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C. Räth,1⋆ P. Schuecker1 and A. J. Banday2
1 Max-Planck Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching, Germany
2 Max-Planck Institut für Astrophysik, Karl- Schwarzschildstr.1, 85741 Garching, Germany

Draft version, 6 February 2007

ABSTRACT

Local scaling properties of the co-added foreground-cleaned three-year Wilkinson
Microwave Anisotropy Probe (WMAP) data are estimated using weighted scaling in-
dices α. The scaling index method (SIM) is - for the first time - adapted and applied
to the case of spherical symmetric spatial data. The results are compared with 1000
Monte Carlo simulations based on Gaussian fluctuations with a best fit ΛCDM power
spectrum and WMAP-like beam and noise properties. Statistical quantities based on
the scaling indices, namely the moments of the distribution and probability-based
measures are determined. We find for most of the test statistics significant deviations
from the Gaussian hypothesis. Using a very conservative χ2 statistics, which aver-
ages over all scales, we detect non-Gaussianity with a probability of 97.3 % regarding
the Kp0-masked full sky, 98.9 % for the Kp0-masked northern and 91.6 % for the
Kp0-masked southern hemisphere. When analysing different length scales separately,
the detection rates increase to 99.7 % (> 99.9 % north, 97.4 % south) for the mean,
98.4 % (99.9 % north, 71.6 % south) for the standard deviation and 97.9 % (99.4
% north, 80.3 % south) for a χ2-combination of mean and standard deviation. We
find pronounced asymmetries, which can be interpreted as a global lack of structure
in the northern hemisphere, which is consistent with previous findings. Furthermore,
we detect a localized anomaly in the southern hemisphere, which gives rise to highly
significant signature for non-Gaussianity in the spectrum of scaling indices P (α). We
identify this signature as the cold spot, which was also already detected in the first
year WMAP data. Our results provide further evidence for both the presence of non-
Gaussianities and asymmetries in the WMAP three-year data. More detailed band-
and year-wise analyses are needed to elucidate the origin of the detected anomalies.
In either case the scaling indices provide powerful nonlinear statistics to analyse CMB
maps.

Key words: cosmic microwave background – cosmology: observations – methods:
data analysis

1 INTRODUCTION

The study of the Gaussianity of the Cosmic Microwave Back-
ground (CMB) is regarded to be the best way for under-
standing the true nature of the primordial density fluctu-
ations: by measuring suitable statistics of the temperature
fluctuations of the CMB and comparing the results with the-
oretical predictions, cosmological models for the primordial
density fluctuations can be rejected or accepted at a cer-

⋆ E-mail: cwr@mpe.mpg.de

tain confidence level. Standard inflationary models (Guth
1981; Linde 1982; Albrecht & Steinhard 1982) predict that
the temperature fluctuations of the CMB correspond to a
(nearly) Gaussian, homogeneous and isotropic random field.
In fact, Gaussianity and statistical isotropy are among the
fundamental pillars of the ΛCDM concordance cosmologi-
cal model. On the other hand, many alternative scenarios
have been studied, which give rise to non-Gaussianity, e.g.
non-standard inflation (Linde & Mukhanov 1997; Peebles
1997; Bernardeau & Uzan 2002; Acquaviva et al. 2003), or
topological defects models (Bouchet, Bennett, & Stebbins
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1988; Turok, & Spergel 1990; Turok 1996) to mention a
few. Probing non-Gaussianity therefore represent one of the
key tests to detect deviations from the minimal scenario. To
detect them it is essential to have high sensitivity and large-
coverage CMB data.
The Wilkinson Microwave Anisotropy Probe (WMAP) satel-
lite has produced high resolution all-sky observations of
the CMB with unprecendented accuracy, which have con-
firmed many predictions of the ΛCDM concordance cos-
mological model (Spergel et al. 2003; Bennett et al. 2003;
Spergel et al. 2006).
First analyses based on the WMAP first year data and global
statistical measures did not show significant deviations from
the Gaussianity hypothesis (Komatsu et al. 2003). A num-
ber of subsequent studies of the first-year WMAP-data
yielded, however, evidence for non-Gaussian features as well
as asymmetries in the CMB as measured with the WMAP
data.
These results were obtained using a number of qual-
itatively different statistical tests ranging from (lo-
cal) spectral (de Oliveira-Costa et al. 2004; Copi et al.
2004; Eriksen et al. 2004b; Hansen, Banday, & Górski 2004;
Land 2005) and N-point correlation function anal-
ysis (Eriksen et al. 2004b, 2005a), to Fourier phases
(Chiang et al. 2003; Coles et al. 2004; Naselsky et al.
2005), Minkowski - functionals (Park 2004; Eriksen et al.
2004a) and wavelets (Vielva et al. 2004; Cruz et al. 2005;
McEwen et al. 2005).
In March 2006 the three-year WMAP results were released
and several groups revisited the anomalies found in the first
data release. Considering the fact that the first year WMAP
data were already of very high quality it was no surprise that
many of the anomalies found in the first year data were re-
detected (Bridges et al. 2006; Copi et al. 2006; Jaffe et al.
2006; Land 2006; Mart́ınez-González et al. 2006) in the
three year data release albeit none of these tests alone
showed outstanding significance. Hence there is an ongo-
ing discussion, whether the identified features are signifi-
cant enough to prove asymmetry or non-Gaussianity of the
CMB. Given the tremendous consequences a claim of non-
Gaussianity of the CMB on cosmology would have, some
caution in making such statements is warranted.
Non-Gaussianity cannot be defined in a unique manner, it is
simply the presence of any higher order spatial correlations.
Therefore, there cannot be one unique test for all possible
ways a random field can be non-Gaussian that is prefer-
able to other tests, or that has superior sensitivity. In or-
der to perform a thorough analysis, one rather has to apply
several different, preferably complementary tests. Following
this reasoning, we present in this paper a novel approach to
analyse observed CMB-data on a local scale and to test for
Gaussianity and (statistical) isotropy. Namely we estimate
the local scaling properties of the maps of temperature fluc-
tuations using weighted scaling indices (see e.g. Räth et al.
(2002); Räth & Schuecker (2003)). These scaling indices are
sensitive to the local morphological properties of the field
of the temperature fluctuations ∆T (θ, φ) at a given scale r.
It has been demonstrated that this statistic is highly sen-
sitive to non-Gaussian signatures in simulated CMB-maps.
Here, we propose a formalism that can be applied to ob-
served WMAP-data with its spherical symmetry and test
for both non-Gaussianties and statistical asymmetries in

