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ABSTRACT

We analyze the linear stability of a stalled accretion shock in a perfect gas with

a parametrized cooling function L ∝ ρβ−αP α. The instability is dominated by the

l = 1 mode if the shock radius exceeds 2−3 times the accretor radius, depending

on the parameters of the cooling function. The growth rate and oscillation period

are comparable to those observed in the numerical simulations of Blondin &

Mezzacappa (2006).

The instability mechanism is analyzed by separately measuring the efficiencies of

the purely acoustic cycle and the advective-acoustic cycle. These efficiencies are

estimated directly from the eigenspectrum, and also through a WKB analysis

in the high frequency limit. Both methods prove that the advective-acoustic

cycle is unstable, and that the purely acoustic cycle is stable. Extrapolating

these results to low frequency leads us to interpret the dominant mode as an

advective-acoustic instability, different from the purely acoustic interpretation of

Blondin & Mezzacappa (2006).

A simplified characterization of the instability is proposed, based on an advective-

acoustic cycle between the shock and the radius r∇ where the velocity gradients

of the stationary flow are strongest. The importance of the coupling region in

this mechanism calls for a better understanding of the conditions for an efficient

advective-acoustic coupling in a decelerated, nonadiabatic flow, in order to extend

these results to core-collapse supernovae.

Subject headings: accretion – hydrodynamics – instabilities – shock waves – su-

pernovae
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1. Introduction

The recent discovery of a strong l = 1 instability of stalled accretion shocks in the

context of core collapse supernovae (Blondin et al. 2003, Scheck et al. 2004, Ohnishi et al.

2006, Burrows et al. 2006) has revived the interest in the fundamental stability properties

of accretion shocks. This instability could be a major ingredient in the mechanism of ac-

celeration of neutron stars (Scheck et al. 2004, Janka et al. 2004, Scheck et al. 2006a).

It was also considered as a means to instigate g-mode dipole oscillations of the accreting

neutron star (Burrows et al. 2006). While most of these authors recognized the presence of

an advective-acoustic cycle similar to the one found by Foglizzo (2002, hereafter F02) in a

different context, Blondin & Mezzacappa (2006, hereafter BM06) challenged this interpreta-

tion and advocated a purely acoustic mechanism. Understanding the mechanism at work in

this instability is a crucial step towards correctly extrapolating its consequences in a more

realistic astrophysical situation.

The physics of the advective-acoustic cycle is based on the linear coupling between

acoustic and advected perturbations through the flow gradients: both entropy and vorticity

perturbations act as source terms for the acoustic wave equation (Foglizzo 2001, hereafter

F01, and Foglizzo & Galletti 2003). This has been known for decades in the field of jet

engines, since the pioneering works of Candel (1972), Howe (1975), Marble & Candel (1977)

and Abouseif et al. (1984). In the subsonic flow below the stalled shock, this linear coupling

is due to the gradients associated with the convergence of the flow, its deceleration, gravity

and cooling. The interaction between the shock and the flow gradients gives birth to an

advective-acoustic cycle, in which an advected perturbation generates a pressure feedback

which triggers, at the shock, a new advected perturbation. Although Foglizzo (2002) proved

the instability of the advective-acoustic cycle in an accelerated isothermal flow, the fate of

such cycles in a cooled decelerated flow is still an open question: can they account for the

instability observed in the simulations of BM06 ?

The first aim of the present study is to clarify the instability mechanism at work, using

perturbative techniques. The accretion flow is idealized as a perfect gas passing through

a stationary shock, and subject to cooling processes schematically described by a cooling

function L ∝ ρβ−αP α, mimicking in the simplest manner the neutrino cooling in the core-

collapse context. It is the first time that a linear approach has been used to understand the

mechanism of this nonradial instability in the core-collapse context.

A first step is to confirm that the dominating l = 1 mode identified by BM06 in the linear

phase of their numerical simulation indeed corresponds to the most unstable eigenmode of

the linear problem.
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Beyond the determination of the eigenspectrum and the validation of numerical simula-

tions, we wish to address the question of the instability mechanism, using techniques similar

to F02. These techniques allow for a direct interpretation of the full eigenspectrum in terms

of the efficiencies of the acoustic cycle and the advective-acoustic cycle. Alternatively, these

efficiencies can also be computed in the WKB approximation. We wish to use both methods

in order to check whether the instability is of acoustic or advective-acoustic nature. Under-

standing the nature of the instability leads us to construct, in a companion paper (Foglizzo

et al. 2006), a simple toy model which can be solved analytically and allows us to reach a

fundamental understanding of some of the properties of the instability.

The present paper is organized as follows: the boundary value problem associated with

this stalled accretion shock is described in Sect. 2, where we establish the boundary conditions

at the shock and compare them to those used by Houck & Chevalier (1992, hereafter HC92)

in the different context of supernova fallback. We determine in Sect. 3 the eigenfrequencies

of the flows studied by BM06, and compare them with the linear phase of their numerical

simulations. Then we investigate in Sect. 4 the mechanism responsible for this instability

using the techniques of F02. The purely acoustic cycle is shown to be stable, and the

advective-acoustic cycle is shown to be unstable with respect to l = 1 perturbations, in the

range of validity of our approximations. These results are extrapolated to very low frequency

perturbations in Sect. 5. The arguments of BM06 are reconciled with the advective-acoustic

interpretation of the instability in Sect. 6. Results are summarized in Sect. 7.

2. Formulation of the eigenvalue problem

2.1. Description of the stationary flow

We consider the radial accretion of a perfect gas with an adiabatic index γ = 4/3,

decelerated through a stationary shock at a radius rsh, accreting on the hard surface of a

neutron star of mass M and radius r∗. The self-gravity of the accreting gas is neglected.

The cooling function L is defined as a parametrized function of density ρ and pressure P as

in HC92:

L ∝ ρβ−αP α, (1)

which allows us to mimic the effect of neutrino cooling using the same prescriptions α = 3/2,

β = 5/2 or α = 6, β = 1 as BM06. Neutrino heating, and the associated effect of convection

is ignored in the present study.

The equation of continuity, the Euler equation and the entropy equation defining the sta-

tionary flow between the shock and the accretor are written in spherical coordinates as
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Fig. 1.— Comparison of the stationary flows associated with the cooling parameters α = 6,

β = 1 (full lines) and α = 3/2, β = 5/2 (dashed lines). The velocity and entropy profiles

(upper plot) are similar in the outer parts of these two flows. The advection time τadv from

the shock to the accretor surface is finite if α < β, and infinite if α > β. The velocity

gradient reaches a maximum at some intermediate height noted r∇ > r∗ if α > β, whereas

r∇ = r∗ if α < β. The strength of cooling is chosen such that r∇/rsh = 0.2 in both flows.
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follows:

∂

∂r
(r2ρv) = 0 , (2)

∂

∂r

(

v2

2
+

c2

γ − 1
−

GM

r

)

=
L

ρv
, (3)

∂S

∂r
=

L

Pv
, (4)

where S is a dimensionless measure of the entropy defined as the following function of

pressure and density, normalized by their values Psh, ρsh immediately after the shock:

S ≡
1

γ − 1
log

[

P

Psh

(

ρsh

ρ

)γ]

. (5)

Note that the pressure force in the Euler equation (3) has been transformed using both this

definition of S, and the sound speed c defined by c2 ≡ γP/ρ:

∇P

ρ
= ∇

(

c2

γ − 1

)

−
c2

γ
∇S. (6)

The shock is assumed to be adiabatic. Following HC92 and BM06, we assume that the

pre-shock velocity v1 of the incoming gas is close to free fall: v1 ∼ vff ≡ −(2GM/rsh)
1/2, and

that the gas is cold: M1 ≫ 1. The Mach number M ≡ |v|/c is defined as a positive number.

The assumption of stationarity required by the linear approach introduces a mathe-

matical singularity at the surface r∗ of the accretor, where v(r∗) = 0: the density diverges

according to Eq. (2) and the sound speed decreases to zero. Such pathologies are common

in linear studies of cooled accretion on a hard surface (e.g. from Chevalier & Imamura 1982

to Saxton 2002), whatever the cooling function. For the cooling function considered here,

two regimes can be distinguished depending on the sign of α − β:

(i) If α − β < 0, the cooling efficiency increases as the gas cools down, leading to a

cooling runaway. The potential energy is negligible compared to the cooling losses, and the

advection time to the accretor surface is finite.

