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ABSTRACT

We continue our investigations of the magnetorotational collapse of stellar cores by discussing simulations performed with a
modified Newtonian gravitational potential that mimics general relativistic effects. The approximate TOV gravitational potential
used in our simulations captures several basic features of fully relativistic simulations quite well. In particular, it is able to
correctly reproduce the behavior of models that show a qualitative change both of the dynamics and the gravitational wave
signal when switching from Newtonian to fully relativistic simulations. For models where the dynamics and gravitational wave
signals are already captured qualitatively correctly by a Newtonian potential, the results of the Newtonian and the approximate
TOV models differ quantitatively. The collapse proceeds to higher densities with the approximate TOV potential, allowing for a
more efficient amplification of the magnetic field by differential rotation. The strength of the saturation fields (∼ 1015 G at the
surface of the inner core) is a factor of two to three higher than in Newtonian gravity. Due to the more efficient field amplification,
the influence of magnetic fields is considerably more pronounced than in the Newtonian case for some of the models. As in
the Newtonian case, sufficiently strong magnetic fields slow down the core’s rotation and trigger a secular contraction phase to
higher densities. More clearly than in Newtonian models, the collapsed cores of these models exhibit two different kinds of shock
generation. Due to magnetic braking, a first shock wave created during the initial centrifugal bounce at subnuclear densities does
not suffice for ejecting any mass, and the temporarily stabilized core continues to collapse to supranuclear densities. Another
stronger shock wave is generated during the second bounce as the core exceeds nuclear matter density. The gravitational wave
signal of these models does not fit into the standard classification. Therefore, in the first paper of this series we introduced
a new type of gravitational wave signal, which we call type IV or “magnetic type”. This signal type is more frequent for the
approximate relativistic potential than for the Newtonian one. Most of our weak-field models are marginally detectable with
the current LIGO interferometer for a source located at a distance of 10 kpc. Strongly magnetized models emit a substantial
fraction of their GW power at very low frequencies. A flat spectrum between 10 Hz and <∼ 100 kHz denotes the generation of a
jet-like hydromagnetic outflow.
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1. Introduction

In a core collapse supernova, the iron core of an evolved
massive star with mass M >∼ 8−10M� collapses to a neu-
tron star, thereby releasing a large amount of gravitational
binding energy. Although this basic picture is commonly
accepted, state-of-the-art supernova calculations still do
not yield explosions that match the observations (Buras
et al. 2003; Janka et al. 2004). These calculations incor-
porate a detailed and thus computationally very expen-
sive treatment of the microphysics of core matter (equa-
tion of state, radiation transport, neutrino physics, etc.).
Additionally, they have to be performed in at least two,
or even better three, spatial dimensions in order to be
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able to follow the development of genuine non-spherical
effects, such as convection or rotation, and to explain ob-
served explosion asymmetries and neutron star kicks. Due
to their inherent complexity, these simulations are still
subject to some limitations. In particular, most of them
neglect the possible influence of magnetic fields, and they
usually treat gravity in the Newtonian limit. Thus, it is
desirable that these calculations are complemented by in-
vestigations that focus particularly on some selected as-
pects of the full scenario not studied yet in great detail,
but that avoid some of the computationally most expen-
sive and physically crucial aspects.

Since the end product of gravitational core collapse is
a compact object with a radius not much larger than its
Schwarzschild radius, general relativity (GR) rather than
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Newtonian gravity is the appropriate theory for describ-
ing the gravitational field of a supernova core. This issue
has been addressed recently by several studies that are
concerned with the GR collapse and the subsequent evo-
lution of stellar cores (see, e.g.Dimmelmeier et al. 2002a,b,
hereafter DFM, Shibata & Sekiguchi 2005, and references
therein). In addition, the near success of detailed super-
nova simulations in producing an explosion (see, e.g.Buras
et al. 2003; Janka et al. 2005; Mezzacappa 2005) suggests
that not only the microphysics of core matter but also
other ingredients of the complex problem, such as GR and
magnetohydrodynamic (MHD) effects, should be treated
as accurately as possible.

