of CRs on the Ly-α therefore
lie in a regime that is normally not used to constrain the matter
power spectrum with Lyman-α forest data, at least in conserva-
tive treatments that focus on k < 0.03 km−1s (Viel et al. 2004).
In general we hence find that the effects on the Lyman-α forest
are very small and subtle; the forest survives CR injection by
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Fig. 24. Ly-α flux power spectrum (top) at z = 3 in simulations with
and without cosmic ray production in structure formation shocks. The
results lie essentially on top of each other, and only by plotting their ra-
tio (bottom panel), it is revealed that there are small differences. In the
simulation with cosmic rays, the power is suppressed by up to ∼15%
on scales 0.1 km−1s < k < 0.7 km−1s, while there is an excess on
still smaller scales. However, on large scales k < 0.1 km−1s, which
are the most relevant for determinations of the matter power spectrum
from the Ly-α forest, the power spectrum is not changed by includ-
ing CR physics. For comparison, we have also included observational
data from McDonald et al. (2000) in the top panel (the open symbols
are corrected by removing metal lines). A slightly warmer IGM in the
simulations could account for the steeper thermal cut-off observed in
the data.

large-scale structure shocks essentially unaltered, even though
they contribute a sizable fraction to the mean energy content of
the gas due to shock dissipation at densities at and around the
mean density of the universe. Note that our simulations did not
allow for a possible diffusion of CRs, but it seems unlikely that
including this effect could change this conclusion.

6.4. Formation of clusters of galaxies

In this section, we study in more detail the influence of cosmic
rays on individual halos formed in cosmological simulations. We
focus on high-resolution “zoom” simulations of the formation
of a massive cluster of galaxies. Such “zoom” simulations are
resimulations of an object identified in a cosmological structure
formation simulation with large box-size. Once the object of in-
terest has been selected, its particles’ are traced back through
time to their origin in the unperturbed initial conditions. The
Lagrangian region of the cluster thus identified is then popu-
lated with many more particles of lower mass, thereby increasing
the local resolution, while in regions further away, the resolution
is progressively degraded by using ever more massive particles.
In this way, the computational effort can be concentrated in the
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object of interest, while at the same time its cosmological envi-
ronment is still accounted for accurately during its formation.

We have computed 6 resimulations of the same cluster of
galaxies, using different models for the physics of radiative cool-
ing, star formation, and cosmic rays. The cluster has been se-
lected from a set of zoomed cosmological initial conditions orig-
inally constructed by Dolag et al. (2004a) and has a virial mass
of ≈1014 h−1 M� at redshift z = 0. The gas particle mass is 1.6 ×
108 h−1 M� in the high resolution region, implying that the clus-
ter is resolved with roughly 300 000 gas and 300 000 dark mat-
ter particles within the virial radius. The gravitational softening
length for the simulations was kept fixed in comoving units at
redshifts z ≥ 5, and then held constant in physical units at a
value of 5 h−1 kpc at lower redshifts.

Our 6 simulations fall into two groups of 3 each. In the first
group, we have not included radiative cooling processes and star
formation. Here we use a non-radiative (“adiabatic”) simulation
as a reference run, and compare it with two simulations that in-
clude cosmic ray production at large-scale structure formation
shocks, one of them using the Mach-number dependent injec-
tion efficiency, and the other a fixed efficiency of ζinj = 0.5 with
αinj = 2.5 for all shocks. This set hence parallels the types of
simulations analyzed in Sect. 6.1. In the second set of 3 simu-
lations, we include radiative cooling and star formation. Again,
we consider one reference simulation without any cosmic ray
physics, and compare it with two simulations where cosmic rays
are included. These two consist of one run where cosmic rays
are only injected by supernovae associated with star formation
(using ζSN = 0.35, and αSN = 2.4), while the other also accounts
for cosmic rays produced at shock waves. The second set of sim-
ulations hence corresponds to the types of simulations analyzed
in Sect. 6.2. In all simulations with cosmic rays, we have as-
sumed and index of α = 2.5 and included Coulomb cooling and
hadronic losses for the CR populations.

