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ABSTRACT

The formation of dark matter halos tends to occur anisotropically along the filaments
of the Cosmic Web, which induces both ellipticity-ellipticity (EE) correlations between
the shapes of halos, as well as ellipticity-direction (ED) cross-correlations between halo
shapes and the directions to neighboring halos. We propose analytic fitting functions
for the EE and the ED correlations in terms of the linear density correlation function,
ξ(r), based on the assumption that the filamentary distribution of the dark halos orig-
inates from the large-scale coherence of the initial tidal field. We also analyze the halo
catalogue and the semi-analytic galaxy catalogue of the recent Millennium Simulation
to measure the EE and ED correlations numerically at four different redshifts (z = 0,
0.5, 1 and 2). For the EE correlations, we find that (i) the major-axis correlation is
strongest while the intermediate-axis correlation is weakest; (ii) the signal is stronger
than the halo spin-spin correlations that exist at distances out to 10 h−1Mpc; (iii) the
signal decreases as z decreases; (iv) and its behavior depends strongly on the halo
mass scale, with larger masses showing stronger correlations at large distances. For
the ED correlations, we find that (i) the correlations are much stronger than the EE
correlations, and are significant even out to distances of 50 h−1Mpc; (ii) the signal
also decreases as z decreases; (iii) and it increases with halo mass at all distances.
Our analytic models are able to fit the numerical results very well in all cases. These
results should be useful for quantifying the filamentary distribution of dark matter
halos over a wide range of scales and to assess a possible systematic contamination of
weak gravitational lensing signals.

Key words: methods:statistical – cosmology:theory – galaxies:clustering – galax-
ies:halos – large-scale structure of Universe

1 INTRODUCTION

One of the most striking features of the Universe is that
the observed distribution of galaxies on large scales shows a
web-like filamentary pattern, which is often called the ”Cos-
mic Web”. Recent large N-body simulations of the cold dark
matter cosmology demonstrated vividly the geometric rich-
ness of the filamentary web that spatially connects the dark
matter halos, and which directly relates to the structure
seen in the galaxy distribution. One of the most fundamen-
tal tasks in cosmology is thus to establish a physical model
for the filamentary cosmic web and to quantitatively explain
its global properties.

The existence of the filamentary web was originally
predicted by the top-down scenario of the hot dark mat-
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ter (HDM) model (Zel’dovich 1970). If cosmic structures
form through top-down fragmentation, then one- and two-
dimensional collapse of matter would naturally lead to the
formation of sheet-like and filamentary structures on large
scales. Therefore, it was regarded first as a mystery why and
how the filamentary web came into being also in a cold dark
matter (CDM) dominated universe.

A breakthrough was made by Bond et al. (1996) who
developed an ingenious theory for the cosmic web that can
explain the natural presence of a filamentary web in the
CDM cosmogony. This cosmic web theory has provided a
standard framework within which the formation of cosmic
large-scale structure can be qualitatively understood. Yet,
it is still quite difficult to describe the cosmic web quanti-
tatively both in theoretical and in observational sides. The-
oretically, the inherent anisotropic nature and geometrical
complexity of the cosmic web makes it complicated to fully
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characterize its statistical properties. Observationally, it is
hard to trace the filamentary structures from observational
data, since there is no well-established way to identify them.

In spite of these difficulties, various methodologies and
algorithms have already been suggested to quantify the fila-
mentary structures: Higher-order N-point statistics has been
used to describe the anisotropic matter distribution in a
cosmic web (Croton et al. 2004; Kulkarni et al. 2007); the
percolation statistics was used to characterize the filamen-
tary shapes of the large-scale structures (Sahni et al. 1997;
Shandarin & Yess 1998); the skeleton formalism has been
developed to extract the filamentary structures from a three
dimensional density field (e.g., Sousbie et al. 2007, and refer-
ences therein); the Minimal-Spanning-Three algorithm has
been introduced to find the basic structural elements of the
cosmic web (Colberg 2007).

Although the above methods are quite useful for de-
termining the overall filamentary structure of the cosmic
web, these approaches are largely phenomenological with-
out accounting for the physical mechanism for the forma-
tion of the cosmic web. According to the theory proposed
by Bond et al. (1996), the filamentary web originates from
the large-scale coherence of the primordial tidal field, and
its sharpening by nonlinear effects during structure growth.
Part of this nonlinear sharpening effect arises from the grav-
itationally driven merging of halos and the infall of matter,
which preferentially occurs along the most prominent fila-
ments. This increases the anisotropy in the halo clustering
and thus sharpens the filamentary web.