(ii) If α − β > 0, the cooling efficiency decreases as the gas cools down. The potential

energy is comparable to the cooling losses, and the gas takes an infinite time to reach the

surface.

These two regimes are illustrated in Fig. 1, for the two set of cooling parameters used

by BM06. The lower plot shows the velocity gradient of the stationary flow, which can

participate to couple vorticity and acoustic perturbations (F02, Foglizzo & Galletti 2003).

The velocity gradient reaches a maximum at a radius noted r∇. Note that if α < β, this
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maximum is reached on the accretor surface (r∇ = r∗). The strength of cooling in Fig. 1 was

chosen such that the rsh/r∇ = 5 in both flows. As noticed by BM06, the two flows are very

similar in their outer parts.

We find it convenient to use the variable logM rather than the radius r in order to solve

numerically the differential system in the cooling layer near the accretor surface. Integration

is stopped just above the accretor surface, when the Mach number reaches 10−9.

2.2. Differential system ruling the perturbed flow

The flow is perturbed in 3-D using spherical coordinates. The complex frequency ω ≡

(ωr, ωi) of the perturbations is defined such that its real part ωr defines the oscillation

frequency, and its imaginary part ωi defines the growth rate. The perturbation of velocity

δvr, δvθ, δvϕ, density δρ, sound speed δc, and entropy δS are used to define new perturbative

functions f , h, δK, which enable a compact formulation of the differential system once

projected on spherical harmonics Y m
l (θ, ϕ):

f ≡ vδvr +
2

γ − 1
cδc, (7)

g ≡
δvr

v
+

2

γ − 1

δc

c
, (8)

δK ≡ r2v.∇× δw +
l(l + 1)c2

γ
δS, (9)

where δw ≡ ∇ × δv is the perturbation of vorticity. The resulting differential system is

independent of the azimuthal number m:

∂f

∂r
= δ

(

L

ρv

)

+
iωv

1 −M2

{

h −
f

c2
+

[

γ − 1 +
1

M2

]

δS

γ

}

, (10)

∂h

∂r
=

iδK

ωr2v

+
iω

v(1 −M2)

{

µ2

c2
f −M2h − δS

}

, (11)

∂δS

∂r
=

iω

v
δS + δ

(

L

pv

)

, (12)

∂δK

∂r
=

iω

v
δK + l(l + 1)δ

(

L

ρv

)

, (13)
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where the quantity µ2 used in Eq. (11) is defined by:

µ2 ≡ 1 −
l(l + 1)c2

ω2r2
(1 −M2). (14)

The lengthy equations describing how the functions f , h, δS, δK translate into the classical

quantities δv, δρ, δP , and the explicit expression of δ(L/ρv) and δ(L/Pv) in terms of f, h, δS,

are written in Appendix A.

2.3. Boundary conditions at the shock

The boundary conditions are established by writing the conservation laws in the frame

of the perturbed shock. The derivation of these boundary conditions is shown in detail in

Appendix B, especially since we do not use the special system of spatial coordinates used by

HC92. These moving spatial coordinates were introduced in perturbative studies of accretion

shocks on white dwarfs (Chevalier & Imamura 1982), such that the shock coordinate remains

fixed even when the flow is perturbed. By contrast, our boundary conditions are expressed

at the radius rsh of the unperturbed shock, as functions of the displacement ∆ζ of the shock,

associated with its velocity ∆v ≡ −iω∆ζ . If the shock is strong (M2
sh = (γ − 1)/2γ) and

the incoming gas is in free fall (v1 = vff):

fsh

c2
sh

= −
1

γ

∆v

vsh

− ∆ζ
∇Ssh

γ
, (15)

hsh =
2

γ + 1

∆v

vsh

, (16)

δSsh = −∆ζ

[

∇Ssh +
1

2rsh

5 − 3γ

γ − 1

]

−
2

γ + 1

∆v

vsh

, (17)

δKsh = −l(l + 1)∆ζ
c2
sh

γ
∇Ssh. (18)

These conditions can be translated into the classical quantities δvr, δρ, δP :
(

δvr

v

)

sh

=
2

γ + 1

∆v

vsh

−
2∆ζ

γ + 1

[

(γ − 1)∇Ssh +
γ

2rsh

5 − 3γ

γ − 1

]

, (19)

(

δρ

ρ

)

sh

=
2∆ζ

γ + 1

[

(γ − 1)∇Ssh +
γ

2rsh

5 − 3γ

γ − 1

]

, (20)

(

δP

P

)

sh

= −2
γ − 1

γ + 1

∆v

vsh



– 8 –

+
∆ζ

γ + 1

[

(γ − 1)2∇Ssh +
1 + γ2

2rsh

5 − 3γ

γ − 1

]

, (21)

The transverse components δvθ, δvϕ of the velocity perturbation after the shock are related

to the nonspherical deformation of the shock through:

(δvθ)sh =
v1 − vsh

rsh

∂∆ζ

∂θ
, (22)

(δvϕ)sh =
v1 − vsh

rsh sin θ

∂∆ζ

∂ϕ
. (23)

The divergence of the transverse velocity can be projected on the spherical harmonics Y m
l

and satisfies the following boundary condition for a strong shock:

rsh

sin θ

[

∂

∂θ
(sin θδvθ) +

∂

∂ϕ
δvϕ

]

=

−
2l(l + 1)

γ − 1
vsh∆ζ. (24)

Equations (19), (20) and (21) are in perfect agreement with Eqs. (50), (52) and (53) of HC92,

which can be recovered by taking into account the gradients of the stationary flow quantities

v, ρ and P , using a Taylor expansion between rsh and rsh + ∆ζ .

Transverse velocities at the shock are precluded by Eq. (51) of HC92, in contradiction with

our Eqs. (22-23) and (24), and also with other linear studies involving transverse perturba-

tions such as Bertshinger (1986), Imamura et al. (1996), or Saxton & Wu (1999).

As a consequence, the stability results reported by HC92 for nonradial perturbations should

be considered as questionable, while their results concerning radial perturbations should be

unaffected.

3. Numerical determination of the eigenfrequencies

3.1. Numerical method

The differential system is solved by integrating over the variable logM from the shock

down to the accretor surface, at a point where M = 10−9 if the advection time is finite

(α < β). As an illustration, the radial shape of the eigenfunctions associated with the most

unstable l = 1 mode in the flow with α = 3/2, β = 5/2, rsh/r∗ = 10, is shown in the upper

plot of Fig. 2. Using logM as a variable allows us to compute the eigenfunctions down to

the singular accretor surface. Structures are visible down to M ∼ 10−4, corresponding to

radial scales which are much too small to be accessible to existing numerical simulations
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Fig. 2.— In the upper plot, radial profiles of the perturbations of |δK|, |δS| and |δP |/P for

the most unstable l = 1 mode, in the flow with α = 3/2, β = 5/2, rsh/r∗ = 10. The radial

profiles are shown as a function of the Mach number M, with the corresponding value of the

fractional radius shown on the right axis. The lower plot shows the influence of the radius rbc,

and associated Mach number Mbc, of the lower boundary, on the complex eigenfrequency

ω: the very fine structure of the perturbations for M < 4 × 10−3 can be safely neglected.
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(< 10−9rsh). Luckily, these scales do not need to be resolved to measure the correct eigenfre-

quency, as shown in the lower plot of Fig. 2. Varying the depth rbc at which the boundary

condition δv(rbc) = 0 is applied indicates that the regions of the flow where M < 4 × 10−3

(i.e. a fraction < 0.1% of the shock distance) have a negligible effect on the eigenfrequency.

If the advection time is infinite (α ≥ β), the boundary condition δv/v = 0 is applied at

a radius where the advection time from the shock reaches 10 times the reference timescale

(rsh − r∗)/|vsh|. We expect eigenmodes with a growth rate comparable to |vsh|/(rsh − r∗) to

be insensitive to any advective-acoustic artifact associated with this numerical prescription,

because it occurs on a longer timescale than the instability. This expectation is validated by

checking that the eigenfrequencies are unchanged by increasing the advection depth.

Once an eigenfrequency is found for a given intensity of the cooling function, it is tracked

in the complex plane using the Newton-Raphson method. Eigenfrequencies are expressed in

units of |vsh|/(rsh − r∗) throughout the paper.

