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quasi-one-dimensional nanostructure

Tokuei Sako*
Laboratory of Physics, College of Science and Technology,
Nihon University, 7-24-1 Narashinodai, Funabashi, 274-8501 Chiba, Japan

Geerd H. F. Diercksen'
Maz-Planck-Institut fir Astrophysik, Karl-Schwarzschild-Strasse 1, D-85741 Garching, Germany
(Dated: December 19, 2006)

The energy spectra and wave functions of two electrons confined by a quasi-one-dimensional Gaus-
sian potential have been calculated for different strength of confinement w, and anharmonicity by
using the quantum chemical full configuration interaction method employing a Cartesian anisotropic
Gaussian basis set. The energy spectra for a nearly harmonic Gaussian potential have been studied
and analyzed in three regimes of w., namely, large (w. = 5.0) medium (w. = 1.0), and small (w, =
0.1). For large and medium w, the energy spectrum shows a band structure which is characterized
by the polyad quantum number v, while for small w, it is characterized by the extended polyad
quantum number v,. The energy levels for small w. form doublet pairs each of which consists of a
pair of singlet and triplet states. The nodal pattern of their wave functions are almost identical to
each other except for their phases. The energy spectra for the strongly anharmonic Gaussian poten-
tial look quite similar to those of the nearly harmonic case except that an irregular level structure
appears in the high energy region for w, = 0.1. The wave functions of the states in this high energy
region have curved nodal lines which align along a pair of bent nodal coordinates. Two types of
pairs of bent nodal coordinates have been identified, namely, those passing through the valley of the
confining potential and the others passing on the hillside. It is shown that the wave functions with
these nodal coordinates correspond to new types of classical local-mode motions of electrons.

PACS numbers: 73.21.La, 68.65.Hb, 71.10.Li, 71.15.Ap, 78.67.Hc

I. INTRODUCTION

interaction plays only a minor role. On the other hand,

Recent developments of semiconductor technology al-
low the construction of nanostructures on semiconductor
surfaces [1-3] and have triggered theoretical studies on
quantum systems consisting of a small number of elec-
trons confined in such engineered nanospaces [4]. Be-
cause of their finite size these quantum systems have a
discrete energy-level structure that follows Hund’s rules
[5, 6] well known for atoms. Therefore they are referred
to as artificial atoms or quantum dots.

One of the most significant differences between quan-
tum dots and atoms is that the electronic properties of
quantum dots can be controlled by the size of the dots,
namely, the strength of confinement [7], as well as by the
shape [8, 9] and by the dimensionality [10, 11]. Because
of this property quantum dots are regarded as poten-
tial sources for lasers [12, 13] and quantum computers
[14, 15]. Indeed, it has been demonstrated computa-
tionally that the energy-level structure of quantum dots
changes strongly for different strength of confinement
[4, 16-20]. For the strong limit the confining potential
dominates the energy spectrum and the electron-electron
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as the strength of confinement decreases the electron-
electron interaction starts to effect the energy spectrum
more and more strongly and the energy-level structure
gets complicated [4]. At the weak limit of confinement
the electron correlation becomes so large that it breaks
the shell structure resulting from the confining potential
[20, 21]. For practical applications of quantum dots as
future quantum devices the relation between the form of
the confining potential, the resultant energy spectra and
the dynamics of the electrons needs to be well established.

In the present study, as a first step toward this goal,
quantum dots have been modeled by two interacting elec-
trons confined in a quasi-one-dimensional Gaussian po-
tential [22, 23]. This model allows the wave functions of
the electrons to be visualized in a two-dimensional plane
and permits a detailed analysis of the correlation of the
confined electrons. A Gaussian potential has been cho-
sen as confining potential that is approximated in the
low energy region by a harmonic-oscillator potential typ-
ically used for modeling semiconductor quantum dots
[4, 17, 24]. Introducing anharmonicity into the confining
potential is important for simulating realistic confining
potentials [25] as well as for studying the breakdown of
the generalized Kohn theorem [24, 26-31]. The eigenval-
ues and wave functions of the two electrons confined in
the quasi-one-dimensional Gaussian potential have been
calculated by using the quantum chemical full configu-
ration interaction (CI) method employing a Cartesian
anisotropic Gaussian basis set with large angular mo-



mentum functions [32]. The computed energy spectra
and wave functions have been examined by focusing on
the nodal pattern in the CI wavefunctions. Atomic units
are used throughout this paper.

II. COMPUTATIONAL METHODOLOGY
A. Theoretical model

The Hamiltonian operator adopted in the present
study is given by
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where the one-electron confining potential w(r) is chosen
to be the sum of an isotropic harmonic-oscillator poten-
tial for the z and y directions and an attractive Gaussian-
type potential for the z direction and is given by
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For a sufficiently large value of w the electrons bound by
the potential of Eq. (2) are strongly compressed along the
x and y directions and have degrees of freedom only along
the z direction. Therefore the system can be regarded as
a quantum system confined by a quasi-one-dimensional
Gaussian potential. The value of wy, in Eq. (2) is set
to 20 a.u. for all calculations in the present study. The
computed spectra do not strongly depend on this value
unless the energy gets close to or larger than wg,. Since
the Gaussian potential of Eq. (2) can be approximated
close to the minimum by a harmonic-oscillator potential
with the confinement strength of w, the above potential
is suitable for modeling the confining potential of semi-
conductor quantum dots with anharmonicity [33].

The anharmonicity of the Gaussian potential in Eq. (2)
can be characterized as defined in a previous study [32] by
the ratio of the confinement strength w, over the depth
of the Gaussian potential D as

a=w,/D. (3)

By using this anharmonicity parameter the studied sys-
tem can be described by two parameters, namely by the
strength of confinement w, and by «.