In Fig. 25, we compare spherically averaged radial profiles of
pressure, temperature, and gas density for the three non-radiative
simulations. For the pressure, we show the thermal as well as the
cosmic ray pressure for the two runs with cosmic ray physics.
Interestingly, the cosmic ray pressure component is substantially
below the thermal one, even in the fiducial case of a constant
shock injection efficiency of ζinj = 0.5 for all shocks. However,
in this case the thermal pressure is substantially elevated com-
pared to the run without cosmic rays. This goes along with an
increase of the gas density in the inner parts, and a reduction of
the thermal temperature throughout the cluster volume. This is
the expected behaviour based on the higher compressibility of
the gas in this case.

However, the cosmic ray pressure in the simulation with
a Mach-number dependent injection efficiency is substantially
smaller, and even at the virial radius is at most ∼10 percent
of the thermal pressure, while for much of the inner parts,
r ≤ 100 h−1 kpc, the cosmic ray pressure contribution drops to
the percent level and below. Obviously, cosmic rays are not pro-
duced efficiently enough at shocks to fill much of the ICM with a
dynamically significant cosmic ray pressure component, consis-
tent with the results of Fig. 20. Consequently we find that in this
case the profiles of gas density, temperature and thermal pressure
are very similar to the corresponding results for the simulation
without cosmic ray physics.

In Fig. 26, we show the equivalent results for the radial pro-
files for the 3 simulations that include radiative cooling and
star formation. Compared to the non-radiative calculations, the
ICM shows a markedly different structure. Due to the presence
of a strong cooling flow, the temperature profile rises towards
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Fig. 25. Spherically averaged radial profiles of thermodynamic gas
properties in three re-simulations of the same cluster of galaxies. All
three simulations were not following radiative cooling and star forma-
tion, and the reference simulation shown with a solid line does not in-
clude any CR physics. However, the simulation shown with a dashed
line accounted for CR production at structure formation shocks with a
fixed efficiency (ζinj = 0.5, αinj = 2.9) while for the simulation shown
with dot-dashed lines, the shock injection efficiency was determined
with our Mach number estimation scheme. The panel on top compares
the thermal pressure in the three simulations. For the two simulations
with cosmic rays, we additionally plot the CR-pressure, marked with
symbols. The panel in the middle compares the gas temperature, while
the panel on the bottom shows the radial run of the gas density. The
vertical dotted line marks the virial radius of the cluster.

the centre, until it eventually drops sharply at around 20 kpc
due to the onset of efficient cooling. The gas density has be-
come significantly lower in the bulk of the cluster volume due
to the large amount of gas that has cooled out, and correspond-
ingly, the total pressure has fallen in much of the cluster volume.
But there are also interesting differences in the simulations with
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Fig. 26. Spherically averaged radial profiles of thermodynamic gas
properties in three re-simulations of the same cluster of galaxies. All
three simulations included radiative cooling of the gas, star formation
and supernova feedback. The solid lines show the results of a reference
simulation which did not include any cosmic ray physics. The other two
simulations included CR production by supernovae, and the one shown
with dot-dashed lines in addition accounted for CR injection at structure
formation shocks, using Mach-number dependent efficiencies based on
our Mach number estimation scheme. The panel on top compares the
thermal pressure in the three simulations. For the two simulations with
cosmic rays, we additionally plot the CR-pressure marked with sym-
bols. The panel in the middle compares the gas temperature for the
three cases, and the panel on the bottom shows the radial run of the
gas density.

and without cosmic rays. Recall that both simulations included
cosmic ray production by supernovae feedback, while only
one of them accounted for cosmic rays by structure formation
shocks. The CR pressure contribution in both simulations is
quite similar through most of the cluster, at the level of a few
percent of the thermal pressure. Also note that in the very inner
parts, where the gas drops out through cooling, the cosmic ray

Fig. 27. Cumulative radial stellar mass profile in three re-simulations
of the same cluster of galaxies. The simulations are the same ones also
shown in Fig. 26. The solid line gives the result for a reference simu-
lation without CR physics, the dashed line includes CR production by
supernovae, and the dot-dashed line additionally accounts for CR injec-
tion at structure formation shocks. The vertical dotted line marks the
virial radius of the cluster.

pressure rises sharply, even reaching and exceeding the thermal
pressure. In this small region, the thermal pressure is dissipated
more rapidly than the cosmic ray pressure.