3.2. Comparison with the eigenfrequencies estimated by BM06

BM06 validated their numerical code in 1-D by comparing the eigenfrequency measured

in the linear stage to the eigenfrequencies determined by HC92 for the mode l = 0, with

α = 5/2, β = 5/2. Our calculation confirms this validation, as shown in Fig. 3. Incidentally,

Fig. 3 shows that this flow is much more unstable to l = 1 perturbations than to radial ones.

The nonspherical axisymmetric calculations of BM06 have been performed in a flow in which

α = 3/2, β = 5/2, which was not considered by HC92. The eigenfrequencies of this flow are

shown in Fig. 4, with a globally acceptable agreement. The agreement seems significantly

better for the l = 0 mode than nonradial ones. Fig. 4 also shows that higher harmonics

dominate the instability if the shock is far enough. For rsh/r∗ = 5, the instability of the

mode l = 1 should be dominated by the first harmonics, whereas the mode l = 2 should be

dominated by the second harmonics.

Fig. 5 shows the expected growth rate in the flow with α = 6, β = 1 also considered by

BM06, with a comparable agreement. Both Fig. 4 and 5 enables us to evaluate the accuracy of

numerical simulations: both the oscillation period and the growth time should be considered

with a typical 30% uncertainty.

Some of the discrepancies may be attributed to difficulties in disentangling higher harmonics

which have a similar growth rate. Whether part of this discrepancy could be attributed to

numerical viscosity or not depends to some extent on our understanding of the instability

mechanism. At low frequency, a purely acoustic mechanism should be barely sensitive to

numerical viscosity. By contrast a mechanism involving the advection of vorticity waves

towards regions of small velocity may be more sensitive to numerical viscosity. This could
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Fig. 3.— Oscillation frequency ωr and growth rate ωi of the fundamental modes l = 0, 1, for

α = β = 5/2. Also shown are the l = 0 eigenfrequencies computed by HC92 (circles) and

those measured in the 1-D simulation of BM06 (diamonds). The mode l = 1 is always more

unstable than the radial mode in this flow.
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Fig. 4.— Eigenfrequencies for a cooling law with α = 3/2 and β = 5/2, corresponding to

the modes l = 0 (dotted line), l = 1 (full line) and l = 2 (dashed line). The fundamental

mode is plotted with thick black lines. Harmonics are shown with thiner grey lines. The

eigenfrequencies determined from BM06 are shown as triangles (l = 0), squares (l = 1) and

circles (l = 2).
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Fig. 5.— Same as Fig. 4, for the cooling law α = 6 and β = 1.
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Fig. 6.— Eigenfrequencies corresponding to the fundamental modes 0 ≤ l ≤ 40, for α = 3/2

and β = 5/2. This plot indicates that the most unstable mode is always nonradial. The

larger the shock radius, the smaller the degree l ≥ 1 of the most unstable mode.
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contribute to explain why the growth rate measured in the nonradial numerical simulations

seems systematically lower than that predicted by the linear analysis. The radial profiles of

δS and δK, displayed in Fig. 2, show structures in the region of M ∼ 10−2 which cover a

fraction ∼ 2% of the shock distance (see also the lower plot of Fig. 18). Given the difficulty

of advecting vorticity waves in a grid based code, a grid size of 0.1 − 0.2% of the shock

distance might be desirable near the accretor surface. Whether the 300-450 radial zones

used in the simulations of BM06 are sufficient or not could be easily checked by performing

new numerical simulations on a finer grid.

BM06 have pointed out the resemblance between the instability in these two flows

despite the different cooling function. Although we agree on the resemblance between these

two flows when the shock radius is large, Fig. 5 reveals some significant differences for smaller

shock radii:

- the mode l = 1 is always the most unstable mode if α = 6, β = 1. By contrast, if

α = 3/2, β = 5/2, the instability may be dominated by perturbations with a higher degree

l ≥ 2 if the shock radius is smaller than 2r∗,

- the flow with α = 6, β = 1 is stable if the shock radius is shorter than ∼ 2.5r∗, whereas

the flow with α = 3/2, β = 5/2 is unstable whatever the shock distance.

A more detailed investigation of the instability at small shock distance when α = 3/2,

β = 5/2, illustrated by Fig. 6, suggests that the most unstable mode corresponds to an

azimuthal structure with a size comparable to the shock distance.

For both cooling functions, the dimensionless growth rate of the instability is at best of the

order of 0.7 − 0.8:

ωi ≤
|vsh|

rsh − r∗
. (25)

This similar growth rate can be viewed as a hint of a common physical mechanism of insta-

bility, which we investigate in the next section.

4. Determination of the instability mechanism

4.1. Presence of oscillations in the eigenspectrum

The oscillation period and growth time associated with the most unstable eigenmode,

as determined in Figs. 4 and 5, should be a signature of the instability mechanism. Unfor-

tunately, our understanding of the possible instabilities is not deep enough to allow for a

direct and conclusive interpretation of these timescales. The linear stability analysis can be
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Fig. 7.— Eigenfrequencies computed from the boundary value problem in a flow with α =

3/2, β = 5/2 (upper plot) and α = 6, β = 1 (lower plot), for different shock radii rsh/r∇, for

l = 1 perturbations.
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helpful in determining the underlying mechanism, using the many other eigenfrequencies of

the eigenspectrum. A global view of the eigenspectrum associated with l = 1 perturbations

is shown in Fig. 7 for both cooling functions, with different shock distances. Figure 7 sug-

gests that the larger the shock radius, the more numerous the unstable modes. A striking

feature of these eigenspectra is the oscillations of the growth rate, which are easier to identify

when the number of well defined eigenmodes is large, i.e. when the shock radius is large.

According to Fig. 7 , this identification requires rsh/r∇ > 10 if α = 6, β = 1, whereas the

oscillations are already visible for rsh/r∗ = 5 if α = 3/2, β = 5/2. These eigenspectrum

oscillations are reminiscent of the oscillations visible in the eigenspectrum of the isothermal

accretion flow accelerated towards a black hole (Fig. 4 of F02). They were explained by F02

as the consequence of the influence of a purely acoustic cycle interacting either constructively

or destructively with the advective-acoustic cycle. The efficiencies of these two cycles are

measured in the next Section, after recalling the formalism associated with these cycles.

4.2. Calculation of the efficiencies Q, R of the advective-acoustic and purely

acoustic cycles

4.2.1. Advective-acoustic and purely acoustic cycles

F02 developed a formalism in order to describe the advective-acoustic cycle, stable or

not, below a stationary shock in a radial accretion flow onto a black-hole. The same for-

malism can be applied to a decelerated accretion flow onto a hard surface. Let us recall

that vorticity and entropy perturbations are advected at the velocity of the flow, whereas

pressure perturbations can propagate at the speed of sound. These two categories of per-

turbations would be linearly independent in a uniform flow, but are coupled linearly if the

flow is inhomogeneous. The interaction between the stationary shock and the flow gradients

gives birth to two cycles:

- an advective-acoustic cycle, whose duration is noted τQ. An advected perturbation

of frequency ωr generates a pressure feedback which triggers, at the shock, a new advected

perturbation, whose amplitude has changed by a factor Q(ωr) after one advective-acoustic

cycle.

- a purely acoustic cycle , whose duration is noted τR. An acoustic perturbation of

frequency ωr propagating downward (not necessarily radially) produces a reflected (or re-

fracted) perturbation reaching the shock and triggers a new pressure perturbation, whose

amplitude has changed by a factor R(ωr) after one acoustic cycle.

The “vortical-acoustic” instability studied by F02 is fundamentally nonradial because vor-
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ticity perturbations are the only advected perturbations in an isothermal flow. In a gas

with γ = 4/3, the advective-acoustic cycles exist for both radial and non radial pertur-

bations. A radial advective-acoustic cycle relies entirely on entropy perturbations. In an

adiabatic flow, the acoustic feedback depends on the global increase of enthalpy in the post-

shock flow (Foglizzo & Tagger 2000, F01) and can be efficient enough to destabilize the

Bondi-Hoyle-Lyttleton accretion (Foglizzo, Galletti & Ruffert 2005). The instability of this

“entropic-acoustic” cycle (i.e. the mode l = 0) is disfavoured in the core-collapse context

because neutrino cooling precludes a strong adiabatic heating.

