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We develop information field theory (IFT) as a means of Bayesian, data based inference on
spatially distributed signals, the information fields. A didactic approach is attempted in order to
enable scientists not familiar with field theories to implement and apply inference algorithms derived
within the IFT framework. Starting from general considerations on the nature of measurements,
signals, noise, and their relation to a physical reality, we derive the information Hamiltonian, the
source field, propagator, and interaction terms. Free IFT reproduces the well known Wiener-filter
theory. Interacting IFT can be diagrammatically expanded, for which we provide the Feynman
rules in position-, Fourier-, and spherical harmonics space. The theory should be applicable in
many fields. However, here, two cosmological signal recovery problems are discussed in detail in
their IFT-formulation. 1) Reconstruction of the cosmic large-scale structure matter distribution
from discrete galaxy counts in incomplete galaxy surveys. It is demonstrated analytically and
numerically that a Gaussian signal, which should resemble the initial density perturbations of the
Universe, observed with a strongly non-linear, incomplete and Poissonian-noise affected response,
as the processes of structure and galaxy formation and observations provide, can be reconstructed
thanks to the virtue of a response-renormalisation flow equation. Surprisingly, solving this equation
numerically is much less expensive than solving the corresponding classical field equation, which
means to calculate the maximum a posteriori estimator, despite the former’s higher fidelity. 2)
We design a filter to detect any possible local non-linearities in the cosmic microwave background
(CMB), which are predicted from some Early-Universe inflationary scenarios, and expected due to
measurement imperfections. This filter is optimal up to linear order in the non-linearity parameter,
which is our signal, and can be used even to construct sky maps of non-linearities in the data. Since
the filter uses up to 4th order data correlation functions, whereas current non-linearity filters rely
on the bispectrum, which is 3rd order, its implementation may help to improve the detectability of
this important messenger from the inflationary epoch. Finally, we provide the Boltzmann-Shannon
information measure of IFT based on the Helmholtz free energy, thereby highlighting conceptual
similarities of information and statistical field theory and outlining how to optimise observational
strategies for maximal information retrieval.

I. INTRODUCTION

A. Information on physical fields

In our attempts to infer the properties of our Uni-
verse from astronomical observations we are faced with
the problem of how to interpret incomplete, imperfect
and noisy data, draw our conclusions based on them and
quantify the uncertainties of our results. This is true for
using galaxy surveys to map the cosmic large-scale struc-
ture, for the interpretation of the cosmic microwave back-
ground (CMB), as well for many experiments in physi-
cal laboratories and compilations of geological, econom-
ical, sociological, and biological data about our planet.
Information theory, which is based on probability the-
ory and the Bayesian interpretation of missing knowledge
as probabilistic uncertainty, offers an ideal framework to
handle such problems. It permits to describe all relevant
processes involved in the measurement probabilistically,
provided a model for the Universe is adopted. The pos-
sible physical realities defined here as states of such a
model, denoted by the state variable ψ, can have prob-
abilities P (ψ) assigned to them, the so-called prior in-
formation. This prior contains our knowledge about the

Universe as we model it before any other data is taken.
For a given cosmological model, the prior may be the
probability distribution of the different initial conditions
of the Universe, which determine the subsequent evolu-
tion completely. Since our Universe is spatially extended,
the state variable will in general contain one or several
fields, which are functions over some coordinates x.

Also the measurement process is described by a data
model which defines the so-called likelihood, the prob-
ability P (d|ψ) to obtain a specific dataset d given the
physical condition ψ. One could argue that given the
complete state of the Universe ψ the outcome d of the
measurement should be uniquely determined, since even
in a quantum-physical Universe the Schrödinger equation
is deterministic. In that case P (d|ψ) = δ(d−d[ψ]), where
d[ψ] is the functional dependence of the data on the state.
In any case, the probability distribution function of the
data,

P (d) =

∫
Dψ P (d|ψ)P (ψ), (1)

is given in terms of a path integral over all possible re-
alisations of ψ, to be defined more precisely later (Sect.
I E 1).
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A scientist is not actually interested in the total state
of the Universe, but only in some specific aspects of it,
which we call the signal s = s[ψ]. The signal is a very
reduced description of the physical reality, and can be
any function of its state ψ, freely chosen according to
the needs and interests of the scientist or the ability and
capacity of the measurement and computational devices
used. Since the signal does not contain the full phys-
ical state, any physical degree of freedom which is not
present in the signal but influences the data will be re-
ceived as probabilistic uncertainty, or shortly noise. The
probability distribution function of the signal, its prior

P (s) =

∫
Dψ δ(s− s[ψ])P (ψ), (2)

is related to that of the data via the joined probability

P (d, s) =

∫
Dψ δ(s− s[ψ])P (d|ψ)P (ψ), (3)

from which the conditional signal likelihood

P (d|s) = P (d, s)/P (s) (4)

and signal posterior

P (s|d) = P (d, s)/P (d) (5)

can be derived.
Before the data is available, the phase-space of interest

is spanned by the direct product of all possible signals s
and data d, and all regions with non-zero P (d, s) are of
potential relevance. Once the actual data dobs have been
taken, only a sub-manifold of this space, as fixed by the
data, is of further relevance. The probability function
over this sub-space is proportional to P (d = dobs, s), and
needs just to be renormalised by dividing by
∫
Ds P (dobs, s) =

∫
Ds

∫
Dψ δ(s− s[ψ])P (dobs|ψ)P (ψ)

=

∫
Dψ P (dobs|ψ)P (ψ) = P (dobs), (6)

which is the unconditioned probability (or evidence) of
that data. Thus, we find the resulting information of
the data to be the posterior distribution P (s|dobs) =
P (dobs, s)/P (dobs). This posterior is the fundamental
mathematical object from which all our deductions have
to be made. It is related via Bayes’s theorem [1] to the
usually better accessible signal likelihood,

P (s|d) = P (d|s)P (s)/P (d), (7)

which follows from Eqs. 4 and 5.
The normalisation term in Bayes’s theorem, the evi-

dence P (d), is now also fully expressed in terms of the
joint probability of data and signal,

P (d) =

∫
Ds P (d, s), (8)

and the underlying physical field ψ basically becomes in-
visible at this stage in the formalism. The evidence plays
a central role in Bayes inference, since it is the likeli-
hood of all the assumed model parameters. Combining
this parameter-likelihood with parameter-priors one can
start Bayesian inference on the model classes.

B. Signal response and noise

If signal and data depend on the same underlying phys-
ical properties, there may be correlations between the
two, which can be expressed in terms of signal response
R and noise n of the data as

d = R[s] + ns. (9)

We have chosen two different ways of denoting the de-
pendence of response and noise on the signal s, in order
to highlight that the response should embrace most of
the reaction of the data to the signal, whereas the noise
should be as independent as possible. We ensure this by
putting the linear correlation of the data with the signal
fully into the response. The response is therefore the part
of the data which correlates with the signal

R[s] ≡ 〈d〉(d|s) ≡

∫
Dd dP (d|s), (10)

and the noise is just defined as the remaining part which
does not:

ns ≡ d−R[s] = d− 〈d〉(d|s). (11)

Although the noise might depend on the signal, as it is
well known for example for Poissonian processes, it is –
per definition – linearly uncorrelated to it,

〈ns s
†〉(d|s) = (〈d〉(d|s) −R[s]) s† = 0 s† = 0, (12)

whereas higher order correlation might well exist and
may be further exploited for their information content.

These definitions were chosen to be close to the usual
language in signal processing and data analysis. They
permit to define signal response and noise for an arbitrary
choice of the signal s[ψ]. No direct causal connection
between signal and data is needed in order to have a
non-trivial response, since both variables just need to
exhibit some couplings to a common sub-aspect of ψ.
The above definition of response and noise is however not
unique, even for a fixed signal definition, since any data
transformation d′ = T [d] can lead to different definitions,
as seen from

R′[s] ≡ 〈d′〉(d|s) = 〈T [d]〉(d|s) 6= T [〈d〉(d|s)], (13)

except for linear transformations, d′ = T d, unique rela-
tions between signal and state, P (ψ|s) = δ(ψ−ψ[s]), and
maybe a few other very special cases. Thus, the concepts
of signal response and therewith defined noise depend on
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the adopted coordinate system in the data space. This
coordinate space can be changed via a data transforma-
tion T , and the transformed data may exhibit better or
worse response to the signal. Information theory aids in
designing a suitable data transformation, so that the sig-
nal response is maximal, and the signal noise is minimal,
permitting the signal to be best recovered. Thus, we may
aim for an optimal T , which yields

T [d] = 〈s〉(s|d). (14)

We define md = 〈s〉(s|d) to be the map of the signal given
the data d and call T a map-making-algorithm if it fulfils
Eq. 14 at least approximately. As a criterion for this one
may require that the signal response of a map-making-
algorithm,

RT [s] ≡ 〈T [d]〉(d|s), (15)

is positive definite with respect to signal variations as
stated by

δRT [s]

δs
≥ 0. (16)

This ensures that a map-making algorithm will respond
with a non-negative correlation of the map to any signal
feature, with respect to the noise ensemble. In general,
T will be a non-linear operation on the data, to be con-
structed from information theory if it should be optimal
in the sense of Eq. 14. In any case, the fidelity of a sig-
nal reconstruction can be characterised by the quadratic
signal uncertainty,

σ2
T = 〈(s− T [d]) (s− T [d])†〉(d,s), (17)

averaged over typical realisations of signal and noise. Of
special interest is the trace of this

Tr(σ2
T ) =

∫
dx 〈|sx − Tx[d]|2〉(s|d), (18)

since it is the expectation value of the squared Lebesgue-
L2-space distance between a signal reconstruction and
the underlying signal. Requesting a map making algo-
rithm to be optimal with respect to Eq. 18, implies
T [d] = 〈s〉(s|d) and therefore it to be optimal in an in-
formation theoretical sense according to Eq. 14.

An illustrative example should be in order. Suppose
our data is an exact copy of a physical field, d = ψ, our
signal the square of the latter, s = ψ2, and the physi-
cal field obeys an even statistics, P (ψ) = P (−ψ). Then,
the signal response is exactly zero, R[s] = 0, and the
data contains only noise with respect to the chosen sig-
nal, d = ns. Thus, we have chosen a bad representation
of our data to reveal the signal. If we, however, introduce
the transformation d′ = T [d] = d2, we find a perfect re-
sponse, R′[s] = s, and zero noise, n′

s = 0. In this case,
finding the optimal map-making algorithm was trivial,
but in more complicated situations, it can not be guessed
that easily. Since the response and noise definitions de-
pend on the signal definition, some thoughts should be
given to how to choose the signal in a way that it can be
well reconstructed.

C. Signal design

For practical reasons one will usually choose s accord-
ing to a few guidelines, which should simplify the infor-
mation deduction process:

1. The functional form of s[ψ] should best be simple,
steady, analytic, and if possible linear in ψ, permit-
ting to use the signal s to reason about the state of
reality ψ with the help of the concept of a response
function.

2. The degrees of freedom of s should be related to
the ones of the data d in the sense that cross cor-
relations exist which permit to deduce properties
of s from d. Signal degrees of freedoms, which are
insensitive to the data, will only be constrained by
the prior and therefore just contain a large amount
of uncertainty, which adds to the error budget, and
should thus be avoided as far as possible. A good
trade-off between signal response and noise on the
one hand and signal uncertainty on the other hand
should be considered. It should be noted, that
dropping relatively unresponsive parts of the sig-
nal, and thereby increasing the data noise, typically
leads to an improved signal recoverability, assuming
an optimal information theoretical signal estimator
is used.

3. The choice of s[ψ] should also be lead by math-
ematical convenience and practicality. In the ex-
amples presented in this work, simple signals are
chosen which permit to guess good approximations
for signal likelihood P (d|s) and prior P (s) without
the need to develop the full physical theory starting
with P (ψ).

To give a more specific example, we assume a cosmo-
logical model in which the reality is thought to be solely
characterised by the dark matter density distribution
ψ(x), from which all observable cosmological phenomena
like galaxies derive in a deterministic way. The coordi-
nate x may refer to the comoving coordinates at some
early epoch of the Universe. Although the large-scale
structure of the matter distribution at a later time may
predominantly depend on the initial large-scale modes,
and is reflected in the galaxy distribution, the actual po-
sitions of the individual galaxies also depend in a non-
trivial way on the small-scale modes. Due to the discrete-
ness of our observable, the galaxy positions, it may be im-
possible to reconstruct these small scale modes. There-
fore it could be sensible to define s[ψ] = F ψ, with F
being a linear low-pass filter, which suppresses all small-
scale structures. This signal may be reconstructible with
high precision, whereas any attempt to reconstruct ψ di-
rectly would be plagued by a larger error budget, since
all the data-unconstrained small-scale modes represent
uncertainties to a reconstruction of ψ, but not to one of
s being defined as a low pass filtered version of ψ.
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D. Information field theory

Why this “philosophical” introduction to a mostly
technical paper? The fact that the signal can be tailored
to specific needs should also make us aware, that while
interpreting data we are not reconstructing a physical
reality, but only a condensed description of it, our cho-
sen signal. We are gathering abstract information and
this information can be about spatially distributed phys-
ical quantities in cosmological applications. Our signal
is therefore an information field which should conform
to the laws of information theory, or more specifically, to
highlight the technical aspects of dealing with distributed
quantities, to information field theory (IFT), which we
want to introduce here.1

Physical fields and the information fields derived from
them have a number of similarities, motivating the termi-
nology chosen here, but also exhibit a number of distinct
differences, explaining why we insist on not to identify
an information field with its physical counterpart.

Physical fields form the physical reality, whereas infor-
mation fields are only abstract and compressed descrip-
tions of that physical reality. Physical reality should be
understood here as the state of our physical model, which
actually is a philosophical concept, and to some degree
even subjective. Therefore, we can also state that in-
formation fields form a knowledge reality, which is obvi-
ously and explicitly subjective due to its dependence on
the data available, and the data model used to construct
the field. Physical fields may interact among themselves,
whereas information fields are derived from the former
but do not influence them.2

Nevertheless, also information fields interact among
themselves, since two pieces of information can add up
in a non-linear way and interaction terms in informa-
tion Hamiltonians can have a similar structure to those
of physical Hamiltonians. Physical signals travel at most
with the speed of light, and any interaction of physical
fields should be local due to physical causality. Infor-
mation field theory, however, can contain non-local in-

1 We prefer the term information field theory (IFT) versus the
proposal of Bayesian field theory (BFT) by Lemm [2] since the
term IFT puts the emphasis on the relevant object, the informa-
tion, whereas BFT refers to a method, Bayesian inference. The
Bayesian methods are unavoidably needed while dealing with in-
formation, however, also other methods might be required. Fur-
thermore, the term information field is rather self-explaining,
whereas the meaning of a Bayesian field is not that obvious.

2 At least no significant influence of a knowledge state described
by an information field is expected in usual physical and espe-
cially cosmological settings. However, if IFT is to be applied to
sociological systems, information on the state of distributed hu-
man motives might even change that state. This is well known
e.g. in economics, where the information on a believe in an eco-
nomical state of a company can have large influence on the same
state due to the induced decisions of the companie’s customers,
especially if the company is a bank. However, such complications
should not be the topic here.

teractions of information fields of causally unconnected
regions of space-time. This is for example possible in
case a cosmological principle is assumed to be valid in
the (model) Universe. This permits us to use conclu-
sions derived from data received from one region of our
Universe to understand properties of another part. If the
data were received as light from two opposite cosmic di-
rections, the two regions observed may never have been
in causal contact during recent cosmic history.

Although our main motivation is the reconstruction of
cosmic density and gravitational fields, and inference on
their statistical properties, and our examples are geared
towards such applications, it should be clear that the pre-
sented theory has more general applications. Even the
presented concrete cosmological problems may be useful
in other contexts as well with little modifications. For
example, the large-scale structure reconstruction method
based on galaxy counts of Sect. IV can be used for image
reconstruction with low-number photon statistics, e.g in
low-dose X-ray imaging. The CMB non-Gaussianity es-
timator of Sect. V may serve as a blueprint for statistical
monitoring of the linearity of a signal amplifier.