Extending a comprehensive parameter study of the
gravitational collapse of rotating cores in Newtonian grav-
ity (Zwerger & Müller 1997, henceforth ZM) to the
conformal-flatness approximation of full GR, DFM showed
that, in principle, the same types of dynamic behavior and
gravitational radiation result with Newtonian, as well as
with GR, gravity. In both cases, the collapse of a core
can be stopped by the stiffening of the nuclear equation
of state at supra-nuclear densities (standard-type regu-
lar bounce), or – for sufficiently fast initial rotation – by
centrifugal forces (multiple bounce). But DFM found both
quantitative and qualitative differences between the evolu-
tion of the Newtonian and GR variants of the same initial
configuration calculated with the same equation of state.
They observed a shift of the borderline separating regions
of parameter space with models of different dynamic be-
havior resulting in different types of gravitational wave
signals. In GR the collapse is generically deeper, i.e. higher
maximum densities are reached, and some models suffer-
ing a centrifugal bounce in Newtonian gravity collapse to
supra-nuclear densities and experience a pressure bounce.
However, the study of DFM (as that of ZM) was based
on rotating polytropes in hydrostatic equilibrium as ini-
tial configurations, involved only models with simplified
microphysics, and completely neglected transport physics.
On the other hand, multi-dimensional full GR simulations
with detailed microphysics are not yet available.

Since the compactness of a neutron star is still moder-
ate, one may ask oneself whether it is indeed necessary to
perform full-scale GR simulations, or whether it is possible
to capture the essentials of the GR effects by using some
approximative treatment, such as relativistic corrections
to the Newtonian gravitational potential. To explore this
possibility, we applied the effective Tolman–Oppenheimer–
Volkoff (TOV) potential proposed by Rampp & Janka
(2002) and Marek et al. (2006) in the simulations de-
scribed in this publication.

In addition to GR effects, magnetic fields are often ne-
glected in simulations of supernova core collapse, which
may not be justified. In the past only a few authors
(LeBlanc & Wilson 1970; Bisnovatyi-Kogan et al. 1976;
Meier et al. 1976; Müller & Hillebrandt 1979; Ohnishi
1983; Symbalisty 1984) have considered MHD effects, but
during the past few years magnetorotational core collapse
has become an active research field (Wheeler et al. 2002;

Akiyama et al. 2003; Kotake et al. 2004a,b; Takiwaki et al.
2004; Yamada & Sawai 2004; Ardeljan et al. 2005; Kotake
et al. 2005; Sawai et al. 2005).

We joined this effort very recently and performed a
parameter study of the magnetorotational collapse of stel-
lar cores in Newtonian gravity (Obergaulinger et al. 2006,
hereafter Paper I) by considering the evolution of a set of
initial models with different rotation rates and rotation
profiles, and with different initial magnetic fields (field
strength |b| ∼ 1010 − 1013 G) that are purely poloidal.
The properties of the non-magnetized initial configura-
tions and the microphysics included in the simulations are
the same as those used in the studies of ZM and DFM,
i.e. we neglected radiation transport and nuclear reactions,
and used a simplified analytic equation of state allow-
ing for different values of the sub-nuclear adiabatic in-
dex. The gravitational wave (GW) signal was calculated
using the standard quadrupole formula, as implemented
by Mönchmeyer et al. (1991), and extended to MHD by
Kotake et al. (2004b) and Yamada & Sawai (2004). The
main findings of Paper I are:

– The initial magnetic field is amplified by the differen-
tial rotation of the core to magnetic energies that are
∼ 10% of the rotational energy, the initially poloidal
field being wound up in a dominant toroidal compo-
nent.

– According to Akiyama et al. (2003), the magnetoro-
tational instability (MRI) (Balbus & Hawley 1991;
Balbus 1995) may play an important role during core
collapse leading to MHD turbulence, very efficient field
amplification, and angular momentum transport. Our
simulations indeed showed the growth of MRI-like
modes in a number of models with intermediate ini-
tial field strengths.

– If the initial field becomes sufficiently strong after core
bounce, it extracts rotational energy from the core
by such a large amount that it loses centrifugal sup-
port and begins to contract, evolving from its post-
bounce rotational equilibrium state towards another
more compact equilibrium state. The magnetic field
can thus transform a centrifugally supported core into
one that is supported against gravity (mainly) by pres-
sure forces.

– Cores with very strong initial magnetic fields (|b| >
1012 G) develop collimated bipolar outflows along the
rotation axis.

– The gravitational wave signals of weakly magnetized
cores do not differ from those of the correspond-
ing non-magnetized cores studied by ZM and DFM.
However, the peak signal amplitudes for strong mag-
netic fields differ by several percent at bounce. In
strongly magnetized models evolving from a centrifu-
gally to a pressure-supported configuration, the wave
signal changes from type II to type I.