the WMAP three-year data using Monte Carlo simulations
based on Gaussian fluctuations with a best fit ΛCDM power
spectrum and WMAP-like beam and noise properties.
The paper is organised as follows. In Section 2 we describe
the WMAP-data as well as the simulations and the prepro-
cessing steps, which were applied to both the simulated and
observed data. In Section 3 we review the formalism of the
weighted scaling indices and explain it with a simple exam-
ple. As the weighted scaling indices and the wavelets share
some properties (e.g. locality, scale dependence) we compare
the two test statistics, show similarities and outline differ-
ences. We further extend the scaling index formalism to the
application to spherical WMAP-data. In Section 4 the re-
sults of the WMAP three-year data analysis are presented.
We summarize our main results in Section 5 and present our
conclusions in Section 6.

2 WMAP DATA, SIMULATIONS AND

PREPROCESSING

We use the noise-weighted sum T of the V1, V2, W1, W2,
W3 and W4 foreground-cleaned maps,

T (θ, φ) =

∑10

j=5
Tj(θ, φ)/σ2

0,j
∑10

j=5
1/σ2

0,j

(1)

where j = 5, 6 refer to the two V-band receivers and
j = 7, . . . , 10 to the four W-bands. σ2

0,j denotes the three-
year noise per observation for the six frequency bands
given by Hinshaw et al. (2006). In contrast to many of the
one-year Gaussianity studies (e.g. Komatsu et al. (2003);
Vielva et al. (2004)) the Q bands were no longer taken into
account, because they exhibit foreground contaminations.
All these foreground cleaned maps were taken from the pub-
licly accessible LAMBDA website1.
In order to study the Gaussianity of the coadded VW-
WMAP maps, we generated and analysed a set of 1000
Gaussian Monte Carlo simulations. For this we took the
set of the best fit Cl’s (WMAP only) as published on the
LAMBDA-site some weeks after the three year data release
2. For the set of Cl’s, random alm’s for the Cl’s of CMB
realizations were generated and convolved at each one of
the WMAP receivers with the appropriate beam transfer
functions 3. After the transformation from harmonic to real
space, uncorrelated Gaussian noise realizations were added
following the number of observations per pixel Nj(θ, φ) and
the noise dispersion per observation (σ0j). We combined all
the maps following equation (1). Finally, both the coad-
ded WMAP-data and the simulations were degraded to
Nside = 256, the Kp0 mask was applied, and the residual
monopole and dipoles were fitted and subtracted. All these
simulation and preprocessing steps were performed with the
HEALPIX-software (Górski et al. 2005).

1 http://lambda.gsfc.nasa.gov
2 http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm wmap.cfm
3 http://lambda.gsfc.nasa.gov/product/map/dr2/xfer funcs get.cfm
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3 WEIGHTED SCALING INDICES

The weighted scaling index method (SIM) (Räth et al. 2002;
Räth & Schuecker 2003) offers one possibility to estimate
the local scaling properties of a set of points, which is gen-
erally repesented in a d−dimensional space. The SIM has
found applications in (astrophysical) time series analysis of
AGNs, where the observed light curves were represented as
point distributions by embedding the time series in a higher
dimensional artificial phase space using delay coordinates
(Gliozzi, et al. 2002; Gliozzi, Papadakis, & Räth 2006).
Scaling indices have also often successfully been used for
structure analysis in 2D and 3D image data (Jamitzky et al.
2001; Monetti et al. 2003; Mueller et al. 2004). For this the
image data are represented as point distributions by com-
prising the spatial and intensity information of each pixel.
For two-dimensional images one thus obtains a set of three-
dimensional vectors ~pi = (xi, yi, I(xi, yi)),i = 1, . . . , Npixels.
On the basis of the representation of images as point dis-
tributions the weighted scaling indices are calculated as fol-
lows:

3.1 General Formalism

Consider a set of N points P = {~pi}, i = 1, . . . , N . For each
point the local weighted cumulative point distribution ρ is
calculated. In general form this can be written as