The information of some data d on a signal s defined
over some set Ω, which in most applications will be a
manifold like a sub-volume of the Rn, or the sphere in
case of a CMB signal, is completely contained in the
posterior P (s|d) of the signal given the data.3 The ex-
pectation value of s at some location x ∈ Ω, and higher
correlation functions of s can all be obtained from the
posterior by taking the appropriate average:

〈s(x1) · · · s(xn)〉d ≡ 〈s(x1) · · · s(xn)〉(s|d)

≡

∫
Ds s(x1) · · · s(xn)P (s|d).(19)

The problem is that often neither the expectation val-
ues nor even the posterior are easily calculated analyt-
ically, even for fairly simple data models. Fortunately,
there is at least one class of data models for which the
posterior and all its moments can be calculated exactly,
namely in case the posterior turns out to be a multivari-
ate Gaussian in s. In this case analytical formulae for
all moments of the signal are known and are in principle
computable. Technically, one is still often facing a huge,
but linear inverse problem. However, in the last decades
a couple of computational high-performance map-making
techniques were developed to tackle such problems either
on the sphere, for CMB research, or in flat spaces with
one, two or three dimensions, for example for the re-
construction of the cosmic large-scale structure (detailed
references are given in Sect. I F). The purpose of this

3 We are mostly dealing with scalar fields, however, multi-
component, vector or tensor fields can be treated analogously,
and many of the equations just have to be re-interpreted for
such fields and stay valid.
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work is to show how to expand other posterior distribu-
tions around the Gaussian ones in a perturbative manner,
which then permits to use the existing map-making codes
for the computation of the resulting diagrammatic per-
turbation series. Since the diagrammatic perturbation
series in Feynman-diagrams are well known and under-
stood in quantum- and statistical field theory (QFT &
SFT), the most economical way is to reformulate the in-
formation theoretical problem in a language which is as
close as possible to the former two theories. Thereby,
many of the results and concepts become directly avail-
able for signal inference problems. Moreover, it seems
that expressing the optimal signal estimator in terms of
Feynman diagrams immediately provides computation-
ally efficient algorithms, since the diagrams encode the
skeleton of the minimal necessary computational infor-
mation flow.

Formally, IFT can be regarded as a statistical field the-
ory. However, there is a philosophical difference. In SFT
any estimator is an expectation for a fluctuating field,
and given a sufficient long observing period, the system
will (usually) exhibit a time average identical to the esti-
mator. In IFT, however, there exists presumably only a
single realisation of the field. Its value is not known and
therefore uncertainties exists, which are described proba-
bilistically. Thus, an identical mathematical description
of the uncertainties in IFT and the fluctuations in the
SFT is used, but their meaning is conceptually different
in that in one case it is missing knowledge on the system,
and in the other case it is the description of a (rapidly)
changing state. The missing knowledge may be supple-
mented by later observations, whereas the fluctuations
of a thermodynamical system persist even after precise
measurements as long the system is coupled to a heat
bath.

Furthermore, adding constants to a QFT- or SFT-
Hamiltonian does not change the predictions of the the-
ory at all. In IFT, such constants are often meaning-
ful in cases where parameters of the theory themselves
have uncertainties and are to be estimated from the
data or marginalised over. This is a clear difference to
QFT, where, e.g., coupling constants and particle masses
are assumed to be fixed (at a given energy), and not
attributed with quantum-mechanical probability ampli-
tudes which are part of the dynamics. Such parameter
uncertainties can lead, as we will show in a follow-up pa-
per, to non-local couplings in IFT. Inference based on
data from one region may be used in conjunction with
the cosmological principle to predict the properties of
another corner of the Universe, which is the cause of
such non-local information couplings. This is different
to QFT, where only local coupling are possible due to
the physical causality of space-time.

E. Signal and data spaces

1. Discretisation and continuous limit

Both, the signal and the data space may be continu-
ous, however, in practice will most often be discrete since
digital data processing only permits to chose a discretised
representation of the distributed information. The space
in which the data and signal discretisation happens can
be chosen freely, and of course can be as well a Fourier,
wavelet or spherical harmonics space. Even if we would
like to analyse a continuous signal, the computationally
required discretisation will force an implicit redefinition
of our actual signal to be the discretely sampled version of
that continuous signal, and this discretisation step should
also be part of the data model, if it has the potential to
significantly affect the analysis.

Although discretisation implies some information loss
it also has an advantage. Scientists, who are not
so familiar with functional analysis and field theoret-
ical calculations, can assume discretisation and there-
fore read all scalar and tensor products as being the
usual, component-wise ones, now just in high-, but finite-
dimensional vector spaces. This may lower the threshold
for a broader usage of algorithms derived from IFT.

To be concrete, let {xi} ⊂ Ω be a discrete set of Npix

pixel positions, each of which has a volume-size Vi at-
tributed to it, then the scalar product of two discretised
function-vectors f = (fi), and g = (gi) sampled at these
points via fi = f(xi), and gi = g(xi) could be defined by

g†f ≡

Npix∑

i=1

Vi ḡi fi. (20)

The bar denotes complex conjugation. This scalar prod-
uct has the continuous limit

g†f −→

∫
dx ḡ(x) f(x). (21)

In many cases the actual volume normalisation in Eq.
20 does not matter for final results, since it usually can-
cels out, and therefore Vi is often dropped completely for
equidistant sampling of signal and data spaces. The vol-
ume terms also disappear for a scalar product involving
a function which is discretised via volume integration,
fi =

∫
Vi
dx f(x), e.g. the number of counts within the

cell i. Anyhow, higher order tensor products are defined
analogously.

The path integral of a functional F [f ] ≡
F (f1, . . . , fNpix) over all realisations of such a dis-
cretised field f is then just a high-dimensional volume
integral, with as many dimensions as pixels:

∫
Df F [f ] ≡




Npix∏

i=1

∫
dfi


 F (f1, . . . , fNpix). (22)

This definition of a finite-dimensional path integral is well
normalised, since in case that we want to integrate over
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a probability distribution over f , which is separable for

all pixels, P (f) =
∏Npix

i=1 Pi(fi), as e.g. white noise and
Poissonian processes produce, one finds

〈1〉(f) =

∫
Df P (f) =

Npix∏

i=1

∫
df Pi(f)

︸ ︷︷ ︸
=1

= 1. (23)

The probabilities of the individual pixels may depend on
the pixel volume, especially if the signal is an integral
quantity like the number of galaxies within a pixel vol-
ume, or it might be independent of the volumes, e.g. if
the signal is a physical field sampled only at the pixel
positions.

Although it is practically never required in real data-
analysis applications to perform the continuous limit
Npix →∞ with Vi → 0 for all i, we stress that this limit
can formally be taken and is well defined even for the
path integral, as we argue in more detail in Sec. III B.
The basic argument is that suitable signals could and
should be defined in such a way that path-integral di-
vergences, which plague sometimes QFT, can easily be
avoided by sensible signal design. Practically, the ex-
istence of a well-defined continuous limit of a well-posed
IFT implies that two numerical implementations of a sig-
nal reconstruction problem, which differ in their space
discretisation on scales smaller than the structures of the
signal, can be expected to provide identical results up
to a small discretisation difference, which vanishes with
higher discretisation-resolution.

2. Parameter spaces

In many applications, the signal space is identified with
the physical space or with the sphere of the sky. How-
ever, IFT can also be done over parameter spaces. In
Sec. V, a field theory over the sphere will implicitly de-
fine the knowledge state for an unknown parameter of
that theory, which can be regarded again to define an
information theory for that parameter. The latter is an
IFT in case that the parameter has spatial variations.

However, there are also functions defined over a param-
eter space, Ωparameter = {p} for some parameter p, which
one might want to obtain knowledge on from incomplete
data. A very import one is the probability distribution
of the parameter given the observational data, P (p|d),
which defines our parameter-knowledge state. This func-
tion may only be incompletely known and therefore re-
quire an IFT approach for its reconstruction and inter-
polation. Such incomplete knowledge on the function
could be due to incomplete numerical sampling of its
function values because of large computational costs and
the huge volumes of multi-dimensional parameter spaces.
Or, there might be another unknown nuisance parame-
ter q in the problem, which induces an uncertainty in
P(p|d) = P (p|d) and therefore an IFT over all possible

realisations of this knowledge state field function via

P [P(p|d)] =

∫
DP(p|d) δ

[
P(p|d) −

∫
dq P (p, q|d)

]
. (24)

In case that q is a field, the marginalisation integral in
the delta functional also becomes a path-integral. Prob-
abilistic decision theory, based on knowledge state as ex-
pressed by probability functions on parameters, has to
deal with such complications. For inference directly on
p, and not on the knowledge state P(p|d), the marginalised
probability

P (p|d) =

∫
dq P (p, q|d) (25)

contains all relevant information, and that will be suffi-
cient for most inference applications, and especially for
the ones in this work.

F. Previous works

The work presented here tries to unify information the-
ory and statistical field theory in order to provide a con-
ceptual framework in which optimal tools for cosmologi-
cal signal analysis can be derived, as well as for inference
problems in other disciplines. Below, we provide very
brief introductions into each of the required fields (in-
formation theory, image reconstruction, statistical field
theory, cosmological large-scale structure, and cosmic mi-
crowave background), for the orientation of non-expert
readers. An expert in any of these fields might decide to
skip the corresponding sections.

This work has tremendously benefitted in a direct and
indirect way from a large number of previous publica-
tions in those fields. We, the authors, have to apologise
for being unable to give full credit to all relevant former
works in those fields for only concentrating on a brief
summary of the papers more or less directly influenc-
ing this work. This collection is obviously highly biased
towards the cosmological literature due to our main sci-
entific interests and expertise, and definitely incomplete.

1. Information theory and Bayesian inference

The fundament of information theory was laid by the
work of Bayes [1] on probability theory, in which the
celebrated Bayes theorem was presented. The theorem
itself, Eq. 7, is a simple rule for conditional probabilities.
It only unfolds its power for inference problems if used
with belief or knowledge states, described by conditional
probabilities.

The advent of modern information theory is prob-
ably best dated by the work of Shannon [3, 4] on
the concept of information measure, being the negative
Boltzmann-entropy, and the work of Jaynes, combining



7

the language of statistical mechanics and Bayes proba-
bility theory and applying it to knowledge uncertainties
[5, 6, 7, 8, 9, 10, 11]. The required numerical evaluation
of Bayesian probability integrals suffered often from the
curse of high dimensionality. The standard recipe against
this, still in massive use today, is importance sampling
via Markov-Chain Monte-Carlo Methods, following the
ideas of Metropolis et al. [12], Hastings [13], and Geman
and Geman [14], where the latter authors already had
image reconstruction applications in mind. With such
tools, higher dimensional problems, as present in signal
restauration, could and can be tackled, however, for the
price of getting stochastic uncertainty into the computa-
tional results.

The applications and extensions of these pioneering
works are too numerous to be listed here. Good mono-
graphs exist and the necessary references can be found
there [15, 16, 17, 18, 19]. A review of Bayesian infer-
ence methods used for parameter estimation and model
selection in cosmology is given by Trotta [20].

2. Image reconstruction in astronomy and elsewhere

The problem of image reconstruction from incomplete,
noisy data is especially important in astronomy, where
the experimental conditions are largely set by the nature
of distant objects, weather conditions, etc., all mainly
out of the control of the observer, as well as in other
disciplines like medicine and geology, with similar limita-
tions to arrange the object of observations for an optimal
measurement. Some of the most prominent methods of
image reconstruction, which are based on a Bayesian im-
plementation of an assumed data model, are the Wiener-
filter [21], the Richardson-Lucy algorithm [22, 23], and
the maximum-entropy image restauration [24].4

The Wiener filter can be regarded to be a full Bayesian
image inference method in case of Gaussian signal and
noise statistics, as we will show in Sect. II C. It will be
the working horse of the IFT formalism, since the Wiener
filter represents the algorithm to construct the exact field
theoretical expectation value given the data for a non-
linear interaction-free information Hamiltonian. The fil-
ter can be decomposed into two essential information
processing steps, first building the information source by
response-over-noise weighting the data, and then propa-
gating this information through the signal space, by ap-
plying the so called Wiener variance.

The Richardson-Lucy algorithm is a maximum-
likelihood method to reconstruct from Poissonian data
and therefore is also of Bayesian origin. This method
has usually to be regularised by hand, by truncation of
the iterative calculations, against an over-fitting insta-
bility due to the missing (or implicitly flat) signal prior.

4 See also [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].

A Gaussian-prior based regularisation was recently pro-
posed by Kitaura and Enßlin [37], and the implementa-
tion of a variant of this is presented here in Sect. IVD.

The maximum entropy method can be regarded again
as being fully Bayesian, however, for a slightly artificial
data model of some ensemble of image signal packages
or “photons” trying to occupy that state of the image-
phase space, which has least information according to
the Boltzmann-Shannon measure, but is still consistent
with the data. The tradeoff between being data-conform
and having maximal entropy is set by an ad-hoc control
variable. For a classical review on maximum entropy
methods see [38]. Maximum entropy algorithms will not
be the topic here, as well as not a number of other exist-
ing methods, which are partly within and partly outside
the Bayesian framework. They may be found in existing
reviews on this topic [e.g. 39].

3. Statistical and Bayesian field theory

The relation of signal reconstruction problems and field
theory was discovered independently by several authors.
In cosmology, the most prominent work in this directions
is probably by Bertschinger [40], in which the path inte-
gral approach was proposed to sample primordial density
perturbations with a Gaussian statistics under the con-
straint of existing information on the large scale struc-
ture. The work presented here can be regarded as a non-
linear, non-Gaussian extension of this.

Simultaneously to Bertschinger’s work, Bialek and Zee
[41, 42] argued that visual perception can be modeled as a
field theory for the true image, being distorted by noise
and other data transformations, which are summarised
by a nuisance field. A probabilistic language was used,
but no direct reference to information theory was made,
since not the optimal information reconstruction was the
aim, but a model for the human visual reception system.
However, this work actually triggered our research.

Bialek et al. [43] applied a field theoretical approach
to recover a probability distribution from data. Here, a
Bayesian prior was used to regularise the solution, which
was set up ad-hoc to enforce smoothness of the recon-
struction, obtained from the classical (or saddlepoint, or
maximum a posteriori) solution of the problem. How-
ever, an “optimal” value for the smoothness controlling
parameter was derived from the data itself, a topic also
addressed by Stoica et al. [44] and by a follow up pub-
lication to ours. Bialek et al. [43] also recognised, as we
do, that an IFT can easily be non-local.

Finally, the work of Lemm and coworkers5 established
a tight connection between statistical field theory and
Bayesian inference is established, and proposed the term

5 [2, 45, 46, 47, 48, 49, 50, 51].
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Bayesian field theory for this. The applications concen-
trate on the reconstruction of probability fields over pa-
rameter spaces and quantum mechanical potentials by
means of the maximum a posteriori equation. The ex-
tensive book summarising the essential insights of these
papers, [2], clearly states the possibility of perturbative
expansions of the field theory. However, this is not fol-
lowed up by these authors probably for reasons of the
computational complexity of the required algorithms. In
contrast to many of the previous works on IFT, which
deal with ad-hoc priors, the publication by Lemm [52] is
remarkable, since it provides explicit recipes of how to
implement a priori information in various circumstances
more rigorously.

The field theoretical mathematical tools required to
tackle IFT problems come from statistical and quantum
field theory, which have a vast literature. We have spe-
cially made use of the books of Binney et al. [53], Peskin
and Schroeder [54], and Zee [55].

4. Cosmological large-scale structure

Our first IFT example in Sec. IV is geared towards
improving galaxy-survey based cosmography, the recon-
struction of the large-scale structure matter distribution.
We provide here a short overview on the relevant back-
ground and works.

The large-scale structure of the matter distribution
of the Universe is traced by the spatial distribution of
Galaxies, and therefore well observable. This structure
is believed to have emerged from tiny, mostly Gaussian
intitial density fluctuations of a relative strength of 10−5

via a self-gravitational instability, partly counteracted by
the expansion of the Universe. The initial density fluc-
tuations are believed to be produced during an early in-
flationary epoch of the Universe, and to carry valuable
information about the inflaton in their N -point corre-
lation functions, to be extracted from the observational
data.

The onset of the structure formation process is well
described by linear perturbation theory and therefore to
conserve Gaussianity, however, the later evolution, the
structures on smaller scales, and especially the galaxy
formation require non-linear descriptions. The observa-
tional situation is complicated by the fact that the most
important galaxy distance indicator, their redshift, is also
sensitive to the galaxy peculiar velocity, which causes the
observational data on the three-dimensional large-scale
structure to be partially degenerated. There are analyti-
cal methods to describe these effects 6, and also extensive
work on N -body simulations of the structure formation,

6 Of special interest in this context may be [56], which already
applies path-integrals, and [57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70] and the papers they refer to.

the latter probably providing us with the most detailed
and accurate statistical data on the properties of the mat-
ter density field.

In recent years, it was recognised that the evolution of
the cosmic density field and its statistical properties can
be addressed with field theoretical methods by virtue of
renormalisation flow equations. Detailed semi-analytical
calculations for the density field time propagator, the
two- and three- point correlation functions are now possi-
ble due to this, which are expected to play an important
role in future approaches to reconstruct the initial fluc-
tuations from the observational data7 .