– The presence of a collimated outflow causes a positive
GW amplitude after bounce, which can become com-
parable to the amplitude at bounce.
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In the following we present a continuation of our in-
vestigation of magnetorotational core collapse by extend-
ing our previous, purely Newtonian treatment of gravity
to an approximately relativistic one. To this end, we re-
calculated a subset of the models discussed in Paper I,
substituting the Newtonian potential by an effective TOV
potential (Rampp & Janka 2002; Marek et al. 2006), which
approximates the effects of GR gravity on the dynamics
of the core.

The paper is organized as follows. We describe the
physics underlying our models in Sect. 2, including the
approximate treatment of relativistic gravity. In Sect. 3
we present the results of our simulations and discuss
how these results obtained with the effective TOV po-
tential differ from those of the previous Newtonian simu-
lations (Paper I). Our findings are summarized in Sect. 4,
which also gives some conclusions. A compilation of some
data of our 12 models is provided in tabular form in
Appendix A. For more detailed information about our nu-
merical method and physical model the reader is referred
to Paper I.

2. Physics of our models

2.1. Magnetohydrodynamic evolution

We evolve the density ρ, the velocity v, the total en-
ergy density e? = e + ekin + emag (e, ekin = ρv2/2, and
emag = B2/8π are internal, kinetic, and magnetic en-
ergy density, respectively), and the magnetic field B of
our models according to the equations of Newtonian ideal
magnetohydrodynamics (MHD):

∂tρ + ∇m(ρvm) = 0, (1)

∂t (ρvn) + ∇m (ρvnvm + P? − bnbm) = fn, (2)

∂te? + ∇m ((e? + P?) vm − bmbnvn) = q. (3)

Here, Latin indices run from 1 to 3 and Einstein’s summa-
tion convention applies. In the following, we use natural
units where G = c = 1. The total pressure P? = Pgas +
b2/2 is the sum of the gas pressure Pgas and the isotropic
magnetic pressure Pmag = b2/2, with b = B/

√
4π. We

integrate the MHD equations in spherical coordinates
(r, θ, φ) assuming axisymmetry and equatorial symmetry.

Neutrino transport is not included in the code. We use
a simple hybrid ideal gas equation of state that consists of
a polytropic contribution describing the degenerate elec-
tron pressure and (at supra-nuclear densities) the pressure
due to repulsive nuclear forces, and a thermal contribution
that accounts for the heating of the matter by shocks:

P = Pp + Pth, (4)

where

Pp = Kργ , Pth = ρεth(γth − 1), (5)

and εth = ε−εp. The polytropic specific internal energy εp

is determined from Pp by the ideal gas relation in combi-
nation with continuity conditions in the case of a discon-
tinuous γ. In that case, the polytropic constant K also has

to be adjusted (for more details, see Dimmelmeier et al.
2002a; Janka et al. 1993).

The initial models are rotating polytropes in equi-
librium, which mimic an iron core supported by elec-
tron degeneracy pressure, with a central density ρc i =
1010 g cm−3 and equation of state parameters γi = 4/3
and K = 4.897 × 1014 (in cgs units). To initiate the col-
lapse, the initial adiabatic index is reduced to γ1 < γi.
At densities above nuclear-matter density, ρ > ρnuc, the
adiabatic index is increased to γ2

>∼ 2.5 to model the
abrupt stiffening that a realistic equation of state exhibits
at the phase transition to nuclear matter. The density at
which this transition occurs depends on the details of the
equation of state. With variations of at most a few 10%,
ρnuc ≡ 2.0 × 1014 g cm−3 can be considered a representa-
tive value. Furthermore, as this transition density value
has been used in all previous studies employing a similar
simplified equation of state, we adopt this value too, in
order to allow for a comparison with those studies.

The initial models are characterized by their rotational
energy parameter βrot = Erot/|Egrav|, where Erot and
Egrav denote rotational and gravitational energy, respec-
tively, and their degree of differential rotation, respectively
(for details see Paper I). The angular velocity profile Ω($)
is given by the so-called j-constant law,

Ω($) =
Ω0

1 +
(

$
A

)2
, (6)

where Ω0, $, and A are the angular velocity at the center,
the distance from the rotational axis, and a characteristic
length scale, respectively.

