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ABSTRACT

We use the large cosmological Millennium Simulation (MS) to construct the first
all-sky maps of the lensing potential and the deflection angle, aiming at gravitational
lensing of the CMB. Exploiting the Born approximation, we implement a map-making
procedure based on direct ray-tracing through the gravitational potential of the MS.
We stack the simulation box in redshift shells up to z ∼ 11, producing continuous all-
sky maps with arcminute angular resolution. A randomization scheme avoids repetition
of structures along the line of sight. The angular power spectra of the projected lensing
potential and the deflection-angle modulus agree well with semi-analytic estimates on
scales between a few arcminutes and about one degree. We find a deficit in power
on large scales and an excess in the deflection-angle power on small scales, which
we interpret as due to non-linear clustering in the MS. Our map-making procedure is
ideally suited for studying lensing of CMB anisotropies, for analyzing cross-correlations
with foreground structures, or other secondary CMB anisotropies such as the Rees-
Sciama effect.
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1 INTRODUCTION

The cosmic microwave background (CMB) is character-
ized both by primary anisotropies, imprinted at the last
scattering surface, and by secondary anisotropies caused
along the way to us by density inhomogeneities and re-
scatterings on electrons that are freed during the epoch of
reionization, and heated to high temperature when massive
structures virialize. One of the interesting effects that can
generate secondary anisotropies is the weak gravitational
lensing of the CMB, which arises from the distortions in-
duced in the geodesics of CMB photons by gradients in
the gravitational matter potential (Bartelmann & Schneider
2001; Lewis & Challinor 2006). Forthcoming CMB probes
do have the sensitivity and expected instrumental perfor-
mance which may allow a detection of the lensing distor-

⋆
E-mail: carbone@ieec.uab.es

tions of the primary CMB anisotropies, which would then
also provide new insights and constraints on the expan-
sion history of the universe and on the process of cosmo-
logical structure formation (Acquaviva & Baccigalupi 2006;
Hu et al. 2006). However, accurate predictions for the ex-
pected anisotropies in total intensity and polarization are
clearly needed for analyzing this future data, which demands
for detailed simulated maps.

The increasing availability of high-resolution N-body
simulations in large periodic volumes makes it possible to di-
rectly simulate the CMB distortions caused by weak lensing
using realistic cosmological structure formation calculations.
This work represents a first step in that direction. Existing
studies already give access to statistical properties of the
expected CMB lensing signal, such as the two-point corre-
lation function and power spectrum of the lensing potential
and deflection angle, see e.g. Lewis (2005) and references
therein. This is based on ‘semi-analytic’ calculations that
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use approximate parameterizations of the non-linear evolu-
tion of the matter power spectrum. However, our approach
of propagating rays through the forming dark matter struc-
tures gives access to the full statistics of the signal, including
non-linear and non-Gaussian effects. Furthermore, it allows
the accurate characterization of correlations of CMB lens-
ing distortions with the cosmic large-scale structure, and
with other foregrounds such as the Sunyaev-Zeldovich and
Rees-Sciama effects. Hopefully this will allow improvements
in the methods for separating the different contributions to
CMB anisotropies in the data, which would be of tremen-
dous help to uncover all the cosmological information in the
forthcoming observations.

From an experimental point of view, the improved preci-
sion of the CMB observations, in particular that of the next
generation experiments1, may in fact require an accurate de-
lensing methodology and a detailed lensing reconstruction.
CMB experiments targeting for instance the CMB polariza-
tion, and in particular the curl component of the polariza-
tion tensor, the so called B-modes from cosmological grav-
itational waves, may greatly benefit from a precise knowl-
edge of the lensing effects in order to separate them from
the primordial cosmological signal (Seljak & Hirata 2004).
In particular, for a correct interpretation of the data from
the forthcoming Planck satellite2 , it will be absolutely es-
sential to understand and model the CMB lensing, as the
satellite has the sensitivity and overall instrumental perfor-
mance for measuring the CMB lensing with good accuracy.
We note that a first detection of CMB lensing in data from
the Wilkinson Microwave Anisotropy Probe (WMAP3) to-
gether with complementary data has already been claimed
by Smith et al. (2007).