It was recognised early on, that the primordial den-
sity fluctuations can in principle be reconstructed from
galaxy observations [40]. This has lead to a large devel-
opment of various numerical techniques for an optimal
reconstruction8. Many of them are based on a Bayesian
approach, since they are implementations and extension
of the Wiener filter. However, also other principles are
used, like, e.g. the least action approach, or Voronoi tes-
sellation techniques9 . A discussion and classification of
the various methods can be found in [37].

Especially the Wiener filter methods were extensively
applied to galaxy survey data10 and permitted partly
to extrapolate the matter distribution into the zone of

avoidance behind the galactic disk and to close the data-
gap there, c.f. [152, 153, 154], a topic we also address in
Sect. IV.

Another cosmological relevant information field to be
extracted from galaxy catalogues is the large-scale struc-
ture power spectrum11. This power is also measurable
in the CMB, and for a long time the CMB provided the
best spectrum normalisation [160, 161].

5. Cosmic Microwave Background

Since our second example deals with the CMB, we give
a brief overview on it and on related inference methods.

The CMB reveals the statistical properties of the mat-
ter field at a time, when the Universe was about 1100
times smaller in linear size than it is today. The photon-
baryon fluid, which decouples at that epoch into neutral
Hydrogen and free streaming photons, has responded to
the gravitational pull of the then already forming dark
matter structures. The photons from that epoch cooled

7 Relevant references are [71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85].

8 Some of the main references are: [86, 87, 88, 89, 90, 91, 92, 93,
94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126].

9 E.g. [127, 128, 129, 130, 131, 132, 133].
10 Survey based reconstructions of the cosmic matter fields can be

found in [134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144,
145, 146, 147, 148, 149, 150, 151].

11 E.g. [155, 156, 157, 158, 159].
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due to the cosmic expansion since then into the CMB
radiation we observe today, and carry information on
the physical properties of the photon-baryon fluid of that
time like density, temperature and velocity. To very high
accuracy, the spectrum of the photons from any direc-
tion is that of a blackbody, with a mean temperature of
2.7 Kelvin and fluctuations of the order of 10−5 Kelvin,
imprinted by the primordial gravitational potentials at
decoupling.

Therefore, mapping these temperature fluctuations
precisely permits to study many cosmological parameters
simultaneously, like the amount of dark matter produc-
ing the gravitational potentials, the ratio of photons to
baryons, balancing the pressure and weight of the fluid,
and geometrical and dynamical parameters of space-time
itself. The observations are technically challenging, and
therefore require sophisticated algorithms to extract the
tiny signal of temperature fluctuations against the instru-
ment noise, but also to separate it from other astrophys-
ical foreground emission with the best possible accuracy.

A number of such algorithms were developed12, which
in many cases implement the Wiener filter. Thus, the
required numerical tools for an IFT treatment of CMB
data are essentially available.

The expected temperature fluctuations spectrum can
be calculated from a linear perturbative treatment of
the Boltzmann equations of all dynamical active parti-
cle species at this epoch, and fast computational imple-
mentations exists permitting to predict it for a given set
of cosmological parameters. Well known codes for this
task are publically available13 and permit to extract in-
formation on cosmological parameters from the measured
CMB temperature fluctuation spectrum via comparison
to their predictions for a given parameter set. It was
recognised early on that this should happen in an infor-
mation theoretically optimal way, and Bayesian methods
were therefore adapted in that area well before in other
astrophysical disciplines [e.g. 183, 184, 185, 186].

The initial metric and density fluctuations, from which
the CMB fluctuations and the large-scale structure
emerged, are believed to be initially seeded by quan-
tum fluctuations of a hypothetical inflaton field, which
should have driven an inflationary expansion phase in the
very early Universe [187, 188, 189, 190, 191, 192]. The
inflaton-induced fluctuations have a very Gaussian prob-
ability distribution, however, some non-Gaussian fea-
tures seem to be unavoidable in most scenarios and can
serve as a fingerprint to discriminate among them [e.g.
193, 194, 195, 196]. Observational tests on such non-
Gaussianities based on the three-point correlation func-

12 E.g.by [162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179].

13 E.g. cmbfast (http://cmbfast.org ,
http://ascl.net/cmbfast.html , [180]), camb

(http://camb.info/, [181]), and cmbeasy

(http://www.cmbeasy.org/ , [182]).

tion of the CMB data [e.g. 197, 198, 199, 200, 201] were
so far mostly negative, however not sensitive enough
to seriously constrain the possible theoretical parame-
ter space of inflationary scenarios, see e.g. [202, 203].
Recently, there has been the claim of detection of such
non-Gaussianities by Yadav and Wandelt [204], and a
confirmation of this with better data and improved al-
gorithms is therefore highly desirable. In Sect. V we
make a proposal for improving the algorithmic side of
this challenge. A recent review on the current status of
CMB-Gaussianity can be found in [205].

G. Structure of the work

After the discussion of the basic concepts of IFT in-
cluding the free theory in Sec. II, interacting informa-
tion fields, their Hamiltonians and Feynman rules are
introduced in Sec. III. The normalisability of sensibly
constructed IFTs is shown, as well the classical infor-
mation field equation is presented there. Applications
of the theory are provided in the following two sections,
which can be skipped by a reader interested only in the
general theoretical framework. In Sec. IV the problem
of the reconstruction of the cosmic matter distribution
from galaxy surveys is analysed in terms of a Poissonain
data model. In Sec. V we derive an optimal estimator
for non-Gaussianity in the CMB, and show how it can
be generalised to map potential non-Gaussianities in the
CMB sky. Finally, the Boltzmann-Shannon information
measure is introduced in Sec. VI and used to outline how
survey strategies could be optimised. Our summary and
outlook can be found in Sec. VII.

II. BASICS CONCEPTS

A. Notation

We briefly summarise our notation of functions in po-
sition and Fourier space.

A here usually real, but in principle also complex func-
tion f(x) over the n-dimensional space is regarded as a
vector f in a discrete and finite-dimensional, or contin-
uous and infinite-dimensional Hilbert space. f will de-
note this vector, independently of the momentarily cho-
sen function basis, be it the real space f(x) = 〈x|f〉 or
the Fourier basis

f(k) = 〈k|f〉 =

∫
dx f(x) ei k·x. (26)

Here, the volume integration usually is performed only
over an finite domain with volume V . This leads to the
convention for origin of the delta function in k-space,

δ(0) =
V

(2 π)n
, (27)

http://cmbfast.org
http://ascl.net/cmbfast.html
http://camb.info/
http://www.cmbeasy.org/
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and also to a Fourier transformation operator F = |k〉〈x|,

with Fkx = ei k x, and its inverse F † = |x〉〈k|, with F †
xk =

e−i k x. The dagger is used to denote transposed and
complex conjugated objects. We have (F †F )xy = 1xy as
well as (F F †)kk′ = 1kk′ for the following definition of
the scalar product of two functions f and g in real and
Fourier space:

f †g = 〈f |g〉 =

∫
dx f(x) g(x) =

∫
dk

(2 π)n
f(k) g(k),

(28)
where the bar denotes complex conjugation. The sta-
tistical power-spectrum of f is denoted by Pf (k) =
〈|f(k)|2〉(f)/V .

We also introduce for convenience the position-space
component-wise product of two functions

(f g)(x) ≡ f(x) g(x), (29)

which also permits compact notations like

(log f)(x) = log(f(x)), (f/g)(x) = f(x)/g(x), (30)

and alike. The component-wise product should not
be confused with the tensor product of two vectors
(f g†)(x, y) = f(x) g(y).

The diagonal components of a matrix M in position-
space representation form a vector which we denote by

M̂ = diagxM, with M̂x = Mxx. (31)

Similarly, a diagonal matrix in position-space represen-
tation, whose diagonal components are given by a vector
f , will be denoted by

f̂ = diagxf with f̂xy = fx 1xy. (32)

Thus,
̂̂
M = M if and only if M diagonal, and

̂̂
f = f

always.
In our notation a multivariate Gaussian reads:

G(s, S) =
1

|2πS|
1
2

exp

(
−

1

2
s†S−1s

)
(33)

Here, S = 〈s s†〉(s) denotes the covariance tensor of the
Gaussian field s, which is drawn from P (s) = G(s, S). If
s is statistically homogeneous, S is fully described by the
power-spectrum Ps(k):

Sk k′ = (2 π)n δ(k − k′)Ps(k),

S−1
k k′ = (2 π)n δ(k − k′) (Ps(k))

−1
. (34)

The Fourier representation of the trace of a Fourier-
diagonal operator,

Tr(A) =

∫
dxAx x = V

∫
dk

(2 π)n
PA(k), (35)

is very useful in combination with the following expres-
sion for the determinant of a Hermitian matrix,

log |A| = Tr(logA). (36)

Furthermore, we usually suppress the dependency of
probabilities on the underlying model I and its param-
eters θ in our notation. I.e. instead of P (s|θ, I) we
just write P (s) or P (s|θ) depending on our focus. Here
θ = (S,N,R, ...) contains all the parameters of the model,
which are assumed to be known for the moment.

B. Information Hamiltonian

Although the posterior might not be easily accessible
mathematically, we assume in the following that the prior
P (s) of the signal before the data is taken as well as the
likelihood of the data given a signal P (d|s) are known
or at least can be Taylor-Fréchet-expanded around some
reference field configuration t. Then Bayes’s theorem per-
mits to express the posterior as

P (s|d) =
P (d|s)P (s)

P (d)
≡

1

Z
e−H[s] . (37)

Here, the Hamiltonian

H [s] ≡ Hd[s] ≡ − log [P (d, s)] = − log [P (d|s)P (s)] ,
(38)

the evidence of the data

P (d) ≡

∫
Ds P (d|s)P (s) =

∫
Ds e−H[s] ≡ Z, (39)

and the partition function Z ≡ Zd were introduced. It
is extremely convenient to include a moment generating
function into the definition of the partition sum

Zd[J ] ≡

∫
Ds e−H[s]+J†s. (40)

This means P (d) = Z = Z[0], but also permits to
calculate any moment of the signal field via Fréchet-
differentiation of Eq. 40

〈s(x1) · · · s(xn)〉d =
1

Z

δn Zd[J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

. (41)

Of special importance are the so-called connected corre-
lation functions

〈s(x1) · · · s(xn)〉cd ≡
δn logZd[J ]

δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

, (42)

which are corrected for the contribution of lower mo-
ments to a correlator of order n. For example, the con-
nected mean and dispersion are expressed in terms of
their unconnected counterparts as:

〈s(x)〉cd = 〈s(x)〉d,

〈s(x) s(y)〉cd = 〈s(x) s(y)〉d − 〈s(x)〉d 〈s(y)〉d, (43)

where the last term represents such a correction. For
Gaussian random fields all higher order connected corre-
lators vanish:

〈s(x1) · · · s(xn)〉cd = 0 (44)
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for n > 2.
The assumption that the Hamiltonian can be Taylor-

Fréchet expanded in the signal field permits to write

H [s] =
1

2
s†D−1 s− j†s+H0 +

∞∑

n=3

1

n!
Λ(n)

x1...xn
sx1 · · · sxn

.

(45)
Repeated coordinates are thought to be integrated over.
Here the first three Taylor coefficients have special roles.
The constant H0 is fixed by the normalisation condition
of the joined probability density of signal and data. If
H ′

d[s] denotes some unnormalised Hamiltonian, its nor-
malisation constant is given by

H0 = log

∫
Ds

∫
Dd e−H′

d[s]. (46)

In many applications H0 is irrelevant, as long as no com-
parison between different models or hyperparameter sets
are needed, however otherwise, the normalisation con-
stant H0 is crucial.

We call the linear coefficient j information source. This
term is usually directly and linearly related to the data.
The quadratic coefficient, D−1, defines the information
propagatorD(x, y), which propagates information on the
signal at y to location x, and thereby permits, e.g., to par-
tially reconstruct the signal at locations where no data
was taken. Finally, the anharmonic tensors Λ(n) create
interactions between the modes of the free, harmonic the-
ory. Since this free theory will be the basis for the full
interaction theory, we first investigate the case Λ(n) = 0.

C. Free theory

1. Gaussian data model

For our simplest data model we assume a Gaussian
signal with prior

P (s) = G(s, S) ≡
1

|2π S|
1
2

exp

(
−

1

2
s†S−1s

)
, (47)

where S = 〈s s†〉 is the signal covariance. The signal is
processed by nature and our measurement device accord-
ing to a linear data model

d = Rs+ n. (48)

Here, the response R[s] = Rs is linear in and the noise
ns = n is independent of the signal s. The linear response
matrix R of our instrument can contain window and se-
lection functions, blurring effects, and even a Fourier-
transformation of the signal space, if our instrument is
an interferometer. Typically, the data-space is discrete,
whereas the signal space may be continuous. In that case
the i-th data point is given by

di =

∫
dxRi(x) s(x) + ni. (49)

We assume, for the moment, but not in general, the
noise to be signal-independent and Gaussian, and there-
fore distributed as

P (n|s) = G(n,N), (50)

where N = 〈nn†〉 is the noise covariance matrix. Since
the noise is just the difference of the data to the signal-
response, n = d−Rs, the likelihood of the data is given
by

P (d|s) = P (n = d−Rs|s) = G(d −Rs,N), (51)

and thus the Hamiltonian of the Gaussian theory is

HG[s] = − log [P (d|s)P (s)]

= − log [G(d−Rs,N)G(s, S)]

=
1

2
s†D−1s− j†s+HG

0 . (52)

Here

D =
[
S−1 +R†N−1R

]−1
(53)

is the propagator of the free theory. The information
source,

j = R†N−1d, (54)

depends linearly on the data in a response-over-noise
weighted fashion and reads

j(x) =
∑

ij

Ri(x)N
−1
ij dj (55)

in case of discrete data but continuous signal spaces. Fi-
nally,

HG
0 =

1

2
d†N−1 d+

1

2
log (|2 π S| |2 πN |) (56)

has absorbed all s-independent normalisation constants.
The partition function of the free field theory,

ZG[J ] =

∫
Ds e−HG[s]+J†s (57)

=

∫
Ds exp

{
−

1

2
s†D−1s+ (J + j)†s −HG

0

}
,

is a Gaussian path integral, which can be calculated ex-
actly, yielding

ZG[J ] =
√
|2πD| exp

{
+

1

2
(J + j)†D(J + j)−HG

0

}
.

(58)
The explicit partition function permits to calculate via
Eq. 42 the expectation of the signal given the data, in
the following called the map md generated by the data
d:

md = 〈s〉d =
δ logZG

δJ

∣∣∣∣
J=0

= Dj

=
[
S−1 +R†N−1R

]−1
R†N−1

︸ ︷︷ ︸
FWF

d. (59)
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The last expression shows that the map is given by
the data after applying a generalised Wiener filter,
md = FWF d. The propagator D(x, y) describes how
the information on the density field contained in the
data at location x propagates to position y: m(y) =∫
dxD(y, x) j(x).
The connected autocorrelation of the signal given the

data,

〈ss†〉cd = D =
[
S−1 +R†N−1R

]−1
, (60)

is the propagator itself. All higher connected correlation
functions are zero. Therefore, the signal given the data is
a Gaussian random field around the mean md and with
a variance of the residual error

r = s−md (61)

provided by the propagator itself, as a straightforward
calculation shows:

〈rr†〉d = 〈ss†〉d − 〈s〉d〈s
†〉d = 〈ss†〉cd = D. (62)

Thus, the posterior should be simply a Gaussian given
by

P (s|d) = G(s−md, D). (63)

As a test for the latter equation, we calculate the evidence
of the free theory via

P (d) =
P (d|s)P (s)

P (s|d)
=
G(d−Rs,N)G(s, S)

G(s−D j,D)

=

(
|D|/|S|

|2πN |

) 1
2

exp

{
1

2
(j†D j − d†N−1d)

}
,(64)

which is indeed independent of s and also identical to
ZG[0], as it should be.

All of these results of the free theory are well-known
within the field of signal reconstruction, and therefore
demonstrate how elegantly the information field theoret-
ical approach can be used to reproduce them.

2. Free classical theory

The Hamiltonian permits to ask for classical equations
derived from an extremal principle. This is justified, on
the one hand, as being just the result of a the saddle-
point approximation of the exponential in the partition
function. On the other hand, the extrema principle is
equivalent to the maximum a posteriori (MAP) estima-
tor, which is quite commonly used for the construction
of signal-filters. An exhaustive introduction into and dis-
cussion of the MAP approximation to Gaussian and non-
Gaussian signal fields is provided by Lemm [2].

The classical theory is expected to capture essential
features of the field theory. However, if the field fluctua-
tions are able to probe phase space regions away from the

maximum in which the Hamiltonian (or posterior) has a
more complex structure, deviations between classical and
field theory should become apparent.

Extremising the Hamiltonian of the free theory (Eq.
52)

δHG

δs

∣∣∣∣
s=m

= D−1m− j ≡ 0 (65)

we get the classical mapping equation m = Dj, which is
identical to the field theoretical result (Eq. 59).