4.2.2. Eigenfrequencies associated with the cycles

The simplest formulation of the advective-acoustic instability corresponds to a situation

where the purely acoustic cycle is negligible. The instability threshold then corresponds to

|Q| = 1 and the growth rate ωi can be approximated by

ωi ∼
1

τQ
log |Q|. (26)

More generally, Foglizzo & Tagger (2000) showed that the purely acoustic cycle is not nec-

essarily negligible and modifies Eq. (26) as follows:

QeiωτQ + ReiωτR = 1. (27)

This equation describing the simultaneous existence of two cycles (Q, τQ) and (R, τR) is

symmetric: it can account for an advective-acoustic instability (|Q| > 1) as well as an

hypothetical acoustic instability (if |R| > 1). In the isothermal flow studied by F02, the

acoustic cycle is “weak” in the sense that the parameter ǫ < 1:

ǫ ≡
|R|

|Q|
τR
τQ

< 1, (28)

Assuming ǫ < 1, F02 showed from Eq. (27) that the effect of the acoustic cycle is to either

increase or decrease the growth raye ωi in the following range:

1

τQ
log

|Q|

1 + ǫ
< ωi <

1

τQ
log

|Q|

1 − ǫ
, (29)

The case ǫ > 1 would be exactly symmetric, by exchanging (Q, τQ) and (R, τR) in Eqs. (28)

and (29).
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Fig. 8.— Comparison between the coupling efficiencies |Q|(ω), |R|(ω) of the mode l = 1,

computed in the WKB approximation (full and dashed lines) and the ones deduced from

the eigenspectrum (circles and diamonds) using Eqs. (32-33), in a flow with α = 3/2 and

β = 5/2, for different shock radii rsh/r∗. The agreement validates the formalism associated

with the two cycles. The acoustic cycle is stable (|R| < 1), and the advective-acoustic cycle

can be unstable (|Q| ∼ 4 − 6).
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Fig. 9.— Same as Fig. 8 with a different cooling function: α = 6 and β = 1. The efficiencies

|Q| and |R| are similar to those obtained with α = 3/2 and β = 5/2.
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4.2.3. How to extract the cycles information directly from the eigenspectrum

Assuming that the underlying mechanism is due to a superposition of cycles described

by Eq. (27), an estimate of Q, R, τQ, τR can be extracted directly from the oscillations

observed in the eigenspectrum, in Fig. 7. This method enables us to identify two cycles, one

slow and one fast, and measure their efficiencies. For the sake of simplicity, we choose to

denote the fast cycle with the letter R, and the slow one with the letter Q (i.e. τQ > τR).

The identification of the slow cycle with the advective-acoustic mechanism, and the fast cycle

with the purely acoustic mechanism will become unambiguous in Sect. 4.2.4, which will also

validate the assumption of an Eq. (27) underlying the eigenspectrum.

According to F02, the timescale τQ of the slowest cycle is related to the frequency difference

ωr(i + 1) − ωr(i) between two consecutive eigenmodes, whereas the shortest timescale τR
is related to the frequency range ∆ωr of each oscillation. Denoting by nosc the number of

eigenmodes per oscillation,

τQ ∼
2π

ωi+1
r − ωi

r

, (30)

τQ
τR

∼ nosc. (31)

For example, at first glance on the upper plot of Fig. 7, one can anticipate that τQ/τR ∼ 5

if rsh/r∗ = 5, whereas τQ/τR ∼ 10 if rsh/r∗ = 30.

According to Eqs. (54) and (55) of F02, the efficiencies |Q| and |R| associated with the slow

and fast cycles respectively, can be extracted directly from the eigenspectrum, by measuring

the following parameters of the eigenspectrum oscillations: (i) the frequency range ∆ωr of

each oscillation, (ii) the number nosc of eigenmodes per oscillation, (iii) the amplitude ∆ωi

of the oscillations of the growth rate, and (iv) their average value ω̄i:

|Q| =
cosh π ∆ωi

∆ωr

cosh(nosc − 1)π ∆ωi

∆ωr

exp 2noscπ
ω̄i

∆ωr
, (32)

|R| =
sinh noscπ

∆ωi

∆ωr

cosh(nosc − 1)π ∆ωi

∆ωr

exp 2π
ω̄i

∆ωr

. (33)

The result of this method, applied to the l = 1 eigenmodes of Fig. 7, is shown in Fig. 8 for

α < β and in Fig. 9 for α > β. It shows that the fast cycle (diamonds) is always stable,

whereas the slow cycle (circles) can be unstable. We now proceed to check the validity of

these results by computing |Q| and |R| using another method, which will establish that the

fast stable cycle is purely acoustic, and the slow cycle is advective-acoustic.



– 22 –

4.2.4. An alternate way to measure |Q| and |R|, in the WKB approximation

Following F02, this method consists in determining the coupling efficiencies |Q| and

|R| as continuous functions of the perturbation frequency ωr. The efficiency of the acoustic

cycle is decomposed into R ≡ RshR∇, while the efficiency of the advective-acoustic cycle is

decomposed into Q ≡ QshQ∇, with Rsh, R∇, Qsh and Q∇ being defined as follows:

(i) when an acoustic wave of frequency ωr propagating outward reaches the shock,

Rsh(ωr) measures the efficiency of acoustic reflection, while Qsh(ωr) measures the amount of

advected perturbations (entropy/vorticity) produced by the shock.

(ii) when an acoustic wave of frequency ωr propagates in the flow towards the accretor,

R∇(ωr) measures the amount of acoustic reflection. When an advected perturbation of fre-

quency ωr is advected towards the accretor, Q∇(ωr) measures the amount of acoustic waves

propagating against the flow. Note that Q∇ and R∇ are measured at a radius immediately

below the shock, but do not involve the physics of the shock.

This approach is an extension of the approach used by F01, F02 in adiabatic and isothermal

flows, where acoustic and advected perturbations are easily identified using a WKB approx-

imation. The technicalities of the method is described in Appendix C and Appendix D.

The WKB approach assumes that the wavelength of the advected and acoustic perturbation

is shorter than the scale of the flow gradients just below the shock. This method is thus

expected to be reliable at high frequency, and to break down at low frequency.

Besides, the presence of cooling processes makes this method even more approximative, since

we choose to neglect it in the immediate vicinity of the shock, for the sake of simplicity. Ne-

glecting cooling is certainly justified when the shock is far enough from the accretor, as

illustrated by the flat entropy profile in the upper plot of Fig. 1, for rsh/r∇ = 5.

The results of the WKB analysis applied to the l = 1 mode are displayed as continuous

and dashed lines in Figs. 8 and 9, together with the results of the first method. The agree-

ment between the two methods is excellent at frequencies where |Q| and |R| vary smoothly

with frequency. Since the method based on the eigenspectrum requires several neighboring

eigenmodes to determine |Q| and |R|, it is unable to correctly capture variations that are

faster than the oscillation period ∆ωr. This is particularly visible in the resulting estimate

of |R|, in Fig. 8.

The direct method used in Sect. 4.2.3 can be used to estimate the range of validity of the

WKB approximation. A close inspection of Figs. 8 and 9 suggests that the WKB approxi-

mation is acceptable for ωr ≥ 5 in both flows.
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Both methods indicate that the purely acoustic is stable, and is not even close to the

instability threshold, with typical values |R| ≤ 0.5. If a purely acoustic mechanism were

responsible for the low frequency instability, as proposed by BM06, this mechanism would

have to be stable at higher frequency to be compatible with the results of our analysis.

More importantly, our calculations prove that the advective-acoustic cycle is unstable

in the range of frequencies accessible to our analysis, with an efficiency reaching |Q| ∼ 4−6.

The next sections aim at characterizing the properties of this instability, by estimating

the timescale τQ of the cycle and the effective coupling radius reff (Sect. 4.3), and finding

approximations for its growth rate (Sect. 4.4) and oscillation period (Sect. 4.5). Whether this

instability mechanism may be responsible for the dominant low frequency mode is discussed

in Sect. 5.