ρ(~pi, r) =

N
∑

j=1

sr(d(~pi, ~pj)) , (2)

where sr(•) denotes a kernel function depending on the scale
parameter r and d(•) a distance measure.
The weighted scaling indices α(~pi, r) are obtained by calcu-
lating the logarithmic derivative of ρ(~pi, r) with respect to
r,

α(~pi, r) =
∂ log ρ(~pi, r)

∂ log r
=
r

ρ

∂

∂r
ρ(~pi, r) . (3)

In principle, any differentiable kernel function and any dis-
tance measure can be used for calculating α. In the following
we use the euclidean norm as distance measure and a set of
gaussian shaping functions. So the expression for ρ simplifies
to

ρ(~pi, r) =

N
∑

j=1

e−(
dij

r
)q

, dij = ‖~pi − ~pj‖ . (4)

The exponent q controls the weighting of the points accord-
ing to their distance to the point for which α is calculated.
The higher q is the more steplike becomes the weighting
function resembling more and more the Heaviside-function,
which is used for the calculation of the unweighted scaling
indices. Another interesting choice of q is given by q = 2.
In this case the kernel function is the well-known Gaussian
exponential function.
Throughout this study we calculate α for the case q = 2. In-
serting the expression (4) in the definition for the weighted
scaling indices in (3) yields after some algebra the following
analytical expression for α:

α(~pi, r) =

∑N

j=1
q(

dij

r
)qe−(

dij

r
)q

∑N

j=1
e−(

dij

r
)q

. (5)

Structural components of a point set are characterized by
the calculated value of α. For example, points in a point-like
structure have α ≈ 0 and pixels forming line-like structures
have α ≈ 1. Area-like structures are characterized by α ≈ 2
of the pixels belonging to them. A uniform distribution of
points yields α ≈ d which is equal to the dimension of the
configuration space. The scaling indices for the point set
form the frequency distribution N(α)

N(α)dα = #(α ∈ [α,α+ dα[) (6)

or equivalently the probability distribution

P (α)dα = Prob(α ∈ [α, α+ dα[) (7)

The P (α)-representation of a point set can be regarded as
a structural decomposition of the data where the points are
differentiated according to the local morphological features
of the structure elements to which they belong to.

3.2 Scaling Indices and Wavelets

Some test statistics, with which non-Gaussian signatures
have been detected in the first and three-year WMAP-
data, are based on a wavelet analysis of the CMB data,
e.g. (Vielva et al. 2004; McEwen et al. 2005). Beside the fact
that wavelet-based tests yield one of the highest significances
for non-Gaussianities in the WMAP-data, wavelets and scal-
ing indices can also be considered to be similar to each other.
Both measures perform a local analysis of e.g. image data
and they are calculated for different scales, which yields
information about characteristic sizes of detected features.
On the other hand, there are obvious differences. While the
scaling indices are a nonlinear and non-bijective local filter,
the wavelet transformation is a linear operation, namely a
scale- and space-dependent filtering of the image data with
a wavelet function Ψ:

w(bx, by, r) =

∫

dxdyI(x, y)Ψ(x, y; bx, by, r) (8)

For the special case of spherical mexican hat wavelets
(SMHW), the ’mother wavelet’ ψ(d, r) is defined by:

Ψ(d, r) ≡ Ψ(d, bx = 0, by = 0, r)

=
1

(2π)1/2r

[

2 −
(

d

r

)2
]

e−d2/2r2

(9)

with d =
√

x2 + y2. It has been shown
(Mart́ınez-González et al. 2002) that SMHW yield superior
results in detecting non-Gaussian signatures compared to
other filter functions, e.g. Haar wavelets.
To consider the performance of the scaling indices in the
context of known test statistics for non-Gaussianities we
calculate and compare scaling indices and SMHW for two
examples.
In the first simple example we generated a synthetic image
which consists of a (white Gaussian) noisy background,
where the noise level was chosen to be twice as high in
the lower third of the image than in the rest of the image.
We interspersed three single-coloured lines and six disc-like
elements in the noisy background. The intensities of the
structural elements ranged from 0σ to ±1σ with respect to
the standard deviations of the different noisy backgrounds
(see Figure 1).

c© 2007 RAS, MNRAS 000, 1–13



4 C. Räth, P.Schuecker and A. J. Banday

Figure 1. Left to right: Synthetic test image, response image of
the scaling indices and response image of the wavelet coefficients.
The response images were normalised to the range of values of
the scaling indices and wavelets respectively.

Figure 2. Probability distribution of the the scaling indices
(above) and wavelet coefficients (below). The gray lines indicate
the distributions for the pure noise image without the line- and
disc-like structural elements.

We calculated the wavelets and scaling indices for a cor-
responding and well-suited scale. Figure 1 shows the grey-
value coded response of the wavelet and scaling index fil-
ter. One can see that the wavelets can only detect those
discs, which deviate most from the mean value of the noise.
The lines are only hardly detected in the less noisy back-
ground. The scaling indices, however, can detect all inter-
spresed structural elements in the image, where the (inner
part of the) disc-like structures have lower α-values than the
three lines. The observed differences in the images of the
filter response find their reflections in the probability distri-
butions P (α) and P (w) for the scaling indices and wavelet
coefficients (Figure 2).