It is also possible to measure the sharpness of the max-
imum of the posterior by calculating the Hessian curva-
ture matrix

HG[m] =
δ2H [s]

δs2

∣∣∣∣
s=m

= D−1. (66)

In the Gaussian approximation of the maximum of the
posterior, the inverse of the Hessian is identical to the
covariance of the residual

〈r r†〉 = H−1[m] = D, (67)

which for the pure Gaussian model is of course identical
to the exact result, as given by the field theory (Eq. 62).

III. INTERACTING INFORMATION FIELDS

A. Interaction Hamiltonian

1. General Form

The assumption that the Hamiltonian can be Taylor
expanded in the signal fields permits to write

H [s] =
1

2
s†D−1 s− j†s+HG

0
︸ ︷︷ ︸

HG[s]

+
∞∑

n=0

1

n!
Λ(n)

x1...xn
sx1 · · · sxn

︸ ︷︷ ︸
Hint[s]

.

(68)
Repeated coordinates are thought to be integrated over.
In contrast to Eq. 45 we have now included perturba-
tions which are constant, linear and quadratic in the sig-
nal field, because we are summing from n = 0. This
permits to treat certain non-ideal effects perturbatively.
For example if a mostly position-independent propagator
gets a small position dependent contamination, it might
be more convenient to treat the latter perturbatively and
not to include it into the propagator used in the calcula-
tion. Note further, that all coefficients can be assumed
to be symmetric with respect to their coordinate-indices:

Dx y = Dy x and Λ
(n)
xπ(1)...xπ(n) = Λ

(n)
x1...xn with π any per-

mutation of {1, . . . , n}, since even non-symmetric coef-
ficients would automatically be symmetrised by the in-
tegration over all repeated coordinates. Therefore, we
assume in the following that such a symmetrisation op-
eration has been already done, or we impose it by hand
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before we continue with any perturbative calculation by
applying

Λ(n)
x1...xn

7−→
1

n!

∑

π∈Pn

Λ(n)
xπ(1)...xπ(n)

. (69)

This clearly leaves any symmetric tensor invariant if Pn

is the space of all permutations of {1, . . . , n}.
Often, it is more convenient to work with a shifted

field φ = s − t, where some (e.g. background) field t is
removed from s. The Hamiltonian of φ reads

H ′[φ] =
1

2
φ†D−1 φ− j′†φ+H ′

0
︸ ︷︷ ︸

H′
G

[φ]

+

∞∑

n=0

1

n!
Λ′(n)

x1...xn
φx1 · · ·φxn

︸ ︷︷ ︸
H′

int
[φ]

, with

H ′
0 = HG

0 − j
†t+

1

2
t†D−1t, (70)

j′ = j −D−1 t, and

Λ′(m)
x1...xm

=

∞∑

n=0

1

n!
Λ(m+n)

x1...xm+n
tx1 · · · txn

.

2. Feynman rules

Since all the information on any correlation functions
of the fields is contained in and can be extracted from
the partition sum, only the latter needs to be calculated:

Z[J ] =

∫
Ds e−H[s]+J†s

=

∫
Ds exp

[
−

∞∑

n=0

1

n!
Λ(n)

x1...xn
sx1 · · · sxn

]
e−HG[s]+J†s

= exp

[
−

∞∑

n=0

1

n!
Λ(n)

x1...xn

δ

δJx1

· · ·
δ

δJxn

]
×

∫
Ds e−HG[s]+J†s

= exp

[
−Hint[

δ

δJ
]

]
ZG[J ]. (71)

There exist well known diagrammatic expansion tech-
niques for such expressions. The expansion terms of the
logarithm of the partition sum, from which any connected
moments can be calculated, are represented by all pos-
sible connected diagrams build out of lines ( ), ver-
tices (with a number of legs connecting to lines, like ,

, , , ... and without any external line-ends (any
line ends in a vertex). These diagrams are interpreted ac-
cording to the following Feynman rules:

1. Open ends of lines in diagrams correspond to ex-
ternal coordinates and are labeled by such. Since

the partition sum in particular does not depend
on any external coordinate, it is calculated only
from summing up closed diagrams. However,
the field expectation value m(x) = 〈s(x)〉(s|d) =
d logZ[J ]/dJ(x)|J=0 and higher order correlation
functions depend on coordinates and therefore are
calculated from diagrams with one or more open
ends, respectively.

2. A line with coordinates x′ and y′ at its end repre-
sents the propagator Dx′ y′ connecting these loca-
tions.

3. Vertices with one leg get an individual internal,
integrated coordinate x′ and represent the term

jx′ + Jx′ − Λ
(1)
x′ .

4. Vertices with n legs represent the term −Λ
(n)
x′
1...x′

n
,

where each individual leg is labeled by one of the in-
ternal coordinates x′1, . . . , x

′
n. This more complex

vertex-structure, as compared to QFT vertices, is
a consequence of non-locality in IFT.

5. All internal (and therefore repeatedly occurring)
coordinates are integrated over, whereas external
coordinates are not.

6. Every diagram is divided by its symmetry factor,
the number of permutations of vertex legs leaving
the topology invariant, as described in any book on
field theory.

The n-th moment of s is generated by taking the n-th
derivative of logZ[J ] with respect to J , and then set-
ting J = 0. This correspond to removing n end-vertices
from all diagrams. For example, the first four diagrams
contributing to a map (m = 〈s〉(s|d)) are

= D j = Dxy jy

≡

∫
dy D(x, y) j(y),

= −
1

2
DΛ(3)[·, D] = −

1

2
Dxy Λ(3)

yzuDzu,

≡ −
1

2

∫
dy Dxy

∫
dz

∫
duΛ(3)

xyuDzu

= −
1

2
DΛ(3) [·, D j,D j]

= −
1

2
Dxy Λ(3)

yuz Dzz′ jz′ Duu′ ju′ (72)

≡ −
1

2

∫
dy Dxy

∫
dz

∫
duΛ(3)

yzu ×

∫
dz′Dzz′ jz′

∫
du′Duu′ ju′ ,

= −
1

2
DΛ(4)[·, D, D j]

= −
1

2
Dxy Λ(4)

yzuv DzuDvv′ jv′



14

≡ −
1

2

∫
dy Dxy

∫
dz

∫
du

∫
dvΛ(4)

yzuv Dzu ×

∫
dv′Dvv′ jv′ ,

where we have assumed that any first and second order
perturbation was absorbed into the data source and the
propagator, thus Λ(1) = Λ(2) = 0. Repeated indices are
assumed to be integrated (or summed) over.

3. Local interactions and Fourier space rules

In case of purely local interactions

Λ(n)
x1...xn

= λn(x1) δ(x1 − x2) · · · δ(x1 − xn) (73)

the interaction Hamiltonian reads

Hint =

∞∑

m=0

1

m!
λ†ms

m (74)

and the expressions of the Feynman diagrams simplify
considerably. The fourth Feynman rule can be replaced
by

4. Vertices with n lines connected to it are associated
with a single internal coordinate x′ and represent
the term −λn(x′).

For example, the last loop diagram in Eq 72 becomes

= −
1

2

∫
dyDxy λ4(y)Dyy

∫
dz Dyz jz . (75)

In case of local interactions, it can be helpful to do
the calculations in Fourier space, for which the Feynman
rules can be obtained by inserting a real-space identity
operator 1 = F †F in between any scalar product and
assigning F † to the left and F to the right term, e.g.

D j = F † F DF †
︸ ︷︷ ︸

D′

F j︸︷︷︸
j′

= F †D′ j′. (76)

Note, that the Fourier space lines are directed since
they carry momenta k:

1. An open end of a line has an external momentum
coordinate k, and gets an

∫
dk e− i k x/(2π)n applied

to it, if real space functions are to be evaluated.

2. A line connecting momentum k with momentum k′

corresponds to a directed propagator between these
momenta: Dkk′ = D(k, k′)

3. A data source vertex is (j + J − λ1)(k
′′), where k′′

is the momentum at the data-end of the line.

4. A vertex with m lines (m bigger than
1) with momentum lables k1 ... km is
−λm(k0)(2π)n δ(

∑m
i=0 ki)

5. An internal end of a line has an internal (in-
tegrated) momentum coordinate k′. Integration
means a term

∫
dk′/(2π)n in front of the expres-

sion.

6. The expression gets divided by the symmetry factor
of its diagram.

Here, j(k) = (F j)(k) =
∫
dx j(x)ei k x,

D(k, k′) =(F DF †)(k, k′) =
∫
dx
∫
dx′D(x, x′) ei (k x−k′ x′),

etc. are the Fourier-transformed information source,
propagator, etc., respectively

Note, that momentum directions have to be taken into
account. The momenta that go into a vertex, data source
or open end get a positive sign in the delta-function of
momentum conservation, the ones that go out of a vertex
get a minus sign.

4. Simplistic interaction Hamiltonians

In order to have a toy case, which permits analytic
calculations, we introduce a simplistic Hamiltonian by
requiring the data model to be translational invariant
and all interaction terms to be local. This is the case
whenever the signal and noise covariances are fully char-
acterised by power spectra over the same spatial space,

S(k, q) = (2π)n δ(k − q)PS(k), (77)

N(k, q) = (2π)n δ(k − q)PN (k), (78)

with Ps(k) = 〈|s(k)|2〉/V , and Pn(k) = 〈|n(k)|2〉/V ,
where V is the volume of the system. We assume further
that the signal processing can be completely described
by a convolution with an instrumental beam,

d(x) =

∫
dy R(x− y) s(y) + n(x), (79)

where response-convolution kernel has a Fourier power
spectrum PR(k) = |R(k)|2 (no factor 1/V ). In this case
D can be fully described by a power spectrum:

D(k, q) = (2π)n δ(k − q)PD(k), (80)

with PD(k) = (P−1
S (k) + PR(k)P−1

N (k))−1.
The locality of the interaction terms requires λm =

const beside translational invariance and therefore the
interaction Hamiltonian reads

Hint[s] =
∞∑

m=1

λm

m!

∫
dx sm(x) (81)

=

∞∑

m=1

λm

m!

∫
dk1

(2π)n
sk1 · · ·

∫
dkm

(2π)n
skm

(2π)nδ(

m∑

i=1

ki)

In that case, the Feynman rules simplify considerably.
For the interaction Hamiltonian of equation 81, the Feyn-
man rules are now
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1. unintegrated x-coordinate: exp(−i k x) (if real
space functions are to be evaluated),

2. propagator: PD(k),

3. data source vertex: (j + J − λ1)(k),

4. vertex with m lines (m bigger than 1): −λm,

5. imply momentum conservation at each vertex:
(2π)nδ(

∑m
i=1 ki)), and integrate over every internal

momentum:
∫

dk
(2π)n ,

6. and divide by the symmetry factor.

5. Feynman rules on the sphere

For CMB reconstruction and analysis, but presumably
also for terrestrial applications, the Feynman rules on
the sphere Ω = S2 are needed and therefore provided
here. Actually, the real-space rules are identical to those
of flat spaces, with just the scalar product replaced by
the integral over the sphere, etc. In case the problem
at hand has an isotropic propagator, which only depends
on the distance of two points on the sphere, but not on
their location or orientation, the propagator is diagonal if
expressed in spherical harmonics Ylm(x). Thanks to the
orthogonality relation of spherical harmonics, we have for
x, y ∈ S2

(Y Y †)xy =
∑

lm

Ylm(x)Y ∗
lm(y) = δ(x− y) = (1)xy (82)

and

(Y †Y )(l,m)(l′,m′) =

∫
dxY ∗

lm(x)Yl′m′(x)

= δll′ δmm′ = (1)(l,m)(l′,m′). (83)

Therefore, we can just insert real-space identity matrices
1 = Y Y † in between any expression in real-space dia-
grammatic expression and assign Y † to the right, and Y
to the left term of it. This way we find the spherical-
harmonics Feynman rules, which are very similar to the
Fourier-space ones, in that they also require directed
propagators-lines for proper angular-momentum conser-
vation. For a theory with only local interactions, these
read:

1. an open end of a line has external (not summed)
angular-momentum quantum numbers (l,m).

2. A line connecting momentum (l,m) with momen-
tum (l′,m′) corresponds to a propagator between
these momenta: D(l,m)(l′,m′) = CD(l) δll′ δmm′ ,
where CD(l) is the angular power spectrum of the
propagator.

3. A data source vertex is (j + J − λ1)(l,m), where
(l,m) is the angular momentum at the data-end of
the line.

4. A vertex with quantum number (l0,m0) with nin

incoming and nout outgoing lines (nin + nout > 1)
with momentum lables (l1,m1) . . . (lnin ,mnin) and
(l′1,m

′
1) . . . (l

′
nout

,m′
nout

), respectively, is given by

−λm(l0,m0)C
(l′1,m′

1)...(l′nout
,m′

nout
)

(l0,m0)...(lnin
,mnin

) , where C will be

defined in Eq. 84.

5. an internal vertex has internal (summed) angular-
momentum quantum numbers (l′,m′). Summation

means a term
∑∞

l′=0

∑l′

m=−l′ in front of the expres-
sion.

6. The expression gets divided by the symmetry factor
of its diagram.

The interaction structure in spherical harmonics-space is
complicated due to the non-orthogonality of powers and
product of the spherical harmonic functions, compared
to the Fourier-space case, where any power or product
of Fourier-basis functions is again a single Fourier-basis
function.

The spherical structure is encapsulated in the coeffi-
cients

C
(l′1,m′

1)...(l
′
nout

,m′
nout

)

(l0,m0)...(lnin
,mnin

) ≡

∫
dx

(
nin∏

i=0

Ylimi
(x)

)(
nout∏

i=1

Y ∗
l′
i
m′

i
(x)

)
,

(84)
which can be expressed in terms of sums and products
of Wigner coefficients, thanks to the relations Y ∗

lm(x) =
Yl ,−m(x),

Yl1m1(x)Yl2 m2(x) =
∑

lm

√
(2 l1 + 1) (2 l2 + 1) (2 l+ 1)

4 π

×

(
l1 l2 l
m1 m2 m

)
Ylm(x)

(
l1 l2 l
0 0 0

)
, (85)

and the orthogonality relation in Eq. 83, to be applied
successively in this order. Due to this complication, it
is probably most efficient to calculate propagation not
in spherical harmonics space, but to change back to real
space for any interaction vertex of high order.

B. Normalisability of the theory

In contrast to quantum field theory and also to many
applications in statistical field theory, IFT should be
properly normalised and not necessarily require any
renormalisation procedure. The reason is that IFT is not
a low-energy limit of some unknown high-energy theory,
but can be set up as the full (high-energy) theory. The
Hamiltonian is just the logarithm of the joined probabil-
ity function of data and signal, Hd[s] ≡ − log [P (d, s)],
and therefore well defined and properly normalised if the
latter is. Only if ad-hoc Hamiltonians are set up, or if
approximations lead to ill-normalised theories, normali-
sation should be an issue.
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However, since we are trying to do a perturbative ex-
pansion of the theory, there is no guarantee that all in-
dividual terms are providing finite results. For example
in QFT, simple loop diagrams are known to be diver-
gent and require renormalisation. In the following we
investigate a simplistic, but representative case of IFT,
which shows that such problems are generally not to be
expected.

Let us adopt the simplistic situation described in
III A 4. and estimate a simple loop diagram for which
we assume for notational convenience λ3 = −2 (2π)n λ′

(with λ′ > 0):

= −
1

2
Dλ3 D̂

= λ′
∫
dk

∫
dk′ δ(k + k′ − k′)PD(k)PD(k′) eikx

≤ λ′ PD(0)

∫
dk′ PS(k′) = λ′ V PD(0) 〈s2(x)〉,(86)

where V is the volume of the system. Here and in the

following, Ĉ denotes the diagonal of the matrix C.

Thus, as long the signal field is of bounded variance,
the loop diagram is convergent due to PD(k) ≤ PS(k).
Even a signal of unbounded variance would not lead to
a divergent loop diagram if

∫
dk PN (k)/PR(k) is finite,

since we also have PD(k) ≤ PN (k)/PR(k). The latter
scenario is not very natural, since the response might
vanish for modes for which there is noise. However, a
bounded variance signal is very natural, especially in a
cosmological setting. The cosmological signal of primary
interest, the initial density fluctuations as revealed by
the large-scale-structure and the CMB, is expected to ex-
hibit a suppression of small-scale power due to the free-
streaming of dark matter particles before they became
non-relativistic. Also the CMB temperature fluctuations
are damped on small scales, due to free streaming of pho-
tons around the time of recombination.

Finally, since a signal as an information field can be
chosen freely, we can define it to be the filtered version of
the physical field (e.g. dark matter distribution or CMB
fluctuations), so that only modes of sufficiently bound
variance are present in it. Since we have the freedom to
chose information fields, which are mathematically well
behaved, we can therefore ensure convergence of expres-
sions.