In this study we introduce a new methodology for the
construction of all-sky lensing-potential and deflection-angle
maps, based on a very large cosmological simulation, the
Millennium run (Springel et al. 2005). As a first step in
the analysis of the produced maps we focus on determin-
ing the interval of angular scales for which the simulated
maps matches the semi-analytical expectations. This will in
particular inform about the largest scales that are still trust-
worthy in our maps, which is important since we expect a
lack of lensing power on large scales, due to the finite volume
of the N-body simulation. At the other extreme, at the small-
est resolved scales, we are interested in the question whether
our maps show evidence for extra lensing power due to the
accurate representation of higher-order non-linear effects in
our simulation methodology. On these small scales, the im-
pact of non-Gaussianities from the mapping of non-linear
lenses is expected to be largest.

This paper is organized as follows. In Section 2, we
briefly describe the basic aspects of lensing relevant to our
work. In Section 3, we describe the N-body simulation and
the details of our map-making procedure. In Section 4, we
present the lensing-potential and deflection-angle maps, and
study the distribution of power in the angular domain. In
Section 5 we provide a summary and discussion.

1 See lambda.gsfc.nasa.gov for a complete list of operating and
planned CMB experiments
2 www.rssd.esa.int/PLANCK
3 See map.gsfc.nasa.gov

2 LENSED MAPS OF THE CMB VIA THE

BORN APPROXIMATION

In what follows we will consider the small-angle scattering

limit, i.e. the case where the change in the comoving sepa-
ration of CMB light-rays, owing to the deflection caused by
gravitational lensing from matter inhomogeneities, is small
compared to the comoving separation of the undeflected

rays. In this case it is sufficient to calculate all the rele-
vant integrated quantities, i.e. the so-called lensing-potential

and its angular gradient, the deflection-angle, along the un-
deflected rays. This small-angle scattering limit corresponds
to the so-called “Born approximation”.

We treat the CMB last scattering as an instantaneous
process and neglect reionization. Adopting conformal time
and comoving coordinates in a flat geometry (Ma et al.

1995), the integral for the projected lensing-potential due
to scalar perturbations with no anisotropic stress reads

Ψ(n̂) ≡ −2

Z r∗

0

r∗ − r

r∗r

Φ(rn̂; η0 − r)

c2
dr , (1)

while the corresponding deflection-angle integral is

α(n̂) ≡ −2

Z r∗

0

r∗ − r

r∗r
∇n̂

Φ(rn̂; η0 − r)

c2
dr , (2)

where r is the comoving distance, r∗ ≃ 104 Mpc is its
value at the last-scattering surface, η0 is the present con-
formal time, Φ is the physical peculiar gravitational po-
tential generated by density perturbations, and [1/r]∇n̂ is
the two dimensional (2D) transverse derivative with respect
to the line-of-sight pointing in the direction n̂ ≡ (ϑ,ϕ)
(Hu 2000; Bartelmann & Schneider 2001; Refregier 2003;
Lewis & Challinor 2006).

Actually, the lensing potential is formally divergent ow-
ing to the 1/r term near r = 0; nonetheless, this divergence
affects the lensing potential monopole only, which can be set
to zero, since it does not contribute to the deflection-angle.
In this way the remaining multipoles take a finite value and
the lensing potential field is well defined (Lewis & Challinor
2006). Analytically, the full information about the deflection
angle is contained in the lensing potential, but numerically
the two equations (1) and (2) are generally not equivalent,
and it will typically be more accurate to solve the integral
(2) directly to obtain the deflection angle instead of finite-
differencing the lensing potential.

If the gravitational potential Φ is Gaussian, the lens-
ing potential is Gaussian as well. However, the lensed CMB
is non-Gaussian, as it is a second order cosmological ef-
fect produced by cosmological perturbations onto CMB
anisotropies, yielding a finite correlation between different
scales and thus non-Gaussianity. This is expected to be most
important on small scales, due to the non-linearity already
present in the underlying properties of lenses.

