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ABSTRACT

There is growing consensus that feedback from active galactic nuclei (AGN) is the
main mechanism responsible for stopping cooling flows in clusters of galaxies. AGN
are known to inflate buoyant bubbles that supply mechanical power to the intracluster
gas (ICM). High Reynolds number hydrodynamical simulations show that such bub-
bles get entirely disrupted within 100 Myr, as they rise in cluster atmospheres, which
is contrary to observations. This artificial mixing has consequences for models trying
to quantify the amount of heating and star formation in cool core clusters of galaxies.
It has been suggested that magnetic fields can stabilize bubbles against disruption.
We perform magnetohydrodynamical (MHD) simulations of fossil bubbles in the pres-
ence of tangled magnetic fields using the high order PENCIL code. We focus on the
physically-motivated case where thermal pressure dominates over magnetic pressure
and consider randomly oriented fields with and without maximum helicity and a case
where large scale external fields drape the bubble. We find that helicity has some
stabilizing effect. However, unless the coherence length of magnetic fields exceeds the
bubble size, the bubbles are quickly shredded. As observations of Hydra A suggest
that lengthscale of magnetic fields may be smaller then typical bubble size, this may
suggest that other mechanisms, such as viscosity, may be responsible for stabilizing the
bubbles. However, since Faraday rotation observations of radio lobes do not constrain
large scale ICM fields well if they are aligned with the bubble surface, the draping case
may be a viable alternative solution to the problem. A generic feature found in our
simulations is the formation of magnetic wakes where fields are ordered and amplified.
We suggest that this effect could prevent evaporation by thermal conduction of cold
Hα filaments observed in the Perseus cluster.
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1 INTRODUCTION

Active galactic nuclei play a central role in explaining the
riddle of cool core clusters of galaxies. One of the unsolved
problems of AGN feedback in clusters is the issue of mor-
phology and stability of buoyant bubbles inflated by AGN
and the efficiency of their mixing with the surrounding ICM.
It is important to understand the process of bubble fragmen-
tation and its eventual mixing with the rest of the ICM in
order to quantify mass deposition and star formation rates
in cool cores clusters. In the best-studied case of the Perseus
cluster (Fabian et al. 2006) observations indicate that such
bubbles can remain stable even far from cluster centers
where they were created (see cup-shaped feature northwest
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of the center of the cluster or a similar yet tentative fea-
ture to the south in their Figure 3). One possible explana-
tion for this phenomenon is that the intracluster medium is
viscous and that viscosity suppresses Rayleigh-Taylor and
Kelvin-Helmholz instabilities on their surfaces. Reynolds et
al. (2005) performed a series of numerical experiments, com-
pared inviscid and viscous cases and quantified how much
viscosity is needed to prevent bubble disruption. For vis-
cosity at the level of 25% of the Braginskii value they ob-
tained results consistent with observations. The same prob-
lem has been considered analytically by Kaiser et al. (2005)
who computed the instability growth rate as a function of
scale and viscosity coefficient. An alternative possibility is
that bubbles are made more stable by significant decelera-
tion during their initial evolution (Pizzolato & Soker 2006).
The “viscous solution” is very appealing as it also addresses
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the issue of dissipation of sound waves, weak shocks as well
as g−modes (Fabian et al. 2003a). However, it is not entirely
clear what the level and nature of viscosity in the ICM re-
ally is. This is because the ICM and the bubbles themselves
are known to be magnetized and magnetic fields may reduce
transport processes (but see Lazarian 2006 and Schekochi-
hin & Cowley 2006). Although magnetic fields in clusters
are known to have plasma β > 1, (β ≡ Pgas/(B