Although this is not a general proof of normalisability
of the theory, which is beyond the scope of this paper, it
should provide confidence in the well-behavedness of the
formalism in sensible applications. The price to be payed
for this well-behavedness is the more complex structure
of the propagator, which, in comparison to QFT, even
in simplistic cases can be non-analytical and require nu-
merical evaluation.

C. Expansion around the classical solution

1. General case

The classical solution of the Hamiltonian in Eq. 68 is
provided by its minimum,

δH

δsx
= D−1

x ysy − jx +
∞∑

m=1

1

m!
Λ(m+1)

x1...xmx sx1 . . . sxm
= 0.

(87)
This leads to the equation for the classical field

scl
y = Dy x

(
jx −

∞∑

m=1

1

m!
Λ(m+1)

x1...xmx s
cl
x1
. . . scl

xm

)
, (88)

which one can try to solve iteratively.

2. Local interactions

For simplicity, we concentrate for a moment on the
case of purely local interactions, for which the equation
for the classical field scl is

scl = D

(
j −

∞∑

m=1

λ†m+1

m!
sm
cl

)
. (89)

Iterating this equation and rewriting the resulting terms
as Feynman diagrams shows that the classical solution
contains the tree-diagrams. The loop diagrams can be
added by investigation of the non-classical uncertainty
field φ = s− scl.

A non-classical expansion of the information field
around the classical field is possible by inserting s =
scl + φ into the Hamiltonian (Eq. 74). Reordering terms
according to the powers of the field φ leads to its Hamil-
tonian

H ′[φ] ≡ H [scl + φ]

= H ′
0 +

1

2
φ†D′−1

φ− j′†φ+

∞∑

m=3

1

m!
λ′m

†
φm,

with

λ′n ≡

∞∑

m=0

λn+m

m!
sm
cl , (90)

H ′
0 ≡ H [scl] = H0 +

1

2
scl

†D−1scl + λ′0,

j′ ≡ j − λ′1 −D
−1 scl, and D′ ≡ (D−1 + λ̂′2)

−1 .

In case scl is exactly the classical solution, Eqs. 89 and
90 imply that j′ = 0. Thus, there are no one-line inter-
nal vertices in any Feynman-graphs of the φ-theory, and
only loop-diagrams contribute uncertainty-corrections14

14 We propose the term uncertainty-corrections in order to describe
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to any information theoretical estimator. For example,
the uncertainty-corrections to the classical map estima-
tor are given by

δm = md − scl = 〈φ〉d (91)

= + + + + + . . .

However, in case scl is not (exactly) the classical solution,
may this due to a truncation error of an iteration scheme
to solve for the classical field, or may scl be chosen for
a completely different purpose, Eqs. 90-91 provide the
correct field theory for φ = s − scl independent of the
nature of scl. In case of a truncation error, incorporating
diagrams with data-source terms j′ into any computation
will permit to correct the inaccuracy of scl in a systematic
way.

IV. COSMIC LARGE-SCALE STRUCTURE VIA

GALAXY SURVEYS

A. Poissonian data model and Hamiltonian

Many datasets suffer from Poissonian-noise, which is
non-Gaussian, and therefore well suited to test IFT in
the non-linear regime. For example, the cosmological
large-scale structure is traced by galaxies, which may
be assumed to be roughly generated by a Poissonian
process. On large-scales, the expectation value of the
galaxy density follows that of the underlying (dark) mat-
ter distribution. The aim of cosmic cartography is to
recover the initial density field from the shot-noise con-
taminated galaxy data. Currently, large galaxy surveys
are conducted in order to chart the cosmic matter distri-
bution in three dimensions. Improving the galaxy based
large-scale-structure reconstruction techniques and un-
derstanding their uncertainties better is therefore an im-
minent and important goal. However, optimal techniques
to reconstruct Poissonian-noise affected signals are also
crucial for other problems, since e.g. imaging with pho-
ton detectors plays an important role in astronomy and
other fields. Here, we outline how such problems can be
treated, by discussing a specific data model motivated by
the problem of large-scale-structure reconstruction from
galaxies. A more general discussions of models of galaxy
and structure fromation and references to relevant works
was given in Sect. I F 4.

In order to treat the Poissonian case in a convenient
fashion, we subdivide the physical space into small cells
with volumes ∆V , and assume that a cell located at xi

the influence of the spread of the probability distribution func-
tion around its maximum. The uncertainty-corrections are the
information field theoretical equivalent to quantum-corrections
in quantum field theories.

has an expected number of observed galaxies

µi ≈ κ (1 + b s(xi)) (92)

with κ = n̄g ∆V being the cosmic average number of
galaxies per cell and b being the bias of the galaxy over-
density with respect to the dark matter overdensity s,
still assumed to be a Gaussian random field (Eq. 47).
However, this data model has two shortcomings. First,
too negative fluctuations of the Gaussian random field,
with s < −1 lead to negative expectation values, for
which the Poissonian statistics is not defined. Second,
the mean density of observable galaxies κ and their bias
parameter b are constant everywhere, whereas in reality
both exhibit spatial variations. Such variations are due
to the geometry of the observational survey sky cover-
age, due to a with distance from the observer decreasing
galaxy selection function, and changing composition of
the galaxy population. The latter distance-effects are
caused by the cosmic evolution of galaxies and by the
changing observational detectability of the different types
with distance. We note, that an observed sample of
galaxies, which was selected from a complete sample e.g.
by their luminosity due to instrumental sensitivity deter-
ministically or stochastically, still possesses a Poissonian
statistics, if the original distribution does. Although be-
ing spatially inhomogeneous, we assume κ and b to be
known for the moment and to incorporate all above ob-
servational effects.

To cure the above mentioned shortcomings we replace
Eq. 92 by a non-linear and non-translational invariant
model:

µi = κ(xi) exp(b(xi) s(xi)), (93)

where κ and b may depend on position in a known way,
and the unknown Gaussian field s may exhibit unre-
stricted negative fluctuations. Note that µ is the signal
response, by our definition in Eq. 10, since µ[s] = 〈d〉(d|s).
We call κ the zero-response, since µ[0] = κ. It should be
stressed, that the data model in Eq. 93 is just a con-
venient choice for illustration and proof-of-concept pur-
poses, and is easily exchangeable with more realistic, and
even non-local data models. This data model was origi-
nally proposed by Coles and Jones [206] and investigated
for constrained realisations by Sheth [120] and Vio et al.
[207].

Having chosen a Poissonian process to populate the
Universe and our observational data with galaxies ac-
cording to the underlying density field s, the likelihood
is

P (d|s) =
∏

i

µdi

i

di!
e−µi = exp

{∑

i

[di logµi − µi − log(di!)]

}
,

(94)
where di is the actual number of galaxies observed in cell
i. Since P (s) = G(s, S), the Hamiltonian is given by

Hd[s] = − logP (d, s) = − logP (d|s)− logP (s)
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= −d†b s+ κ† exp(b s) +H ′
0 +

1

2
s†S−1s

=
1

2
s†D−1s− j†s+H0 +

∞∑

n=3

1

n!
λ†n s

n, with

D−1 = S−1 + κ̂ b2, (95)

j = b (d− κ),

H0 =
1

2
log(|2π S|) + (κ+ log(d!))†1− d† log κ,

and

λn = κ bn.

A few remarks should be in order. Comparing the prop-
agator to the one of our Gaussian theory one can read

off an inverse noise term M = R†N−1R = κ̂ b2, where ĉ
denotes the diagonal matrix with cx in the diagonal at lo-
cation x. Thus the effective (inversely response weighted)
noise decreases with increasing mean galaxy number and
bias, and is infinite in regions without data (κ = 0).

The information source j increases with increasing re-
sponse (bias) of the data (galaxies) to the signal (density
fluctuations). However, it certainly vanishes for zero re-
sponse (b = 0) or in case that the observed galaxy counts
match the expected mean at a given location exactly.
Actually, the noise of our log-density signal is inversely
proportional to the square root of the expected number
density of galaxies, as it should be for a Poissonian pro-
cess. Finally, the interaction terms λn are local in po-
sition space, and vanish with decreasing b and κ. The
latter parameter is under the control of the data analyst,
since it is proportional to the volume of the individual
pixel sizes, and therefore can be made arbitrarily small
by choosing a more fine grained resolution in signal space.
However, this would not change the convergence proper-
ties of the series since any interaction vertex has then
to be summed over a correspondingly larger number of
pixels within a coherence patch of the signal, which ex-
actly compensates for the smaller coefficient. The bias,
in contrast, is set by nature and can be regarded as a
power counting parameter, which provides naturally a
numerical hirarchy among the higher order vertices and
diagrams for b2〈s2〉(s) < 1). Note that j = O(b).

B. Galaxy types and bias variations

Real galaxies can be cast into different classes, which
all differ in terms of their luminosities, bias factors, and
the frequencies with which they are found in the Uni-
verse. Although we are not going to investigate this
complication in the following, it should be explained here
how all the formulae in this section can easily be reinter-
preted, in order to incorporate also the different classes
of galaxies.

The galaxies can be characterised by a type-variable
L ∈ Ωtype, which may be the intrinsic luminosity, the
morphological galaxy type, or a multi-dimensional com-
bination of all properties which determine the galaxy

types’s spatial distributions via a L-dependent bias bL,
and their detectability as encoded in κL. The data space
is now spanned by Ωdata = Ωspace × Ωtype, and also µ, κ
and b can be regarded as functions over this space.

Performing the same algebra as in the previous section,
just taking the larger data-space into account, we get
to exactly the same Hamiltonian, as in Eq. 95, if we
interpret any term containing d, κ and b to be summed
or integrated over the type variable L. Thus we read

j(x)=(b (d− κ)) (x) ≡

∫
dL bL(x) (dL(x) − κL(x)),

D−1
xy =

(
S−1 + κ̂ b2

)
xy
≡ S−1

xy + 1xy

∫
dLκL(x)b2L(x),

λn(x)=(κ bn) (x) ≡

∫
dLκL(x) bnL(x), and (96)

µ[s](x)=
(
κ eb s

)
(x) ≡

∫
dLκL(x) ebL(x) s(x) =

∫
dLµL[s](x),

which all live in Ωspatial solely, so that the computa-
tional complexity of the matter distribution reconstruc-
tion problem is not affected at all, and only a bit more
book-keeping is required in its setup.

A few observations should be in order. In case of all
galaxies having the same bias factor, Eq. 96 is simply
a marginalisation of the type variable L, and any dif-
ferentiation of the various galaxy types is not necessary.
Since all known galaxies seem to have b ∼ O(1), such a
marginalisation seems to be justified, and explains why
large-scale structure reconstructions, which applied this
simplification, are relatively successful, although the dif-
ferent galaxy types masses, luminosities, and frequencies
vary by orders of magnitude. However, as our numerical
experiments below reveal, the data, and therefore the re-
constructability of the density field, both exhibit a sensi-
tive dependence on the bias for s-fluctuations with unity
variance.15 Such a variance is indeed observed on scales
below ∼ 10 Mpc in the galaxy distribution, and there-
fore the galaxy type-dependent bias variation does in-
deed matter to a non-negligible amount. Larger galaxies,
which have larger biases, therefore provide per galaxy a
slightly larger information source (j ∝ b), less shot noise
(R†N−1R ∝ b2), and increasingly larger higher-order
interaction terms (λn ∝ bn) in comparison to smaller
galaxies. However, smaller galaxies are much more nu-
merous by orders of magnitude, and therefore provide the
largest contribution to the information source, noise re-
duction and most low-order interaction terms. Thus, the
latter will dominate and therefore permit a reasonable
accurate matter reconstruction from an inhomogeneous
galaxy survey using a single bias value. Nevertheless, im-
provements are possible by applying the recipes described
here.

15 This is found for our specific data model µ ∝ exp(b s), however,
should also apply for more realistic models, which somehow have
to keep µ ≥ 0 even for b s < −1
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FIG. 1: Poissonian-reconstruction of a signal with unit variance and correlation length q−1 = 0.05, observed with slightly
non-linear response (b = 0.5, resolution: 1025 pixels per unit length, zero-signal galaxy density: 2000 galaxies per unit length).
Top: data d, signal response µ, and zero-response κ. Middle: signal s, linear Wiener-filter reconstruction m0 = D j, next
order reconstruction m1 according to Eq. 97, and classical solution scl according to Eq. 99. Bottom: Deviations of m0, m1,

scl from the signal, and the naive, Hessian-based error estimate D̂1/2.

C. Non-linear map making

The map, the expectation of our information field s
given the data, is to the lowest order in interaction

m1 = + + + +O(b6)

= Dxy jy −
1

2
Dxy b

3
y κy Dyy −

1

2
Dxy b

3
y κy (Dyz jz)

2

−
1

2
Dxy b

4
y κy Dyy Dyz jz +O(b6) (97)

or in compact notation

m1 = D

[
j −

1

2
b̂3 κ

(
D̂ + (D j)2 +

̂̂
DbD j

)]
+O(b6).

(98)
It is apparent, that the non-linear map making formula
contains corrections to the linear map m0 = D j. The

first two correction terms are always negative, reflect-
ing the fact that our non-linear data model has non-
symmetric fluctuations in the data with respect to the
mean. Moderate positive fluctuations lead to large num-
bers of observed galaxies, due to the exponential de-
pendence. Thus a large number of observed galaxies
at a position leads to an overestimate of s in the linear
map, which is corrected downwards by the first nonlinear
terms. For negative field strength the response gets sub-
linear, so that a small number of observed galaxies (with
respect to κ) leads to an underestimate of the magnitude
of the (negative) fluctuation in the linear map. Thus also
here a negative correction is required. The last correction
term is oppositely directed to the linear map, thereby
producing some non-linear damping of the effect of the
information source and correcting for the curvature in
the non-linear response of the data to the signal.

A one-dimensional, numerical example is displayed
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in Fig. 1. There, the signal was realised to have a
power spectrum Ps(k) ∝ (k2 + q2)−1, with a correlation
length q−1 = 0.05. The normalisation was chosen such
that the auto-correlation function is 〈s(x) s(x + r)〉(s) =
exp(−|q r|) and therefore the signal dispersion is unity,
〈s2〉(s) = 1. The data are generated by a Poissonian
process from κs = κ exp(b s) with b = 0.5. All three dis-
played reconstructions exhibit less power than the orig-
inal signal, as it is expected since the reconstruction is
conservative, and therefore biased towards zero. Also
shown in the bottom panel of the figure are the residuals
in comparison to the square root of the diagonal part of

the propagator D̂, as the Gaussian approximation of the
uncertainty level. It is apparent, that the residuals have a
non-Gaussian statistics, otherwise they should remain in
68% of the cases within the indicated uncertainty region,
which they don’t.

The non-linear correction to the naive map m0 should
not be too large, otherwise higher order diagrams have to
be included. In the case displayed in Fig. 1, b = 0.5 en-
sured that the linear corrections were mostly going into
the right direction. However, in case b ≈ 1 there is no
obvious ordering of the importance of the different inter-
action vertices, and numerical experiments reveal that
the first order corrections strongly overcorrect the linear
map m0 = D j (not shown). In such a case interaction
re-summation techniques should be used to incorporate
as many higher order interaction terms as possible. One
very powerful re-summation is provided by the classi-
cal solution, as developed below, which contains all tree-
diagrams simultaneously. This solution, also show in Fig.
1, is very close to m1 in this case.

D. Classical solution

The classical signal field or MAP solution is given by
Eq. 89, which reads in this case

scl = D

(
j −

∞∑

m=2

bm+1

m!
κ sm

cl

)

= D b
(
d− κ

(
eb scl − b scl

))
(99)

= S b (d− κ eb scl︸ ︷︷ ︸
κscl

).

The last expression motivates to introduce the expected
number of galaxies given the signal s:

κs = κ eb s. (100)

Also alternative forms of the MAP equation can be de-
rived, for example one, which is especially suitable for
large j:

scl =
1

b
log

[
j − S−1scl

κ b

]
=

1

b
log

[
d

κ
− 1−

S−1scl
κ b

]
,

(101)

which may be solved iteratively, while ensuring that

s
(i)
cl < S j at all iterations i. This form of the classical

field equation has some similarities to the naive inver-
sion of the response formula, 〈d〉(d|s) = κ exp(b s), which
yields

snaive =
1

b
log

[
d

κ

]
, (102)

a formula one can only dare to use in regimes of large
d. The classical solution is more conservative than this
naive data inversion, in that there is a damping term,
S−1scl/(κ b), compensating a bit the influence of too
large data points.