The most advanced approach developed so far for the
construction of all-sky lensed CMB maps (Lewis 2005) em-
ploys a semi-analytical modeling of the non-linear power
spectrum (Smith et al. 2003), and derives from that the
lensing potential and deflection angle templates assuming
Gaussianity. This approach is therefore accurate for what
concerns the two point correlation function of the lensing
potential, as long as the non-linear two-point power of the
matter is modeled correctly, but it ignores the influence of
any statistics of higher order, which is expected to become
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Simulated all-sky maps weak gravitational lensing 3

Figure 1. Sketch of the adopted stacking and randomization process. The passage of CMB photons through the dark matter distribution
of the Universe is followed by stacking the gravitational potential boxes of the MS, which are 500 h−1Mpc on a side (comoving). Shells
of thickness 500 h−1Mpc are filled with periodic replicas of the box. All boxes (squares) that fall into the same shell are randomized with
the same coordinate transformation (rotation and translation), which, in turn, differs from shell to shell.

relevant on small scales, where the non-linear power is most
important. The use of N-body simulations to calculate the
lensing has the advantage to possess a built-in capability of
accurately taking into account all the effects of non-linear
structure formation. On the other hand, the use of N-body
simulations also faces limitations due to their limited mass
and spatial resolution, and from their finite volume, as we
will discuss later on in more detail.

For what concerns the line-of-sight integration in
Eqs. (1) and (2), the Born-approximation along the unde-

flected photon path holds to good accuracy and allows to
obtain results which include the non-linear physics. Even on
small scales, in fact, this approximation can be exploited in
the small-angle scattering limit, i.e. for typical deflections
being of the order of arcminutes or less (Hirata & Seljak
2003; Shapiro & Cooray 2006). For example, a single clus-
ter typically gives deflection angles of a few arcminutes,
while smaller structures, such as galaxies, lead to arcsecond
deflections. Furthermore, it can be shown that the Born-
approximation also holds in ‘strong’ lensing cases, provided
that the deflection angles are equally small. Finally, second
order corrections to the Born approximation (for instance
a non-vanishing curl component) are expected to be sub-
dominant with respect to the non-linear structure evolution
effects on small scales (Lewis & Challinor 2006). For these
reasons, we argue that this approximation should be accu-
rate enough for calculating all-sky weak lensing maps of the
CMB based on cosmological N-body simulations.

3 MAP-MAKING PROCEDURE FOR THE

MILLENNIUM SIMULATION

The Millennium Simulation (MS) is a high-resolution N-
body simulation carried out by the Virgo Consortium
(Springel et al. 2005). It uses N = 21603 ≃ 1.0078 × 1010

collisionless particles, with a mass of 8.6 × 108 h−1M⊙, to
follow structure formation from redshift z = 127 to the
present, in a cubic region 500 h−1Mpc on a side, and with
periodic boundary conditions. Here h is the Hubble con-
stant in units of 100 kms−1Mpc−1. With ten times as many
particles as the previous largest computations of this kind
(Colberg et al. 2000; Evrard et al. 2002; Wambsganss et al.

2004), it features a substantially improved spatial and time
resolution within a large cosmological volume.

The cosmological parameters of the MS are as follows.
The ratio between the total matter density and the criti-
cal one is Ωm = 0.25, of which Ωb = 0.045 is in baryons,
while the density of cold dark matter (CDM) is given by
ΩCDM = Ωm − Ωb. The spatial curvature is assumed to be
zero, with the remaining cosmological energy density made
up by a cosmological constant, ΩΛ = 0.75. The Hubble
constant is taken to be H0 = 73km s−1Mpc−1. The pri-
mordial power spectrum of density fluctuations in Fourier
space is assumed to be a simple scale-invariant power law of
wavenumber, with spectral index ns = 1. Its normalization
is set by the rms fluctuations in spheres of radius 8h−1 Mpc,
σ8 = 0.9, in the linearly extrapolated density field at the
present epoch. The adopted parameter values are consistent
with a combined analysis of the 2dF Galaxy Redshift Sur-
vey (2dfGRS) and the first year WMAP data (Colless et al.

2001; Spergel et al. 2003).