Figure 3. Simulated non-Gaussian CMB map with superimposed
white additive noise (lower left) and three surrogate realisations
with the same power spectrum and amplitude distribution.

Figure 4. Significances of the moments of the distribution of scal-
ing indices (black) and wavelet coefficients (gray) for the image
in fig. 3. The lines and + denote the mean, the dotteds line and ⋆

the standard deviation, dashed lines the skewness and dashdotted
lines and ⋄ the kurtosis.

While the spectrum of scaling indices shows a clear sec-
ond peak at α ≈ 2.1 and a larger tail towards lower α-values,
no visible deviations can be seen in the in the distribution
of the wavelet coefficients when compared with those for a
pure noisy image. With this example it becomes obvious
that the wavelets are more sensitive to structures, which are
associated with intensity variations of significant magnitude
with respect to image noise. The scaling indices can, how-
ever, detect also structural features, which do not manifest
themselves with significantly higher (lower) intensity values
but as intrinsic structural variations within the noise level.
In the second more realistic example we consider a realisa-
tion of CMB anisotropies due to the Kayser-Stebbin effect
from cosmic strings on which white additive Gaussian noise
was superimposed. The noise level is chosen with rms signal-
to-noise-ratio (S/N) of 0.5. For this image 20 surrogate maps
were generated, which have the same power spectrum and
amplitude distribution as the original simulation (Figure 3).

For more details about the simulation and its surrogates
see Räth & Schuecker (2003). We compare tests for non-
Gaussianities based on wavelets and scaling indices. In both

c© 2007 RAS, MNRAS 000, 1–13
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cases we use the moments of the distributions of wavelet
coefficient and scaling indices as test statistics, namely the
mean (< α >), standard deviation (σα), skewness (γα) and
kurtosis (κα), which are defined by

< α >=
1

N

N
∑

i=1

αi (10)

σα =

(

1

N − 1

N
∑

i=1

(αi− < α >)2

)1/2

(11)

γα =
1

N

N
∑

i=1

(

(αi− < α >)

σα

)3

(12)

κα =
1

N

N
∑

i=1

(

(αi− < α >)

σα

)4

− 3 (13)

as test statistics. For each statistic the degree of de-
tected non-Gaussianity is measures in terms of significance
S,

S =
∣

∣

∣

M− < M >

σM

∣

∣

∣
(14)

where M is < α >, σα, γα and κα respectively. The mean
and standard deviation of the measure M are derived from
the 20 surrogate reliasations. Figure 4 summarizes the re-
sults for the scaling indices and SMHW. Both classes of fil-
ters can well detect the non-Gaussianities even at this high
noise level. The highest significances occur at similar scales.
However, the best results were obtained for different mo-
ments. While for the scaling indices the standard devaition
performed best, we found for the wavelets the best discrim-
ination with the kurtosis. The second best result for the
scaling indices was obtained with the mean. Based on these
findings we restrict ourselves to the analysis of the mean and
standard deviation of the distribution of scaling indices for
the WMAP data. In summary we found in this example sim-
ilar discrimination results for the two classes of filters, but
for different moments. The scaling indices gave - in general
- better results for the lower moments of the distribution
than the wavelets. Since the lower moments are less sen-
sitive to outliers of the distribution, one can arguably say
that an analysis of the first moments of the scaling index
distribution is statistically more stable and thus preferable.

3.3 Weighted Scaling Indices for WMAP-Data

To apply the SIM to the WMAP-data one has to find a
proper representation of the spherical data in a suitable em-
bdding space. Our aim in this work was to stay as close as
possible to the original data, i.e. to maintain the spherical
symmetric character of the data set and thus to omit any
projection onto a flat space. On the other hand, we strove
to find a proper three-dimensional embedding of the data
according to the three free parameters of each pixel on the
unit sphere, namely their angles and temperature. For this,
we chose the following approach:
Consider a temperature map I(θ, φ), where each pixel is as-
signed with a temperature value I(θ, φ). The position of
the pixel on the (unit) sphere is given by the two angles

Figure 5. Left: WMAP-data represented as a three-dimensional
point distribution. Right: x, z-projection of all points with |y| <

0.05. Above: a = 0.075, below: a = 0.225. The black circles indi-
cate the scaling ranges r = 0.075 and r = 0.225 respectively. A
good sensitivity to the temperature fluctuations at a given scale
r is obtained for r = a.

θ and φ. In addition, it contains the temperature informa-
tion I(θ, φ). One possible three-dimensional representation
of the WMAP-data, in which both the spatial and temper-
ature information of each pixel is simultaneously taken into
account, is given by

x = (R+ dR) cos(φ) sin(θ) (15)

y = (R+ dR) sin(φ) sin(θ) (16)

z = (R+ dR) cos(θ) (17)

with

dR = a(T (θ, φ)− < T >)/σT . (18)

By introducing the term dR the temperature
anisotropies are transformed to variations in the radial di-
rection around the sphere. The normalisation ensures that
dR has zero mean and a standard deviation of a. The pa-
rameters R and a are free (scale) parameters, which control
the size of the temperature-induced radial jitter relative to
its spatial extent. These two parameters R and a, together
with the scaling range parameter r for the calculation of the
scaling indices have to be properly set so that the scaling
indices are sensitive to the temperature fluctuations in the
chosen (spatial) scaling range (see Figure 5).