The total energies and wavefunctions of the electrons
confined by the quasi-one-dimensional Gaussian poten-
tial of Eq. (2) have been calculated as the eigenvalues
and eigenvectors of the full CI matrix. All calculations
have been performed by using OpenMol [34] that has
been extended to account for Gaussian and power-series
potentials and anisotropic Gaussian basis functions [32].
The results are presented in atomic units and can be
scaled by the effective Bohr radius of 9.79 nm and the
effective Hartree energy of 11.9 meV for GaAs semicon-
ductor quantum dots [35, 36].

B. Basis set

In previous studies of this series [18, 19, 32, 37] it has
been demonstrated that a set of properly chosen Carte-
sian anisotropic Gaussian-type orbitals (c-aniGTOs) is
the most convenient choice to correctly approximate the
wavefunction of electrons confined in anisotropic poten-
tials. A c-aniGTO basis set can be transformed into a set
of eigenfunctions of the corresponding three-dimensional
anisotropic harmonic oscillator [19]. Therefore it would
be useful also for calculating with high accuracy eigenval-
ues and eigenfunctions of atoms in strong magnetic fields
[38—41] and of semiconductor quantum dots [42, 43]. In
the present study a c-aniGTO basis set has been placed
at the center of the confining potential, i.e. at the ori-
gin of the Cartesian coordinate system. The orbital ex-
ponents for the z and y directions have been chosen as
Way/2 while that for the z direction accounting for the
Gaussian potential in Eq. (2) has been determined in the
same way as described in a previous study [32]. Since wg,
is much larger than w, those functions that have nodal
lines only along the z direction without nodal lines along
the x and y directions have been selected and used in the
basis sets [20, 32].

In order to check the reliability of the c-aniGTO basis
set with respect to calculating the energy spectra of two-
electrons confined by the potential of Eq. (2) the conver-
gence of the resultant energies calculated by increasing
the size of the basis set has been examined for the Gaus-
sian potentials with (D,w,) = (2.0, 0.1) and (0.8, 0.1).
The number of basis functions was increased stepwise by
adding a new function with an additional nodal line to
the previous basis set. The maximum deviation of the
energy levels covered by the present study was shown to
be smaller than 2x10~* for the results obtained by using
basis sets with 13 and 14 functions, respectively, whose
highest angular-momentum function has 12 and 13 nodal
lines, respectively. For the rest of the study the basis set
of 13 functions has been used.

III. RESULTS AND DISCUSSION
A. Nearly harmonic case

The energy spectra of two electrons confined by the
quasi-one-dimensional Gaussian potentials with (D, w,)
= (100.0, 5.0), (20.0, 1.0) and (2.0, 0.1) have been cal-
culated and are displayed in Fig. 1. The anharmonic-
ity parameter « defined by Eq. (3) has been chosen as
0.05 for all cases which corresponds to a relatively har-
monic shape of the Gaussian potential. The vertical axis
of each of the three energy diagrams is scaled by w,
so that the energy of the ground state and the excita-
tion energy of 4 quanta of w, are at the same level of
the vertical axis, respectively. Therefore, if there is no
electron-electron interaction all three energy spectra will
look identical in this representation. On the other hand,
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FIG. 1: Energy spectrum of two electrons confined by a quasi-one-dimensional Gaussian potential with different strength
of confinement w, represented as relative energies from the ground state. The anharmonicity parameter o of the Gaussian
potential is 0.05 for all cases. The vertical axis of each of the three energy diagrams is scaled by w, so that the energy of the
ground state and the excitation energy of 4 quanta of w, are at the same level of the vertical axis, respectively.

as shown in Fig. 1, the energy level structure changes
drastically for different strength of w, indicating that
the effect of electron-electron interaction on the spectrum
changes strongly for different w,.

The energy spectrum for w, = 5.0 displayed at the
left hand side of Fig. 1 shows a band structure in which
energy levels having the same polyad quantum number
vy, lie close to each other while those with different val-
ues of v, are well separated from each other. The polyad
quantum number was introduced in a previous study [32]
and specifies in the present model the total number of
nodes in the leading configuration of the CI wavefunc-
tions. By using the polyad quantum number the en-
ergy level structure for w, = 5.0 is interpreted as follows:
In the strong limit of confinement the effect of electron-
electron interaction becomes negligibly small and the en-
ergy spectrum is completely dominated by the confining
potential. For a harmonic confining potential the energy
levels with the same polyad quantum number v, = ¢
form in the strong limit a group of (¢ + 1)-fold degener-
ate levels. For example, the polyad manifold of v, = 2
consists of three states, two from the configuration 0'2!
(singlet and triplet) and one from the configuration 12
(singlet), in which the numbers m and n in the notation
m' represent the one-electron harmonic-oscillator quan-
tum number m and its occupation number n in the con-
figuration, respectively. As the strength of confinement
w, decreases from the strong limit the electron-electron
interaction starts to affect the spectrum by splitting the

degenerate levels within each of the polyad manifolds as
observed for w, = 5.0.

As w, decreases the splitting of levels within polyad
manifolds becomes larger and energy levels belonging to
adjacent polyad manifolds come close to each other as ob-
served in the spectrum for w, = 1.0 displayed in the mid-
dle of Fig. 1. For the range of w, > 1.0 the energy spec-
trum can be interpreted by using the polyad quantum
number v, since different polyad manifolds are energeti-
cally separated. When w, decreases further energy levels
belonging to different polyad manifolds start to overlap
with each other. In the small limit of w, energy levels
belonging to different polyads for large w, interact with
each other through the electron-electron interaction and
form a new structure of energy levels. Since the polyad
quantum number is an approximately conserved quan-
tity, the overlap of energy levels having different polyad
quantum numbers may lead to lowering this constant of
motion and in turn give rise to quantum chaotic states
as known for vibrationally highly excited states of small
polyatomic molecules [44, 45].