2/2µo); e.g.,
Blanton et al. 2003) they may in principle have a strong
effect on suppressing Kelvin-Helmholz and Rayleigh-Taylor
instabilities. Jones & De Young (2005) considered the evo-
lution of bubbles in a magnetized ICM by performing two-
dimensional numerical MHD simulations and found that
bubbles could be prevented from shredding even when β is as
high as ∼ 120. A somewhat different conclusion was reached
by Robinson et al. (2004) who simulated magnetized bubbles
with the FLASH code (Fryxell et al. 2000) in two dimensions
and found out that a dynamically important magnetic field
(β < 1) is required to maintain bubble integrity. Both of
the above-mentioned simulations were performed in 2D and
for very idealized magnetic field configurations such as, for
example, doughnut-shaped fields with symmetry axis paral-
lel to the direction of motion. Recently, Nakamura, Li, & Li
(2006) considered the stability of Poyinting-flux dominated
jets in cluster environment. Here we focus on a later stage
in the outflow evolution and consider physically-motivated
magnetic field case of β > 1 and more realistic (stochasti-
cally tangled) field configurations in fossil bubbles (i.e., af-
ter the transition from the momentum-driven to buoyancy-
driven stage) than in previous buoyant stage MHD simula-
tions. We show that only when the power spectrum cutoff
of magnetic field fluctuations is larger than the bubble size
can the bubble shredding be suppressed. It is possible that
such “draping” case is not representative of typical cool core
fields (Vogt & Enßlin 2005) and, if so, other mechanism, such
as viscosity, would be required to keep the bubbles stable.
However, Vogt & Enßlin (2005) estimated magnetic power
spectra in Hydra A only which shows extraordinarily strong
AGN outbursts. We also note that such Faraday rotation ob-
servations of radio lobes are only weakly sensitive to large
scale magnetic fields aligned with the bubble surface and
rely on certain untested assumptions. Therefore, we argue
that the draping case may be a viable solution to the prob-
lem of bubble stability.

In Section 2 we present the simulation setup and the
justification for the parameter choices. Section 3 presents
results and Section 4 our conclusions. The Appendix dis-
cusses in detail our method of setting up initial magnetic
field configurations.

2 SIMULATION DETAILS

2.1 The code

The simulations were performed with the PENCIL code.
(Dobler et al. 2003, Haugen et al. 2003, Brandenburg et
al. 2004, Haugen et al. 2004) Although PENCIL is non-
conservative, it is a highly accurate grid code that is sixth
order in space and third order in time. It is particularly
suited for weakly compressible turbulent MHD flows. Mag-
netic fields are implemented in terms of a vector potential

so the field remains solenoidal throughout simulation (i.e.,
no divergence cleaning of the magnetic field is necessary).
The code is memory efficient, uses Message-Passing Inter-
face and is highly parallel. The PENCIL code is better suited
for the simulations of stability of magnetized bubbles than
smoothed particle magneto-hydrodynamical codes as it can
better capture certain aspects of the bubble (magnetohy-
dro) dynamics, such as Kelvin-Helmholtz instability, even
for high density contrasts. and suffers less from numerical
diffusion of the magnetic field. Although no formal code
comparison has been made, other well known MHD mesh
codes, such as FLASH or ZEUS, likely require comparatively
higher resolution to achieve the same level of magnetic flux
conservation as the PENCIL code.

2.2 Initial conditions

2.2.1 Density and temperature profiles

The cluster gas was assumed to be isothermal with tempera-
ture equal to 10 keV (this temperature was used to minimize
the ratio of code viscosity to the Braginskii value; see Section
2.2.4 for more explanation). The gas was initially in hydro-
static equilibrium and subject to gravitational acceleration
given by a sum of two isothermal potentials

g(r) = −
2σ2

a

(r + ra)
−

2σ2
b

(r + rb)
, (1)

where σa = 1.41, σb = 2.69, ra = 30.0 and rb = 5.0 in code
units (see below) were the parameters were chosen to give
a pressure profile consistent with that observed in clusters.
Central gas density was 10−25 g cm−3 (i.e., about 5.2×10−2

electrons per cm−3). Self-gravity of the gas was neglected.
The profiles of pressure and temperature are shown in Fig-
ure 1. We consider ideal gas with adiabatic equation of state
with γ = 5/3. The bubbles were underdense by a factor of
ten with respect to the local ICM and its temperature was
increased by the same factor to keep it in pressure equilib-
rium with the surrounding gas. The remaining bubble pa-
rameters are mentioned in section 2.2.4 where we discuss
code units. The pressure in the ICM changes significantly
over the height of the bubble. It is for this reason that we
modified the density and temperature on a ”point-by-point”
basis. That is, at every location within the bubble, we in-
creased the temperature by a constant factor and decreased
the density by the same factor while keeping the pressure
at the same level as the pressure at the same distance from
the cluster center away from the bubble. This way, the initial
pressure distribution is smooth and there is no strong depar-
ture from perfect equilibrium. Although the density contrast
of the bubble is relatively low, this has minimal effect on
our results. This is because the buoyancy velocity is propor-
tional to (1− ρbubble/ρicm)1/2 which is insensitive to ρbubble

as long as it is much smaller than ρicm. The reason we opted
for such relatively low density contrast is numerical: higher
bubble temperatures would have required smaller timesteps
to achieve numerical stability. We also note that some real
bubbles may have smaller density contrasts. A well-known
extreme example is the Virgo cluster where buoyant bubbles
in the radio show very little corresponding structure in the
X-ray maps.
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2.2.2 Magnetic fields