Those equations permit to calculate the classical so-
lution if suitable numerical regularisation schemes are
applied, since naive iterations can lead easily to numer-
ical divergencies in the non-linear case. For example, a
pseudo-time τ can be introduced by setting j(τ) = τ j.
This allows to set up a differential equation for scl(τ) by
taking the time derivative of Eq. 99,

ṡcl = Dscl
j with Dscl

=
(
S−1 + κscl

b2
)−1

, (103)

which has to be solved for scl(1) starting from scl(0) =
0. This equation is very appealing, since it looks like
Wiener-filtering an incoming information stream j and
accumulating the filtered data, while simultaneously tun-
ing the filter to the accumulated knowledge on the signal
and thereby implied Poissonian-noise structure. Thus, it
is a nice example system for continous Bayesian learn-
ing and also illustrates how different datasets can succes-
sively be fused into a single knowledge basis.

Alternatively, we can recognize that j is proportional
to the bias b, which is the essential signal response param-
eter controlling non-linearities, and therefore can serve us
as an expansion parameter. Thus, we set b → τ b in Eq.
99 and take the τ -derivative, yielding

ṡcl = D(τ scl) b
(
d− κ eτ b scl (1 + τ b scl)

)
, (104)

which is numerically different from Eq. 103 due to the
with time growing effective bias factor τ b occurring in
κτ scl

and Dτ scl(b). The initially lower effective response
has to be compensated later by an extra term not present
in Eq. 103, which is proportional to τ b, and therefore be-
coming important mostly at the later stages of the evo-
lution.

Numerical implementations of Eqs. 103 and 104
by discretisation correspond to different approximation
schemes, and therefore yield exactly identical results only
in the continuous limit. Nevertheless, we can call all
such implementations map-making algorithms, since we
required a data transformation only to approximately re-
produce the signal map given the data for this. It should
become clear that higher-fidelity map-making algorithms
are possible by not only investigating the maximum of
the posterior, but by averaging the signal s over the full
support of P (s|d).
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FIG. 2: Poissonian-reconstruction of a signal with unit variance and correlation length q−1 = 0.03, observed with strongly
non-linear response (b = 1.25, resolution: 1025 pixels per unit length, zero-signal galaxy density: 8000 galaxies per unit length)
through a complicated mask. Top: data d, signal response µ, and zero-response κ. Middle: signal s, renormalisation-based
reconstruction m, classical solution scl, and mask κ/(ng ∆V ). The linear Wiener-filter reconstruction m0 as well as its next
order corrected version m1 are not displayed, since they are partly far outside the displayed area. Bottom: Deviations of m

and scl from the signal, and the naive, Hessian-based error estimates D̂
1/2
0 and D̂

1/2
m . Note, that in the regions with many

observed galaxies, the high signal to noise ratio can be seen in the narrowness of D̂
1/2
m , which is significantly smaller than D̂

1/2
0

at these locations. Also the residual statistics seems to follow well a Gaussian statistics in these regions.

Anyhow, we can assume that a good approximation
t ≈ scl to the classical solution can be achieved. Figs. 1
and 2 display classical solutions for slightly and strongly
non-linear Poissonian inference problems. Especially the
second example shows that the classical solution is some-
times missing some significant contributions (see region
around x = 0.1), due to the missing uncertainty loop
diagrams, which contain information about the non-
Gaussian structure of the posterior P (s|d) away from scl.

E. Uncertainty-loop corrections

Now, we see how the missing uncertainty loop cor-
rections can be added to the classical solution. These
corrections can be derived from the Hamiltonian of the
uncertainty-field φ = s− t,

Ht[φ] =
1

2
φ†D−1

t φ− j†tφ+ κ†tg(b φ) +H0,t, where

D−1
t = S−1 + κ̂t b2,

jt = b (d− κt)− S
−1t, (105)

g(x) = ex − 1− x−
1

2
x2 =

∞∑

m=3

xm

m!
,
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FIG. 3: Remaining information source before the reconstruction (top panel) after the classical reconstruction (middle panel)
and after the exact field theoretical mapping (bottom panel). Displayed is the remaining information source j′t = b (d − κt)
for the data of Fig. 2 and for t = 0, t = scl, and t = m in the top, middle and bottom panels, respectively. The inlets
show an enlarged view on the region around x = 0.1, where the classical reconstruction was significantly worse than the field
theoretical one, as can be seen from Fig. 2. This is due to the asymmetry of the Poissonian distribution with respect to its
mean value, for which the classical map estimator is sub-optimal. This asymmetry is clearly visible in the region around x = 0.1
by the relatively rare, but stronger upwards spikes compared to downwards fluctuations. All the small scale fluctuations in the
information source terms get erased by the smoothing operation of the information propagators, as shown in Fig. 4.

and H0,t is a momentarily irrelevant normalisation con-
stant. Again, we have permitted for a non-zero jt, since
t might not be exactly the classical solution.

It is interesting to note that the interaction coefficients

in this Hamiltonian, λ
(m)
t = κt b

m, all reflect the expected
number of galaxies given the reference field t. Thus, the
replacement κ0 → κt would provide us with the shifted
field Hamiltonian, as defined in Eq. 70, expect for the
term −S−1t in jt. It turns out, that this term is some
sort of counter-term, which accumulates the effect of the

non-linear interactions.16

Anyhow, we see that effective interaction terms arise
when relevant parts of the solution are absorbed in the
background field t. A similar approach is desirable for
the loop diagrams. Instead of drawing and calculating
all possible loop diagrams, we want to absorb several of
them simultaneously into effective coefficients. For each

16 Dropping this term, and repeating the operation which have led
to the classical solution iteratively, permits to reconstruct non-
linearities better than classical. However, the price for this ad-
hoc improvement is a data-overfitting instability, as numerical
experiments show.
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vertex of the Poissonian Hamiltonian with m legs, there
exists diagrams in any Feynman-expansion, in which a
number of n simple loops are added to this vertex. Such
an n-loop enhanced vertex is given by

=
−1

2n n!
λ

(m+2n)
t D̂n =

−1

2n n!
κt b

m+2n D̂n. (106)

All these diagrams can be re-summed into an effective
interaction vertex, via

λ
(m)
t → λ′

(m)
t = κt b

m
∞∑

n=0

1

2n n!
b2n D̂n

= κt exp

(
b2

2
D̂

)
bm (107)

= κ
t+ b2

2 D̂
bm = λ

(m)

t+ b2

2 D̂
.

Thus, this re-summation is effectively equivalent to a
shift of the reference field

t→ t′ = t+ b2 D̂/2. (108)

One might consider to use this uncertainty-loop shifted
field as the reference field t′ in the Hamiltonian of Eq.
105, and to calculate with the corresponding propagator
Dt′ , information source term jt′ and interaction coeffi-

cients λ
(n)
t′ the first few Feynman diagrams contributing

to the map of φ′ = s− t′, like those diagrams in Eq. 97.
Although the interaction coefficients are by no means
smaller than the original ones, the φ′-field amplitudes
should be much smaller than those of the original s-field,
since most of the information is already condensed into
t′, and therefore one might hope that the higher-order
diagrams should have smaller and smaller contributions.

The with this recipe derived total signal map, m =
t′ + 〈φ′〉, contains many, however not all, contributing
Feynman diagrams. The uncertainty corrections applied
at the end indeed seem to shift the map closer to the
signal, as numerical experiments for situations as dis-
played in Fig. 2 reveal, however, only by a small margin.
Therefore, an inclusion of uncertainty corrections right
from the beginning of the calculations is required. This
can be done via renormlisation techniques, and the cal-
culations above have paved the path for those.

F. Response renormalisation

Since we are dealing with a φ∞-field theory, the zoo
of loop diagrams is quite complex, and forms something
like a Feynman foam. In order not to get stuck in the
multitude of this foam, we urgently require a trick to
keep either the maximal order of the diagrams low, or to
limit the number of vertices per diagram, or both. Since
we have basically only two handels on any interaction
term λn = κ bn, the bias b and the zero-response κ, we
concentrate on the bias, since it has served us well in

the classical case, and has the potential to suppress high
order terms for small values of b. The bias is the main
parameter controlling the signal response, and therefore
we call our attempt response renormalisation, since the
procedure developed below should be generic enough to
serve as a blueprint for other data models with a non-
linear response of the form µ = κ f(b s), with f(x) being
a strictly positive function of its argument. Again we
replace b → τ b in the theory, and use τ as our response
renormalisation parameter.

For the response renormalisation we decompose the
singal into a known, fixed background field t and an un-
certainty field φ, both dependent on the renormaliation
parameter τ , so that sτ = tτ + φτ . We start with t0 = 0
at τ = 0 and find that the uncertainties at that bias level
are distributed according to the trivial prior-Hamiltonian

H
(τ=0)
t0 [φ0] =

1

2
φ†0S

−1φ0, (109)

where the subscript t0 indicates the value of the back-
ground field around which the Hamiltonian is expanded.
This Hamiltonian has a vanishing uncertainty field expec-
tation value, 〈φ0〉(s|d,τ=0) = 0, indicating that the initial
background field t0 = 0 was well chosen.

We can therefore assume, that for some value of the
bias we know a background solution tτ , for which the
corresponding uncertainty field φτ = sτ − tτ has zero ex-

pectation value under its induced Hamiltonian H
(τ)
tτ

[φτ ],
since this is at least valid for τ = 0. Then the effective
Hamiltonian for this field can be written as

H
(τ)
tτ

[φτ ] =
1

2
φ†τD

−1
τ φτ + V

(τ)
int [φτ ], (110)

where the effective propagator Dτ collecting all effective
second order terms in φ, and the effective non-linear in-

teraction potential V
(τ)
int [φτ ] have yet to be determined.

The latter collects all effective terms which are non-
quadratic in φ. However, their individual impacts on
the uncertainty field expectation value must cancel each
other, otherwise the expectation value would not be zero.

For τ = 0 we have D0 = S and V
(0)
int [φ0] = 0.

If the renormalisation parameter is now increased by a
small amount, τ → τ + ε, we can use Eq. 105 to obtain
a modified Hamiltonian for the uncertainty φτ . To first
order in ε we find

H
(τ+ε)
tτ

[φτ ] = H
(τ)
tτ

[φτ ] +

∞∑

n=1

1

n!
λ(τ+ε)

n

†
φn

τ +O(ε2),

with λ
(τ+ε)
1 = −ε b (d− κtτ

) (111)

and λ(τ+ε)
n = ε κtτ

n τn−1 bn for n > 1.

The structure of this shifted Hamiltonian is that it
decomposes into an old part H

(τ)
tτ

[φτ ] with zero field-
expectation value, and a small ε-perturbation. Thus for
very small perturbations, as provided by all the ε-terms,
the old Hamiltonian can be regarded as being free of in-
ternal interactions and information sources.
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FIG. 4: IFT propagators D0 = (S−1 + κ̂0 b2)−1 (left) and Dm = (S−1 + κ̂m b2)−1 (right) in logarithmic grey scaling for the data
displayed in Fig. 2. m is here the solution of the response renormalisation flow equation (Eq. 117). The values of the diagonals

show the local uncertainty variance (in Gaussian approximation) before (D̂0) and after (D̂m) the data is analysed, respectively.
The bottom left and top right corners exhibit non-vanishing propagator values due to the assumed periodic spatial coordinate,
which puts these corners close to the two others on the matrix diagonal.

To first order in ε therefore only leaf diagrams with a
single perturbative interaction vertex contribute to the
perturbed expectation value of φτ :

〈φτ 〉(s|d,τ+ε)= + + + + . . .

=εDτ b

[
d− κ(τ tτ )

∞∑

n=0

2n+ 1

n!

(
τ2 b2 D̂τ

2

)n]
,

where the propagator to be used is that of the unper-
turbed Hamiltonian. Note, that only odd interaction
terms shift the expectation value. The even ones do not
exert any net forces in the vicinity of φτ = 0 since they
represent a potential which is mirror symmetric about
this point.

The induced field expectation value can be absorbed
into tτ+ε ≡ tτ + 〈φτ 〉(s|d,τ+ε), so that the then remaining
uncertainty field φτ+ε = sτ+ε−tτ+ε has zero expectation
value. Its effective Hamiltonian is therefore of the form

H
(τ+ε)
tτ+ε [φτ+ε] =

1

2
φ†τ+εD

−1
τ+εφτ+ε+V

(τ+ε)
int [φτ+ε], (112)

and can again be regarded to be effectively free for small
perturbations. The crucial step is to realise that

Dτ+ε = Dτ +O(ε2), (113)

since all effects linear in ε were absorbed in the shift
of the background field. Thus we conclude by iterating
N = τ/ε times that

Dτ = S +O(ε τ), (114)

which has the well defined continuous limit Dτ = S for
ε→ 0 since 0 ≤ τ ≤ 1.

Using the identity

∞∑

n=0

2n+ 1

n!
xn = ex (1 + 2x), (115)

we can write the background increment dtτ+ε = tτ+ε−tτ
as

dtτ+ε = εDτ b
[
d− κ

τ tτ+τ2 b D̂τ /2
(1 + τ2 b2 D̂τ )

]

(116)
and convert this into a differential equation for the back-
ground field by taking the limit ε→ 0:

ṫτ = S b
[
d− κ eτ b tτ +τ2 b2 Ŝ/2 (1 + τ2 b2 Ŝ)

]
. (117)

This is the required response renormalisation flow equa-
tion, which has to be solved starting with t0 = 0 at τ = 0
until the required response bias is reached at τ = 1, so
that m = t1.

It is instructive to compare it to the classical response
flow equation, Eq. 104, which is reproduced here for an
easier comparison:

ṡcl(τ) = Dscl(τ) b
[
d− κ eτ b scl(τ) (1 + τ b scl(τ))

]
,

Although there is a structural similarity of the two equa-
tions, there are also significant differences.

The first and most prominent difference is that the
propagator to be applied to some sort of effective in-
formation source flow (b times the terms in the square
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brackets) is the simple signal covariance matrix in case
of the renormalisaton flow equation. This is a substantial
computational simplification, since translation invariance
of Cosmology enforces a diagonal covariance matrix in
Fourier space. The classical flow equation requires the
application of a much more numerically demanding prop-
agator, which is the inverse of the sum of two terms, of
which one is diagonal in Fourier space, S−1, and the other

in position space, ̂τ2κscl
. Thus, our effort to derive the

exact information field expectation value is rewarded by
a numerically much simpler and faster recipe.

The second difference between classical and field the-
oretical renormalisation flow equations is that the effec-
tive background field, for which the response is compared

to the data in the renormalisation case, tτ + τ2 Ŝ/2,
is actually shifted by loop corrections of the sort dis-
cussed in the previous subsection. These uncertainties
(or knowledge fluctuations) probe the phase-space vol-
ume around the background field and feel the structure
of the IFT-potential there. Since the potential is expo-
nential (∼ exp(b φ))and therewith asymmetric, positive
uncertainty fluctuations have a larger impact than nega-
tive ones, leading to a shift in the effective potential.

And finally, the corrections provided by the last terms
in both flow equations, which compensate for the initially
low value of the effective bias τ b during the flow, are
solely due to uncertainty loops in the renormalisation
case, whereas they depend on the solution itself in the
classical case.

However, the most important difference is probably
the improved singal-recovery fidelity of the full IFT map
making algorithm in comparison to the classical map, as
Fig. 2 shows for many positions, and we also witnessed in
additional numerical experiments, not shown here. The
origin of this difference can be understood by inspection
of Fig. 3, which shows the remaining information source
after a background solution t has been adopted,

j′t = b (d− κt), (118)

for t = 0, t = scl, and t = m. The remaining information
source j′t differs from the shifted information source jt as
provided by Eq. 105, by the omission of the counter term
which compensates higher order interactions, −S−1t. It
is apparent in Fig. 3, that both, the classical and the field
theoretical maps have removed most of the information
present in j0, however, jscl

still exhibits some exploitable
net information around x = 0.1, whereas jm seems to be
free of any larger scale trend in this area. The better per-
formance of the field theoretical mapping algorithm lies
in the fact, that it attempts the correct expectation value
estimation by integrating over the full posterior distribu-
tion P (s|d), whereas the classical solution only searches
the maximum of P (s|d). And the latter is known to be
a biased mean estimator for any asymmetrical probabil-
ity density distribution like the Poissonian one we are
dealing with, and especially in the limit of small number
counts.

Since there are also instances, where the classical solu-
tion is closer to the underlying signal than the field the-
oretical solution, a more detailed statistical comparison
between the two methods is required. This is provided in
Fig. 5, where the mean variance of the residuals of the

classical and correct solutions are shown, the σ̂2
T of Eq.

17, averaged over 1000 signal realisations of the inference
problems of Fig. 2. Both methods exhibit a compara-
ble ability to reconstruct missing data, and of course are
unable to extrapolate into too large data-gaps. How-
ever, with increasing data availablility, the accuracy of
the field theoretical method becomes clearly superior to
the classical one, and this for lower computational costs.