To achieve this, we coupled the parameter a, which con-
trols the width of the radial jitter with the scaling range r
and set for each scaling range a = r. The size of the the
sphere R has to be chosen large enough with respect to the
radial jitter dR, so that the scaling indices remain a local
measure and their calculation are not affected by pixels on
the opposite side of the sphere with a large dR. Hence, we
deliberately set R = 2 for all calculations presented below.
We performed some tests for the WMAP data and a subset
of simulations using different values of R, e.g. R = 1.5, and
found only marginal differences in the results.

c© 2007 RAS, MNRAS 000, 1–13



6 C. Räth, P.Schuecker and A. J. Banday

Figure 5 shows the representation of the WMAP data as
a point set P = {~pi = (xi, yi, zi)}, i = 1, . . . , Npixel and
two-dimensional projections of all data with |y| < 0.05. For
each point pi a set of weighted scaling indices α for ten
different values of r, r = 0.025, 0.05, 0.75, . . . , 0.25 is calcu-
lated, which (roughly) corresponds an angular resolution ψ
of ψ = 1.4◦, 2.8◦, . . . , 14.3◦.
Thus, the weighted scaling indices can also be interpreted
as a filter response of a local nonlinear filter acting on the
spherical CMB data. Global quantities of the α-distribution
as well as the probability density P (α) are used to derive
statistics quantifying the structures in the WMAP-data and
respective simulations.

4 RESULTS

In Figure 6 the preprocessed foreground-cleaned coadded
map of the WMAP data and the α- response for two differ-
ent radii r is shown. It is obvious that for these larger scales
the pixels in the vicinity of the Kp0-mask are affected by
boundaries effects, which lead to systematically lower values
for α. This effect, which is only due to the lack of data points
within the Kp0 mask, is the same for both the WMAP-data
and the simulations, so that global measures based on the
scaling indices, e.g. the moments of the probability distribu-
tion, are systematically affected in the same way. However,
some smaller local effects may be diluted by the boundary
effects. In order to have a cleaner map we also considered
only scaling indices in a more conservative mask, where only
pixels with |b| > 30 (b: Galactic latitude) were selected (Fig-
ure 6). Note that for the calculation of the scaling indices all
pixels outside the Kp0-mask were taken into account. In the
following we always explicitly specify to which chosen mask
the presented results refer.

The probability densities P (α) of the scaling indices
for one selected scale (r = 0.175) and both masks are dis-
played in the Figures 7 and 8 for the WMAP-data and a
subset of 20 simulations. One immediately realizes that for
both masks the probability density for the WMAP data is
shifted towards higher values, which indicates that the un-
derlying temperature fluctuations for the observed data re-
semble more ’unstructured’, i.e. purely random and uniform
fluctuations than the simulations. This effect is more pro-
nounced in the northern hemisphere than in the southern.
Furthermore, the distributions are broader for the simula-
tions than for the WMAP-data, indicating that the simula-
tions exhibit a larger structural variability than the observed
data.

These effects can more rigorously be quantified by calcu-
lating the mean and standard deviation for the distribution
of scaling indices as calculated for different scaling ranges.
Figures 9 and 10 show these results. For scales larger than
r = 0.1 the mean of the scaling indices is always systemat-
ically higher for the WMAP than for the simulations. The
effect is much more pronounced in the northern hemisphere.
For the standard deviation we observe for the same scales
significantly lower values for WMAP in the northern hemi-
sphere and slightly higher ones for the southern sky. For the
full sky these two effects cancel each other so that the ob-
served deviations to lower values are no longer so significant.
Beside the mean and standard deviation we additionally

Figure 6. From top to bottom: Co-added WMAP-map with Kp0-
mask, color-coded α-response for r = 0.175 and r = 0.225 and
Kp0- and extended mask.

considered a combination of these two test statistics, namely
a diagonal χ2-statistic

χ2 =

2
∑

i=1

[

Mi− < Mi >

σMi

]2

, (19)

where M1 =< α > and M2 = σα. This statistic is com-
puted for both the simulations and the observed moments.
Note that we follow the reasoning of Eriksen et al. (2004a)
and choose a diagonal χ2-statistics, because also in our case
the moments are highly correlated leading to high values
in the off-diagonal elements of the cross-correlation matrix.
But if the chosen model is a proper description of the data,
any combination of measures should yield statistically the
same values for the observations and the simulations. The

c© 2007 RAS, MNRAS 000, 1–13



A Scaling Index Analysis of the WMAP three year data 7

Figure 7. Probability density P (α) for the co-added WMAP
data and 20 simulations for r = 0.175 and the Kp0-mask.

Figure 8. Same as Figure 7 but for the extended mask.

Figure 9. Scaling index mean statistics as a function of the scal-
ing range r for the full sky (above), northern (middle) and south-
ern hemisphere (below) using the Kp0-mask. + denote the values
for WMAP, the dark gray and light gray areas indicate the 1σ

and 3σ regions around the mean value (black line) as derived from
the simulations.