4.3. Estimate of the timescale τQ and effective coupling radius reff of the

advective-acoustic cycle

The accurate determination of the cycle timescales τQ and τR, using the velocity and

sound speed profiles of the stationary flow, is not straightforward: the duration τR of the

acoustic cycle depends on the depth of the turning point, and is thus a function of both the

frequency ωr and the order l. Similarly, ωr and l influence the depth at which an advected

perturbation couples most efficiently to acoustic perturbations. The study of the advective-

acoustic coupling in an adiabatic or isothermal flow showed that this coupling occurs all

the way from the shock to the accretor (Eq. (25) of F01, of Eq. (29) of F02). Its net effect

viewed from the shock radius may be summarized as a feedback from a single effective radius

of coupling reff , associated to an advective-acoustic timescale τQ. Let us define two radial

reference timescales in the stationary flow:

(i) the radial acoustic timescale τac(r) from the shock to the radius r and return:

τac(r) ≡

∫ r

sh

2

1 −M2

dr

c
, (34)

(ii) the radial advective-acoustic timescale τaa(r) is defined as the advection timescale

from the shock to the radius r, and acoustic return in the radial approximation:

τaa(r) ≡

∫ r

sh

1

1 −M

dr

Mc
. (35)
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Fig. 10.— Estimate of the cycle timescale τQ, directly extracted from the eigenspectrum

(Eq. 30). It is measured in units of the radial advective-acoustic time τ∇ ≡ τaa(r∇), down to

the radius r∇ of maximum velocity gradient. At low frequency, the cycle timescale is 20%

shorter than τaa(r∇).
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The non radial character of the acoustic feedback has a minor influence on τaa(r), given the

subsonic character of the flow. By contrast, BM06 noted that the acoustic time for a very

nonradial, purely acoustic wave can be significantly longer than along a radial path: the

shock circumference is indeed a factor π longer than its diameter.

In Fig. 10, we find it convenient to measure the cycle timescale τQ deduced from Eq. (30),

in units of τ∇ ≡ τaa(r∇), where r∇ is the radius defined in Sect. 2.1, where the velocity gra-

dient is maximum. The globally good matching between these two timescales indicates that

velocity gradients are an important ingredient for the advective-acoustic coupling responsible

for the acoustic feedback, as in the vortical-acoustic instability studied in a isothermal con-

text by F02. Note that temperature gradients may also contribute to the advective-acoustic

coupling, as seen in the adiabatic study of F01.

We should keep in mind, however, that r∇ is defined as a local maximum, whereas our

definition of reff is global in the sense that it involves both the local coupling efficiency and

the advection/propagation of the perturbations between the shock and reff . In consequence,

the approximation reff ∼ r∇ should be viewed as a guide to our intuition rather than a

fundamental property.

An advected perturbation of oscillation frequency ωr is most sensitive to flow gradients

whose lengthscale is shorter than the wavelength 2πv/ωr. Those associated with velocity

scale like (dv/vdr)−1:

ωr < 2π
dv

dr
. (36)

According to Fig. 11, the velocity gradient in the flow with α > β is very smooth and

spread when the shock distance is short, whereas it gets sharper when the shock distance

is large. This may explain, at least qualitatively, why the flow with α = 6, β = 2 is stable

for rsh/r∗ < 2.6 whereas the flow with α = 3/2, β = 5/2 is unstable even for a small shock

distance.

Similarly, the divergence of the velocity gradient in the flow α < β is likely to couple advected

and acoustic perturbations at much higher frequencies than in the flow α > β, where the

velocity gradient is smoother. This qualitative argument may explain why the range of

unstable frequencies is so much larger for α = 3/2, β = 5/2 than for α = 6, β = 1 (as visible

in Fig. 7 and summarized in Fig. 16).

Fig. 11 also illustrates the fact that velocity gradients are present all the way from the shock

to r∇, and may affect perturbations with a low frequency ωr < 5 according to Eq. (36).

This threshold is comparable to our estimate of the threshold of the WKB approximation in

Sect. 4.2.4.

We interpret the 20% offset visible in Fig. 10 at low frequency as a consequence of the coupling
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through the various flow gradients, including velocity, above r∇. Keeping in mind this low

frequency distortion, the timescale τ∇ can be considered an acceptable approximation of τQ
for unstable l = 1 modes.

4.4. First order approximation of the growth rate

Finding a discrete set of eigenmodes is a laborious task, in comparison with the straight-

forward calculation of |Q| and |R| in the WKB approximation. In this respect, Eq. (29)

provides us with a useful estimate of the growth rate if the parameters of the cycle τQ, τR,

|Q| and |R| are known. Although our estimate τ∇ of τQ is not fully satisfactory, we may

continue along this direction in order to check what kind of accuracy can be reached. The

effect of the acoustic cycle described by Eq. (29) depends through ǫ on the ratio τQ/τR
(Eq. 28), which is measured by nosc (Eq. 31). Despite the potentially significant difference

between the timescales of radial and non radial acoustic modes, we choose to approximate τR
by τac(r∗), and compare in Fig. 12 the number nosc measured on the eigenspectra of Fig. 7 to

the reference ratio τ∇/τac(r∗). The global agreement is acceptable given the discreteness of

the number of nodes, the gross approximation of τR by τac(r∗), and the difficulty of identify-

ing the oscillation, especially when Q varies rapidly near ωr ∼ 90 and ωr ∼ 150 for α = 3/2,

β = 5/2. The systematic decrease of nosc observed at low frequency is compatible with the

decrease of τQ/τ∇ discussed in Sect. 4.3.

The growth rate ωi measured in the eigenspectra of Fig. 7 is then compared in Figs. 13

and 14 to the value (logQ)/τ∇ (full line), and the expected range of influence of the acoustic

cycle deduced from Eq. (29) (dotted lines). This comparison is interpreted as follows:

(i) the amplitude of the eigenspectrum oscillation is very well matched by Eq. (29),

(ii) the global shape of the eigenspectrum is globally very well reproduced

(iii) as expected, some systematic discrepancies are observed at low frequency, concern-

ing the first ∼ 10 eigenmodes. This discrepancy can reach a factor 2 for the fundamental

mode.

We first conclude that the radius r∇ is an excellent approximation of the feedback radius at

high frequency, for both cooling functions. This provides us with a rather simple description

of the instability mechanism at work at high frequency.

The discrepancy observed at very low frequency exceeds the 20% effect due to overestimat-

ing τQ because the WKB approximation used to compute |Q| and |R| ceases to be valid, as

already pointed out in Sect. 4.2.4. Figs. 13 and 14 suggest that the WKB approximation
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may only provide a gross estimate of the growth rate of the lowest frequency modes, within

a factor 2.

4.5. Oscillation timescale and efficiency |Q| associated with the most unstable

mode

The relationship between the oscillation period of the fundamental mode and the timescale

of the cycle is not obvious a priori, even if the acoustic cycle is neglected, because it depends

on the phase φQ of the complex efficiency Q. Denoting by ωr(k) the frequency of the k-th

harmonic, the phase relation associated with Eq. (27) when the acoustic cycle is neglected

leads to:

ωr(k)τQ + φQ = 2(k + 1)π. (37)

A comparison of the frequency ωr(k = 0) of the fundamental mode with the frequency of

the first harmonic ωr(k = 1), shown in Fig. 15, indicates that ωr(1) ∼ 2ωr(0). We conclude

that the phase of Q is negligible, and that the oscillation period of the fundamental mode is

a good measure of the timescale τQ at low frequency.

The fundamental mode is not always the most unstable one among the l = 1 pertur-

bations: Fig. 16 summarizes the frequency range of unstable modes for α = 3/2, β = 5/2

(upper plot) and α = 6, β = 1 (lower plot). The most unstable mode may correspond to

either the fundamental mode, the first or second harmonic as the shock radius increases

from rsh/r∇ = 1.5 to 100. For both sets of cooling parameters, the corresponding oscillation

period 2π/ωr of the most unstable l = 1 mode would therefore be τQ for 1.5 < rsh/r∇ < 5−6,

τQ/2 for 5 − 7 < rsh/r∇ < 33 − 39, and even τQ/3 for rsh/r∇ > 33 − 39.

An upper bound of the efficiency |Q| associated with the low frequency modes may be

estimated from Eq. (26) by neglecting the purely acoustic cycle and approximating τQ ∼

2π(k + 1)/ωr(k). The value of exp(ωiτQ) is shown in Fig. 17 for the first three eigenfre-

quencies “f”, “h1”, and “h2”, as a function of the shock radius. The actual value of Q at

large shock radius is likely to be intermediate between the curve “f” and the curve “h1” in

Fig. 17 for 10 ≤ rsh/r∇ ≤ 30, as suggested by Fig. 7: indeed, the eigenspectrum oscillation

at low frequency in Fig. 7 suggests that the first harmonics “h1” and “h2” benefit from a

constructive influence of the acoustic cycle, whereas this influence seems destructive on the

fundamental mode “f”. In this respect, Fig. 17 indicates that |Q|wkb can be used as an

acceptable guess of the efficiency |Q| at low frequency.