Thanks to its large dynamic range, the MS has been
able to determine the non-linear matter power spectrum
over a larger range of scales than possible in earlier works
(Jenkins et al. 1998). Almost five orders of magnitude in
wavenumber are covered (Springel et al. 2005). This is a very
important feature for studies of CMB lensing, as we expect
that this dynamic range can be leveraged to obtain access
to the full non-Gaussian statistics of the lensing signal, lim-
ited only by the volume of the Millennium simulation and
the maximum angular resolution resulting from its gravita-
tional softening length and particle number. We stress again
that the lensed CMB is non-Gaussian even if the underly-
ing lenses do possess a Gaussian distribution. Moreover, the
non-linear evolution of large scale structures produces a de-
gree of non-Gaussianity in the lenses distribution which con-
tributes to the non-Gaussian statistics of the lensed CMB
on small scales. This non-Gaussian contribution can be com-
puted only via the use of N-body simulations which are able
to accurately describe the non-linear evolution of the lenses.
These non-linearities are known to alter the lensed tempera-
ture power spectrum of CMB anisotropies by about ∼ 0.2%
at ℓ ∼ 2000 and by ∼ 1% or more on smaller scales. But,
much more notably, they introduce ∼ 10% corrections to
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Figure 2. The simulated all-sky map of the lensing potential computed with the map-making procedure described in the text.

the B-mode polarization power on all the scales (Lewis 2005;
Lewis & Challinor 2006).

Our map-making procedure is based on ray-tracing of
the CMB photons in the Born approximation through the
three-dimensional (3D) field of the peculiar gravitational po-
tential. The latter is precomputed and stored for each of
the MS output times on a Cartesian grid with a mesh of
dimension 25603 that covers the comoving simulation box
of volume (500 h−1Mpc)3. The gravitational potential itself
has been calculated by first assigning the particles to the
mesh with the clouds-in-cells mass assignment scheme. The
resulting density field has then been Fourier transformed,
multiplied with the Green’s function of the Poisson equa-
tion in Fourier space, and then transformed back to obtain
the potential. Also, a slight Gaussian smoothing on a scale
rs equal to 1.25 times the mesh size has been applied in
Fourier space in order to eliminate residual anisotropies on
the scale of the mesh, and a deconvolution to filter out the
clouds-in-cells mass assignment kernel has been applied as
well. The final potential field hence corresponds to the den-
sity field of the MS (which contains structures down to the
gravitational softening length of 5 h−1kpc) smoothed on a
scale of ≃ 200 h−1kpc.

In order to produce mock maps that cover the past light-
cone over the full sky, we stack the peculiar gravitational po-
tential grids around the observer (which is located at z = 0),
producing a volume which is large enough to carry out the
integration over all redshifts relevant for CMB lensing. For
simplicity, we only integrate out to z∗ ∼ 11 in this study,
which corresponds to a comoving distance of approximately
r∗ ∼ 7236 h−1Mpc with the present choice of cosmological
parameters. Indeed, the lensing power from still higher red-
shifts than this epoch is negligible for CMB lensing, as we
will discuss in the next section. But we note that our method

could in principle be extended to still higher redshifts, up to
the starting redshift z = 127 of the simulation.

The above implies that the simulation volume needs to
be repeated roughly 14.5 times along both the positive and
negative directions of the three principal Cartesian axes x, y,
and z, with the origin at the observer. However, the spacing
of the time outputs of the MS simulation is such that it cor-
responds to an average distance of 140 h−1Mpc (comoving)
on the past light-cone. We fully exploit this time resolution
and use 53 outputs of the simulation along our integration
paths. In practice this means that the data corresponding
to a particular output time is utilized in a spherical shell of
average thickness 140 h−1Mpc around the observer.

The need to repeat the simulation volume due to its
finite size immediately means that our maps will suffer from
a deficit of lensing power on large angular scales, due to the
absence of structure on scales larger than the MS box size.
More importantly, a scheme is required to avoid the repe-
tition of the same structures along the line of sight. Previ-
ous studies that constructed simulated light-cone maps for
small patches of the sky typically simply randomized each
of the repeated boxes along the past lightcone by apply-
ing independent random translations and reflections (e.g.
Springel et al. 2001). However, in the present application
this procedure would produce artefacts like ripples in the
simulated deflection-angle field, because the gravitational
field would become discontinuous at box boundaries, leading
to jumps in the deflection angle. It is therefore mandatory
that the simulated lensing potential of our all sky maps is
everywhere continuous on the sky, which requires that the
3D tessellation of the peculiar gravitational potential is con-
tinuous transverse to every line of sight.