Finally, in Fig. 27 we compare the cumulative stellar profile
of the cluster in the three simulations with radiative cooling and
star formation. While the total mass of stars formed within the
virial radius has become smaller by the inclusion of cosmic ray
feedback, the stellar mass in the central cluster galaxy has ac-
tually increased. The cluster cooling flow has therefore slightly
increased in strength, consistent with the results we obtained for
isolated halos of this mass range. On the other hand, the luminos-
ity of the smaller galaxies orbiting within the cluster has become
smaller, in line with our finding that small galaxies experience
a reduction of their star formation activity. It is clear however
that our results do not suggest that cosmic rays could provide
a solution to the cooling flow problem in clusters of galaxies,
at least not with the CR sources we have considered here. This
conclusion could potentially change in interesting ways when
CR production by AGN in clusters of galaxies is included as
well (Churazov et al. 2001; Enßlin & Vogt 2006).

6.5. The influence of cosmic ray diffusion

In all of our previous results, we have ignored the effects of cos-
mic ray diffusion, largely because of the uncertainty involved in
constraining an appropriate diffusivity. However, diffusion could
potentially be important in several environments, depending of
course on the details of the magnetic field structure and the
strength of the resulting diffusivity. While our present formal-
ism implemented in the simulation code is capable of dealing
with isotropic diffusion, in reality the diffusion is likely to be
anisotropic, governed by the local magnetic field configuration.
In principle, cosmological structure formation calculations with
SPH are capable of following magneto-hydrodynamics (Dolag
et al. 1999, 2005; Price & Monaghan 2004, 2005), although this
is presently still fraught with numerical and physical difficulties.
We therefore postpone a detailed analysis of the influence of cos-
mic ray diffusion to future work. Here, we investigate instead a
simple example, that gives a first illustration of the effects that
can be expected.
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Fig. 28. Effects of cosmic ray diffusion on the star formation and the pressure distribution in isolated halos of mass 109 h−1 M� and 1010 h−1 M�.
The panels on top compare the star formation rate when CR diffusion is included (thick blue line) to the case where it is neglected (thin green line).
The dotted lines show the result when CR-production by supernovae is not included. In the bottom panels, we show projected gas density fields
through the halos at time t = 2.0 Gyr, with contours overlaid that give the fractional contribution of the projected CR energy to the total projected
energy. These panels correspond directly to equivalent maps shown in Fig. 13 for the case without CR diffusion.

To this end, we repeat our simulations of isolated disk galaxy
formation with CR injection by supernovae, but this time with
diffusion included. We use a parameterized diffusivity as de-
scribed in Sect. 3, setting the values of the density and tempera-
ture scaling exponents to nT = 1/6 and nρ = −1/2, respectively,
with a baseline diffusivity of ∼10 kpc2 Gyr−1 at the threshold for
star formation, i.e. our diffusivity model is given by Eq. (54).
The simulations we repeat are the ones considered in Sect. 5.1
with an injection efficiency of ζSN = 0.3 for the production of
CRs by supernovae.