It would be interesting to know something analytically
about the remaining uncertainties at the end of the renor-
malisation flow. The theory, as developed here, was only
suited to follow the mean evolution of the background
field tτ , which let to the map m = t1. One could also ask
for the evolution of the two point correlation function,
however this is beyond the introductory scope of this
work. However, some insight on the final uncertainty-
covariance structure can be read off from the Hessian
matrix of the bare (non-renormalised) Hamiltonian of the
uncertainty field φ = s−m. This is simply Dm, which we
display in Fig. 4 in comparison to the zero information
Hessian uncertainty-covariance matrix D0. The height
and width of the propagator values defines the strength
of the response to, and the distance of information propa-
gation from an information sources as can be seen in this
fugure. The structure of D0 is imprinted by the prior and
the mask. At D0’s widest locations the mask blocks any
information source and the structure of the signal prior S
becomes visible. At locations where the mask is transpar-
ent, the reconstruction response per information source
is lower, as plenty of the latter can be expected there,
due to the signal-response-to-noise weighting operation
transforming the data into the source j. Also the indi-
vidual informations do not need to be propagated that
far, thanks to the rich information source density in such
regions. It is interesting to see, how the propagator is
structured at the intersections of transparent and opaque
regions of the mask, such that information is propagated
efficiently from the first to the second region, but any re-
verse information flow is largely suppressed. This can be
read off the asymmetric vertical or horizontal profiles of
the propagator at such locations. Finally, the structure of
Dm has imprinted the expected information source den-
sity structure given the reconstruction m. The strongly
non-linear signal response has lead to regions with very
high galaxy count rates, which have larger information
densities, and therefore lower and narrower information
propagators.

Obvious extensions to the presented Poissonian recon-
struction problems could involve treating more general or
even non-local responses of the galaxy distribution to the
dark-matter field, or incorporating knowledge beyond the
Poissonian approximation of the galaxy formation statis-
tics. However, these are left for future work, since our
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FIG. 5: Residual root-mean-square variance of the field theoretical (〈(s−m)2〉
1/2

(s)
, solid) and the classical solution (〈(s−scl)

2〉
1/2

(s)
,

dashed) from 1000 signal realisations. The data mask is also shown for comparison. The setup is very similar to the one of Fig.
2, just the resolution was set to 513 pixels per unit length, and the zero-signal galaxy density to 2000 galaxies per unit length,
in order to speed up the computations. The thin lines show a similar average for a doubled correlation length q−1 = 0.06.

aim here was only to demonstrate the applicability of the
theory to non-trivial problems and to outline the neces-
sary calculations.

V. NON-GAUSSIAN CMB FLUCTUATIONS

VIA fnl-THEORY

A. Data model

As an IFT example on the sphere Ω = S2, involving
two interacting uncertainty fields, we investigate the so
called fnl-theory of local non-Gaussianities in the CMB
temperature fluctuations. This is also an example for
an IFT problem with currently high scientific relevance
due to the strongly increasing availability of high fidelity
CMB measurements, which permit to constrain the phys-
ical conditions at very early epochs of the Universe. The
relevant references for this topic were provided in Sect.
I F 5.

On top of the very uniform CMB sky with a mean
temperature TCMB, small temperature fluctuations on

the level of δT
{I,E,B}
obs /TCMB ∼ 10−{5,6,7} are observed

or expected in total Intensity (Stokes I) and in polari-
sation E- and B-modes, respectively. These CMB tem-
perature fluctuations are believed and observed to fol-
low mostly a Gaussian distribution. However, inflation
predicts some level of non-Gaussianity, and also some of
the secondary anisotropies imprinted by the large-scale
structure of the Universe via CMB lensing, the Integrated
Sachs-Wolfe and the Rees-Sciama effects should have im-
printed non-Gaussian signatures due to the non-linear
matter structures which have evolved in the modern Uni-
verse [208, 209]. The primordial, as well as some of the
secondary CMB temperature fluctuations are a response
to the gravitational potential initially seeded during infla-
tion. Since we are interested in primordial fluctuations,

we write

d ≡ δT
{I,E,B}
obs /TCMB = Rφprimordial + n, (119)

where φprimordial is the 3-dimensional, primordial gravita-
tional potential, and R is the response on it of an CMB-
instrument, observing the induced CMB temperature
fluctuations in intensity and polarisation. In case that
the data of the instrument are forground-cleaned and de-
convolved all-sky maps (assuming the data processing to
be part of the instrument) the response, which trans-
lates the 3-d gravitational field into temperature maps,
is well known from CMB-theory and can be calculated
with publically available codes like cmbfast, camb, and
cmbeasy (see Sect. I F 5), which use them internally. The
precise form of the response does not matter for a devel-
opment of the basic concept, and can be inserted later.

Finally, the noise n subsummes all deviation of the
measurement from the signal response due to instrumen-
tal and physical effects, which are not linearly correlated
with the primordial gravitational potential, such are de-
tector noise, remnants of foreground signals, but also
primordial gravitational wave contributions to the CMB
fluctuations.

The small level of non-Gaussianity expected in the
CMB temperature fluctuations is a consequence of some
non-Gaussianity in the primordial gravitational poten-
tial. Despite the lack of a generic non-Gaussian propabil-
ity function, many of the inflationary non-Gaussianities
seem to be well described by a local process, which taints
an initially Gaussian random field, φ ←֓ P (φ) = G(φ,Φ)
(with the φ-covariance Φ = 〈φφ†〉(φ)), with some level of
non-Gaussianity. A well controllable realisation of such a
tarnishing operation is provided by a slightly non-linear
transformation of φ into the primordial gravitational po-
tential via φprimordial = φ(x)+fnl (φ

2(x)−〈φ2(x)〉(φ)) for

any x ∈ R3. The parameter fnl controls the level and na-
ture of non-Gaussianity via its absolute value and sign,
respectively. This means that our data model reads

d = R (φ+ f (φ2 − Φ̂)) + n, (120)
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where we dropped the subscript of fnl. In the following
we assume the noise n to be Gaussian with covariance
N = 〈nn†〉(n) and define as usual M = R†N−1R for
notational convenience. Non-Gaussian noise components
are in fact expected, and would need to be included into
the construction of an optimal fnl-reconstruction. How-
ever, currently we aim only at outlining the principles and
we are furthermore not aware of an existing fnl-estimator
constructed while taking such noise into account. And fi-
nally, we show at the end how to identify some of such
non-Gaussian noise sources by producing fnl-maps on the
sphere, which can morphologically be compared to known
foreground structures, like our Galaxy.

B. CMB-Hamiltonian

The CMB-Hamiltonian is therefore given by

Hf [d, φ] = − log(G(φ,Φ)G(d − φ+ f (φ2 − Φ̂), N))

=
1

2
φ†D−1φ+H0 − j

†φ+

4∑

n=0

1

n!
Λ(n)[φ, . . . , φ],

with

D−1 = Φ−1 +R†N−1R ≡ Φ−1 +M,

j = R†N−1d,

Λ(0) = j†(f Φ̂) +
1

2
(f Φ̂)†M (f Φ̂), (121)

Λ(1) = −R†N−1(f Φ̂) and j′ = j − Λ(1),

Λ(2) = −2 f̂ j′,

Λ(3)
xyz = (δxy Myz fz + permutations),

Λ(4)
xyzu =

1

2
(fx δxy Myz δzu fu + permutations),

and H0 collects all terms independent of φ and f .
The last two tensors should be read without the Ein-
stein sum-convention, but to contain all possible index-
permutations. Note, that this is a non-local theory for φ
in case that either the noise covariance or the response
matrix is non-diagonal, yielding a non-localM and there-
fore non-local interactions Λ(3) and Λ(4).

In case that the noise as well as the response is di-
agonal in position space, as it is often assumed for the
instrument response of properly cleaned CMB maps,
and also approximately valid on large angular scales,
where the Sachs-Wolfe effect dominates, we have Nxy =
σ2

n(x) δ(x − y), R = −3 [209] for the total intensity fluc-
tuations, and thus Mxy = 9 σ−2

n (x) δ(x−y), if we restrict
the signal space to the last-scattering surface, which we
identify with S2. This permits to simplify the Hamilto-
nian to

Hf [d, φ] =
1

2
φ†D−1φ+H0 − j

†φ+

4∑

n=0

1

n!
λ†n φ

n, with

D−1 = Φ−1 + 9 σ̂2
n, j

′ = j − λ1 = −3 (d+ Φ̂ f)/σ2
n,

λ0 = 3 (Φ̂/σ2
n)†(

3

2
f2Φ̂− f d), λ2 = −2 f j′,

λ3 = 54 f/σ2
n, and λ4 = 108 f2/σ2

n. (122)

The numerical coefficients of the last two terms may look
large, and therefore question the applicability of pertur-
bative methods, however, these coefficients stand in front
of terms of typically φ3 ∼ 10−15, and φ4 ∼ 10−20, which
ensures their well-behavedness in any diagrammatic ex-
pansion series.

C. fnl-evidence and map making

Since we are momentarily not interested in reconstruct-
ing the primordial fluctutations, but to extract knowl-
edge on fnl, we marginalise the former by calculating the
log-evidence log (P (d|f)) up to quadratic order in f :

logZf [d] = log

∫
DφP (φ, f |d)

= log

∫
Dφ e−Hf [d,φ]

= −H0 − Λ0 + + + + +

+ + + + + + +

+ + + + + +

+ + + +O(f3). (123)

We have made use of the fact that the logarithm of the
partition sum is provided by all connected diagrams, and
that j′ contains a term of the order O(f0), Λ(2) and Λ(3)

contain terms of the order O(f1), and Λ(4) one of the or-
der O(f2), so that they can appear an unrestricted num-
ber of times, twice and once in diagrams of order up to
O(f2), respectively. Since only 4th order interactions are
involved, an implementation in spherical harmonics space
may be feasible, using the only 4th order C-coefficients
(Eq. 84), which can be calculated with computer alge-
braic programs. Finally, we have defined

=
1

2
log |2πD β−1| =

1

2
Tr(log(2πD β−1)). (124)

Although f is not known, the expressions in Eq. 123
proportional to f and f2 can be calculated separately,
permitting to write down the Hamiltonian of f if a suit-
able prior P (f) is chosen,

Hd[f ] ≡ − log(P (d|f)P (f)) = H̃0+
1

2
f †D̃−1f+j̃†f+O(f3),

(125)
where we collected the linear and quadratic coefficients
into j̃ and D̃−1. It is obvious that the optimal f -
estimator to lowest order is therefore

mf = 〈f〉(s,f |d) = D̃ j̃, (126)
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and its uncertainty variance is just

〈(f −mf ) (f −mf )†〉(s,f |d) = D̃. (127)

So far, we have assumed f to have a single universal
value. However, we can also permit f to to vary spatially,
or on the sphere of the sky. In the latter case one would
expand f as

f(x) =

lmax∑

l=0

l∑

m=−l

flm Ylm(x) (128)

up to some finite lmax. Then one would recalculate the
partition sum, now separately for terms proporional to
flm and flm fl′m′ , which are then sorted into the vector
and matrix coefficients of j̃ and D̃−1, respectively and
according to

j̃(lm) =
dHd[f ]

dlmf

∣∣∣∣
f=0

, and (129)

D̃−1
(lm) (l′m′) =

d2Hd[f ]

dflm dfl′m′

∣∣∣∣
f=0

.

f -map making can then proceed as described above
in spherical harmonics space. Comparing the resulting
map in angular space to known foreground sources, as
our Galaxy, the level of non-Gaussian contamination due
to their imperfect removal from the data may be assessed.

We conclude this chapter with a short comparison to
existing fnl-estimators. To our knowledge, the most de-
veloped estimator in the literature is based on the CMB-
bispectrum, which is the third order correlation functions
of the data [e.g. 199, and references in Sect. I F 5]. The
estimator presented here is fourth order in the data, and
therefore of higher accuracy since both estimators are
supposed to be optimal within their order. It is not clear
at the moment, if the presented new estimator is signif-
icantly more accurate, since the higher order corrections
may be small due to the smallness of he perturbations.
However, its implementation would not be of larger com-
putational complexity than the existing fnl-estimators,
but would be rewarded by gaining a sensitive detector
for non-Gaussianities structures imprinted by imperfectly
subtracted foregrounds, or other data processing steps.
This should motivate further research in this direction.

VI. BOLTZMANN-SHANNON INFORMATION

A. Helmholtz free energy

Information fields carry information on distributed
physical quantities. The amount of signal-information
should be measurable in information units like bits and
bytes. This is possible by adopting the Boltzmann-
Shannon information concept of information being neg-
ative entropy. The entropy of a signal probability func-
tion measures the phase-space volume available for signal

uncertainties, and the information measure, as the nega-
tive entropy, expresses therefore the constraintness of the
remaining uncertainties. It turns then out that further
thermodynamical concepts, like the Helmholtz free en-
ergy, carry over to information theory, and both theories
can be treated within an identical formalism.

The amount of available information on a signal is
given by its negative entropy

Id =

∫
Ds P (s|d) logP (s|d)

= −

∫
Ds

1

Z
e−H[s] (H [s] + logZ)

= −〈H [s]〉d − logZd, (130)

the (negative of the) expectation value of the Hamilto-
nian plus logarithmic partition function. Introducing

Zβ [d, J ] =

∫
Ds exp

{
−β (H [s]− J†s)

}
, and(131)

Fβ [d, J ] = −
1

β
logZβ[d, J ], (132)

the latter of which is the Helmholtz free energy as a func-
tion of the inverse temperature β, we can write

Id = − logZ1[d, 0]− 〈H [s]〉d = −
∂Fβ [d, J ]

∂β

∣∣∣∣
β=1, J=0

,

(133)
as can be verified by a direct calculation. The second
expression for Id in Eq. 133 actually holds even if the
Hamiltonian is improperly normalised, e.g. H0 can be
chosen arbitrarily if Zβ[d, J ] is calculated consistently
with this choice.

The Helmholtz free energy Fβ [J ] = −β−1 logZβ[J ]
not only encodes the amount of signal information,
Id =−∂Fβ[d, J ]/∂β|β=1, J=0, but is also the genera-
tor of all connected correlation functions of the sig-
nal 〈sx1 · · · sxn

〉c(s|d) =−δnFβ [d, J ]/δJx1 · · · δJxn
|β=1, J=0.

The Helmholtz free energy can be calculated as follows:

Fβ = −
1

β
log

(
ZG

β [J ]

ZG
β [J ]

∫
Ds e−β Hint[s] e−β (HG[s]−J†s)

)

= −
1

β
logZG

β [J ]−
1

β
log
〈
e−β Hint[s]

〉
(s|J+j,G)

,(134)

where the average in the last term is over the Gaussian
probability function PG

J,β[s] ∝ exp(−β (HG[s] − J†s)).
This term can be calculated by using the well-known fact,
that the logarithm of the sum of all possible connected
and unconnected diagrams with only internal coordinates
(or without free ends), as generated by the exponential
function of the interaction terms, is given by the sum of
all connected diagrams [53]. For example, a free theory,
perturbed by small, up-to-fourth-order interaction terms
(all being proportional to some small parameter γ), has

Fβ [J ] = HG
0 + Λ(0)

︸ ︷︷ ︸
H0

−β−1

[
+ + +
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+ + + + +


+O(γ2), (135)

where an information source vertex reads β (J+j−Λ(1)),
an internal vertex with n lines β Λ(n), and the propagator
β−1D. Finally, we recall

=
1

2
log |2πD β−1| =

1

2
Tr(log(2πD β−1)).

Thus, we have

Fβ [J ] = H0 −
1

2 β
Tr(log(2πD β−1)) +

1

2 β
Λ(2)[D]

+
1

2
(J + j − Λ(1))†(D + Λ(2)) (J + j − Λ(1))

+
1

2 β
Λ(3)[D,mJ ] +

1

3!
Λ(3)[mJ ,mJ ,mJ ]

+
1

8 β2
Λ(4)[D,D] +

1

4 β
Λ(4)[D,mJ ,mJ ]

+
1

4!
Λ(4)[mJ ,mJ ,mJ ,mJ ] +O(γ2), (136)

where we introduced the zero-order map mJ = D (J + j)
for notational convenice. The power of β associated with
the different diagrams in Eq. 135 is given by the num-
ber of vertices minus the number of propagators minus
one. Thus, all tree-diagrams are of order β0, the one-loop
diagrams are of order β−1 and the two loop diagram of
order β−2, and only the latter two affect the information
content:

Id = −

[
̺

2
+ + + + +

]
+O(γ2)

=
1

2

[
−Tr(1 + log(2πD)) + Λ(2)[D] + Λ(3)[D,m0]

+
1

2
Λ(4)[D ⊗ (D +m0m

†
0)]

]
+O(γ2), (137)

where ̺ = Tr(1), β = 1, J = 0, and thus m0 = D j.
Here, we introduced the symmetrised tensor product ⊗,
which has the property

Ax1...xn
⊗Bxn+1...xm

=
1

m!