Our solution is to divide up the volume out to z∗ into
spherical shells, each of thickness 500 h−1Mpc comoving (ob-
viously the innermost shell is actually a sphere of comoving
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Simulated all-sky maps weak gravitational lensing 5

Figure 3. Simulated all-sky maps of the deflection-angle components along the ϑ direction (top panel), and along the ϕ direction (bottom
panel), in radians.

radius 250 h−1Mpc, centered at the observer). All the simu-
lation boxes falling into the same shell are made to undergo
the same, coherent randomization process, i.e. they are all
translated and rotated with the same random vectors gener-
ating a homogeneous coordinate transformation throughout
the shell. But this randomization changes from shell to shell.
Figure 1 shows a schematic sketch of this stacking process.
For simplicity, the diagram does not illustrate the additional
shell structure stemming from the different output times
of the simulation. As discussed before, this simply means
that the underlying potential grid is updated on overage

3-4 times with a different simulation output when integrat-
ing through one of the rotated and translated 500 h−1Mpc
shells, but without changing the coordinate transformation.
Notice that our stacking procedure eliminates any preferred
direction in the simulated all-sky maps.

In order to define the gravitational potential at each
point along a ray in direction n̂, we employ spatial tri-
linear interpolation in the gravitational potential grid. It is
then easy to numerically calculate the integral potential for
each ray, based for example on a simple trapezoidal formula,
which we use in this study. Obtaining the deflection angle
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Figure 4. Top panel: Simulated all-sky map of the deflection-angle modulus (in radians), obtained with the map-making procedure
described in the text. Bottom panel: Synthetic map corresponding to a Gaussian realization of the deflection-angle modulus (in radians)
from the CAMB and SYNFAST codes, as described in the text.

could in principle be done by finite differencing a calculated
lensing potential map, either in real space or the harmonic
domain. However, the accuracy of this approach would de-
pend critically on the angular resolution of the map. Also,
the sampling of the gravitational potential in the direction
transverse to the line-of-sight varies greatly with the dis-
tance from the observer, so in order to extract the maximum
information from the simulation data down to the smallest
resolved scales in the potential field, we prefer to directly
integrate up the deflection angle vector along each light ray

in our map. For this purpose we first use a fourth-order
finite-differencing scheme to compute the local 3D grid of the
gradient of the gravitational potential, which is then again
tri-linearly interpolated to each integration point along a
line-of-sight. In this way, we calculate the deflection angle
directly via equation (2) along the paths of undeflected light
rays.

Finally, we need to select a pixelization of the sky with a
set of directions n̂ ≡ (ϑ,ϕ). We here follow the standard ap-
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Simulated all-sky maps weak gravitational lensing 7

Figure 5. Top panel: The power spectrum of the simulated lensing potential map of Fig. 2, compared with the power spectrum of the
lensing potential obtained with the CAMB code, which also includes an estimate of the non-linear contributions (Smith et al. 2003).
The red dotted and blue solid lines differ only in the starting redshift for the line-of-sight integration used in the map-making. While
the result shown in red begins at z = 0, the blue line gives the result for a start at z = 0.22. Bottom panel: The power spectrum (in
radians squared) of the deflection angle modulus of the map shown in the upper panel of Fig. 4, compared with the power spectrum of
the deflection angle modulus of the map shown in the lower panel of the same Figure. As above, the red dashed and blue solid lines differ
only in the starting redshift of the line-of-sight integration, as labelled. The red dashed line is for the full redshift interval, the blue line
for a start at z = 0.22. Moreover, the dotted orange line (corresponding to the starting redshift z = 0.22) represents the power spectrum
of the deflection angle modulus generated with the SYNFAST code as a synthetic map corresponding to a realization constrained by the
CΨΨ

l
and the aΨΨ

l,m
extracted by means of the ANAFAST code from a lensing potential map with starting redshift of integration z = 0.22,

as described in the text.

proach introduced by the HEALPix4 hierarchical tessellation
of the unit sphere (Gorski et al. 2005).