The initial models are obtained with the method and
code of Komatsu et al. (1989), which allows for both
Newtonian and GR gravity. The initial magnetic field
is purely poloidal. It is generated by a current loop of
a given radius rmag and has a prescribed field strength
|b0| = 1010 − 1013 G in the center of the core. We choose
rmag = 400 km in most of our models.

In the subsequent discussion, we follow the same nam-
ing convention as in Paper I. The allocation of model
names to physical model parameters is explained in Table
1 for the hydrodynamic initial data and in Table 2 for
the initial magnetic field configuration, respectively. The
model names defined in this way are extended further by
the letters “N” (for Newtonian) or “T” (for TOV), respec-
tively.

The simulations described in this paper were per-
formed using a second-order conservative Eulerian code
based on the relaxing TVD scheme (Jin & Xin 1995)
for the solution of the fluid equations and the constraint
transport method (Evans & Hawley 1988) to ensure the
solenoidal character of the magnetic field. The same nu-
merical code was used to compute the simulations pre-
sented in Paper I.

For the calculation of the GW amplitude, we employ
the quadrupole formula as numerically implemented by
Mönchmeyer et al. (1991). Because of the assumption of
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Table 1. Initial models and their parameterization: A and
βrot are the rotation law parameter (Eq. 6) and the ratio of
rotational energy to gravitational energy, respectively. Higher
values of A correspond to more rigidly rotating cores, and Γ1

is the sub-nuclear adiabatic index of our hybrid equation of
state.

Model A[cm] Model βrot[%] Model Γ1

A1 5 · 109 B1 ≈ 0.25 G1 1.325
A2 1 · 108 B2 ≈ 0.45 G2 1.32
A3 5 · 107 B3 ≈ 0.9 G3 1.31
A4 1 · 107 B4 ≈ 1.8 G4 1.30

B5 ≈ 4.0 G5 1.28

Table 2. Parameterization of the initial magnetic field config-
uration for the models of series AaBbGg-DdMm by the radius
of the field-generating current loop centered at rmag (parame-
terized by d = 1, 2, 3, 4, 0) and the field strength in the core’s
center B0 =

√
4π b0 (parameterized by m = 10, 11, 12, 13). For

models AaBbGg-D0Mm, the field-generating current loop is
located at infinity, yielding a uniform magnetic field through-
out the entire core. Unlike Paper I, we discuss here only models
with rmag = 400 km (i.e., d = 3).

Model rmag [km] Model b0 [G]

D1 100 M10 1010

D2 200 M11 1011

D3 400 M12 1012

D4 800 M13 1013

D0 ∞

axisymmetry, the GW signal is determined completely by
the quadrupole amplitude AE2

20 , which is a function of den-
sity, velocity, gravitational potential, and magnetic field
strength (for details see Paper I). The dimensionless GW
strain measured by an observer located in the equatorial
plane at a distance R from the core is given by

h =
1

8

√

15

π

AE2
20

R
= 8.8524× 10−21

(

AE2
20

103 cm

)(

10 kpc

R

)

. (7)

2.2. Gravity

The inclusion of the effects of gravitational forces into the
MHD equations introduces sources of momentum and en-
ergy in the conservation laws (2, 3):

fgrav = −ρ∇Φ, (8)

qgrav = −ρv · ∇Φ. (9)

The Newtonian gravitational potential ΦN obeys the
Poisson field equation

4ΦN = 4πρ, (10)

where G is the gravitational constant. The gravitational
potential is determined from the density distribution using
the computationally efficient Poisson solver of Müller &
Steinmetz (1995), which is based on the integral form of
Poisson’s equation and (in axisymmetry) on an expansion

of the density distribution into Legendre polynomials (up
to order 12 in our simulations).