Henc, to describe the cosmic web quantitatively in
terms of its underlying physical principles it will be nec-
essary to account for the effects of the tidal field and the
anisotropic merging along filaments. The tidal field causes
intrinsic alignments of the principal axes of the dark ha-
los in the cosmic web (Croft & Metzler 2000; Heavens et al.
2000; Catelan et al. 2001; Jing 2002; Hui & Zhang 2002;
Lee & Pen 2007b), while anisotropic merging induces elon-
gation of the major axes of the halos along prominent fila-
ments (West 1989; West et al. 1991). As a result, there exist
spatial correlations between the halo ellipticities (EE corre-
lations), and cross-correlations between the halo elliptici-
ties and the large-scale density field (ED cross-correlations).
Hence, one can view the observed filamentary web as a large-
scale manifestation of the EE and ED correlations, which
are in turn induced by the effects of the tidal field and the
anisotropic merging.

The goal of this paper is to quantify the filamentarity
and the typical scales of the cosmic web in terms of the EE
and ED correlations. This is also highly important for assess-
ing to what degree these correlations can systematically bias
weak gravitational lensing mass reconstructions and cosmo-
logical parameter estimates based on cosmic shear measure-
ments. In fact, the ED cross-correlations have become a hot
issue in the weak lensing community, since it has been real-
ized that they could mimic weak lensing signals at a signif-
icant level (Hirata & Seljak 2004; Mandelbaum et al. 2006;
Hirata et al. 2007).

The organization of this paper is as follows. In Section 2,
we present physical models for the EE correlations and ED
cross-correlations in the framework of linear perturbation
theory. In Section 3, we describe the N-body dataset we
use and explain how we measure halo ellipticities from the

N-body simulation and its associated galaxy catalogue. We
then report numerical detections of the EE correlations and
the ED cross-correlations in Sections 4 and 5, and examine
how the signals depend on redshift and halo mass. Finally,
in Section 6, we summarize the results and discuss the im-
plications of our work.

2 PHYSICAL MODELS

According to the anisotropic merging model based on the
cosmic web theory (West 1989; West et al. 1991; Bond et al.
1996), the gravitational collapse of forming dark matter ha-
los occurs preferentially along filaments, which results in an
elongation of the halo shapes in the direction of the local
filament. Since the filaments represent the large-scale coher-
ence of the linear tidal field, the dark halo ellipticities are
expected to be aligned with the local tidal field.

Let êM ≡ (êi) represent a unit vector in the direction
of the major axis of a dark matter halo with mass M , and
let also T̂ ≡ (T̂ij) be the linear tidal field with unit magni-
tude smoothed on the same mass scale M . An alignment of
the halo’s major axis with the local filament can be rep-
resented by êiêj ∝ T̂ikT̂kj . In this linear model, the ex-
pected spatial ellipticity-ellipticity correlations (EE correla-
tions) of halos can hence be described as a quadratic scaling
of the two-point correlation function of the linear density
field, ξ2

A(r), since the spatial correlations of the tidal field,
T̂ikT̂kj , are well approximated as being proportional to ξ2(r)
(Lee & Pen 2001). As ξ2(r) decreases rapidly with the sep-
aration distance r, the linear model predicts that the EE
correlations exist only between close pairs with small sepa-
rations.

The above expression, however, only provides a valid
approximation if the density field (or equivalently, the tidal
field) remains Gaussian, and if there is no nonlinear sharpen-
ing effect due to anisotropic infall/merging, as first pointed
out by Hui & Zhang (2002). The nonlinear effect caused
by anisotropic infall/merging and the development of non-
Gaussianity in the density field will cause EE correlations at
larger scales than expected based on linear theory. To model
the large-scale EE correlations, it may therefore be neces-
sary to express the EE correlations by several terms of the
form ξn(r) with n < 2. Very recently, Lee & Pen (2007b)
have confirmed that the non-Gaussianity has a strong effect
on the orientations of the galaxy spin vectors, whose spatial
correlations are better described as ξ(r) at low redshifts.
Given that the ellipticities of the halos are affected not only
by the non-Gaussianity but also by the anisotropic merg-
ing/infall, we expect that the scale of the EE correlations
must be larger than that of the halo spin alignments.