4 healpix.jpl.nasa.gov

4 SIMULATED MAPS OF THE LENSING

POTENTIAL AND DEFLECTION ANGLE

In Figs. 2, 3, and 4, we show full-sky maps of the lens-
ing potential, the deflection angle with its ϑ/ϕ-components,
and the deflection angle modulus |α|, respectively, obtained
with the procedures described in the previous section. The
maps are generated with a HEALPix pixelization parame-
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Figure 6. Comparison of the angular resolution of 1.72′ of our
full-sky map (red dashed line) with the redshift-dependent, ef-
fective angular resolution (blue solid line) corresponding to the
intrinsic grid spacing (∼ 200 h−1kpc) of the three-dimension grav-
itational potential field constructed from the Millennium Simula-
tion.

ter Nside = 2048, and have an angular resolution of ∼ 1.72′

(Gorski et al. 2005), with 50331648 pixels in total.
For comparison, in Fig. 4, we also show a synthetic

map of the deflection angle modulus obtained by angular
differentiation of a Gaussian realization (generated with the
HEALPix code SYNFAST) of the lensing potential, based on
a lensing power spectrum calculated with the publicly avail-
able Code for Anisotropies in the Microwave Background
(CAMB5), which also includes an estimate of the contribu-
tion from non-linearity (Smith et al. 2003).

Several interesting features should be noted in these
maps. The distribution of the lensing potential appears to
be dominated by large features, which are probably simply
arising from the projection of the largest scale gravitational
potential fluctuations along the line-of-sight. However, the
strength of local lensing distortions in the CMB cannot be
directly inferred from the map of the lensing potential, as
for the lensing deflection only the gradient of the potential
is what really matters.

The maps showing the lensing deflection angle compo-
nents have interesting features as well. First of all, the sig-
nal in the two components of the deflection angle appears to
possess two morphologically distinct regimes, characterized
on one hand by a diffuse background distribution, caused
probably by the lines-of-sight where no dominant structures
are encountered, and on the other hand by sharp features,
caused probably by massive CDM structures which give rise
to the largest deflections in the line-of-sight integration it-
self. The same features are evident in the map of the mod-
ulus of the deflection-angle.

The mean value of |α| in our simulated maps is 1.543′,
while its standard deviation is 0.805′. The latter is about a
factor 2 lower than the value of ∼ 1.5′ expected from the
‘semi-analytical’ estimates (Bartelmann & Schneider 2001;
Lewis 2005). Our interpretation is that this difference is
primarily due to the lack of power on scales larger than

5 See camb.info.

500 h−1Mpc in the MS, as it is well known that a relevant
contribution to the lensing power comes from comparatively
large linear scales, something that is also evident from the
morphologies of the maps themselves as we discuss below.

As a first more detailed quantitative analysis, we mea-
sure the power spectra of our simulated maps and com-
pare them with the semi-analytical expectations. We post-
pone the characterization of the lensing non-Gaussianity
to a forthcoming and dedicated study. Using the routine
ANAFAST of the HEALPix package, we have independently
measured the power spectra of lensing potential (CΨΨ

l ) and
deflection angle modulus (Cαα

l ) of our maps, i.e. without
exploiting the relation between the two quantities, which
holds in the spherical harmonic domain. We compare with
the corresponding power spectra obtained as output from
CAMB, using the cosmological parameters of the MS and
with the non-linear matter power spectrum corrections of
HALOFIT.

The top panel of Fig. 5 shows the primary result of
this comparison. The black dashed line represents the semi-
analytic prediction from CAMB as discussed above. The dot-
ted red curve represents the result for the full integration
starting at z = 0 and ending at z = 11.22. A power de-
ficiency on large scales with respect to the semi-analytical
prediction is evident, but confined to a multipole range cor-
responding to a one degree or more in the sky. As we now
explain, the reason is the lack of structures on scales larger
than the box size in our simulation. In order to prove this,
we plot the solid blue line which gives the MS lensing poten-
tial power spectrum obtained from a line-of-sight integration
starting at a redshift of z = 0.22 and ending at z = 11.22;
comparing the two curves, a power decrease at low ℓ is easily
observable in the solid blue line, with respect to the dotted
red one, illustrating the influence of the lack of comoving
scales greater than 500 h−1Mpc in the MS: as the redshift in-
creases, progressively higher multipoles are affected, increas-
ing the power deficiency with respect to the semi-analytical
expectation. As a result, for the case of the complete inte-
gration (dotted red line), the difference amounts to about
∼ 1 order of magnitude at low multipoles ℓ relative to the
semi-analytical expectations and is unavoidable due to the
limited volume of the simulation box. As expected, this ef-
fect is also particularly evident on the multipole range cor-
responding to a few degrees or more, which is about the size
of the MS box at the redshift most relevant for CMB lens-
ing, i.e. z ≃ 1. The lack of large-scale power in the simulated
maps with respect to the semi-analytical expectations is also
evident by visual inspection of the upper and lower panels
in Fig. 4: the features in the lower panel are on noticeably
larger angular scales when compared with those in the upper
panel.