Figure 10. Same as fig. 9 but for the standard deviation σα.

c© 2007 RAS, MNRAS 000, 1–13



8 C. Räth, P.Schuecker and A. J. Banday

Figure 11. Significances of the (combined) moments of the α-
distribution of the WMAP-data with the Kp0-mask as a function
of the scaling range r. + denotes the mean, ⋆ the standard de-
viation and the boxes χ2-combination of the mean and standard
deviation.

significances of the deviations of the WMAP-data from the
simulations

S =
∣

∣

∣

M− < M >

σM

∣

∣

∣
(20)

(M =< α >, σα and χ2) are shown in Figures 11 and 12 for
the Kp0-mask and the extended mask.

The mean < M > and standard deviation σM of the
three measures M were derived from the set of simulations.
As a pure frequentist approach, we also considered the con-
fidence or significance level of the null hypothesis that the
observation belongs to the Gaussian Monte Carlo ensemble
and consider the fraction of simulations p, which have higher
(lower) values of M than the moments for the observation.
In the Tables 1, 2 and 3 the significances S as well as the
probabilities p are listed.

Analysing the significances and the confidence levels of

Figure 12. Same as Fig. 11 but for the extended mask.

the (combined) moments of the distribution of scaling in-
dices as a function of the scaling range the results read as
follows: For the full sky we obtain for the mean value < α >
significances ranging from 2.0 to 2.2 for the different scales.
The confidence levels for the detection of non-Gaussianties
are, however, very high and do not fall below 99% for any
scale. A closer look at the distribution of < α > for the sim-
ulations reveals that this distribution is not Gaussian but we
find a number of outliers with very high values for < α >,
which leads to high σ<α> thus to low significances. So al-
though the significances for detecting non-Gaussianities are
not very high, the confidence levels, for which no implicit as-
sumptions about the distribution function of the test statis-
tics is made, strongly indicate the presence of non-Gaussian
features in the observed WMAP-data. Even higher values for
both the significances and the confidence levels are found, if
one only considers the northern hemisphere. In this case the
sigificances range from 1.9 for smaller scales to 2.8 for the
largest scale. For scales larger than r = 0.15 none of the sim-
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Table 1. < α > with Kp0 mask

Scaling Range Full Sky Northern Sky Southern Sky
(r) (S/%) (S/%) (S/%)

0.025 2.2/99.5 2.1/99.4 2.3/99.8
0.050 2.1/99.8 2.0/99.3 2.2/99.7
0.075 2.0/99.5 1.9/99.3 2.0/99.4
0.100 2.0/99.4 2.0/99.7 1.9/98.8
0.125 2.0/99.5 2.1/99.8 1.9/98.6
0.150 2.1/99.6 2.4/99.9 1.8/98.4
0.175 2.2/99.7 2.5/>99.9 1.7/97.4
0.200 2.2/99.7 2.7/>99.9 1.6/96.0
0.225 2.2/99.7 2.7/>99.9 1.5/94.0
0.250 2.1/99.4 2.8/>99.9 1.3/91.6

Table 2. σα with Kp0 mask

Scaling Range Full Sky Northern Sky Southern Sky
(r) (S/%) (S/%) (S/%)

0.025 2.0/98.9 1.9/98.7 1.9/98.9
0.050 2.2/99.7 2.0/98.9 2.1/99.1
0.075 0.4/64.8 0.2/60.3 0.4/63.8
0.100 1.6/94.9 1.5/94.2 0.9/81.6
0.125 2.2/99.0 2.6/99.8 1.0/84.6
0.150 2.3/99.0 2.9/99.9 0.8/79.5
0.175 2.1/98.4 2.9/99.9 0.6/71.6
0.200 1.9/97.5 2.8/99.9 0.5/66.8
0.225 1.7/95.8 2.6/99.7 0.4/64.3
0.250 1.5/93.1 2.4/99.7 0.2/58.3

ulations was found to have a higher values for < α > than
the observation, which represents a quite unambigous detec-
tion of non-Gaussianties in the northern hemisphere. For the
southern hemisphere, however, both the significances and
the confidence levels for the smaller radii are slighly higher
than for the northern sky but continously decrease for higher
radii r. For the standard deviation we find slighly different
results. For the smallest scales (r = 0.025) σα is signifi-
cantly larger for WMAP than for the simulations. In a tran-
sition regime r ≈ 0.075 the standard deviation is practically
the same for the observation and the Monte Carlo sample.
For larger scales we observe higher standard deviations for
the simulations. This effect is much more pronounced in the
northern hemisphere giving rise to significances up to 2.9
and very high confidence levels for intermediate scales. For
the largest scales the differences for σ between simulations
and oberservation diminishes. For the southern hemisphere
the width of the distributions become more and more simi-

Table 3. χ2 with Kp0 mask

Scaling Range Full Sky Northern Sky Southern Sky
(r) (S/%) (S/%) (S/%)

0.025 2.0/96.7 1.8/95.9 2.1/96.9
0.050 2.3/97.5 2.0/96.1 2.4/97.7
0.075 0.9/88.4 0.7/85.9 1.0/88.4
0.100 1.8/95.4 1.7/94.9 1.1/89.3
0.125 2.7/97.8 3.6/98.9 1.0/89.2
0.150 2.9/98.2 4.8/99.3 0.8/85.7
0.175 2.7/97.9 5.2/99.4 0.5/80.3
0.200 2.5/97.1 5.1/99.3 0.3/76.4
0.225 2.1/96.6 4.8/99.3 0.1/70.1
0.250 1.8/94.7 4.5/99.0 0.1/63.0