Employing the quadratic function first suggested by
Pen et al. (2000) for the spatial correlations of a unit vector,
we define the halo EE correlation function, η(r), as

η(r) ≡ 〈|êM (x) · êM (x + r)|2〉 −
1

3
, (1)

where the constant 1/3 is subtracted since 〈|êM (x) · êM(x+
r)|2〉 = 1/3 when there is no correlation, so that we obtain
η(r) = 0 in the absence of any correlation.

We suggest the following analytic fitting formula for
η(r):
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η(r) ≈ a1ξ̃
2
A(r) + a2ξ̃A(r) + a3ξ̃

1/2

A (r), (2)

where the three parameters a1, a2, a3, represent the cor-
relation strengths at different (small and large) distances,
and whose values are to be determined empirically. Since
η(r) is always positive and does not exceed 2/3, the three
parameters are in the range of [0, 2/3]. If there are no EE
correlations, then all three parameters will be zero. If the
EE correlations exist only on small scales, then a1 will dom-
inate, while if they are present at large scales, then a2 and
a3 will dominate. Here, ξ̃(r)A is the rescaled auto-correlation
function of the linear density field, defined as

ξ̃A(r) ≡

∫

P (k)[(sin kr)/kr]W 2(k; M) d3k
∫

P (k)W 2(k; M) d3k
, (3)

where P (k) is the linear power spectrum, and W (k;M) is
the top-hat spherical filter corresponding to mass scale M .
Note that ξ̃(r = 0) = 1.

Although equation (2) was introduced to express the EE
correlations of the major axis of halos, it can also be applied
to the EE correlations of the intermediate and minor axes.
In these cases, the values of the three correlation parameters
are however expected to be lower than those for the major-
axis case, since the physical cause of the correlations lies in
the association of the major axes with the direction of the
filament and of the anisotropic merging and infall.

In equation (2), it was assumed that the mass of both
halos in the halo pair is the same. However, it is natural to
expect that the correlations of the halo’s major axes exist
between different mass scales as well. Defining the cross-
correlations of the major axes between the halos with differ-
ent mass (say, M1 and M2) as

ηC(r) ≡ 〈|êM1(x) · êM2(x + r)|2〉 −
1

3
, (4)

we suggest the following formula for ηC(r), similar to equa-
tion (2):

ηC(r) ≈ a1ξ̃
2
C(r) + a2ξ̃C(r) + a3ξ̃

1/2

C (r) (5)

where ξ̃2
C(r; R1, R2) is defined as

ξ̃C(r) ≡

∫

P (k)[sin kr/kr]W (k; M1)W (k;M2) d3k
∫

P (k)W (k;M1)W (k;M2) d3k
. (6)

We expect that the stronger the effect of the non-
Gaussianity is, the stronger the cross-correlations ηC(r) will
be.

Another important correlation function for quantifying
the cosmic web is the cross-correlation between the halo el-
lipticities and the large-scale density field. If the halo elliptic-
ities are induced by the anisotropic infall and merging along
the local filaments, then the orientations of the halo ma-
jor axes must be preferentially aligned with the directions
to the neighbouring halos. Thiseffect can be measured in
terms of ellipticity-direction (ED) cross-correlations of halo
orientations and the location ofhalo neighbours.

We define the ED cross-correlations as

ω(r) ≡ 〈|êM (x) · r̂(x)|2〉 −
1

3
, (7)

where r̂ ≡ r/r is a unit vector in the direction to a neigh-
bouring halo at separation distance of r. We suggest the
following fitting formula for ω(r), similar to equation (2):

ω(r) ≈ b1ξ̃
2
A(r) + b2ξ̃A(r) + b3ξ̃

1/2

A (r) (8)

where the three parameters b1, b2, b3 lie in the range of
[−1/3, 2/3]. For the case of the halo major-axis, the three
parameters will have positive values, while for the cases of
the halo minor or intermediate axes, the values of b1, b2, b3

will be negative. We also expect that the values of b1, b2, b3

will be larger than those of a1, a2, a3, since the ED cross-
correlations are a more direct measure of the filamentary
distribution of dark matter halos.