We consider magnetic fields inside the bubbles and in the
ICM that are dynamically unimportant in the sense that
their plasma β parameter is greater than unity. That is,
magnetic pressure may become important when compared
to the bubble ram pressure associated with the gas motions
in the ICM but it is generally small compared to the
pressure of the ICM in our simulations. Analysis of cluster
bubbles by Dunn et al. suggest that β−1 is roughly in
the range (10−3, 0.3) with the mean 〈β−1〉 = 0.06 and
median of 0.03 (see sample of Dunn et al. 2004, Dunn et al.
2005 and Dunn 2006, Dunn priv. communication). Other
evidence for high β comes from observations of Faraday
rotation measure and the lack of Faraday depolarization in
bright X-ray shells in Abell 2052 as observed by Blanton et
al. (2003). They infer β ∼ 30. These arguments motivated
us to consider high β cases. However, we note that low-β
is not ruled out beyond reasonable doubt by the above
observations and theoretical considerations and, thus, its
consequences for bubble dynamics should be investigated
further.

Regarding the geometry of magnetic fields, we consider
random isotropic fields with coherence length smaller than
the bubble sizes (hereafter termed “random”), isotropic
helical fields with coherence length smaller then the bubble
size (termed “helical” below; helicity is defined as

∫
A·BdV ,

where A and B are vector potential and magnetic field
respectively), and the “draping” case of isotropic fields
characterized by coherence length exceeding bubble size as
well as a non-magnetic case.

Magnetic draping has been considered previously in
the context of merging cluster cores and radio bubbles using
analytical approach by Lyutikov (2006). He found that
even when magnetic fields are dynamically unimportant
throughout the ICM, thin layer of dynamically important
fields can form around merging dense substructure clumps
(“bullets”) and prevent their disruption. We suggest that,
depending on the unknown value of magnetic diffusivity,
there may be some relic magnetic power spectrum with
a smaller amplitude than the freshly injected one (either
by AGN bubbles or dynamo-driven) that extends to scales
larger than the bubble size and that provides draping fields
to stabilize the bubbles.

The helical case is motivated by the fact that magnetic
helicity is conserved for ideal MHD case. Moreover, helicity
is proportional to the product of magnetic energy and typi-
cal lengthscale and, thus, fragmentation is not energetically
preferred in the sense that it would lead to local increase
of magnetic energy. Another justification for helical fields
is that they may be responsible for explaining circular
polarization of certain radio sources, and especially its sign
persistency (Enßlin 2003 but see Ruszkowski & Begelman
2002). It is conceivable that magnetic helicity that could
produce such signal in jets could survive till the buoyant
stage.

The “random” case is motivated by the work of Vogt
& Enßlin (2005) who estimate power spectrum of magnetic
field fluctuations in Hydra A from Faraday rotation maps.
We are conservative in our choice of parameters in the sense
that we use fields of somewhat higher coherence length that

are more likely to stabilize bubbles.

2.2.3 Vector potential setup

In setting up initial magnetic field configuration we ensured
that the following conditions are met:

• magnetic fields must be divergence-free
• bubble and environmental fields must be isolated, i.e.,

no magnetic field lines should penetrate the surface of the
bubble

• magnetic fields must be characterized by the required
power spectra

• when necessary, magnetic helicity may be imposed
• magnetic plasma β parameter of the bubble and the

ICM must be independently controllable
• all considered field configurations must result (after

suitable modifications) from the same white noise Gaussian
random numbers. This ensures that the differences in evo-
lution are entirely due to model parameters and not due to
different random realizations.

The details of the algorithm used to set up the initial
magnetic field configuration is presented in the Appendix..