Besides, Fig. 17 suggests a slow increase of the efficiency |Q| with the shock radius, with
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remarkable similarity for the two sets of cooling parameters (full and dashed lines).

As the shock radius is increased, the slow increase of the oscillation frequency of the most

unstable mode (Fig. 16), and the increase of |Q| (Fig. 17) are not explained yet.

5. Continuity argument for the advective-acoustic instability at low frequency

Strictly speaking, we have demonstrated that the advective-acoustic cycle is responsible

for the high frequency l = 1 instability of a stalled accretion when it is far enough from the

accretor, for two different types of cooling functions. What is the bearing of this demon-

stration on the instability mechanism of the low frequency modes, when the shock radius

is moderate ? Since the analysis of the fundamental l = 1 mode and its first harmonics is

intractable through usual WKB techniques, one might argue that the instability mechanism

of the fundamental mode is out of reach of the present study. The eigenspectrum of the

flow with α = 6, β = 1 and rsh/r∇ = 5 (lower plot of Fig. 7) contains too few unstable

modes to allow for the identification of oscillations, and the frequency of these eigenmodes is

too low to allow for a WKB analysis. In this case, neither of the two methods described in

Sect. 4.2 is able to compute |Q| and |R|. Fig. 7, however, shows the continuity of the shape

of the eigenspectrum, both with respect to frequency and with respect to the shock radius.

The growth rate of the low frequency eigenmodes is only marginally larger than those at

higher frequency. We feel there is no need to invoke a different instability mechanism at low

frequency given the smooth distribution of growth rates. According to Fig. 7, decreasing

the shock radius seems to reduce the cut-off frequency above which the modes are stable,

but barely affects the growth rate of the low frequency modes. The continuity of the flow

properties with respect to the shock radius is also apparent in the sequence of plots in the

Figs. 8-9 and Figs. 13-14.

Besides, the radial structure of the pressure perturbation looks very similar for all the

harmonics displayed in Fig. 18, for two different shock radii. The eigenfunction of the

low frequency, most unstable mode resembles those of higher frequency modes for which a

reliable determination of the cycle efficiencies Q and R is possible. The similarity of the

eigenfunctions suggests again a common instability mechanism for all these modes, namely

the instability of the advective-acoustic cycle.

Could the same kind of mechanism account for the slow instability of the fundamental

l = 0 mode, observed in Fig. 4 or 6 for a large shock radius rsh/r∗ > 15 ? The eigenspectrum

associated to the radial mode shows oscillations very similar to Fig. 7, except that all the

higher harmonics are stable, even for a very large shock radius rsh/r∗ = 1000. These oscil-

lations enable the direct computation of the efficiencies |Q| and |R| of the acoustic cycle.
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The “entropic-acoustic” cycle is always stable |Q| < 1 at the high frequencies required by

the WKB analysis, and the purely acoustic cycle is also stable |R| < 1. Since the first

harmonics seem always stable, the instability mechanism of the fundamental l = 0 mode is

more difficult to interpret than for l = 1 modes. We cannot exclude, however, that it may

be due to a low frequency entropic-acoustic cycle destabilized by the temperature increase

in the adiabatic part of the flow, when the shock radius is large.

6. Discussion of the acoustic interpretation of BM06

BM06 summarized their preference for a purely acoustic mechanism by the following

three observations:

(i) the advection time down to the accretor surface τadv(r∗) is larger than the oscillation

period τosc ≡ 2π/ωr, whereas a non radial path exists such that the acoustic timescale along

this path coincides with τosc (Fig. 6 of BM06),

(ii) a standing l = 1 acoustic wave is clearly visible on the pressure profile. The particular

radius r such that τadv(r) ∼ τosc, which could have been identified as a radius of effective

advective-acoustic coupling, does not show any particular signature on the pressure profile,

(iii) the instability seems independent of the flow near the accretor, given the resem-

blance between the results with the two different cooling functions which differ only in the

most inner regions.

We believe that part of the confusion comes from the fact that for a post-shock Mach num-

ber Msh ∼ 1/81/2 typical of a strong adiabatic shock with γ = 4/3, the advection timescale

rsh/vsh happens to be both longer than the radial acoustic timescale 2rsh/csh, and shorter

than the surface acoustic time 2πrsh/csh:

2rsh

csh

<
rsh

vsh

<
2πrsh

csh

. (38)

An advective-acoustic timescale of the order of rsh/vsh can thus be matched by an acoustic

time along an ad-hoc nonradial path. This confusion between the advective and acoustic

timescales could disappear if the postshock flow were very subsonic, with Msh ≪ (2π)−1 =

0.16. Such conditions could be obtained in a flow involving a strong leak of energy at

the shock, mimicking photodissociation in the same manner as Foglizzo, Scheck & Janka

(2006). Unfortunately, preliminary calculations indicate that the shock distance is so much

diminished by this energy loss that the l = 1 mode is stabilized.

We argue below that the observations of BM06 do not contradict our description of the

advective-acoustic instability.
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- The resemblance between the two flows with different cooling functions (point iii) has

been investigated in depth throughout this paper, showing that the instability is dominated

in both flows by the advective-acoustic cycle occurring between the shock and the effective

coupling radius reff ∼ r∇. Some significant differences were also discussed, such as the smaller

frequency cut-off in the flow with α = 6, β = 1 which could be due to the smoother profile

of the velocity gradient (Fig. 11).

- The existence of a standing pressure wave (point ii) cannot be held against the

advective-acoustic cycle, as seen on Fig. 18. Most of the radial structure of the perturbed

pressure shown in Fig. 18 is very localized in the first 10% of the shock distance, close to the

accretor, and could be compatible with Fig. 7 of BM06 once projected on the l = 1 spherical

harmonics. Let us recall that reff is an “effective” coupling radius, as defined in Sect. 4.3,

and certainly not the unique radius of acoustic emission.

- As discussed in Sect. 4.3, our estimate of reff ∼ r∇ is not accurate enough to be a

decisive test for our interpretation (point i). In a sense, our determination of reff in Fig. 18

could be considered as arbitrary as the determination of an “acoustic” path in Fig. 6 of

BM06. Nevertheless, independently of estimating reff , we did prove the instability of the

advective-acoustic cycle at high frequency in Sect. 4, and showed the similarity with low

frequency modes in Sect. 5.

In view of the above detailed description of the advective-acoustic instability, together

with the proven stability of the purely acoustic cycle at high frequency, the possibility that

a purely acoustic mechanism may be responsible for the most unstable low frequency modes

seems unlikely.

7. Conclusions

This work is the first characterization, through a linear study, of the advective-acoustic

instability in a decelerated accretion flow involving cooling processes. Our formulation of the

boundary conditions at the shock corrects an error in HC92 concerning non radial perturba-

tions. The numerical solution of this problem confirms the existence of an l = 1 instability,

as found in the numerical simulations of Blondin et al. (2003), for the two types of cooling

functions studied by BM06. A detailed comparison of the growth time and the oscillation pe-

riod of the dominant mode of the instability revealed discrepancies which can reach ∼ 30%,

possibly due to the numerical difficulty of advecting vorticity waves towards the region of

deceleration without artificially damping them by numerical viscosity. The optimal grid size

near the accretor surface is estimated as a fraction 0.1−0.2% of the shock distance from the
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accretor.

The main purpose of this study was to clarify the instability mechanism at work for l = 1 per-

turbations, with the following results for both types of considered cooling functions α = 3/2,

β = 5/2 and α = 6, β = 1:

(1) We have proven, for the first time, that an advective-acoustic instability of the l = 1

mode takes place in a decelerated accretion flow involving cooling processes. The WKB

approximation used in this proof required that the shock radius exceeds ∼ 10 times the

accretor radius.

(2) The low frequency l = 1 instability occurring when the shock distance is moderate

(rsh/r∇ ≥ 2) has also been interpreted as an advective-acoustic instability, using our con-

clusion (1) together with a continuity argument: the instability of the low frequency modes

can be interpreted in continuity with the instability at higher frequency in a series of flows

with larger shock radii. This continuity argument is based on a comparison of both the

eigenspectra (Fig. 7) and the eigenfunctions (Fig. 18) of the unstable modes.