In the following two sections, we measure the EE cor-
relations and ED cross-correlations by analyzing data from
a recent high-resolution N-body simulation, and we deter-
mine the best-fit values of a1, a2, a3 and b1, b2, b3 at different
redshifts.

3 SIMULATION DATA AND METHODOLOGY

Our analysis is based on the halo catalog and the semi-
analytic galaxy catalog from the recent high-resolution Mil-

lennium Simulation1, which followed 1010 dark matter par-
ticles in a ΛCDM concordance cosmology (Springel et al.
2005). The size of the periodic simulation box is 500 h−1Mpc
and each dark matter particle in the simulation has a mass
of 8.6 × 108h−1M⊙. The basic cosmological parameters of
the simulation were chosen as Ωm = 0.25 (the mass den-
sity); ΩΛ = 0.75 (the vacuum energy density); h = 0.73
(the dimensionless Hubble constant); σ8 = 0.9 (the linear
power spectrum amplitude); and ns = 1 (the slope of the
primordial power spectrum).

As part of the analysis of the Millennium run, halos of
dark matter particles were first identified with the standard
friends-of-friends (FOF) algorithm, and then decomposed
into gravitationally bound subhalos using the SUBFIND al-
gorithm (Springel et al. 2001). Based on detailed merger
trees constructed for the subhalos, the halos were then popu-
lated with luminous galaxy models using semi-analytic simu-
lations of the galaxy formation process (Croton et al. 2006).

We here use the spatial distribution of subhalos and
galaxies to characterize the shape of FOF halos, in analogy
to the procedure applied to observational galaxy surveys
(e.g., Mei et al. 2007). For each FOF halo, we locate the
satellite galaxies belonging to it. Then, we measure their
tensor (Iij) of second order mass moments as

Iij =
∑

α

mα xα,i xα,j , (9)

where mα is the luminosity (or, equivalently the stellar
mass) of the α-th galaxy and ~xα is the position of the α-th
galaxy measured from the center of the mass of the satel-
lite galaxies. We restrict our analysis to FOF halos massive
enough to contain more than five substructures.

By diagonalizing Iij , we determine the three principal
axes (major, intermediate, and minor axes) of Iij . This al-
lows us to measure the correlations between the three axes
of the FOF halos as a function of separation. The results of
our measurements are presented in detail in Section 4.

Before turning to our results, it is worth to discuss how

1 The Millennium Simulation data are now available at
http://www.mpa-garching.mpg.de/millennium

http://www.mpa-garching.mpg.de/millennium
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our methodology relates to other, previously applied meth-
ods to characterize the shape of halos. Note that we here do
not use all dark matter particles of a FOF halo to measure
Iij . Instead, we only use the satellite galaxies (or substruc-
tures) as tracers of the shape. In general, measuring the
shape of a halo is a somewhat ambiguous issue, where a
number of different strategies have been applied in the liter-
ature, but no generally accepted standard procedure exists
(see e.g. the discussion in Springel et al. 2004; Allgood et al.
2006). Part of the ambiguity in measuring halo shape stems
from the fact that one cannot delineatethe outer boundary
of a halo in a clear-cut way. If all particles belonging to a
FOF halo are used to measure Iij , then theellipticity of a
halo may be overestimated because of the large weight of
the most distant points on the major axis, while in contrast,
if only those particles within a certain spherical radius are
used to measure Iij , then the ellipticity of the halo is likely
underestimated.

We use satellite galaxies (or substructures) to measure
Iij , because this approach mimics observationally accessible
procedures. We expect that this definition should give halo
shapes similar to those measured with all dark matter par-
ticles, as substructure and galaxy density are tracers of the
dark matter distribution (e.g., Agustsson & Brainerd 2006).

We will explicitly test this below. Note that we focus on
quantifying the filamentary web induced by the anisotropic
orientations of the halo ellipticities; we are not really inter-
ested in the magnitude of the shape distortion itself. This
means that we are less sensitive to the details of measur-
ing halo shape compared with attempts to quantify the axis
ratio of the halo shape.