2.2.4 Code units and resolution

We consider the the following code units: one length unit
corresponds to 1 kpc, one velocity unit to 3×107 cm/s and
one density unit to 10−24 g/cm3. This corresponds to one
time unit of approximately 3.3×106 years. The box size is
100 code length units on a side and shock-absorbing bound-
ary conditions were used. This choice of boundary condi-
tions was dictated by the fact that we wanted to exclude the
Richmyer-Meshkov instability due to reflected waves passing
through the bubble as a potential destabilizing mechanism.
The bubble size was d = 25 in diameter and its center was
offset by 20 code length units from the cluster origin. The
bubble was underdense by a factor of ten with respect to
the local ICM and its temperature was increased by the
same factor to keep it in pressure equilibrium with the sur-
rounding gas. Our grid size is 2003 zones. The PENCIL code
requires some viscosity and resistivity to run properly. Min-
imum required amount of physical viscosity that the code
needs to prevent numerical instabilities from developing de-
creases as the numerical resolution is increased. We use vis-
cosity ν = 0.07 and magnetic resistivity η = 0.07. For typical
values of electron density (∼ 0.01 cm−3) and temperature
(10 keV) in our simulations this value of viscosity corre-
sponds to 0.014 of the Braginskii value. We note that for
lower gas temperatures this ratio would be higher which
motivated our choice of temperature. For the parameters
considered here, in the initial stages in our simulations, max-
imum velocities in code units are roughly umax ∼ 6. Note
that for the adopted parameters the sound speed in the ICM
is cs = 5.44 but the gas inside the bubbles is much hotter and
so the actual gas velocities can be higher then umax without
“violating” the sound speed limit. For the bubble size d = 25
and gas velocity umax = 6.0, hydrodynamical and magnetic
Reynolds numbers are roughly Re = umaxd/ν ∼ 2000. Such
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Figure 1. Initial pressure (solid line) and temperature profiles.

Figure 2. One dimensional energy power spectra of initial mag-
netic field fluctuations. Solid line shows energy spectrum corre-
sponding to our “draping”. Dashed line is for the “random” case.

values clearly lead to quick development of Rayleigh-Taylor
and Kelvin-Helmholtz instabilities for unmagnetized bub-
bles.

3 RESULTS

In Figure 4 we show the evolution of the gas density. Each
column corresponds to one model. Time increases from bot-
tom to top. Snapshots were taken at 15, 25, 35 code time
units. The following five models were considered (from left
to right):

• draping model: mean β ∼ 40 throughout the box (i.e.,
relative plasma β of the bubble with respect to the ICM is
set to unity)

• random (i) model: constant mean β throughout the box.
The initial mean β was chosen so as to match mean β values
near t = 15 code time units in the draping case

• random (ii) model : initial bubble-averaged beta inside
the bubble the same as the mean initial β in case random
(i) Relative magnetic pressure inside the bubble was chosen

Figure 3. Magnetic pressure in the plane containing the clus-
ter and bubble centers. Upper and lower panels show “draping”
and “random” cases, respectively. The coherence length in the
lower panel is even smaller than that used in the simulations to
demonstrate the robustness of the method. See Appendix for more
explanation.

to be 10 times higher than the typical ambient magnetic
pressure

• helical case: same as random (ii) but for helical fields
• non-magnetic case.

It is evident that the bubble morphology depends
strongly on the topology of the initial magnetic field. There
is a striking difference between draping case (first column)
and all remaining cases. Even though magnetic fields are
“dynamically” unimportant in the sense that the typical
plasma β parameter is much greater than unity, the bub-
ble clearly is more coherent in the draping case than in any
other case. The cup-shaped morphology in the draping case
in the first snapshot at 15 time units is very reminiscent of
the fossil bubble seen in the Perseus cluster. As the bubble
moves up, its shape changes and it becomes more round.
The Rayleigh-Taylor instability is prevented and so there is
no evidence for strong contamination or mixing of the bub-
ble interior with the colder ICM material. However, denser
and colder material lifted by the rising bubble reverses its
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Figure 4. Natural logarithm of density in the cluster. Columns show time sequences of density for draping, random (i), random (ii),
helical and non-magnetic cases from left column to the right, respectively. Rows correspond to time of 15.0, 25.0, 35.0 code time units
from bottom to top. Sides of all boxes show densities in the planes intersecting the box and containing its center.

motion at a certain time and begins to fall back. This leads
to some stretching of the bubble in the vertical direction in
the later stages in its evolution.

The second column shows random (i) case. Here the gas
behind the bubble quickly penetrates its center and tends
to pierce through it. This is evident especially when the left
hand sides of the cubes in the first and second column are
compared. The working surface of the bubble becomes irreg-
ular and starts to fragment. Similar behavior is observed in
the random (ii) case (third column). The two cases differ in
the strength of magnetic field with case (ii) having stronger
internal bubble fields but weaker ICM ones. Nevertheless,
there does not seem to be much qualitative difference be-
tween these two cases in terms of density distribution.

The fourth column shows the helical case. The degree of
bubble fragmentation is lower than in the random cases even
though typical magnetic field strength is similar to that of
random (i) case. Although this appears to be a weak effect,
as explained in Section 2.2.2, helicity conservation should
tend to stabilize the flow. This column should be compared
mainly with the third column that shows its non-helical ana-
log.