Table 4. χ2, all scales

χ2 Full Sky Northern Sky Southern Sky
(S/%) (S/%) (S/%)

χ2
<α> 2.1/96.9 2.7/97.7 1.5/94.2

χ2
σα

2.4/96.5 4.4/99.5 0.2/70.0
χ2

<α>,σα
2.4/97.3 3.7/98.9 1.1/91.6

lar so that no signatures for deviations from Gaussianity are
identified using σα. The behaviour of the χ2- statistics as a
function of the scale parameters r can – as expected – be
regarded as a superposition of the two underlying statistics
< α > and σα. Only the significances are highly increased
leading to a 5σ detection of non-Gaussianity at scales of
r = 0.175 in the northern sky. Performing the same analy-
ses for the extended mask (Figure 12) yields essentially the
same results. Only marginal variations for the significances
and confidence levels (which are not explicitly shown in this
paper) are found in this case. Thus, these results are quite
stable with respect to differences for the chosen mask.
Some readers might argue that the selection of the mo-
ments and especially of the scales, where the significances are
largest, represents an a posteriori choice taken after looking
at the data. However, the choice of the moments was moti-
vated by the results obtained with simulations (see Section
3) and the investigation of the data on different length scales
can be regarded as a fairly conventional and unbiased ap-
proach. If a random field is Gaussian, it must be Gaussian
on all scales. If deviations are detected at some scales, one
can already infer non-Gaussianity. Nevertheless, we also cal-
culated diagonal χ2-statistics, where we considered only one
(mean or standard deviation) or both measures, and summed
over all length scales ,

χ2
<α> =

Nr
∑

i=1

[

M1(ri)− < M1(ri) >

σM1(ri)

]2

(21)

χ2
σα

=

Nr
∑

i=1

[

M2(ri)− < M2(ri) >

σM1(ri)

]2

(22)

χ2
<α>,σα

=

Nr
∑

i=1

2
∑

j=1

[

Mj(ri)− < Mj(ri) >

σMj(ri)

]2

(23)

withM1(ri) =< α(ri) >,M2(ri) = σα(ri) andNr being
the number of considered length scales (here: Nr = 10). The
results are summarised in Table 4.

Also for this obviously a priori test statistics, where
some unimportant scales contribute to the final value of χ2

and may dilute the result, we find significant signatures for
non-Gaussianities in the northern sky.
Beside the previous analyses based on global measures de-
rived from the P (α)- distribution, we also investigate the
spectrum of scaling indices on a differential level. Therefore
we consider the bin-wise significances S(αi),

S(αi) =
P (αi)− < P (αi) >

σP (αi)

(24)

for the probability densities P (α) of selected scales (see Fig-
ures 13 and 14).

Note that we omitted in this case the absolute value in
the definition of the significance in order to show in which

c© 2007 RAS, MNRAS 000, 1–13
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Figure 13. Bin-wise significances (with sign) as derived from the
pribability distribution P (α) for the WMAP data and Kp0-mask
for r = 0.175 (above) and r = 0.225 (below).

Figure 14. Same as fig. 13 but for the extended mask.

Figure 15. Marked pixels with α ∈ [2.0, 2.3] (yellow), α ∈
[2.425, 2.475] (blue) and α ∈ [2.60, 2.65] (red) for r = 0.175
(above) and r = 0.225 (below).

direction with respect to the simulations the P (α) of the
WMAP data deviates. Although the spectra for the Kp0-
mask (Figure 13) are diluted by edge effects for smaller α,
one can clearly detect the sharp transition from systemati-
cally small to high values in the significances, which is due
to the shift of the whole spectrum towards higher α-values
for the WMAP-data. This shift is so pronounced that for
some bins of the spectrum even the 3σ- level for the de-
viation is nearly reached. If we consider the same spectra
for the extended mask, where almost all disturbing edge ef-
fects are removed, we see (Figure 14) - beside the transition
from negative to positive values due to the global shift - a
new, highly significant feature at α ≈ 2.1 in the southern
sky emerging, when the scaling range is increased. There is
an excess of pixels with these low α−values in the WMAP-
data as compared to the simulated maps. To elucidate the
origin of these pixels we color-coded the pixels according
their value of scaling indices (Figure 15).

c© 2007 RAS, MNRAS 000, 1–13
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Figure 16. Significanes of the (rotated) upper hemisphere for
the SIM based statistics for r = 0.175. From top to bottom:
mean < α >, standard deviation σα and χ2-combination of mean
and standard deviation. The highest significances were obtained
for (θ, φ) = (27◦, 35◦) for < α >, (θ, φ) = (39◦, 45◦) for σα and
(θ, φ) = (30◦, 41◦) for χ2. The maximal asymmetry between the
rotated northern and southern hemisphere were found for the
rotation angles (θ, φ) = (27◦, 35◦) for < α >, (θ, φ) = (30◦, 41◦)
for σα and (θ, φ) = (30◦, 41◦) for χ2.