However, towards larger ℓ, the deficit of large-scale
power quickly decreases, and becomes negligible at scales
l ∼
> 300. Between this scale and l ∼ 3000, there is quite good

agreement between the MS lensing power spectrum and the
semi-analytic prediction, but at l ∼ 4000 the full MS sig-
nal for the lensing potential actually slightly exceeds the
semi-analytic result. We think that in this case the effect is
dominated by Poisson sampling noise from the low-redshift
potential integration at z . 0.1. At very low redshift, the
1.72′ angular resolution of our map is comparable and even
smaller than the intrinsic angular resolution corresponding
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Simulated all-sky maps weak gravitational lensing 9

to the spatial grid of the 3D gravitational potential field
we use. This is evident in Fig. 6, where we compare the
map’s angular resolution of 1.72′ (red dashed line) with the
effective angular resolution corresponding to the intrinsic
grid spacing (195 h−1kpc) of the 3D gravitational potential
field as function of redshift. Because the line-of-sight integral
for the projected lensing potential involves a 1/r weighting
term, the resulting noise terms are unfavourably amplified
when the lensing potential is considered.

Physically and numerically more meaningful is the de-
flection angle itself, where this problem does not occur. In
the bottom panel of Fig. 5, we show a comparison of the
power spectrum of the deflection angle modulus (Cαα

l ) mea-
sured for our simulated maps with the semi-analytic predic-
tion constructed with CAMB and SYNFAST, as explained
above. Again, we find a deficit of power on large scales, and
a reassuring agreement over about an order of magnitude
in l on intermediate scales. However, for l ∼

> 2000 we find
clearly more power in the deflection angle maps than an-
ticipated by CAMB. Our map making procedure offers very
good resolution at the most important redshift for lensing of
the CMB, z ∼ 1 (see also Fig. 7), where the intrinsic angular
resolution of our potential grid is six times better than the
angular resolution of the full-sky map. We therefore think
that this higher small-scale power is a direct result of the
more accurate representation of non-linear structure forma-
tion in our map simulation methodology. In fact, in our cur-
rent maps we are still far from probing the most non-linear
scales accessible in principle with our simulation. Those are
a factor 40 smaller (namely 5 h−1kpc) than resolved by the
potential grid we have employed. However, using such a fine
mesh is currently impractical, and would lead to angular res-
olutions in full-sky maps that are unaccessible even by the
Planck satellite. However, for a smaller solid-angle of the
map, these scales can be probed with a different ray-tracing
technique (Hilbert et al. 2007).

We note that the semi-analytic prediction for the power
spectrum of the deflection angle modulus has been evaluated
as an angular gradient in the harmonic domain of a synthetic
lensing potential Gaussian map; that is accurate since in this
approach we work with Fourier modes right from the start
anyway. From a numerical point of view, the integral and
derivative operators in Eq. (2) do however not commute,
even if they analytically do, in the sense that finite differ-
encing our measured projected potential will not necessarily
give the same result as numerically integrating the deflec-
tion angle along each line of sight. The latter approach is
more accurate, and has been used by us in the comparison
above.
As a check, we have also computed the power spectrum of
the deflection angle modulus obtained by the angular differ-
entiation in the harmonic domain of a synthetic map corre-
sponding to a realization constrained by the CΨΨ

l and the
spherical harmonic coefficients aΨΨ

l,m extracted from a lens-
ing potential map obtained by line-of-sight integration of the
gravitational potential with a starting redshift z = 0.22, in
order to suppress Poisson noise. The resulting power spec-
trum is shown as a dotted orange line in the lower panel of
Fig. 5.
A slight excess of power over the semi-analytic predictions
is easily seen at l ∼

> 3000. It can be attributed to the non-
linear evolution of the MS structures to which the deflection
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Figure 7. The cumulative and differential variance of the deflec-
tion angle map as a function of redshift. The symbols mark the
different output times of the Millennium Simulation. The vertical
dashed line gives the redshift that corresponds to the 50% quar-
tile of the total variance in our maps, which is approximately at
z ∼ 1. The dotted lines mark the 5% and 95% percentiles, indicat-
ing that 90% of our signal in the deflection angle power spectrum
is produced in the redshift range z ∼ 0.1 to z ∼ 6.0. Note how-
ever that we have lost a few percent of the total power due to
our truncation of the integration at z = 11. When included, this
would slightly shift these precentiles to higher redshift.

angle is more sensitive than the lensing potential.
On the other hand, the difference between the dotted orange
line and the solid blue line at l ∼

> 2000 clearly shows that
our map-making approach of numerically integrating the de-
flection angle along each line of sight allows to preserve the
contribution from the non-linear scales in a more efficient
way than simply operating in the harmonic domain.