The last column shows the non-magnetic case. Both
Rayleigh-Taylor and Kelvin-Helmholz instabilities develop
here very quickly. The bubble is pierced by a column of cold
gas forming a “smoke ring” rather then cup-shaped or oval
structure as in the draping case. The edges of this ring are
initially wrinkled by Kelvin-Helmholz instability.

In Figure 5 we show the distribution of magnetic pres-
sure. As in Figure 4, columns correspond to different mod-
els and are ordered the same way while rows correspond

to 15, 25, 35 time units from bottom to top. This figure
reveals that the reason for bubble stability in the draping
case (first column) is the formation of an “umbrella” or a
thin protective magnetic layer on the bubble working surface
that suppresses instabilities. Visual inspection of the figure
comparing magnetic pressure evolution in the draping, two
random, and helical cases shows that the field geometry does
not change significantly (in the average sense) far away from
the bubbles. The upward motion of the bubble also leads to
substantial amplification and ordering of magnetic field in
the bubble wake. This has consequences for estimates of con-
duction in the ICM based on the appearance of Hα filaments
(Fabian et al. 2003b, Hatch et al. 2006). It has been argued
(e.g., Nipoti & Binney 2004) that thermal conduction has
to be strongly suppressed in the ICM or otherwise such cold
filaments would be rapidly evaporated. Our result hints at a
possibility that thermal conduction may be locally weaker in
the bubble wake, thus preventing or slowing down filament
evaporation.

The second column shows random (i) case. No “um-
brella” effect seen in the draping case is observed here. The
fact that the colder gas enters the bubble from beneath does
not lead to compression of magnetic field in the direction
parallel to the bubble surface, an effect that could prevent
disruption. Even though the bubble does get disrupted, some
compression and ordering of magnetic field in the wake oc-
curs here just as in the draping case. In fact, this effect is a
generic feature of all the runs that we performed. The be-
havior of magnetic pressure in random (ii) case, shown in
the third column, is qualitatively very similar with the dif-
ference that the magnetic wakes are more pronounced. Even
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Figure 5. Magnetic pressure structure in the cluster. Columns show time sequences of magnetic pressure for draping, random (i), random
(ii) and helical cases from left column to the right, respectively. Rows correspond to time of 0.0, 15.0, 25.0, 35.0 code time units from
bottom to top.

though magnetic fields get marginally compressed near the
bubble working surface in this case, they remain disjoint and
do not prevent the shredding of the bubble.

The last column shows magnetic pressure in the helical
case. There is a significant difference in the topology of the
field inside the bubble between this and all previous cases.
Here, the upward drift of the bubble appears to amplify mag-
netic field inside the bubble. Note that while in the draping
case amplification took place in a thin layer coinciding with
the working surface of the bubble, the amplification in the
helical case is distributed throughout the bubble. This is
particularly obvious in the snapshot taken at 15 code time
units. We note that this means that moderate stabilizing
effect of helicity comes from fields internal to the bubble
rather than external ones as in the draping case. No obvious
amplification inside the bubble is seen in the random cases
other than the “wake” amplification.

In Figure 6 we show X-ray maps. The columns are ar-
ranged the same way as in Figure 4. Rows from 1 to 3 cor-
respond to different projection direction than rows 4 to 6
(the latter ones correspond to the viewing direction rotated
by 90 degrees around the axis intersecting the cluster center
and the original location of the bubble). As expected, the
morphology in the draping case is very different than in all
other cases. In this case the bubbles show up as depressions
in X-ray emissivity. The bubbles in the random case appear

irregular. They are also brighter in their centers which is
contrary to observations. In the helical case, the bubbles
seem somewhat less disturbed than in the random case. It is
possible that this case, when “observed” in synthetic Chan-

dra data that includes instrument responses would resemble
actual bubbles more than the random case bubbles. The last
column shows the non-magnetic case that is clearly inconsis-
tent with observations. Here the bubble more resembles two
isolated bubbles than a coherent feature seen in the draping
case. We suggest that a hybrid model that combines inter-
nal helical magnetic fields inside the bubble with external
draping fields may produce X-ray bubbles that closely re-
semble bubbles seen in clusters. However, different method
for setting up initial conditions than the one considered here
would have to be employed to model such a case while en-
suring that the initial magnetic field configuration does not
suffer from any artifacts.