In Fig. 28, we compare the resulting star formation rates
for halos of mass 109 h−1 M� and 1010 h−1 M� as a func-
tion of time with the corresponding results without diffusion.
Interestingly, the oscillations due to the unstable dynamics of
a cosmic ray dominated ISM are substantially suppressed when
diffusion is included. This effect is quite strong in the results for
the 109 h−1 M� halo, where we now observe a nearly constant,
quiescent star formation rate. For the 1010 h−1 M� halo, the oscil-
lations are only partially washed out and happen less frequently,
but if they occur, they are stronger. Here the star formation rate
of the galaxy develops a “bursty” character. Interestingly, diffu-
sion actually reduces the integrated star formation still further;

it drops by about 30% for the 109 h−1 M� halo, and by 21% for
the 1010 h−1 M� halo compared to the case without diffusion.
Apparently, the cosmic rays that escape from the star-forming
ISM into the less-dense gas in the halo are able to supply a par-
tial pressure support that effectively reduces the rate at which gas
cools.

The more extended and smoother spatial distribution of cos-
mic rays due to diffusion can also be appreciated in the bottom
panels of Fig. 28, where we show projections of the gas den-
sity field with contours for the cosmic ray to thermal energy
content overlaid. These panels directly correspond to the ones
shown in Fig. 13 for the case without diffusion. However, for
halos of mass 1011 h−1 M� and more, diffusion with the strength
considered here has no significant impact on the dynamics. The
progressively larger size of more massive systems makes it ever
more important for diffusion to efficiently transport CR energy
across the system.

7. Conclusions

In this paper, we have presented the details of the first prac-
tical implementation of a simulation code capable of carrying
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out high-resolution simulations of cosmological structure for-
mation with a treatment of cosmic ray physics. In particular, our
method takes dynamical effects of pressure forces due to cosmic
rays into account and therefore allows us to carry out studies of
CR feedback in the context of galaxy formation. The underly-
ing formalism for the treatment of cosmic rays is discussed in a
companion paper (Enßlin et al. 2007) and forms a compromise
between the complexity of cosmic ray physics and the require-
ments of computational efficiency. In particular, we use a simpli-
fied spectral representation in terms of power laws for the mo-
mentum distribution with a low momentum cut-off. This allows
for a rather significant simplification at the prize of a moderate
loss of accuracy. As Enßlin et al. (2007) have shown, the cosmic
ray pressure is expected to be accurate to about 10 per cent in our
model under steady state conditions. We argue that this is suffi-
ciently accurate for our purposes given the other uncertainties
and approximations involved.

Our formalism also makes use of an on-the-fly shock de-
tection scheme for SPH developed in a second companion pa-
per (Pfrommer et al. 2006). This method allows us to estimate
Mach numbers in shocks captured during SPH simulations, such
that we can use an appropriate efficiency for the CR injection at
large-scale structure shock waves.

We have given an initial analysis of the principal effects of
two sources of cosmic rays, namely CRs produced by supernova
explosions, and by diffusive shock acceleration during struc-
ture formation. The loss processes we considered were Coloumb
cooling and hadronic losses, which should be the most impor-
tant ones. If desired, the modelling of these CR sink terms can
be refined in the future within our methodology, and additional
sources like cosmic rays from AGN can in principle be added
as well.

There are several noteworthy results we obtained with our
cosmic ray treatment in this study. First of all, our simulations
of galaxy formation with cosmic ray production by supernovae
indicate that cosmic ray pressure can play an important role in
regulating star formation in small galaxies. Here we find a sig-
nificant reduction of the star formation rate compared to the one
without CR physics, provided cosmic ray production efficien-
cies of several tens of percent are assumed. In small galaxies,
the mean densities reached in the ISM stay sufficiently low such
that the CR pressure can exceed the effective pressure produced
by the thermal supernova feedback. Once this occurs, the gas
of the ISM is puffed up, quenching the star formation rate. Due
to the comparatively long cosmic ray dissipation timescale, the
CR-pressure survives for a sufficiently long time in these sys-
tems and develops a sizable impact on the star formation rate. In
massive galaxies on the other hand, the ISM becomes so dense
that the CR-pressure is unable to exceed the effective pressure
predicted by the multi-phase model of Springel & Hernquist
(2003a), such that the star formation rates are not altered.