The result for w, = 0.1 displayed at the right hand
side of Fig 1 show, however, that the energy level struc-
ture is not irregular as observed for chaotic vibrational
spectra but quite regular with a similar band structure as
observed for w, of 5.0. It is noted that the energy spec-
trum for w, = 0.1 differs from that of w, = 0.5 in that
all levels form nearly degenerate doublets each of which
consists of a pair of singlet and triplet states belonging
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FIG. 2: Correspondence of the low-lying energy levels and wave functions of two electrons confined in a quasi-one-dimensional
Gaussian potential. The anharmonicity parameter o of the Gaussian potential is 0.05 for all cases. The vertical axis of each
of the three energy diagrams is scaled by w. so that the excitation energy of one quantum of w, are on the same level. The
electronic wave functions are plotted as square density in the two electron coordinates z; and z2. The assignment of wave
functions has been made by counting the number of nodal lines along the symmetric and antisymmetric electron coordinates
for w, = 1.0 while an extended assignment marked by an asterisk has been made for the singlet wave functions with w, = 0.1
(see text).



to different polyad manifolds for large w,. For example,
the energy levels at £ = 0.095, 0.188, and 0.280 each of
which looks like a single level in Fig. 1 are doubly de-
generate, respectively, as well as the apparent doublets
at £ = 0.173 and 0.263. A similar doublet structure was
reported previously for two electrons confined in a quasi-
one-dimensional rectangular potential well of large size
[16, 46] as a precursor of the Wigner lattice [47]. There-
fore, the observed doublet energy-level structure can be a
general trend for weakly confined two electron systems.
It is also noted that the number of levels belonging to
each band is counted from the lowest band as 2, 2, 4, 4,
and 6 for w, = 0.1 while the corresponding number is 1,
2, 3, 4 and 5, respectively, for w, = 5.0 and 1.0.

In order to understand the origin of the doublet struc-
ture observed in the energy spectrum for w, = 0.1 in
Fig. 1 the energy levels for w, = 1.0, 0.5 and 0.1 and the
square density of the corresponding wave functions are
displayed in Fig 2. The vertical axis of each of the three
energy level diagrams is scaled by w, so that the exci-
tation energy of one quantum of w, is at the same level
of the vertical axis. The electronic wave functions are
plotted as square density in the two electron coordinates
z1 and zy by integrating over the remaining four spatial
coordinates of x1, x2, y1, and ys and over the spin co-
ordinates, respectively. The square density distribution
of the wave functions in the z1-2z5 plane is simply called
wave function hereafter.

For w. = 1.0 the assignment 25%'[ng, n,] of the wave
functions has been made by using the spin multiplicity
25+1 and by the pair of numbers ng and n, counting the
number of nodal lines along the symmetric coordinate zs
and the antisymmetric coordinate z,, respectively, that
are defined by

2s = 5o + 2], (4)
2 = %[zl — z9]. (5)

The nodal lines of a wave function are defined by the lines
along which the density of the wave function is exactly
zero. The symmetric coordinate z; and antisymmetric
coordinate z, coincide with the 45-degree diagonal line
and with the other diagonal line in the density plots, re-
spectively. For example, in the case of w, = 1.0 the wave
function of the seventh excited 3[2, 1] state has two nodal
lines along the symmetric coordinate and one nodal line
along the antisymmetric coordinate while the eighth ex-
cited ![1,2] state has one nodal line along the symmetric
coordinate and two nodal lines along the antisymmet-
ric coordinate. It is noted that the spin multiplicity, i.e.
singlet or triplet, can be derived also from the density
plots in Fig. 2. According to the Pauli principle the spa-
tial part of the wave function must be either symmet-
ric or antisymmetric with respect to the exchange of the
coordinates z; and z; and the symmetric and antisym-
metric wave functions have to be coupled to the singlet
and triplet spin functions, respectively. The symmetric

wave functions do not change their sign with respect to a
reflection about the symmetric coordinate while the an-
tisymmetric wave functions change their sign. Although
the phase information is not displayed in the density plots
in Fig. 2, wave functions must change their sign in pass-
ing through a nodal line. Therefore, those wave func-
tions which have the symmetric coordinate as a nodal
line are antisymmetric wave functions while the others
are symmetric wave functions. In the above example the
wave function of the 3[2, 1] state has a nodal line that
coincides with the symmetric coordinate. Therefore, this
wave function is of opposite sign in the two regions sepa-
rated by the symmetric coordinate and must be coupled
to the triplet spin function. On the other hand, the wave
function of the 1[1, 2] state does not have a nodal line that
coincides with the symmetric coordinate. Therefore, this
wave function does not change sign with respect to a
reflection about the symmetric coordinate and must be
coupled to the singlet spin function.

As shown in Fig. 2 the energy levels of the lowest sin-
glet 1[0, 0] state and the lowest triplet 3]0, 1] state become
nearly degenerate as w, decreases from 1.0 to 0.1. More-
over, the wave function of the singlet '[0,0] state that
has no nodal line for w, = 1.0. But it has apparently
a diagonal nodal line that coincides with the symmetric
coordinate and has a nodal pattern very similar to that
of the triplet 3[0, 1] state for w, = 0.1. It is noted that
the wave function of the 1[0,0] state has the same sign
on both sides of the symmetric coordinate since it is a
singlet state. Therefore, in a strict sense the symmet-
ric coordinate of the wave function of the lowest singlet
10, 0] state is not a nodal line. However, since the den-
sity of the wave function along the symmetric coordinate
is negligibly small it is convenient to regard the symmet-
ric coordinate in this case as a nodal line in assigning the
nodal pattern. Therefore the assignments of the singlet
wave functions for w, = 0.1 in Fig. 2 marked with an
asterisk are extended assignments in which a symmetric
coordinate with negligible density is included in count-
ing the number of nodal lines along the antisymmetric
coordinate. By using this convention the assignments for
the lowest doublets are 1[0,1]* and 3]0, 1], respectively,
which clearly supports the observation that the spatial
distribution of the singlet and triplet wave functions are
quite similar to each other but differ in their phases.