We note that the magnetic fields in our simulations
are observed to decay with time. The decay is expected
as, apart from the bubble-induced motion, the turbulence
is not continuously driven in our simulations. As expected,
the decay is faster for more tangled fields. Even though
the field decays, we note that disruption (when present) is
initiated early on in the bubble evolution. Moreover, our
field strengths are greater than those in Jones & De Young
(2005) uniform field case and yet we do observe disruption.
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Figure 6. X-ray images of the cluster center. Columns show time sequences of X-ray emission for draping, random (i), random (ii)
helical, and non-magnetic cases from left column to the right, respectively. Rows correspond to time of 15.0, 25.0, 35.0 code time units
from bottom to top. Rows 1 to 3 correspond to a different projection axis than rows 4 to 6.

We quantified the decay in magnetic pressure for the cases
where the mean bubble and ICM β parameters are the same
(“draping” and random (i) cases). In Figure 10 we show the
evolution of the mean magnetic pressure compared to gas
pressure in the plane intersecting the cluster center and the
original bubble location. We found that, while the ”random”

case shows the decay, the ”draping” case is consistent with
no decay. By construction, the mean fields in the draping
case and random (i) one approximately match at t = 15 code
time units. The decay of the field after this time is rather
slow and magnetic field strengths in the random and drap-
ing cases are comparable around and after this time. Prior

c© 2006 RAS, MNRAS 000, 1–12
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Figure 7. Natural logarithm of density distribution. Left column shows density for the random (i) case (lower panel t=15, upper t = 25
code time units) but twice as high mean magnetic pressure. Right column corresponds to the draping case for twice the mean magnetic
pressure compared to the original draping case.

to t = 15 the field in the random case exceeds that in the
draping case. It is interesting that, even though this is the
case, the random case fields lead to bubble disruption while
the draping case shows much more coherent structures. This
demonstrates that the difference between this two cases is
primarily due to the field geometry and not its strength, at
least for the typical plasma β considered here. Moreover, if
we would have considered driven turbulence then we could
have afforded to start from weaker fields in the random case
and additional random motions due to turbulence driving
would be present. Both of these effects (i.e., weaker initial
field in conjunction with additional random motions) could
only strengthen our conclusion, i.e., make the random case
bubbles fragment even more easily. We are thus conserva-
tive in neglecting turbulence driving. We also note that our
aim was not to address the stability of the bubbles exposed
to random motions. Our objective was to discuss the effect
of tangled magnetic fields on the development of Rayleigh-
Taylor and Kelvin-Helmholz instabilities. Random motions,
be it due to turbulence driving or due to post-merger re-
laxation, are inevitably going to be present in cool cluster
cores (even though cool cores tend to be more relaxed than

the centers of non-cooling flow clusters). Their impact has
to be evaluated in evaluated in sepatate studies. Another
unknown factor is how magnetic fields are driven inside the
cavities (if at all). However, including such effects would be
beyond the scope of our investigation.

3.1 Varying magnetic pressure

We simulated draping and random case (i) again for ex-
actly the same parameters as before except for twice as high
mean magnetic pressures in both cases. We observe the same
trends with the difference that the draping case results in
slightly more coherent bubbles while the random case in
slightly more fragmented ones. This strengthens our argu-
ments presented above that it is the geometry of the field
rather than its strength that is responsible for stabilizing
the bubbles (at least for the parameters considered here).
In Figures 7, 8, and 9 we show density, magnetic pressure
and X-ray emissivity, respectively. Note that the “umbrella”
effect mentioned above is clearly seen in the draping case in
the left column in Figure 8. This is to be contrasted with
the left hand panel corresponding to the high magnetic ver-
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Impact of tangled magnetic fields on AGN-blown bubbles 9

Figure 8. Same as Figure 7 but for the logarithm of magnetic pressure distribution. Note that in the draping case (right panel), a layer
of ordered and amplified magnetic field forms on the bubble-ICM interface and protects the bubble against disruption.

sion of the random (i) case where no such effect is observed.
Lower panel in Figure 10 shows the evolution of the mean
magnetic pressure compared to the gas pressure in the plane
containing the center of the cluster and the initial position
of the bubble.

4 CONCLUSIONS

We considered three-dimensional MHD simulations of buoy-
ant bubbles in cluster atmospheres for varying magnetic field
strengths characterized by plasma β > 1 and for varying
field topologies. We find that field topology plays a key role
in controlling the mixing of bubbles with the surrounding
ICM. We show that large scale external fields are more likely
to stabilize bubbles than internal ones but a moderate sta-
bilizing effect due to magnetic helicity can make internal
fields play a role too. We demonstrate that bubble morphol-
ogy closely resembling fossil bubbles in the Perseus cluster
could be realized if the coherence of magnetic field is greater
than the typical bubble size. While it is not clear if such a
“draping” case is representative of typical cluster fields, Vogt
& Enßlin (2005) find that length scale of magnetic fields in
Hydra A is smaller than typical bubble size. If this also holds