To examine to what extent different measuring methods
yield different halo ellipticities, we carry out a simple test:
Using a total of 227 FOF halos from the ‘milli’-Millennium
simulation, which is smaller test run of the main Millennium
simulation with a box size of 62.5 h−1Mpc (Springel et al.
2005), we measured the halo shapes with three different
methods: (A) using galaxies weighted by luminosity; (B) us-
ing dark matter substructures weighted by mass; and (C)
using all dark matter particles. Then, we calculate the dis-
tribution of the angles θ between the principal axes of the
halo shapes determined by these three methods. Figure 1
compares methods A and C (top), and methods B and C
(bottom), in both cases plotting the histogram of the an-
gles between the halos’ major, intermediate, and minor axes
(left, middle, and right panels, respectively). As can be seen,
there is a strong peak at θ = 0, demonstrating that the halo
principal axes obtained by the three different methods A, B
and C are strongly correlated with one another. This corre-
lation is particularly robust for the major axis, which defines
the primary orientation of the predominantly prolate halos.

4 THE HALO ELLIPTICITY-ELLIPTICITY

CORRELATION

Using the principal axes of the FOF halos from the Mil-
lennium simulation determined by the method described in
Section 3, we first measure the EE correlations of the ma-
jor, intermediate and minor axes separately as a function
of the comoving distance r between two halo centers. We
denote the three correlation functions as ηI(r), ηII(r), and

Figure 1. Distributions of the angles between the major, inter-
mediate, and minor axes of the halos (left, middle, and right, re-
spectively) from the milli-Millennium simulation, as determined
by three different methods A, B, and C, which are based on the
satellite galaxies, subhalos, and all particles belonging to the ha-
los, respectively. The top-panels show the results from a compar-
ison between the methods A and C, while the bottom panels give
a comparison between the methods B and C.

ηIII(r), respectively. We also fit the physical model described
by eqn. (2) to the numerical results by adjusting the three
parameters a1, a2, and a3. The best-fit values of the three
parameters are found through a χ2-minimization method
(Bevington & Robinson 1996).

4.1 Evolution with redshift

In Figure 2, we show the three correlation functions mea-
sured at redshifts z = 0, 0.5, 1 and 2 in the top-left, top-
right, bottom-left and bottom-right panels, respectively. In
each panel, the red, blue and black lines represent the EE-
correlations of the major, intermediate and minor axes of
halos, respectively. The dotted line shows the expectation
if there are no correlations. As can be seen, the major-axis
correlations are strongest and the intermediate-axis correla-
tions are almost zero at all redshifts.

Figure 3 compares the numerical results for the EE cor-
relations of the halo major-axes with the analytic fitting
model (red solid line) given by equation (2). In each panel,
the errors for the numerical data points are estimated by
the mean standard deviation for the case of no correlation:
ση ≡ 2/

√

45Npair, where Npair is the number of halo pairs
belonging to a given distance bin (Lee & Pen 2001).

For the calculation of the analytic model, we have em-
ployed the approximate formula given by Bardeen et al.
(1986) for the ΛCDM power spectrum, using the same values
of the cosmological parameters that were used for the Mil-
lennium run. For the shape factor Γ of the power spectrum
parameterization, we adopted Γ = Ωmh. For the smoothing
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Figure 2. EE correlations of the halo major, intermediate, and
minor axes (red, blue, and black lines) at four different redshifts:
z = 0, 0.5, 1, and 2 (top-left, top-right, bottom-left, and bottom-
right, respectively).

mass scale in eq. (3), we use the mean mass M̄ averaged
over the selected FOF halos.

Figure 3 reveals that the EE correlations of the halo ma-
jor axes indeed exist at large distances out to 10 h−1Mpc.
Our analytic model of eq. (2) is found to fit the numerical
results quite well at all redshifts. The correlation is strongest
at z = 2 and tends to decrease as z decreases. This might
be due to the fact that the secondary infall and the growth
of the less prominent filaments tend to randomize the direc-
tions of the halo major axes at low redshifts. Note, however,
that the EE correlation is slightly stronger at z = 0 than at
z = 0.5.

Table 1 lists the mean mass M̄ in unit of 1010h−1M⊙,
the number of halos Nh, and the best-fit values of a1, a2,
a3 at four different redshifts z. As can be seen, the value of
a2 at z = 1 and 2 is an order of magnitude larger than the
values of the other two parameters, implying that the EE
correlations of the halo major axes are dominated by the
term with a linear scaling of the density field at z = 1 and
2.