Figure 17. Same as Fig. 16 but for r = 0.225. For this scal-
ing range, the highest significances were obtained for (θ, φ) =
(21◦, 148◦) for < α >), (θ, φ) = (27◦, 65◦) for σα and (θ, φ) =
(30◦, 41◦) for χ2. The maximal asymmetries between the rotated
northern and southern hemisphere were found for the rotation
angles (θ, φ) = (21◦, 148◦) for < α >, (θ, φ) = (27◦, 55◦) for σα

and (θ, φ) = (30◦, 41◦) for χ2.

c© 2007 RAS, MNRAS 000, 1–13
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It becomes immediately obvious that the pixels with
the small α-values identified in the southern sky form two to
three clusters (depending on the scale r), where the largest
one corresponds to the cold spot – the well-known anomaly
first detected by Vielva et al. (2004) by means of a wavelets
analysis. The pixels belonging to the other two α-intervals,
for which the largest deviations in the bulge of the distribu-
tion are found, cannot be associated with special localised
features. These pixels are rather distributed all over the sky,
which indicates that the shift of the spectrum of scaling in-
dices represents a global intrinsic effect.
The distinction between northern and southern hemisphere,
which we made during the previous analysis, is natural be-
ing triggered by excluding the foreground-contamined area
of the galactic plane. On the other hand, this choice is arbi-
trary, because no symmetry axis is preferable for a presum-
ably isotropic CMB. To test for asymmetries in WMAP-
data we consider rotated hemispheres, calculate the global
measures < α >,σα and χ2 for 3072 rotation angles and
compare the results for the (rotated) northern and southern
hemispheres. In Figures 16 and 17 we show the significances
S(< α >), S(σα) and S(χ2) of the northern hemisphere as
determined in a reference frame where the north pole pierces
the center of the color-coded pixel. All three measures yield
systematically higher significances for rotations pointing to
northern directions relative to the galactic coordinate sys-
tem. The rotation angles, for which the highest significances
of the northern hemisphere are obtained, are listed in the
captions of the respective figures. They are very similar but
do not always coincide with the rotations, for which the max-
imal asymmetries, as measured by the difference of the sig-
nificances of the rotated northern and southern hemisphere
are found. It is worth noticing that the direction of the most
pronounced non-Gaussianities and asymmetries differs from
the dipole direction (θ, φ) = (42◦, 264◦) and the so-called
axis of evil (θ, φ) = (30◦, 260◦), which is very close to the
dipole direction.

5 SUMMARY

We performed a scaling index analysis of the WMAP three-
year data. Specifically, we analysed the foreground-cleaned
co-added maps of the V-and W-band. We found highly sig-
nificant signatures of both non-Gaussianities and asymme-
tries in the WMAP three-year data. Our main findings can
be summarized and interpreted as follows:
In the northern hemisphere the spectrum of scaling indices
is systematically broader and shifted towards higher values
yielding highly significant deviations of the mean and stan-
dard deviation of the distribution. This effect can naturally
be interpreted as too few structure and structural variations
in the CMB-fluctuations as measured by WMAP compared
to the predicted ones within the concordance model. The
highest global signatures for non-Gaussianities and asym-
metries between the northern and southern hemisphere were
found for rotated coordinate systems, where the significances
for the detection of signatures for non-Gaussianities range
from 2.6σ up to 7.4σ. These findings are quite consistent
with previous results for the first year data (Eriksen et al.
2004a,b; Park 2004), where very similar features were iden-
tified – even though with a smaller significance level – using

the Minkowski functionals, the power spectrum and N-point
correlation functions.
In the southern hemisphere the global properties of the P (α)
distribution for the WMAP-data are more consistent with
the simulations than in the northern sky. We find, however,
highly significant localisable features of non-Gaussianity, for
which the largest one can be associated with a cold spot.
An anomalous area detected by Vielva et al. (2004) in the
WMAP first year data and confirmed in the WMAP three
year data (Cruz et al. 2006).

6 CONCLUSIONS

In conclusion, we demonstrated for the first time the feasi-
bility to adapt and apply the scaling index method as an
estimator of local scaling properties of a point set to spher-
ical symmetric data.
The results obtained with the scaling indices give further
strong evidence that also the coadded WMAP three year
data do indeed contain unusual features, which are not in
agreement with the hypotheses of Gaussianity and isotropy
predicted in the standard inflationary scenario.
A quite remarkable result of our study is the fact that two
previously known anomalies, namely the lack of structure in
the northern sky and the cold spot in the southern hemi-
sphere could be reidentified using a completely different test
statistic. This increases the evidence that these anomalies
are of true physical origin and not related to one single test
statistic.
It is also worth noticing that the scaling indices could de-
tect both of these anomalies simultaneously, whereas the
wavelets were only sensitive to localised spot-like struc-
tures and the N-point correlation functions and Minkowski-
functionals only detected the non-Gaussianities and asym-
metries on large scales.
The main task for future studies is to elucidate the possible
sources of these anomalies, whether they are due to sys-
tematics or foreground effects or truely represent intrinsic
CMB-fluctuations due to some exotic physics. Future more
detailed studies will investigate the possible origins of the
non-Gaussian signatures by separately analysing the V and
W bands and by comparing the three year WMAP-data with
the first, second and third year data. All these tests may
help to find hints about the origin of the non-Gaussian sig-
natures.
In either case we could demonstrate that the scaling index
method provides very flexible and highly sensitive statistics
for e.g. the identification of asymmetries and non-Gaussian
signatures in the WMAP-data thus representing an impor-
tant novel statistical tool for CMB analyses.
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