true in other clusters then other mechanisms, such as vis-
cosity, would be required to keep the bubbles stable. Unfor-
tunately, Faraday rotation method used by Vogt & Enßlin
(2005) is not very sensitive to large scale magnetic fields if
aligned with the bubble surface. Moreover, their maximum
Likelihood method assumes a power-law relation between
magnetic field and density, statistical isotropy for the pur-
pose of deprojection and a particular jet angle with respect
to the line-of-sight. Smaller angles and different magnetic
field configurations might yield a weaker decline of the power
spectrum at larger scales. Taking into account the above lim-
itations, it is entirely possible that the draping case offers a
viable alternative solution to the problem of bubble stability.
We also suggest that a hybrid model that combines helical
fields inside the bubble with external draping fields could
be successful in explaining morphologies of X-ray bubbles
in clusters. Another possibility is that dynamically signifi-
cant fields are be present inside the bubbles and the con-
sequences of high-β case for bubble dynamics and stability
should be investigated further. We note that the bubbles
will most likely eventually get disrupted (partially helped
by “cosmological” sloshing gas motions in clusters).

A generic feature found in our simulations is the forma-
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Figure 9. X-ray maps corresponding to Figures 8 and 9. Projection orientation is the same as in the upper panels in Figure 6.

tion of a magnetic wake where fields are ordered and ampli-
fied. We suggest that this effect could prevent evaporation
by thermal conduction of cold Hα filaments observed in the
Perseus cluster.

The physical process of bubble mixing in the presence
of magnetic fields has important consequences also for mod-
eling of mass deposition and star formation rates in cool
core clusters as well as the particle content of bubbles and
cosmic ray diffusion from them. These issues will be fur-
ther complicated by the effects of anisotropy of transport
processes due to magnetic fields. This may give rise to the
onset of magneto-thermal instability on the bubble-ICM in-
terface (Balbus 2004, Parrish & Stone 2005). Studying such
effects is beyond the scope of the present paper but certainly
deserves further investigation.
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6 APPENDIX

Initial magnetic fields were computed outside the main code
and the setup was performed in two stages. In the first phase,
we generated stochastic fields by three-dimensional inverse
Fourier transform (FFT) of magnetic field that in k-space
had the amplitude given by

B ∝ k−11/6 exp(−(k/k1)
4) exp(−k2/k), (2)

where k = (k2
x + k2

y + k2
z)1/2, and k1 = 2π/dx, k2 = 0.3,

dx = xbox/32, xbox = 102 for helical or random cases and
k1 = 2π/(2rbub) and k2 = 0.05 in the draping case, where
xbox is the size of the computational box in code units. (see
below)

All three components of magnetic field were treated
independently which ensured that the final distribution of
B(r) had random phase. That is, for example for the x com-
ponent of the magnetic field, we set up a complex field such
that

(Re(Bx(k)), Im(Bx(k))) = (G(u1)B, G(u2)B), (3)

where G is a function of a uniform random deviate u1 or
u2 that returns Gaussian-distributed values. For vanishing
exponential cutoff terms, the above prescription would give
classical Kolmogorov turbulence spectrum. Whereas there
is no generally accepted justification for magnetic spectrum
to have a Kolmogorov distribution, our parameter choice
for the “random” case resembles that seen in the Hydra
cluster (Vogt & Enßlin 2005). One-dimensional energy
power spectra kE(k) [erg s−1 cm−3] of magnetic field
fluctuations are shown in Figure 2.

After the initial field has been set up in k-space, we
implement a magnetically isolated bubble. This phase is
performed according to the following iterative scheme:

(1) divergence cleaning in k-space:

B(k) 7−→ (1 − k̂k̂)B(k), (4)
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where k̂ is a unit vector in k-space. In the case of helical
fields we also act on the field with helicity operator defined
as:

B(k) 7−→
1 + αik̂×

(1 + α2)1/2
B(k), (5)

where α = 1 (maximum helicity case). The helicity step is
only performed in the first loop of the iteration. Note that
imposing helicity on the field does not change the power
spectrum of magnetic energy fluctuations.

(2) inverse FFT of the new B(k) to real space. Each
component of B(k) is independently acted upon with a
three-dimensional inverse FFT.