(3) The purely acoustic cycle is very stable (|R| ≤ 0.5) in the range of shock radii and

frequencies allowed by our approximations. This result disfavours of the acoustic interpre-

tation of BM06.

(4) The efficiency of the advective-acoustic cycle is an increasing function of the shock

distance, which reaches an efficiency |Q| ∼ 4 − 5 for a shock radius rsh/r∇ ∼ 10.

(5) We have proposed a simple approximation of the advective-acoustic cycle timescale

τQ based on τ∇, defined as the advection time from the shock to the radius r∇ where the

velocity gradient is strongest, plus a radial acoustic feedback for the sake of simplicity. This

estimate is quite accurate at high frequency, but overestimates the cycle timescale at low

frequency by ∼ 20%.

(6) We have shown that the oscillation period of the fundamental mode is a measure

of the timescale τQ. The oscillation period of the most unstable mode is comparable to τQ,

τQ/2 or τQ/3 depending on the shock radius (Fig. 16).

Our efforts to understand the instability mechanism at work in a simplified flow aim at

guiding our intuition when interpreting more complex numerical simulations of astrophysical

flows (i.e. Scheck et al. 2006b). The general description of the instability is globally satis-

factory, but some fundamental questions are still unanswered. The following three questions

may be answered by further studies:

(i) What is the maximum efficiency |Q|max of an advective-acoustic cycle with cooling
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? We observed in Figs. 17 that |Q|max increases slowly with the shock distance for both

types of cooling function: is this due to the influence of an extended quasi adiabatic region

where enthalpy gradients contribute to the advective-acoustic coupling (F01) ? Or is this

related to the cooling mechanism in the deceleration region ? How does |Q|max depend on

the adiabatic index γ ? Answering these questions should help us estimate the efficiency

|Q| in astrophysical flows with a more realistic equation of state and more elaborate cooling

processes.

(ii) What are the conditions for the dominance of a l = 2 mode, as observed in Fig. 6

for α = 3/2, β = 5/2 for 1.5 < rsh/r∗ < 1.9 ? How does the maximum efficiency |Q|max

depend on the degree l of the perturbation ? This question could be important with respect

to the asymmetry of the explosion, and the subsequent kick of the neutron star (Scheck et

al. 2006a).

(iii) Can we better understand the conditions under which the instability is dominated

by the fundamental mode, its first or second harmonic ? This question may be important

with respect to the explosion mechanism proposed by Burrows et al. (2006). This mechanism

requires the nonlinear transfer of energy from an unstable flow above the neutron star to a

gravity mode of the neutron star, whose frequency can be a factor 10 higher. We may expect

that the higher the frequency of the advective-acoustic cycle, the easier the excitation of the

gravity mode of the neutron star through nonlinear processes.

Some of these questions can be addressed by further simplifying the accretion flow in order to

allow for analytical calculations of the advective-acoustic cycle, free from the low frequency

limitations inherent to the WKB approximation. This is the purpose of a companion paper

(Foglizzo et al. 2006).
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A. Explicit relations between δv, δρ, δP , δL and f , h, δK

The functions f , h, δS can be translated into the classical variables δvr, δρ, δP , δc2

using Eqs. (5), (7) and (8):

δvr

v
=

1

1 −M2

(

h + δS −
f

c2

)

, (A1)

δρ

ρ
=

1

1 −M2

(

−M2h − δS +
f

c2

)

, (A2)

δP

γP
=

1

1 −M2

[

−M2h − (1 + (γ − 1)M2)
δS

γ
+

f

c2

]

, (A3)

δc2

c2
=

γ − 1

1 −M2

(

f

c2
−M2h −M2δS

)

. (A4)

The functions δK, f are related to the transverse velocity perturbation (0, δvθ, δvϕ), accord-

ing to the following equation, obtained from a combination of the transverse components of

the Euler equation:

δA ≡
r

sin θ

[

∂

∂θ
(sin θδvθ) +

∂

∂ϕ
δvϕ

]

, (A5)

=
1

iω
[δK − l(l + 1)f ] . (A6)

Using the fact that P = ρc2/γ, the heating function defined by Eq. (1) and Eq. (4) is

perturbed as follows:

δ

(

L

ρv

)

= ∇S
c2

γ

[

(β − 1)
δρ

ρ
+ α

δc2

c2
−

δvz

v

]

, (A7)

δ

(

L

pv

)

=
γ

c2
δ

(

L

ρv

)

−
δc2

c2
∇S, (A8)

In these equations, the perturbations δvz, δρ and δc2 can be replaced by functions of f, h, δS

using Eqs. (A1-A4).

B. Shock boundary conditions

The boundary condition at the shock follows the conservation of mass flux, momentum

flux and energy flux in the frame of the shock:

ρ1(v1 − ∆v) = (ρsh + δρsh)(vsh + δvsh − ∆v), (B1)
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ρ1(v1 − ∆v)2 + ρ1

c2
1

γ
= (ρsh + δρsh)(vsh + δvsh − ∆v)2

+(ρsh + δρsh)
(csh + δcsh)

2

γ
, (B2)

(v1 − ∆v)2

2
+

c2
1

γ − 1
=

(vsh + δvsh − ∆v)2

2
+

(csh + δcsh)
2

γ − 1
, (B3)

where quantities are measured at the position rsh + ∆ζ . Keeping the first order terms, and

using the definition of f, h, these equations are rewritten at the position rsh using a Taylor

expansion:

ρ1v1hsh − (ρsh − ρ1)∆v = ∆ζ

[

∂

∂r
(ρv)1 −

∂

∂r
(ρv)sh

]

, (B4)

v2
shδρsh + 2ρshvshδvsh +

2

γ
ρshcshδcsh + δρsh

c2
sh

γ
=

∆ζ

[

∂

∂r

(

ρv2 + P
)

1
−

∂

∂r

(

ρv2 + P
)

sh

]

, (B5)

fsh − (vsh − v1)∆v =

∆ζ

[

∂

∂r

(

v2

2
+

c2

γ − 1

)

1

−
∂

∂r

(

v2

2
+

c2

γ − 1

)

sh

]

. (B6)

From the equations (2), (3), (4) of the stationary flow,

∂

∂r
(ρv) = −2

ρv

r
, (B7)

∂

∂r

(

P + ρv2
)

= −ρ
GM

r2
− 2

ρv2

r
, (B8)

∂

∂r

(

v2

2
+

c2

γ − 1

)

=
L

ρv
−

GM

r2
. (B9)

We obtain:

hsh =

(

1

vsh

−
1

v1

)

∆v, (B10)

δSsh

γ
=

∆ζ

c2
sh

[

L1

ρ1v1

−
Lsh

ρshvsh

−

(

GM

r2
sh

− 2
v1vsh

rsh

) (

1 −
vsh

v1

)]

−
v1∆v

c2
sh

(

1 −
vsh

v1

)2

, (B11)

fsh = (vsh − v1)∆v + ∆ζ

(

L1

ρ1v1

−
Lsh

ρshvsh

)

. (B12)
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In the entropy equation, the gravity term GM/r2
sh and the term v1vsh/rsh due to the spherical

geometry can be rewritten as follows:

GM

r2
sh

− 2
v1vsh

rsh

=
v2
ff

2rsh

− 2
v1vsh

rsh

, (B13)

=
v2
1

2rsh

[

(

vff

v1

)2

− 4
vsh

v1

]

. (B14)

The transverse velocity immediately after the shock is deduced from the conservation of the

tangential component of the velocity, in the spirit of Landau & Lifschitz (1989), leading to

Eqs. (22-23). δAsh is deduced from its definition (A5) and Eqs. (22-23):

δAsh = −l(l + 1)(v1 − vsh)∆ζ. (B15)

δKsh is deduced from δAsh using Eq. (A6) and (B12). The assumption that L1 ≪ Lsh, with

Lsh = ρshvshc
2
sh∇Ssh/γ, leads to Eqs. (15), (16) and (17) if the shock is strong.