Figure 4 plots the same measurements as Fig. 3 but
for the EE correlations of the halo minor-axes. The analytic
model fits the numerical results pretty well for this case as
well. It is worth noting that at higher redshifts (z = 2 and
1), the minor-axis correlations are much weaker than the
major-axis correlations, but at lower redshifts (z = 0.5 and
0) the major and the minor-axis correlations have almost
the same strengths.

4.2 Variation with mass

In order to see how the correlation strength changes with
halo mass, we consider four mass bins, each of which has
about the same number of halos. Then, we measure the EE

Figure 3. Comparison of the analytic fitting model (red solid
line) with the numerical results (solid dots) for the EE correlations
of the halo major axes at z = 0, 0.5, 1 and 2.

Figure 4. Same as Fig. 3 but for the case of the halo minor axes.

correlations of the halo major axes at each mass bin sepa-
rately. Figure 5 plots the results and Table 2 lists the mass
ranges of the bins and the resulting best-fit values of a1, a2,
and a3.

As can be seen, the halo EE correlations strongly de-
pend on the mass scale. For the mass bin 1 where the low-
est mass halos belong, the EE correlation is negligible. For
the mass bin 2 which correspond to the galactic halos with
M ∼ 1012h−1M⊙, the EE correlation is found to be quite
strong at small distance but negligible at distances larger
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Table 1. Redshift (z), halo mean mass (M̄) in unit of 1010h−1M⊙, number of halos (Nh), and the best-fit
values of a1, a2 and a3, for the EE correlations of the halo major axes.

z M̄ Nh a1 × 103 a2 × 103 a3 × 103

[1010h−1M⊙]

0 1638.15 121773 5.16 ± 1.50 0.00 ± 0.88 5.16 ± 0.39
0.5 1118.823 131505 5.15 ± 1.43 0.00 ± 0.83 5.16 ± 0.35
1 810.92 125363 5.16 ± 1.56 20.63 ± 0.91 5.16 ± 0.38
2 448.33 73514 0.00 ± 2.55 46.41 ± 1.54 5.16 ± 0.68

Figure 5. Comparison of the analytic fitting model (red solid
line) with the numerical results (solid dots) for the EE correlations
of the halo major axes at four different mass bins at z = 0. The
mass bins have (almost) equal number of halos.

than a few Mpc. For the mass bin 3, the EE correlations are
found to be weak at small distance but exist at large dis-
tances beyond a few Mpc at statistically significant level. For
the mass bin 4, strong EE correlations are found at small
distance and at large distances out to 10h−1Mpc as well.
This suggests that the large-scale EE correlation becomes
stronger as the halo mass increases.

According to the analytic fitting results shown in Table
2, the EE correlations of the galactic halos belonging to the
mass bin 2 are well approximated as ∝ ξ2

A(r) and decrease
rapidly with r, suggesting that on this galactic mass scale
the tidal fields provide a dominant contribution to the EE
correlations. On the other hand, the EE correlation of the
more massive halos belonging to the mass bin 3 behaves as
∝ ξA(r). This suggests that the effect of the non-Gaussinity
in the density field and the anisotropic merging/infall make
more important contribution for the massive halos belonging
to the mass bin 3, generating the EE correlations at large
distances. For the most massive halos belonging to the bin
4, the EE correlation behaves as ∝ ξ2

A(r) on small scales and

as ∝ ξ
1/2

A (r) on large scales, which suggests that both the
strength and the scale of the EE correlation increase as the

Table 2. bin ID, the mean halo mass (M̄ ) in unit of 1010 h−1M⊙,
and the best-fit values of a1, a2 and a3, for the EE correlations
of the halo major axes at z = 0.

bin ID M̄ a1 × 103 a2 × 103 a3 × 103

[1010h−1M⊙]

1 185.03 0.00 ± 11.10 0.00 ± 5.94 5.16 ± 2.13
2 478.32 25.78 ± 8.61 0.00 ± 4.70 0.00 ± 1.81
3 969.26 0.00 ± 6.69 10.31 ± 3.78 0.00 ± 1.58
4 4914.35 15.47 ± 3.70 0.00 ± 2.22 10.31 ± 1.11

Figure 6. Comparison of the analytic fitting model (red solid
line) with the numerical results (solid dots) for the EE cross-
correlations of the halos between different mass bins at z = 0.

hierarchical structure formation proceeds along anisotropic
filaments.