A similar observation can be made for the second low-
est doublet in Fig. 2. The pair of the states *[1,0] and
3[1,1] in this doublet have a different number of nodal
lines and are energetically separated for w, = 1.0. As w,
decreases these two levels come closer to each other, and
at w, = 0.1 they form a nearly degenerate doublet. The
corresponding wave functions for w, = 0.1 have quite sim-
ilar nodal patterns but differ in their phases such that the
singlet wave function is symmetric about the symmetric
coordinate while the triplet wave function is antisymmet-
ric with respect to it.

Another interesting observation concerning the second
lowest doublet is the relative insensitivity of the energy



level of the singlet 1[1,0] state with respect to the change
of w, compared to the strong decrease of the energy of the
triplet 3[1,1] state as w, decreases from 1.0 to 0.1. The
insensitivity of the singlet [1, 0] state is interpreted as a
consequence of the generalized Kohn theorem. The exci-
tation energy of the dipole-allowed transitions which cor-
respond to an excitation into the center-of-mass mode
is according to this theorem for harmonic potentials al-
ways equal to w, irrespective of the effect of the electron-
electron interaction. In the present case the [1,0] state
in the second doublet is dipole-allowed from the lowest
1[0, 0] state since the wave function of this state has one
additional nodal line along the symmetric coordinate as
compared to the lowest 1[0, 0] state. Since according to
the definition of Eq.(4) the symmetric coordinate is pro-
portional to the center-of-mass coordinate of L[z + 2]
the additional nodal line along the symmetric coordinate
indicates an excitation of one quantum into the center-
of-mass mode. The energy level diagrams in Fig. 2 have
been scaled so that the excitation energy of one quan-
tum of w, are at the same level for different values of
w,. Therefore the excitation energy of the dipole-allowed
transition from the lowest state should be in the har-
monic limit of the confining potential at the same height
for the energy level diagrams with different values of w,.
The weak w,-dependence of the energy level of the 1[1,0]
state represented in Fig. 2 is due to the small anhar-
monicity of the Gaussian potential.

Similar observations can be made for the fourth dou-
blet consisting of the ![2,0]-3[2,1] pair of states. The
singlet 1[2, 0] state is relatively insensitive to the change
of w, as previously observed for the ![1,0] state in the
second doublet. Although this singlet ![2, 0] state is not
dipole-allowed from the lowest 1[0,0] state it is dipole-
allowed from the ![1,0] state in the second doublet.
Therefore, since the energy level of the ![1,0] state is
relatively insensitive to the change of w, as discussed in
the last paragraph the energy level of the 1[2,0] state is
also only weakly dependent on w,. On the other hand, in
the case of the third doublet consisting of the 1[0, 2]-3[0, 3]
pair of states the energy levels of the triplet state and the
singlet state change strongly as w, decreases. This strong
w,-dependence of the singlet energy level can be under-
stood also by the nodal pattern in the wave function. As
displayed in Fig. 2 the wave function of the singlet 1[0, 2]
state has no nodal line along the symmetric coordinate
indicating that the 1[0, 2] state is not dipole-allowed from
any lower-lying states. Therefore, the generalized Kohn
theorem does not apply to this case.

The above observations and their interpretation based
on the examination of the nodal pattern of their wave
functions and the correspondence of the energy levels for
different values of w, can be summarized as follows: For
w, > 1.0 the energy levels can be grouped into sets with
respect to their polyad quantum number v,. The sin-
glet ![ng,n,| states and the triplet 3[ns,n, + 1] states
are energetically separated since they belong to different
polyad manifolds with v, = ns + n, and ng + n, + 1,
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FIG. 3: Two-dimensional contour plot of the sum of the Gaus-
sian and of the electron repulsion potentials for w, = 5.0 (a),
1.0 (b), and 0.1 (c). The anharmonicity parameter for the
Gaussian potential and the maximum potential height dis-
played are 0.05 and w.x10, respectively, for all cases. The
diagonal line separating the contours into two regions repre-
sents the potential wall of the electron repulsion potential.

respectively. As w, decreases the density along the sym-
metric coordinate in the singlet wave functions decreases
and eventually it becomes a nodal line in the sense of
the extended assignment defined above. For w, = 0.1
the singlet state has the same number of nodal lines as
the triplet state using the extended assignment and they
form a nearly degenerate doublet.

In order to understand the origin of the appearance
of the new nodal line in the singlet wave functions for
small w, the sum of the one- and two-electron potential
functions in the Hamiltonian of Eq. (1) projected onto
the z1-z9 plane,
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has been calculated and displayed in Fig. 3 for (D,w,) =
(100.0, 5.0), (20.0, 1.0), and (2.0, 0.1), respectively, where
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FIG. 4: Square desity plot of the wave functions for the three
states in the polyad manifold of v, = 2 of two electrons con-
fined in a quasi-one-dimensional Gaussian potential with w, =
5.0 and 1.0. The anharmonicity parameter « of the Gaussian
potential is 0.05.

the minimum of the one-electron potential has been cho-
sen as the reference point of energy.

In all three cases displayed in Fig. 3 the maximum po-
tential height is 10xw, and the domain of the coordinates
z1 and 29 is chosen such that for the one-dimensional
harmonic-oscillator potentials the classical turning points
for the energy value of 10xw, coincide with the limits
of the domain. In this representation the energy con-
tours for the one-electron part of the potential, i.e. the
first term on the right hand side of Eq. (6), are iden-
tical for different values of w,. Therefore, differences
in the contours among different w, must be ascribed to
the electron-electron interaction potential. As shown in
Figs. 3(a)-(c) the diagonal line separating the contours
into two regions that represents the potential wall of the
electron-electron interaction becomes thicker as w, de-
creases from 5.0 to 0.1. This indicates that the wave
functions bound in this potential are influenced by the
electron-electron interaction potential more strongly for
smaller w, .