Finally, we consider the distribution of the deflection
angle power along the line-of-sight. In Fig. 7, we show the
cumulative and differential variance of the deflection angle
as a function of redshift. We see that the most important
contributions to the final signal are stemming from z ∼ 1,
i.e. about half ways between the last scattering surface and
the observer, as expected. This also allows us to assess the
relative error introduced by stopping the integration at z ≃
11, which is of the order of a few percent.
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5 CONCLUSIONS

We constructed the first all sky maps of the cosmic mi-
crowave background (CMB) weak lensing deflection angle
based on a high-resolution cosmological N-body simulation,
the Millennium Run Simulation (MS). The lensing poten-
tial and deflection angle are evaluated in the Born approxi-
mation by directly ray-tracing through a three-dimensional,
high-resolution mesh of the evolving peculiar gravitational
potential and its gradient. The time evolution is approxi-
mated by 53 simulation outputs between redshift z = 0 and
z ≃ 11, each used to cover a thin redshift interval corre-
sponding to a shell in the past light-cone around the ob-
server. To prevent artificial repetition of structures along
the line-of-sight, while at the same time avoiding disconti-
nuities in the force transverse to a line-of-sight, we tessellate
shells of comoving thickness corresponding to the size of the
box (500 h−1Mpc) with periodic replicas which are coher-
ently rotated and translated within each shell by a random
amount.

Using the Hierarchical Equal Area Latitude Pixelization
(HEALPIX) package for obtaining a uniform sky-coverage,
we have constructed simulated CMB lensing maps with ∼ 5
million pixels and an angular resolution of ∼ 1.72′, based on
potential fields calculated on 25603 meshes from the Millen-
nium simulation. In the present study, we analyze the power
spectrum of the lensing potential and the deflection an-
gle, and compare it with predictions made by semi-analytic
approaches. We note that our general approach for map-
making can be extended to other CMB foregrounds, includ-
ing the Integrated Sachs-Wolfe (ISW) and Rees-Sciama ef-
fects at low redshifts, as well as estimates of the Sunyaev
Zel’dovich (SZ) effects, or of the X-ray background. This
will in particular allow studies of the cross-correlation of the
lensing of CMB temperature and polarization with these ef-
fects, which will be the subject of a forthcoming study.

Our comparison of the angular power spectrum of the
lensing-potential and the deflection-angle with semi-analytic
expectations reveals three different regimes in our results.
First, our maps show a clear deficit of power by up to an
order of magnitude on scales larger than a few degrees, due
to the finite size of the simulation. Second, on intermediate
scales ranging from a few arcminutes to about one degree,
our simulated maps produce a lensing signal that matches
the semi-analytic expectation. Third, we find evidence for
an excess of power in our simulated maps on scales corre-
sponding to one arcminute and less, which we attribute to
the accurate inclusion of non-linear power in the Millennium
simulation. In this regime we expect our procedure to be
more accurate than map-making approaches which operate
in the spherical harmonic domain using semi-analytic esti-
mates, apart from being more general. It will be especially
interesting to study the non-Gaussianities in the signal we
found and its implied consequences for CMB observations.

The new method proposed here demonstrates that an
all-sky mapping of CMB lensing can be obtained based on
modern high-resolution N-body simulations. This opens the
way towards a full and accurate characterization of CMB
lensing statistics, which is unaccessible beyond the power
spectrum with the existing semi-analytical techniques. This
is relevant in view of the forthcoming CMB probes, both as
a way to detect, extract and study the CMB lensing signal,

which carries hints on the early structure formation as well
as the onset of cosmic acceleration, and as a tool to distin-
guish CMB lensing from the Gaussian contribution due to
primordial gravitational fluctuations.
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