(3) applying a projection operator to isolate the bubble
magnetically. The projection operation modifies the field in
the following way

B(r) 7−→ [1 − g(r)r̂r̂]B(r), (6)

where r̂ is a unit vector in real space, r is the distance from
the bubble center, and g(r) = 1−| cos[0.5π(x+∆x−1)/∆x]|
for 1−∆x < x < 1 + ∆x and g(r) = 0 otherwise and ∆x =
0.25, where x = r/rbub. Note that both the field just inside
and outside the bubble are acted upon by this operator.
Applying this operator results in a field that possesses some
divergence.

(4) changing relative magnetic pressure inside the bub-
ble (done only during the first loop of the iteration process)
Plasma β parameter is given by β(r) = βrelgb(r)+1− gr(r),
where βrel is the relative plasma β parameter between the
ICM and the bubble. The gb(r) term is given by gb(r) =
1 + cos[0.5π(x + ∆bx − 1)/∆bx], where x = r/rbub for
1 < x < 1 + ∆bx and g(r) = 0 otherwise. In the above
expression, rbub is the bubble radius and ∆bx = 0.15.

(5) computing the FFT of B(r) and going back to (1).
Iterations are performed until the following convergence
criterion is met:

∫
(∇·B(r))2dV dx2/

∫
B2dV < 10−4, where

integrations are performed for |x − 1| < ∆x.

At this point a convergent and divergence-free B(r)
field has been set up. Inverting such field to obtain the
vector potential A(r) does not result in any loss of infor-
mation. Note that inverting B to get A before completing
the iteration process would result in a vector potential that
(by definition) would give divergence-free magnetic field
but the bubble would not be magnetically isolated.

The equation B = ∇×A is then solved for A(r) using
a variant of a spectral method as follows.

(1) we Fourier transform B = ∇× A

(2) keeping B(k) and k constant we rotate the k-space
coordinate system first around the kz-axis until the projec-
tion of the k vector on the (kx, ky) plane coincides with kx

axis and then around ky′ -axis until kz′ coincides with the k

vector. This way the kz′′ -axis is aligned with the k vector.
That is,

B
′′

(k
′′

) 7−→ R(y′, αy′)R(z, αz)B(k), (7)

where R(i, αi) are rotation matrixes around axis i by angle
αi.

(3) we invert B′′ = −ik′′ ×A′′ (which, in this frame of

reference, is trivial as k
′′

= (0, 0, 1)).
(4) we rotate A′′ back and in reverse order, i.e.,

A
′′

(k
′′

) 7−→ R(z,−αz)R(y′,−αy′)A
′′

(k
′′

), (8)

where A(k) is the Fourier transform of the required vector
potential. Finally, we inverse FFT A(k) to obtain the
vector potential in real space.

The code uses the vector potential as its “magnetic”
variable which ensures that divergence of magnetic field is
strictly zero throughout the simulation. The reason our ini-
tial conditions were not set up directly in terms of the vec-
tor potential is that adding bubble as a distortion in the
fluctuating background vector potential leads to significant
gradients at the boundary between the bubble and the ICM.
These gradients translate into very strong artificial enhance-
ments in the magnetic field surrounding the bubble as we
have seen in our experiments with that kind of setup.

We also note that the field set up in this way is not
force-free. It is not possible to set up force-free field for
isotropic turbulence case due to mode coupling. However,
initial imbalance in magnetic forces are small compared to
the buoyancy force acting on bubbles. Moreover, realistic
turbulence is not expected to be force-free in any case as it
has to be continuously driven to prevent its decay.

Note that the β parameter and magnetic field strength
obtained using the above method would have arbitrary over-
all normalization. The actual normalization of the mag-
netic flux is obtained by demanding that the β parame-
ter has a certain value inside the bubble, i.e., B(r) 7−→
B(r)(Pgasβ

−1
bub/〈PB〉bub)

1/2, where PB = B2/2µo is mag-
netic pressure, Pgas is the gas pressure, βbub is the required
plasma β inside the bubble, and averaging is done over the
bubble volume. We note that this method works best when
applied to high-β cases as then the imbalance between the
total pressure in the bubble and the ICM is smallest.

The final form of our initial conditions for the distribu-
tion of magnetic pressure for the draping and random cases
is shown in Figure 3. This figure shows that our method for
generating initial conditions does not produce any spurious
features on the bubble/ICM interface. The coherence length
in the lower panel is even smaller than that used in the sim-
ulations. This has been done to demonstrate robustness of
the method. The map shows natural logarithm of magnetic
pressure in arbitrary units.

Note that magnetic field configurations were generated
from the same random seed, which means that, despite the
differences due to different power spectra, β values, helici-
ties, etc., the fields were as similar as possible. This permits
a better comparison of the consequences of the mentioned
differences.
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