Based on the contour plots of the potential func-
tion V(z1,29) the w,-dependence of the energy spectra

and the wave functions displayed in Figs. 1 and 2, re-
spectively, can be interpreted as follows: As shown in
Fig. 3(a) the potential wall of the electron-electron inter-
action for w, = 5.0 is so thin that the electron-electron
interaction acts only as a perturbation to the potential
function V' (21, z2) which is dominated by the one-electron
confining potential. Since a set of energy levels belong-
ing to the same polyad manifold are nearly degenerate
if there is no electron-electron interaction as explained
above the splitting of the nearly degenerate energy levels
observed for w, = 5.0 is due to tunneling through the thin
potential wall. The level ordering after the splitting may
be explained by the relative amount of density of the
wave functions along this potential wall. For example,
the energy eigenstates belonging to the polyad manifold
of v, = 2 are 3[1,1], 1[0,2], and ![2,0] in increasing or-
der of their energy. The wave functions of these three
states are displayed in Fig. 4 for w, = 5.0 and 1.0 in the
same way as in Fig. 2. Only the triplet 3[1,1] state has a
nodal line that coincides with the symmetric coordinate,
namely, along the potential wall as observed in Fig. 4.
The energy increase due to the potential wall may be es-
timated by integrating the density p(z1, z2) multiplied by
the electron-electron interaction potential over a region
close to the potential wall

1
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where () denotes a domain of integration close to the
potential wall. Because of the existence of a nodal line
along the potential wall for the triplet state the energy
increase AFE,,qy for the triplet state is much smaller than
that for the singlet states. In case of the two singlet states
the wave function of the 1[0,2] state extends along the
antisymmetric coordinate while that of the 1[2,0] state
extends along the symmetric coordinate as displayed on
the left hand side of Fig. 4. Therefore, AFE,,q; is larger
for the '[2,0] state than for the 1[0,2] state since the
density in the domain of integration € is larger for 1[2, 0]
than for 1[0, 2]. This suggests that the energy of the 1[2, 0]
state is larger than that of the 1[0, 2] state in accord with
the observed energy level ordering.

As w, decreases from 5.0 to 1.0 the potential wall of
the electron-electron interaction becomes wider as shown
in Fig. 3(b). Consequently, the magnitude of the split-
ting due to tunneling becomes larger and for w, = 0.1
it becomes comparable to w, as observed for the corre-
sponding spectrum in Fig. 1. The effect of the increase in
the width of the potential wall is most clearly visible for
the wave function of the 1[2,0] state. As shown in Fig. 4
for w, = 5.0 the wave function of the '[2,0] state has the
peak of the density distribution along the symmetric co-
ordinate, i.e. along the potential wall while for w, = 1.0
it has the peak shifted towards both sides of the poten-
tial wall resulting in a smaller increase of AF,,q;. The
reduction of density along the potential wall in the sin-
glet wave functions may rationalize the well-known obser-
vation that electron correlation or configuration mixing



is larger for a singlet wave function than for the corre-
sponding triplet wave function of the same configuration
[20, 21]. As noted, the triplet wave functions originally
have a nodal line along the potential wall while the sin-
glet wave functions do not. Therefore, as w, decreases
the singlet states require stronger configurations interac-
tion in order to ’create’ a dent of density in the wave
functions along the potential wall.

As displayed in Fig. 3(c) for w, = 0.1 the width of the
potential wall is so thick that the electron-electron inter-
action potential is no more a perturbation to V(z1, z2).
Therefore it is better to adopt a zeroth-order picture in
which the wave functions bound to either of the two spa-
tial regions separated by the potential wall interact with
each other weakly. By transforming the coordinates from
(21, z2) to (zs, z,) and introducing a harmonic approxi-
mation to the Gaussian potential in Eq. (6) the zeroth-
order Hamiltonian for the upper (+) and lower (—) bound
regions separated by the potential wall in Fig. 3(c) can
be approximated by

HE o1 = hs +hE, (8)
where hy and hE are defined, respectively, by
192 1 5,
hs _58723 + 5&)22’8, (9)
162 1
hE = 1o + —w?2? (10)

where the domain of the antisymmetric coordinate z,
in Eq. (10) is defined by 2z, < 0 for A} and z, > 0
for h, . In the approximation made above the Coulomb
tail of the potential wall is neglected. The Hamiltonian
hs of Eq. (9) is that of a harmonic oscillator with w,
and with the eigenvalue given by €,(vs) = ws(vs + 3)
for vg = 0, 1, 2, ---. The Hamiltonian hajE is also that
of a harmonic oscillator but it is defined in the domain,
zq > 0 or z, < 0, and its wave functions are zero at z,
= 0 because of the existence of the huge potential wall.
It is noted that the standing waves that are bound in
a harmonic-oscillator potential and vanish at the origin
are the eigenfunctions of this harmonic oscillator with
odd quantum numbers defined either in the positive or
in the negative domain of z,. The eigenvalues of the
Hamiltonian (10) are therefore given by € (vy) = w, (va+
%) for v, = 1, 3, 5, ---. Consequently, the eigenvalues
for the zeroth order Hamiltonian (8) are determined by

Ei(vsﬂ)a) = Wz [’U3+Ua+1], (11)

where vy =0,1,2,--- and v, = 1, 3, 5, ---. It is noted
that £+ and E~ have the same energy spectrum.

By using the energy formula of Eq. (11) the origin of
the characteristic features of the energy-level structure
for w, = 0.1, that is the regular band structure consisting
of doublets as represented in Figs. 1 and 2 can be ratio-
nalized as follows: For w, = 0.1 the electron-electron in-
teraction results in a strong potential wall. Therefore the

TABLE I: Zeroth-order energy levels E¥ for w, = 0.1 defined
by Eq. (11).