This effect on star formation also manifests itself in a reduc-
tion of the cosmic star formation rate density in cosmological
simulations of galaxy formation. Here the SFR history is reduced
at high redshift, where the bulk of star formation is dominated by
small dwarf galaxies. As the star formation shifts to the scale of
more massive halos towards low redshift, the reduction becomes
progressively smaller. An interesting implication of the strong
effect of CR feedback on small galaxies is that this reduces the
faint-end slope of the resulting galaxy luminosity function, an
area that continues to be a problematic issue for hydrodynami-
cal simulations of galaxy formation within the ΛCDM scenario.
We have indeed detected this flattening, although with a weak
strength overall. This difference compared with the stronger

effect we found in our simulations of isolated galaxies could be
due to resolution limitations in the cosmological runs, or per-
haps be an effect of the idealized initial conditions used for the
simulations of isolated galaxy formation. Another tantalizing ef-
fect of cosmic rays is that they help to keep gas in small galaxies
more diffuse. This should in principle help to alleviate the “an-
gular momentum problem”, which describes the problem of an
efficient angular momentum loss of gas to the dark matter caused
by the early collapse of large amounts of gas in small halos. It
is believed that this is a primary reason why present simulations
generally fail to produce large spiral galaxies at low redshift.
Cosmic rays physics might help to resolve this problem.

In simulations where we included cosmic ray injection by
structure formation shocks, we find that they are produced effi-
ciently at high redshift when structure formation ensues, driven
by the high Mach-number shocks found at low to moderate over-
densities. At low redshift on the other hand, most of the energy
is thermalized in weaker shocks where the injection efficiency
is much smaller. As a result, the mean energy content in cos-
mic rays can reach above 40% at redshifts z � 5, but drops to
∼10% at low redshift. However, the relative energy content also
shows a strong density dependence. It is highest at low to mod-
erate overdensities and declines continously with density, such
that deep inside halos, only comparatively little cosmic ray en-
ergy produced by shock waves survive. An important factor in
this trend is the strong density dependence of cosmic ray loss
processes, and the softer adiabatic index of CRs.

When non-radiative, fully cosmological simulations of the
formation of galaxy clusters are considered, it is therefore not
very surprising that we find that structure formation shocks can
build up only a comparatively small cosmic ray pressure contri-
bution inside clusters. Even at the virial radius this contribution
reaches only about 10%, but lies much lower in the inner parts
of the cluster. When radiative cooling and cosmic ray production
by supernovae are included, we find that supernovae can boost
the mean CR energy density in the cluster, but the averaged con-
tribution still stays at the percent level throughout the cluster
volume, except at places where the gas rapidly cools. Here the
CR pressure can temporarily dominate the pressure and delay
the collapse briefly. Nevertheless, we find that CR production by
supernovae and structure formation shocks is unable to reduce
central cluster cooling flows. Instead, we in fact detect a slight
increase of the cooling in the 1014 h−1 M� cluster we have simu-
lated. This can be understood as a result of the higher compress-
ibility of the cluster gas in the cosmic ray simulations, leading
to an increased central concentration of the gas and an elevated
baryon fraction in the cluster, and thereby to higher cooling of
gas in the centre overall. Note however that the currently dis-
cussed AGN feedback for cooling-flow quenching was not in-
cluded in our simulations. On the other hand, the bulk of the
cluster galaxies experience a reduction of their star formation
rate when CR feedback is included, such that the cluster galaxy
luminosity function is expected to develop a shallower faint-end
slope.

Overall, our results suggest that cosmic ray physics is un-
likely to drastically modify the physics of galaxy formation in
the ΛCDM model. However, cosmic rays help in areas where
current model-building faces important problems, like for the
faint-end slope of the galaxy luminosity function and the angular
momentum problem. Our formalism for treating CRs in cosmo-
logical simulations should therefore be very valuable for future
studies on the role of cosmic rays in cosmological structure for-
mation. In particular, it would be highly interesting to examine
the effects of CRs on the metal distribution of the universe, or on
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the dynamics of buoyant bubbles inflated by AGN in clusters of
galaxies. It will also be important to provide an in-depth analysis
of the role of cosmic ray diffusion in future work.
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