C. Projection of perturbations on acoustic and advected waves

C.1. Uniform adiabatic flow

In a uniform, adiabatic flow moving at constant velocity in the direction z, any pertur-

bation f, h, δS, δK associated with the frequency ω and perpendicular wavenumber k⊥ can

be decomposed as a sum of acoustic waves and advected waves as follows:

f = f+ + f− + fS + fK , (C1)

h = h+ + h− + hS + hK , (C2)

where an acoustic wave is noted f+, h+ if it propagates in the direction of the flow, and

f−, h− otherwise. The contribution to f, h of a vorticity perturbation δK such that δS = 0

is:

fK =
M2(1 − µ2)

1 − µ2M2

δK

k2
⊥

, (C3)

hK =
fK

v2
, (C4)

where µ2 ≡ 1 − k2
⊥c2(1 − M2)/ω2. An entropy-vorticity perturbation such that δK = 0

contributes to the perturbation f, h as follows:

fS

c2
=

1 −M2

1 − µ2M2

δS

γ
, (C5)

hS =
µ2

c2
fS − δS. (C6)
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The acoustic component in a uniform adiabatic flow is deduced from f, h, δS, δK through:

f± =
1

2
f ±

Mc2

2µ
(h + δS) −

1 ± µM

2

(

fS ±
fK

µM

)

, (C7)

h± = ±
µ

M

f±

c2
. (C8)

C.2. Extension to a spherical flow with cooling

In a spherical flow with gradients, the advected and propagating waves are no longer

independent, but coupled even if the flow were adiabatic. Moreover, cooling processes are

responsible for an additional coupling between advected and propagating perturbations. We

choose to use the same decomposition obtained in a uniform adiabatic flow, adapted to

spherical coordinates by replacing µ2 by the spherical value (Eq. 14), and k2
⊥ by l(l + 1)/r2

(the eigenvalue of the Laplacian operator):

fK ≡
M2(1 − µ2)

1 − µ2M2

δK

l(l + 1)
, (C9)

hK ≡
fK

v2
, (C10)

fS

c2
≡

1 −M2

1 − µ2M2

δS

γ
, (C11)

hS ≡
µ2

c2
fS − δS. (C12)

f± ≡
1

2
f ±

Mc2

2µ
(h + δS) −

1 ± µM

2

(

fS ±
fK

µM

)

, (C13)

h± ≡ ±
µ

M

f±

c2
. (C14)

For any perturbation f, h, δS, δK in a spherical nonadiabatic flow, the quantities (f±, fK , fS)

and (h±, hK , hS) defined above naturally satisfy:

f = f+ + f− + fS + fK , (C15)

h = h+ + h− + hS + hK . (C16)

This decomposition describes the amount of advected and propagating waves that would be

measured if the perturbation were allowed to continue its evolution in a uniform adiabatic

flow. We choose to apply this decomposition at the shock radius, on the subsonic side. The

identification of f± with acoustic waves is strictly valid in the WKB approximation, when

the wavelength is short compared to the scale of the gradients in the flow. The threshold of

validity of this approximation is evaluated in Sect. 4.2.4.
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D. Numerical procedure to calculate R∇, Q∇ and QK
∇

One consequence of cooling is the fact that vorticity and entropy perturbations produced

at the shock do not satisfy δKsh ≡ 0 as in adiabatic flows (Eq. 18). This raises the question

of the acoustic feedback produced by the advection of the residual value of δKsh generated

by cooling at the shock. The global efficiency QK associated with this feedback is thus also

computed as a check of consistency: this feedback is indeed small in all our calculations

(|QK | < 0.1).

D.1. Numerical calculation of R∇, Q∇, QK
∇

For a given frequency ωr and degree l, the differential system is integrated four times

from rsh to r∗ with the following boundary conditions:

(i) acoustic wave propagating downward:

δKsh = 0, δSsh = 0, fsh = f+
sh = 1, hsh =

µsh

Msh

fsh

c2
sh

. (D1)

(ii) acoustic wave propagating upward:

δKsh = 0, δSsh = 0, fsh = f−
sh = 1, hsh = −

µsh

Msh

fsh

c2
. (D2)

(iii) entropy/vorticity wave advected downward:

δKsh = 0, δSsh = 1, fsh = fS
sh, hsh = hS

sh. (D3)

(iv) vorticity wave advected downward:

δKsh = 1, δSsh = 0, fsh = fK
sh , hsh = hK

sh. (D4)

In each of these four cases, the differential system is integrated from the shock down to the

accretor surface r∗, where the velocity perturbation reaches a value (δv/v)(r∗) noted a+,

a−, aS and aK respectively. A linear combination of a couple of these integrated solutions

allows us to construct three solutions which fulfills the boundary condition (δv/v)(r∗) = 0

and measure at the shock radius the following efficiencies of acoustic feedback within the

flow:

(i) Acoustic reflection, without any advected perturbation at the shock:

R∇ ≡ −
a+

a−

. (D5)
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(ii) Acoustic feedback produced by an entropy/vorticity perturbation such that δKsh =

0:

Q∇ ≡ −
1

a−

aS

fS
. (D6)

(iii) Acoustic feedback produced by a vorticity perturbation such that δSsh = 0:

QK
∇ ≡ −

1

a−

aK

fK
. (D7)

D.2. Calculation of Rsh, Qsh, Q
K
sh

At the shock, the coupling coefficients Rsh, Qsh and QK
sh are defined by

Rsh ≡
f+

sh

f−

sh

, (D8)

Qsh ≡
fS

sh

f−

sh

, (D9)

QK
sh ≡

fK
sh

f−

sh

, (D10)

where f±

sh, fS
sh and fK

sh are deduced from Eqs. (C3), (C5) and (C7), with the boundary values

fsh, hsh, δSsh and δKsh established in Eqs. (15-18). Although cooling is neglected in the

projection of the perturbation f on f±, fK , fS (Eqs. C9-C14), some effect of cooling on the

jump conditions is taken into account through f±

sh, fS
sh and fK

sh .
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Fig. 11.— Radial profile of the velocity gradient 2πdv/dr, for different stationary flows, for

both set of cooling parameters α = 3/2, β = 5/2 (thin dotted lines) and α = 6, β = 1

(full line). Each curve is labeled by the ratio rsh/r∇. The velocity gradient is normalized by

|vsh|/(rsh − r∗).
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Fig. 12.— Comparison between the number nosc of eigenmodes per eigenspectrum oscillation,

and the ratio of timescales τ∇/τac(r∗), for the two cooling functions, with rsh/r∇ = 30.
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Fig. 13.— Comparison between the eigenfrequencies computed from the boundary value

problem and the first order estimate (logQ)/τ∇, in a flow with α = 3/2 and β = 5/2, for

different shock distances rsh/r∇. The dotted lines correspond to the minimum and maximum

growth rates described by Eq. (29), in which τQ/τR is approximated by τ∇/τac(r∗).
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Fig. 14.— Same as Fig. 13, with a different cooling function: α = 6 and β = 1.
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Fig. 15.— Ratio of the frequencies of the first two eigenmodes ωr(1)/ωr(0) corresponding to

l = 1 perturbations: the oscillation period 2π/ωr of the fundamental mode is an excellent

measure of the advective-acoustic timescale τQ.
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Fig. 16.— Range of unstable frequencies of the l = 1 mode. The frequency of the most

unstable mode (thick full line) corresponds to one of the first harmonics noted “f”, “h1”,

“h2”. The cut-off frequency (short dashed thick line) is a steeper function of the shock radius

in the flow with α < β.



– 46 –

Fig. 17.— Maximum efficiency |Q|wkb of l = 1 perturbations in the WKB approximation

(thick lines), compared to exp(ωiτQ) of the low frequency eigenmodes “f”, “h1”, and “h2”.

The cycle timescale is approximated as τQ ∼ 2π(k + 1)/ωr(k).
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Fig. 18.— Radial profiles of the pressure perturbation |δP |/P for the fundamental l = 1

mode (“f”) and its first harmonics (“h1”, “h2”...), in the flow with α = 3/2, β = 5/2,

rsh/r∗ = 5 (upper plot) and rsh/r∗ = 10 (lower plot). The pressure profile is shown as a

function of the fractional radius, with the corresponding Mach number shown on the right

axis. In the flow with rsh/r∗ = 10, the frequency of the third harmonic “h3” is high enough

to establish the instability of the advective-acoustic cycle |Q| = 4.4 and the stability of the

purely acoustic cycle |R| = 0.3 (upper plot in Fig. 8). The shapes of all these eigenfunctions

look very similar, suggesting a common physical mechanism. A lower bound of the position

of the effective coupling radius reff is indicated by a circled symbol “+”, corresponding to

τadv(r) = 2π(k + 1)/ωr for the kth harmonic.