*a

Vs Va vy, Ei/wz
0 1 1 2
1 1 2 3
0 3 3 4
2 1 3 4
1 3 4 5
3 1 4 5
0 5 5 6
2 3 5 6
4 1 5 6

%The eztended polyad quantum number.

interaction between the zeroth-order levels ET and E~
is very small and only pairs of energy levels having the
same energy can interact to some extent with each other.
This results in the formation of doublets consisting of the
in-phase superposition state (singlet) and the out-phase
superposition state (triplet). Their energies are almost
identical to those of the zeroth-order levels with a small
splitting due to tunneling. Therefore, the energy spec-
trum for w, = 0.1 is basically the same as the spectrum
of the zeroth order levels given by Eq. (11) within the
harmonic approximation except that each level is doubly
degenerate. The low-lying energy levels of Eq. (11) are
listed in Table I together with the extended polyad quan-
tum number v, defined by the sum of vy and v,. The
extended polyad quantum number specifies the number
of nodal lines in the wave functions for w, = 0.1 dis-
played in Fig. 2. As shown in Table I the lowest energy
level has the assignment (vs,v,) = (1, 0) which is not the
usual harmonic-oscillator ground state (vs,v,) = (0, 0)
since v, starts from 1 by the definition. This level forms
the lowest doublet consisting of the 1[0, 1]* and the [0, 1]
state displayed in Fig. 2. The second lowest level has the
assignment (vs,v,) = (1, 1), which forms the eigenstates
11,1]* and 3[1,1]. As shown in Table I the energy of this
second lowest level is one quantum of w, larger than that
of the lowest level. This is consistent with the observa-
tion that the energy difference between the lowest [0, 1]*
state and the second lowest singlet [1,1]* state is close
to w, as a consequence of the generalized Kohn theorem.
The third and forth lowest levels with (vs,v,) = (0, 3)
and (2, 1), respectively, have the same v, of 3 and the
same energy of 4w,. This is again one quantum of w,
larger than that of the second level. The corresponding
doublets have the eigenstates [0, 3]*-3[0, 3] and '[2, 1]*-
3[2,1], respectively. Their energies are roughly one w,
larger than the energies of the second doublet. By repeat-
ing this procedure it can be understood that the zeroth-
order energy spectrum of Eq. (11) has a band structure
characterized by v, with a band-gap energy of w, and
that the number of levels belonging to the v} manifold is
(vy +1)/2 for odd vy and vy /2 for even v;. Therefore,
the regular band structure of the energy spectrum for w,



= 0.1 can be ascribed to the harmonic energy spectrum
of Eq. (11). The degeneracy pattern of it accounts for
the number of energy levels that belong to each of the
bands specified by vy, that is, vy + 1 for odd v, and vy
for even vy,.

B. Anharmonic case

The energy spectra of two electrons confined by the
quasi-one-dimensional Gaussian potential with (D,w,) =
(40.0, 5.0), (8.0, 1.0), and (0.8, 0.1) have been calculated
and are displayed in Fig. 5 in the same way as in Fig. 1.
The anharmonicity parameter « is 0.125 for all cases and
corresponds to a Gaussian potential with relatively large
anharmonicity. This value has been chosen such that all
energy levels located in the energy range covered by the
present study, that is 4 X w, from the lowest state, are
below the first ionization limit [32]. When a becomes
larger than this value some energy levels close to the up-
per limit of the energy range become unbound.

The energy spectra for w, = 5.0 and 1.0 displayed in
Fig. 5 show a band structure very similar to that of the
corresponding spectra in Fig. 1 and are characterzied by
the polyad quantum number v,. The energy differences
between adjacent polyad manifolds are slightly smaller
for the spectra shown in Fig. 5 than for those in Fig. 1.
This is due to the larger anharmonicity of the Gaussian
potential of the spectra displayed in Fig. 5. On the other
hand, in case of the spectrum for w, = 0.1 a significant
difference is observed in the higher energy region above
E = 0.3 between the results displayed in Figs. 1 and 5.
In the lower energy region both energy spectra in Figs. 1
and 5 for w, = 0.1 have a band structure which can be
correlated with each other up to the fourth lowest band,
namely, the band with v; = 4. For the higher-lying en-
ergy levels such a correspondence is obviously not clear.
Indeed, the energy levels in the higher energy region dis-
played in Fig. 5 do not form a band structure with a
band-gap of w, as observed in Fig. 1 but a rather irreg-
ular level structure. Since the regular band structure for
the nearly harmonic case with an energy gap of w, is
due to the harmonic energy spectrum of the zeroth-order
levels given by Eq. (11) the irregular level structure in
the higher energy region observed in Fig. 5 is due to the
effect of the large anharmonicity.

In order to understand the irregular energy-level struc-
ture in the energy spectrum for w, = 0.1 observed in
Fig. 5 the square density of their wave functions is dis-
played in Fig 6 in the same way as in Fig. 2. The assign-
ment of the wave functions has been made by counting
the number of nodal lines along the symmetric and an-
tisymmetric coordinates. For the singlet wave functions
the symmetric coordinate is treated as a nodal line in de-
termining n,, that is the extended assignment has been
adopted as in Fig. 2.

The wave functions of the lowest and the second low-
est doublets displayed in Fig. 6 show nodal patterns quite

similar to those of the corresponding wave functions in
Fig. 2. On the other hand, in the case of the third doublet
consisting of the 1[0, 3]* and 3[0, 3] states the outer rims
of the wave functions extend into a much larger spatial
region than those of the corresponding wave functions in
Fig. 2. A similar observation is made for the wavefunc-
tions of the ![1,3]* and 3[1, 3] states in the fifth doublet,
which are dipole allowed from the 1[0, 3]* and the 30, 3]
state, respectively. It is noted that most of the nodal
lines in the wave functions above the second doublet in
Fig. 6 are not straight lines as observed in Fig. 2 but are
curved more and more strongly, indicating an increas-
ingly stronger mixing of the two degrees of freedom z;
and z, through anharmonicity. Nevertheless, the wave
functions can still be assigned up to the six lowest dou-
blets by counting the number of the curved nodal lines
along the symmetric and the antisymmetric coordinates.