We have also measured the cross-correlations of the ma-
jor axes between halos belonging to different mass bins. Fig-
ure 6 shows these cross-correlations and compares the nu-
merical results with the analytic fitting model of eq. (5).
Here ηCij represents the cross-correlations between the mass
bin i and j listed in Table 2, where i, j ∈ [1, 4]. As can be
seen, there exist significant cross-correlations between the
neighbouring mass bins 1 and 2, 2 and 3, as well as 3 and 4.
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Figure 7. Comparison of the analytic fitting model (red solid
line) with the numerical results (solid dots) for the ED correla-
tions of the halo major axes at z = 0, 0.5, 1 and 2.

Table 3. The best-fit values of the three correlation parameters
for the ED correlations of the halo major axes.

z b1 × 103 b2 × 103 b3 × 103

0 25.78 ± 1.61 0.00 ± 0.90 51.56 ± 0.37
0.5 15.47 ± 1.56 0.00 ± 0.85 41.25 ± 0.33
1 36.09 ± 1.75 15.47 ± 0.94 87.66 ± 0.37
2 36.09 ± 3.09 36.90 ± 1.66 128.91 ± 0.66

5 THE ELLIPTICITY-DIRECTION CROSS

CORRELATIONS OF HALOS

We have also measured the ED correlations between the
halo major, intermediate and minor axes and the unit vec-
tors in the directions to neighbouring halos, as a function
of the comoving distance r between the halo centers. The
three correlation functions are denoted as ωI(r), ωII(r), and
ωIII(r), respectively. Fitting the physical model of eq. (8) to
the numerical results, we determine the best-fit values of b1,
b2, b3, again with the help of a χ2-statistics.

5.1 Evolution with redshift

In Figure 7, we show ωI at redshifts z = 0, 0.5, 1 and 2.
Since we are mainly in the cross-correlations between the
halo principal axes and the large scale density field here,
we focus on separation scale greater than 1h−1Mpc. Table 3
lists the best-fit valuesof b1, b2, and b3 for these cases. As
can be seen, the EDcorrelations of the halo major axes are
much stronger than the EE correlations shown in Fig. 3. The
ED signal is statistically significant even at distances out to
50 h−1 Mpc. Our analytic model of eq. (8) is again able to
fit the numerical results very well.

The ED correlations for the intermediate and minor
axes of halos, ωII and ωIII, are plotted for redshifts z = 0,

Figure 8. Same as Fig. 7 but for the case of the halo intermediate
axes.

Figure 9. Same as Fig. 7 but for the case of the halo minor axes.

0.5, 1 and 2 in Figs. 8 and 9, respectively. As expected, the
intermediate and minor axes are anti-correlated with the di-
rections to neighbouring halos. These results demonstrate
clearly that the halo major axes preferentially point in the
directions where the local density stays high, hence this gives
a quantitative measure for the filamentary distribution of
the halos in the cosmic web.

Finally, we have also investigated how the ED cross-
correlations vary with the halo mass scale. Figure 10 com-
pares the numerical results with the analytic fitting model,
and Table 4 lists the best-fit values of the three correlation
parameters. As can be seen, the ED cross-correlations be-
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Figure 10. ED cross-correlations of the major axes at z = 0 as
a function of halo mass scale.

Table 4. Analytic fit parameters of the ED cross-correlations
shown in Fig. 10, as a function of mass scale.

M b1 × 103
b2 × 103

b3 × 103

1010
h
−1

M⊙

185.03 0.00 ± 4.33 0.00 ± 2.28 41.41 ± 0.77
478.32 0.00 ± 3.28 20.03 ± 1.81 41.25 ± 0.66
969.26 20.62 ± 2.63 10.31 ± 1.49 46.41 ± 0.58
4914.35 46.41 ± 1.53 0.00 ± 0.92 61.88 ± 0.42

come stronger in higher mass-bins. This indicates that the
anisotropic merging/infall contributes significantly to the
ED cross-correlations.