∑

π∈Pn+m

Axπ(1)...xπ(n)
Bxπ(n+1)...xπ(m)

,

(138)
with Pm being the set of permutations of {1, . . . ,m},
while assuming m > n.

B. Free theory

To obtain the information content of the free theory,
we can set γ = 0 in Eqs. 136 and 137 or use Eq. 58 with
the replacements J → β J , j → β j, D → β−1D, and

H0 → β H0,. In both cases we find identically

Fβ [J ]=HG
0 −

1

2
(J + j)†D (J + j)−

1

2β
Tr log

(
2 π

β
D

)
, and

Id =−
1

2
Tr (1 + log (2 πD)) . (139)

Very similarly, one can calculate the information prior to
the data, which turns out to be

I0 = −
1

2
Tr (1 + log (2 π S)) . (140)

Thus, the data-induced information gain is

∆Id = Id − I0 =
1

2
Tr
(
log
(
S D−1

))

=
1

2
Tr
(
log
(
1 + S R†N−1R

))
. (141)

The information gain depends on the signal-response-
to-noise ratio Q ≡ RS R†N−1, also shortly denoted by
the measurement fidelity or quality. The information in-
creases linearly with this ratio for it having a small value,
but levels off to a logarithmic increase as soon the ratio
exceeds one by large.

In the case of a 4th-order interacting theory, where,
however, the prior was Gaussian, the data induced infor-
mation gain is still given by Eq. 141 plus the nonlinear
terms on the rhs of Eq. 137.

C. Optimal interferometric information yield

We want to show how IFT can be used to optimise
the scientific return of investment of observational instru-
ments. In order to keep the discussion as transparent as
possible, we concentrate on an idealised case. More re-
alistic cases can be treated analogously, however, with a
higher mathematical complexity, which is unwanted for
the moment in order not to obscure our arguments.

An interferometer observing a Gaussian signal like the
CMB may be described by a free theory, since signal and
noise are Gaussian with high accuracy, the instrument
signal response is linear, and non-Gaussian contaminat-
ing signals may be sufficiently reduced by a proper choice
of observational wavelength and field on the sky. Assum-
ing for the moment that the observational field is suffi-
ciently small, so that the flat sky approximation holds,
the instrument response is roughly independent of sky
position well within the primary beam of the instrument,
which can be large for a phased array. A situation in
which the signal and noise statistics, as well as the in-
strumental response is position independent is described
by our simplistic Hamiltonian17 (Sect. III A 4). In this

17 S(k, q) = (2π)n δ(k − q) PS(k), N(k, q) = (2π)n δ(k − q) PN (k),

Ps(k) = 〈|s(k)|2〉/V , Pn(k) = 〈|n(k)|2〉/V . d(x) =
∫

dy R(x −

y) s(y) + n(x)), PR(k) = |R(k)|2.
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case we find

∆I =
V

2

∫
dk

(2 π)n
log (1 + PQ(k)) , (142)

where PQ(k) = PS(k)PR(k)/PN (k) is the quality spec-
trum and V is the observed volume, or sky area in our
example.18 Note that the integrand is zero for k-space
regions without response. If discrete samples were taken
in Fourier space the above integral should be replaced by

V

∫
dk

(2 π)n
→
∑

ki

, (143)

where ki are the observed k-vectors, where PR(k) 6= 0,
which is also consistent with taking the trace in data-
space.

We want to model the addition of further data in
Fourier space, e.g. by adding baselines to an interfer-
ometric observation, which enhances the sensitivity for
signals at a wavevector k. We therefore introduce the
Fourier space exposure function ̺(k), which just tells us
for how many observing (or time) units a measurement at
a given k vector has been performed. The signal response
adds up coherently and therefore quadratically with ad-
ditional observations, whereas the noise adds up incoher-
ently and thus only linearly. This means that the replace-
ments PR(k) → PR(k) ̺2(k) and PN (k) → PN (k) ̺(k)
lead to a functional of ̺ describing the information gain:

∆I[̺] =
V

2

∫
dk

(2 π)n
log (1 + PQ(k) ̺(k)) ≡

∫
dk Ik.

(144)
Given that the differential information gain per observa-
tional unit ̺(k)

δI

δ̺(k)
=

V

2 (2 π)n

PQ(k)

1 + ̺(k)PQ(k)
(145)

levels off for ̺ > P−1
Q , one can ask what the optimal ob-

servation time is, from an information-economical point
of view.

Assuming simply that an observation unit at k costs
an amount of c(k), and that an information unit on the
signal at k has a value of v(k), one finds by optimising
the benefit bk = Ik(̺k) vk − ̺k ck with respect to the
observing time ̺k that the optimum is given by

̺opt(k) =
V

2 (2π)n

vk

ck
−

(
PN

PS PR

)
(k) . (146)

This implies that – as far as our very simple information-
economical model holds – observations should only be

18 The volume-factor enters with the replacement of the delta func-
tion in k-space δ(0) → V/(2π)n.

done at wavenumbers for which the costs stay below an
economical limit provided by the quality times the value:

ck <
V PQ(k) vk

2 (2π)n
. (147)

The scientific value of some information at a given spatial
wavenumber may be derived from its information content
on yet unknown cosmological parameters. The price of
such parameter information is actually set by indirect
market mechanisms involving scientific funding agencies
and the competition of scientific collaborations for fun-
damental discoveries. However, providing the recipes to
assign concrete prices is beyond the scope of this paper.
It should be added, that such a pricing without includ-
ing the discovery potential of an observation risks to bias
the scientific research direction towards being aligned to
existing prejudices [210].

D. Poissonian information content

In case of a free theory, the amount of information de-
pends on the experimental setup and on the prior, but
is independent of the data obtained. This changes in
case that one wants to harvest information in a situa-
tion described by a non-linear IFT. There, the amount
of information can strongly depend on the actual data.19.

Here, we want to investigate how much information
on an underlying Gaussian signal can be obtained in a
non-linear case, and how it depends on the data. We
choose the Poissonian Hamiltonian of Sect. IV as our
reference case, and assume for our convenience that ei-
ther the bias-factor or the signal amplitude, which both
control the strength of the non-linear interactions, are
small compared to unity. The signal amplitude can, for
example, be made small by defining the signal of interest
to be the cosmic density field, smoothed on a sufficiently
large scale (> 10 Mpc) so that 〈s2〉(s) < 1.

Then the information gain expanded to the first few
orders in b

∆I =
1

2
Tr log

(
1 + S κ̂ b2

)
(148)

+
1

2

(
κ b3D̂

)†(
m0 +

1

2
b (D̂ +m2

0)

)
+O(b5),

clearly depends on the actual realisation of the data. The
different fluctuations in the naive map m0 = Dj, with

D = (S−1 + b̂2 κ)−1 and j = b (d − κ), contain positive
or negative information. In general, the positive infor-
mation fluctuations seem to dominate, since only in case

19 This may be confirmed by any astronomical observer, who faced
the problem of how to convert a technically perfect, but unsuc-
cessful search for astronomical objects into an acceptable scien-
tific publication.
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that m0(x) ∈ [m−(x),m+(x)], with

m±(x) =
1

bx

(
−1±

√
1− b2xDxx

)
≤ 0, (149)

the information fluctuation is negative, otherwise it is
positive.

A bit more insight into the non-linear information con-
tent can be obtained by analysing the special case of a
homogeneous response b, expected number of counts κ
and a translation-invariant signal statistics. All these
condition may approximately be met by a volume lim-
ited sample of observed galaxies in the universe, tracing
the large-scale structure of the dark matter distribution.
Note, that since a fundamental theory for translating our
signal s, the logarithm of the cosmic matter density, into
the expectation value of the observed number of galaxies
at some location is lacking, at least the absolute normal-
isation for κ has to be deduced from the data itself.

If we know the spatial shape of κ(x) = κ0 f(x), with
f(x) the known shape function (f = const in our fol-
lowing example), and κ0 the unknown normalisation to
be derived observationally, we could trade the informa-
tion of the zero Fourier mode for the κ0-determination
by requiring

∫
dx j(x) = 0, which yields

κ0 = b†d/b†f, (150)

and is κ0 =
∫
dx d(x)/V in our translational invariant

case.
By calibrating our zero-signal expectation value κ0 we

have removed any zero-Fourier-mode information in the
signal field, and may have introduced a systematic error
in our data model. We ignore the latter uncertainty for
the moment, it will be addressed in a subsequent work,
but model the missing zero-mode by removing its con-
tribution completely from any Fourier space based infor-
mation estimate. Having said this, we find

∆I = V

∫

k 6=0

dk

(2π)n

[
log
(
1 + κ b2 PS(k)

)

+
κ b4 D̂

4

∫

k′ 6=0

dk′

(2π)n
m(k)m(k − k′)

]
,(151)

with m(k) = PD(k) j(k), PD(k) = (PS(k)−1 + κ b2)−1,
PS(0) = PD(0) = 0, and

D̂ =

∫
dk

(2π)n
PD(k). (152)

For Gaussian signal and noise, one would expect
〈m(k)m(k − k′)〉(d,s) = 0 for k′ 6= 0 and due to trans-
lational invariance, however, the Poissonian statistics
should have introduced mode couplings, which can be ex-
ploited for better signal reconstruction and therefore con-
tain information. In real space these non-linear informa-

tion fluctuations are κ b4 D̂ m2
x/4 and therefore strictly

positive.

For an ongoing survey, it might be advantageous to
invest more observing times on regions with a higher in-
formation content, once they are identified. However, the
future survey response function becomes then conditional
on the data already obtained, a complication which is not
yet fully understood how to be taken into account in a
statistical data analysis. Therefore, we do not recom-
mend such survey strategies for the moment, but like to
encourage further theoretical research in this direction.

VII. SUMMARY AND OUTLOOK

A. Information Field Theory

The optimal extraction and restauration of informa-
tion on spatially distributed quantities like the cosmic
large-scale structure or the cosmic microwave background
(CMB) temperature fluctuations in cosmology, but also
on many other signals in physics and related fields, is
essential for any quantitative, data-driven scientific in-
ference. The problem of how to design such methods
possesses many technical and even conceptual difficulties,
which have led to a large number of recipes, methodolo-
gies and schools. Here, we addressed such problems from
a strictly information theoretical point of view, with the
aim of erasing any conceptual and practical ambiguity
about the optimal method for a given problem.

Starting with fundamental information theoretical con-
siderations about the nature of measurements, signals,
noise and their relation to a physical reality given a model
of the Universe or the system under consideration, we
reformulated the inference problem in the language of
information field theory (IFT). IFT is mathematically a
statistical field theory (SFT), however, its probabilistic
aspects are due to knowledge-uncertainties and not due
to thermal fluctuations. The information field is identi-
fied with a spatially distributed signal, which can freely
be chosen by the scientist according to needs and tech-
nical constraints. The mathematical apparatus of field
theory permits to deal with the ensemble of all possible
field configurations given the data and prior information
in a consistent way.

With this conceptual framework, we derived the
Hamiltonian of the theory, showed that the free theory
reproduces the well known results of Wiener-filter theory,
and presented the Feynman-rules for non-linear, interact-
ing Hamiltonians in general, and in particular cases. The
latter are information fields over Fourier- and spherical
harmonics-spaces for inference problems in Rn and S2,
respectively. Our “philosophical” considerations permit-
ted to argue why the resulting IFTs are usually well nor-
malised, but often non-local. Since the propagator of the
theory is closely related to the Wiener-filter, for which
nowadays efficient numerical algorithms exist as image
reconstruction and map-making codes, and the informa-
tion source term is usually a noise weighted version of
the data, the necessary computational tools are at hand
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to convert the diagrammatic expressions into well per-
forming algorithms for a large variety of applications in
Cosmology and elsewhere.

B. IFT Recipe

A typical IFT application will aim at calculating a
model evidence P (d), the expectation value of a signal
given the data, the map m(x) = 〈s(x)〉(s|d) of the sig-

nal, or its variance σ2
s(x, y) = 〈(s(x) − m(x)) (s(y) −

m(y))〉(s|d) as a measure of the signal uncertainty. The
general recipe for such applications can be summarised
as following:

• Specify the signal s and its prior probability distri-
bution P (s). If the signal is derived from a physical
field ψ, of which a prior statistic is known, the dis-
tribution of s = s[ψ] is induced according to Eq.
2.

• Specify the data model in terms of a likelihood
P (d|s) conditioned on s. Again, if the data are
related to an underlying physical field ψ, the like-
lihood is given by Eq. 4.

• Calculate the Hamiltonian Hd[s] = − log(P (d, s)),
where P (d, s) = P (d|s)P (s) is the joined probabil-
ity, and expand it in a Taylor-Fréchet series for all
degrees of freedom of s. Identify the coefficients of
the constant, linear, quadratic, and nth-order terms
with the normalisation H0, information source j,
inverse propagator D−1, and nth-order interaction
term Λ(n), respectively, as shown in Eq. 45 or 68.

• Draw all diagrams, which contribute to the quan-
tity of interest, consisting of vertices, lines, and
open-ends up to some order in complexity or some
small ordering parameter. The log-evidence is
given by the sum of all connected diagrams without
open ends, the expectation value of the signal by
all connected diagrams with one open end, and the
signal-variance around this mean by all connected
diagrams with two open ends.

• Read the diagrams as computational algorithms
specified by the Feynman rules in Sect. III, and
implement them by using linear algebra packages
or existing map-making codes for the information
propagator and vertices. The required discretisa-
tion is outlined in Sect. I E 1. Information on how
to implement the required matrix inversions effi-
ciently can be found in the literature given in Secs.
I F 2, I F 4, and I F 5 and especially in [37].

• If the resulting non-linear data transformation (or
filter) has the required accuracy, e.g. to be verified
via Monte-Carlo simulations using signal and data
realisations drawn from the prior and likelihood,
respectively, an IFT algorithm is established.

• In case that too large interaction terms in the
Hamiltonian prevent a finite number of diagrams to
form a well performing algorithm, a re-summation
of high order terms is due. This can be achieved by
the saddle point approximation (classical solution,
maximum a posteriori estimator), or even better by
a detailed renormalisation-flow analysis along the
lines outlined in Sect. IVF.

C. IFT Examples

As examples of the IFT recipe, two concrete IFT prob-
lems with cosmological motivation were discussed. The
first was targeting at the problem of reconstructing the
spatially continuous cosmic large-scale structure matter
distribution from discrete galaxy counts in incomplete
galaxy surveys. It was demonstrated analytically and nu-
merically that a Gaussian signal, which should resemble
the initial density perturbations of the Universe, observed
with a strongly non-linear, incomplete and Poissonian-
noise affected response, as the processes of structure
and galaxy formation and observations may provide, can
well be reconstructed thanks to the virtue of a response-
renormalisation flow equation. Surprisingly, it turned out
that the exact information field expectation value can be
calculated with much lower numerical costs as compared
to the classical maximum a posteriori estimator, despite
its higher fidelity.

The second example was the design of an optimal
method to measure or constrain any possible local non-
linearities in the CMB temperature fluctuations, as it is
predicted from some Early-Universe inflationary scenar-
ios, and is also expected due to imperfections in the re-
moval of CMB-foregrounds during the experimental data
processing.

Finally, we provided the Boltzmann-Shannon informa-
tion measure of IFT based on the Helmholtz free energy,
and thereby highlighting conceptual similarities of IFT
and SFT, and demonstrated, how this can be used to
optimise the information yield of observational and ex-
perimental setups.

D. Outlook

We conclude here with a short outlook on some prob-
lems that are accessible to the presented theory.

Many signal inference problems involve the reconstruc-
tion of fields with not precisely known statistics. Some
the coefficients in the IFT-Hamiltonians may only be
phenomenological in nature, and therefore have to be
derived from the same data used for the reconstruction
itself. This more intricate interplay of parameter and
information field can also be incorporated into the IFT
framework, as we will show with a subsequent work.

For cosmological applications, along the lines started
in this work, clearly more realistic data models need to be
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investigated. For example, to understand the response in
galaxy formation to the underlying dark matter distribu-
tion in terms of a realistic, statistical model, to be used
in constructing the corresponding IFT Hamiltonian for a
dark-matter information field, detailed higher-order cor-
relation coefficients have to be distilled from numerical
simulations or semi-analytic descriptions. Also the CMB
Hamiltonian may benefit from the inclusion of remnants
from the CMB foreground subtraction process, permit-
ting to gather more solid evidence on fundamental pa-
rameters which are hidden in the CMB fluctuations, like
the amplitude of non-Gaussianities.

Finally, we are very curious to see whether and how
the presented framework may be suitable to inference
problems in other scientific fields.
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