In case of the seventh and the tenth doublet consisting
of the 1[2, 3]* and 32, 3] states, and the [1,5]* and 31, 5]
states, respectively, on the other hand, the nodal lines
are so strongly curved that it is apparently not clear how
many nodal lines should be counted along the symmetric
and antisymmetric coordinates. A similar difficulty oc-
curs for the eighth and the ninth doublet but by an anal-
ogy to the nodal pattern of the pair of wave functions
located in a lower energy region, namely of the 1[0, 3]*
and 3[0,3] states, and of the 1[3,1]* and 3[3,1] states,
respectively, they can be assigned as 1[0,5]* and 3]0, 5]
states, and as '[4,1]* and 3[4, 1] states, respectively. By
assuming that the seventh doublet originally belongs to
the polyad manifold of v; = 5 for smaller anharmonicity
its states have been assigned tentatively as the remaining
possibility in this manifold, namely to the [2, 3]* and the
3[2, 3] state, as shown in Table I. The assignment of the
1[1,5]* and 3[1,5] states of the tenth doublet has been
made in a similar way by assuming that it belongs to the

v, = 6 manifold for smaller anharmonicity.

C. Local-mode wavefunctions

The characteristic nodal pattern observed in the wave
functions of the seventh and the tenth doublet, consist-
ing of the [2, 3]* and 3[2, 3] states, and of the '[1,5]* and
3[1, 5] states, respectively, displayed in Fig. 6 looks sim-
ilar to that of the local-mode vibrational wave functions
of the stretching vibrations of ABA molecules [48], such
as H2O [49] and SO; in the vibrationally highly excited
states [50-53]. It is known in molecular vibrational spec-
troscopy that the two A-B stretching vibrations in an
ABA molecule that form the symmetric and antisymmet-
ric stretching normal-mode vibrations become decoupled
from each other to form doubly degenerate local-mode
vibrations when the anharmonicity in the potential en-
ergy surface dominates the momentum coupling between
the two A-B stretching vibrations [54]. The resulting
doubly-degenerate local-mode vibrational wave functions
correspond to the two semiclassical trajectories in which
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one A-B bond vibrates strongly while the other stays in
a zero-point vibration [49, 52].

The correspondence between the classical trajectories
and vibrational wave functions representing the local-
mode vibrations can be most clearly observed by form-
ing the sum and the difference of the doubly-degenerate
vibrational wave functions [48, 50]. The resulting wave
functions have only nodal lines along one stretching coor-
dinate and no nodal lines along the other stretching coor-
dinate indicating that one stretching vibration is highly
excited while the other stays in its ground state. In order
to understand the dynamics of the two electrons in the
1[1,5]* and 3[1, 5] doublet states the sum and difference
of the wave functions of the corresponding states are dis-
played in Fig. 7 in the same way as for Figs. 2 and 6.
The nodal lines of the wave functions shown in Figs. 7(c)
and (d) do not align parallel to either of the electron coor-
dinates as for the local-mode vibrational wave functions
but align along a bent coordinate, indicating that these
wave functions represent a different electron motion than
the local-mode vibrations. This kind of a curved coor-
dinate along which nodal lines align may be an example
of the nodal coordinate [55] proposed in analyzing vi-
brational wave functions of vibrationally highly excited
states of polyatomic molecules [44]. By recalling that
a distribution of wave functions can be interpreted as a
torus of classical periodic orbits, the wave functions in
Fig. 7(c) and (d) can be interpreted as follows: The dis-
tribution of the wave function (c) extends along the line

of zo = 0 for z; < 0 and along the line of z; = 0 for z5 > 0.
In the part of the wave function extending along z5 = 0,
only electron 1 moves in the range of —15 < z; < 0 while
electron 2 stays close to the origin of the coordinate. On
the other hand, in the part of the wave function extend-
ing along z; = 0, only the electron 2 moves in the range
of 0 < z9 < 15 while electron 1 stays close to the ori-
gin. Therefore, the wave function (c) corresponds to a
two-body elastic collision of identical particles in classi-
cal mechanics in which the electron 1 approaching from
the negative z direction collides with electron 2 at the
origin and transfers its momentum to it. Then electron
2 starts moving along the positive z direction while elec-
tron 1 stays at the origin. The wave function in Fig. 7(d)
corresponds to the classical motion obtained by invert-
ing that of the wave function in Fig. 7(c) with respect to
the origin of the coordinates, that is, electron 2 coming
from the negative z direction collides with electron 1 at
the origin and so on. This analysis shows that the wave
functions of the tenth doublet in Fig. 6 represent a differ-
ent type of localized electron modes than the well-known
local-mode in molecular vibrations, although their nodal
patterns resemble each other.

It is instructive to apply a similar analysis to the wave
functions of the states of the ninth doublet in Fig. 6 which
have a characteristic nodal pattern different from the pre-
vious case. The sum and difference of the wave functions
of the two states 1[4, 1]* and 2[4, 1] forming ninth doublet
are displayed in Figs. 8(c) and (d), respectively, in the
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FIG. 9: Two-dimensional contour plot of the sum of the Gaus-
sian and of the electron-repulsion potentials for (D, w) = (0.8,
0.1). The maximum potential height displayed and the do-
main of the coordinates z; and 2z are the same as in Fig. 3(c).
The dotted allows represent the valleys of the potential.

same way as in Fig. 7. As observed in Figs. 8(c) and (d)
the nodal coordinates of these wave functions are bend
as in case of the wave functions of the tenth doublet in
Figs. 7(c) and (d) but they are located in different spa-
tial regions as compared to those of the tenth doublet.
The distribution of the wave function in Fig. 8(c) extends
along —3 < z1 < 8 for z5 = -8 and along —8 < 25 < 3 for
z1 = 8. Therefore, in classical mechanical interpretation

electron 1 moves in the positive direction from z; = -3
to 8 while electron 2 stays at zo = -8. Then electron 2
starts to move towards the same direction from zo = -8

to 3 while the electron 1 stays at z; = 8. This indicates
that electron 2 follows the movement of electron 1 after
a quarter cycle of one oscillation. Therefore, the wave
functions of the ninth doublet, again, show another type
of localized electron modes different from the local-mode
in molecular vibration.