6 SUMMARY AND DISCUSSION

In this work, we have proposed a physically motivated an-
alytic fitting model for the halo ellipticity-ellipticity (EE)
correlation function, characterized by three free parameters,
a1, a2 and a3. These three parameters represent the ampli-
tudes of three terms which are proportional to ξ2

A(r), ξA(r)

and ξ
1/2

A (r), respectively, where ξA(r) is the filtered linear
density two-point correlation function.

By analyzing the halo data and the semi-analytic galaxy
catalog from the Millennium simulations at z = 0, 1, 0.5 and
2, we have measured the EE correlations and determined the
best-fit values of a1, a2 and a3. We found that the EE cor-
relations of the halo major axes are stronger than the halo
spin-spin correlations measured by Lee & Pen (2007a). At
the smallest distance bin, they are close to 0.03 and remain
significant at distances out to 10h−1 Mpc. The EE correla-
tions are found to be strongest for the case of the halo major
axes, and weakest for the case of the intermediate axes. We
also found that the EE correlations of all three axes decrease
as z decreases. This might be due to the growth of secondary

filaments at low redshifts and the beginning ‘freeze-out’ of
structure growth in ΛCDM, which plays a role in random-
izing the halo ellipticities.

In addition, the EE correlation function shows a strong
dependence on halo mass. On the galactic halo scale, it be-
haves as ∝ ξ2

A(r), while on the cluster halo scale, it is approx-

imated as ∝ ξ
1/2

A (r) on the large scale. However, best-fits to
the numerical results are obtained only when all three terms
in the analytic model areincluded.

We also calculated EE correlations between halos be-
longing to different mass bins. Our results show that EE
cross-correlations between neighboring mass bins exist at a
statistically significant level as well.

We have also suggested a similar analytic model for the
cross-correlations between the halo principal axes and the
directions to neighbouring halos (ED), characterized in an
analogous way by three free parameters, b1, b2 and b3. We
have measured the ED cross correlations by using the nu-
merical data from the Millennium simulation and found that
the ED cross-correlations are much stronger than the EE
correlations, at all distances. Remarkably, they are detected
even at distances out to 50 h−1Mpc at a statistically signifi-
cant level. The ED cross-correlation decrease as z decreases
and increase as the halo mass M increases, suggesting a
dominant role of anisotropic merging and infall of matter in
establishing these correlations. We find that the intermedi-
ate and the minor axes of the halos are anti-correlated with
the directions to the neighbouring halos, which is consistent
with an alignment of the halos shape with the orientation of
the local filament.

The EE correlations and the ED cross-correlations that
we have measured here provide a useful tool to statistically
characterize the anisotropy and the relevant scales of the
cosmic web. Since these correlations are very well described
by the physically motivated three-parameter fitting function
we proposed, our results for the EE correlations and the ED
cross-correlations can be concisely summarized in terms of
3×3 matrices, whose components are the fitting parameters
for each of the 3 principal axes. The matrix effectively mea-
sures the degree of filamentarity and the scale of the cosmic
web, depending on which components have higher values. It
will be interesting to compare the results we obtained here
for the ΛCDM cosmology with observational data from large
galaxy redshift surveys. This will in general require also a
modelling of redshift space distortions.

Another important application of our result lies in stud-
ies of weak gravitational lensing. The issue of a potential
cross-correlation between galaxy ellipticities and the weak
gravitational lensing shear (GI cross-correlations) was first
raised by Hirata & Seljak (2004). They claimed that if such
GI cross-correlations exist, then they would affect the weak
lensing signal as another systematic contaminant whose ef-
fect is hard to control. The GI cross-correlations are ex-
pected to occur primarily due to the ED cross-correlations:
If the intrinsic ellipticities of the galaxies are cross-correlated
with the surrounding large-scale density field, then it will in
turn lead to a cross-correlation between the gravitational
lensing shear and the galaxy ellipticities. Recent observa-
tions indeed have reported detections of the GI correlation
signals in low-redshift Galaxy surveys (Mandelbaum et al.
2006; Hirata et al. 2007).

The quantitative physical model for the ED cross-
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correlations provided here should be useful in controlling
the systematics due to GI cross-correlations in weak lensing
searches. In future work, we plan to investigate in detail the
relation between the observed GI cross-correlations and the
ED cross-correlations of the cosmic web.
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