In order to understand the origin of these two new
types of localized electron modes observed in the ninth
and tenth doublets the sum of the one- and two-electron
potential functions, V(z1, 22) in Eq. (6), projected onto
the z1-z9 plane has been calculated and displayed in
Fig. 9 for (D,w,) = (0.8, 0.1). The maximum potential
height and the domain of the coordinates z; and z; are
the same as in Fig. 3(c). It is seen in Fig. 9 that the val-
ley of the potential, i.e. the minimum energy path from
the bottom of the potential, extends along two bend lines
indicated schematically by the dotted lines and arrows.
Such a valley is not observed in Fig. 3(c) for the nearly
harmonic case. This means that for the strongly anhar-
monic potential of Fig. 9 the wave functions of electrons
bound in this potential prefer a nodal pattern extend-
ing along these two bend lines. The wave functions of
the 1]2,3]* and 3[2, 3] states, and the ![1,5]* and 3[1, 5]
states, respectively, belonging to the seventh and tenth
doublets in Fig. 6, are of this type. On the other hand,



the wave functions of the 1[4, 1]* and 3[4, 1] states form-
ing the ninth doublet do not extends along a valley but
on the hillside of the potential. Therefore, these wave
functions may correspond to a pair of unstable classical
periodic orbits. In both cases the wave functions tend to
have nodal lines not along the coordinates of the corre-
lated motion of two electrons, z; and z,, but along the
coordinates local to each electron, namely z; and zs.

IV. SUMMARY

In the present study the energy spectra and wave
functions of two electrons confined by a quasi-one-
dimensional Gaussian potential have been calculated for
different strength of confinement and anharmonicity by
using the quantum chemical configuration interaction
method employing reduced Cartesian anisotropic Gaus-
sian basis sets. The most important results of the study
are summarized as follows:

The energy spectra for a nearly harmonic Gaussian
potential have been calculated, analyzed and classified
for three regimes of confinement strength w,, namely,
strong (w, = 5.0), medium (w, = 1.0) and weak (w, =
0.1) confinement. For the strong confinement the energy
spectrum shows a regular band structure with a band-
gap close to w,. The energy levels of each band are well
localized and are characterized by the polyad quantum
number v, defined as the sum of the nodal lines n, and
ng of the wave functions along the symmetric and the
antisymmetric coordinate, respectively. The number of
energy levels belonging to each band is equal to v, + 1.
For medium confinement the energy spectrum shows also
a band structure characterized by v, but the splitting
of the energy levels belonging to the same v, manifold
is so large that adjacent polyad manifolds get close to
each other. As the confinement becomes even weaker
energy levels belonging to different v, manifolds start to
overlap with each other. For small confinement strength
of w, = 0.1 the triplet energy levels having the set of
nodal lines (ng,ng) for ng =0, 1, 2, --- and n, = 1, 3,
5, - -+, respectively, become nearly degenerate with the
singlet energy levels that have the nodal lines (ns,ng, —
1) for strong and medium confinement. By introducing
the extended assignment for the singlet wave function in
which the symmetric coordinate is treated as a nodal line
in determining n, the singlet and triplet wave functions
in the degenerate pair have the same set of nodal lines
(ns,nq). The energy spectrum of the weak confinement
has a band structure with a band-gap of about w, as
observed for the strong confinement but each band is
characterized by the extended polyad quantum number
v’. The number of levels belonging to the v manifold is

p p

shown to be vy + 1 for odd v, and v, for even vy

The square-density of the wave functions for the nearly
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harmonic case has been plotted in the two-dimensional
z1-z2 plane and its nodal pattern has been examined. It
has been shown that the density of the singlet wave func-
tions along the symmetric coordinate becomes smaller as
w, decreases and that it becomes negligibly small for w,
= 0.1. The singlet wave functions at w, = 0.1 have the
same number of nodal lines as their counterpart triplet
wave functions of the degenerate pairs using the extended
assignment. Their nodal pattern become almost identi-
cal to each other except for their phases. The sum of the
one- and two-electron potentials projected onto the z1-29
plane V(z1, z2) shows that the decreasing density along
the symmetric coordinate in the singlet wave functions
for decreasing w, is caused by the increasingly stronger
potential wall of the electron-electron interaction along
this coordinate.

The energy spectra for a strongly anharmonic Gaus-
sian potential have been calculated, analyzed and classi-
fied for the same three regimes of confinement strength
w, as for the nearly harmonic case. For the strong and
medium confinement the energy spectra look quite sim-
ilar to those of the nearly harmonic case. But for weak
confinement of w, = 0.1 the spectrum shows an irregular
level structure in the high energy region above AE > 0.3.
The nodal lines of the wave functions in this high energy
region get increasingly curved as the energy increases and
it becomes more and more difficult to assign these wave
functions by counting the number of nodal lines along
the symmetric and antisymmetric coordinates. By tak-
ing the sum and the difference of the singlet and triplet
wave functions of the degenerate pairs two types of a
pair of bent modal coordinates, along which the nodal
pattern of the wave functions extend, have been identi-
fied, namely, one pair of coordinates passing through the
valley of the potential V' (z1, 29) and the other pair pass-
ing on the hillside. It is shown that the wave functions
having the nodal coordinates through the valley corre-
spond to a classical motion of two electrons performing
an elastic collision and that those having the nodal lines
on the hillside correspond to a classical motion in which
one electron follows the movement of the other electron
after a quarter cycle. Both of these localized electron
motions have resulted as a consequence of large anhar-
monicity in the confining potential.
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