In order to take into account the effects of general rel-
ativity into account in an approximate way, we follow the
approach proposed by Rampp & Janka (2002), which was
extended and further investigated by Marek et al. (2006).
In this approach the 1D spherical Newtonian potential Φ1d

N

is replaced by an effective GR potential Φ1d
TOV, which is

constructed using the TOV equation (see, e.g. Shapiro &
Teukolsky 1983) of hydrostatic equilibrium in GR:

dP

dr
= −m

r2

(

1 +
P

ρ

) (

1 +
4πr3P

m

) (

1 − 2m

r

)−1

. (11)

Here, r, ρ, and P are the radial coordinate, the density,
and the pressure, respectively. The gravitational mass

m(r) =

∫ r

0

(ρ + e) 4πr′2dr′ (12)

includes contributions from the mass density ρ and the
internal energy density e. Comparing the TOV equation
with its Newtonian limit (c → ∞), corrections to the
potential can be defined to take into account that in
GR every form of energy, including pressure, acts as a
source of gravity. Additionally, the radial dependence of
the potential is corrected for the Schwarzschild radius
RS(r) = 2m(r) of the gravitational mass inside a ra-
dius r, and a term depending on the radial motion of the
fluid is included, yielding the effective relativistic potential
(Marek et al. 2006)

Φ1d
TOV(r) = G

∫ r

∞

(

m(r′) + 4πr′3P
)

(

ρ + e + P

ρ

)

×
(

1 + v2
r − 2m(r′)

r′

)−1
dr′

r′2
. (13)

This spherically symmetric effective relativistic po-
tential is also applied in our 2D axisymmetric simula-
tions, where we first compute angular averages of the
relevant hydrodynamic variables. These are then used to
calculate the spherical Newtonian potential Φ1d

N (r) and
the spherical TOV potential Φ1d

TOV(r). Finally, we modify
the 2D Newtonian potential Φ2d

N (r, θ) to obtain the two-
dimensional TOV potential

Φ2d
TOV(r, θ) = Φ2d

N (r, θ) +
(

Φ1d
TOV(r) − Φ1d

N (r)
)

. (14)

3. Results

3.1. Hydrodynamic simulations

Recently, Marek et al. (2006) presented a comprehensive
investigation of different approximative treatments of rel-
ativistic gravity within Newtonian hydrodynamics codes
for supernova simulations. They find that the effective
relativistic potential produces excellent agreement with a
fully relativistic solution in spherical symmetry and that it
approximates relativistic solutions for rotational core col-
lapse qualitatively well. A few years earlier, Dimmelmeier
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et al. (2002a,b) compared the results of 1D and 2D su-
pernova core collapse calculations obtained with their ap-
proximate (exact for spherically symmetric models) GR
code based on the conformal flatness condition (CFC) with
those of Newtonian simulations.

To calibrate our implementation of the effective TOV
potential, Eqs. (13, 14), and to compare the results of
our MHD code with those of Marek et al. (2006) and
Dimmelmeier et al. (2002b), we perform several (purely)
hydrodynamic core collapse calculations both in spheri-
cal symmetry and in axisymmetry. The initial equilibrium
models are constructed using either Newtonian or full GR
gravity (with the same numerical codes as in DFM).

Using a sub-nuclear adiabatic index γ1 = 1.31 (see
Sect. 2.1) and assuming spherical symmetry, the TOV po-
tential yields results that agree very well with the fully
relativistic ones, the error in the bounce density ρb be-
ing about 7% compared to about 28% for a Newtonian
potential (Table 3). Note that the choice of initial data
(Newtonian or GR) has little effect (< 0.5 %). Concerning
global core quantities, like e.g. the radius where ρ(r) =
1012 g cm−3 and the mass inside this radius, we find very
good agreement, with the errors less than 2 %.

Table 3. Summary of the simulations of the spherically sym-
metric collapse of a core. The table gives the values of the
time of bounce tb and the density at bounce ρb for the evo-
lution of Newtonian (N) and GR (G) initial models using
Newtonian, TOV, or GR gravity (assuming CFC). The last
data are from DFM. The last two columns give the radius
where ρ(r) = 1012 g cm−3, and the mass inside this radius at
t ≈ 55 ms, respectively.

gravity initial data tb ρb R>12 M>12

[ms] [1014gcm−3] [km] M�
N N 47.9 3.97 24.5 0.58

TOV N 46.7 4.73 25.0 0.55
TOV G 47.8 4.75 25.1 0.55
GR G 48.0 5.10 24.8 0.54

We also test the performance of the TOV potential in
axisymmetric simulations of non-magnetic, rotating mod-
els using two prototypical models from the model set of
Paper I (Table 4, Fig. 1).

Model A1B3G3 bounces both in Newtonian and GR
gravity due to the stiffening of the equation of state be-
yond nuclear density (type I model). Using the effective
TOV potential, the model reaches a maximum density at
bounce, which is about 20% higher than in the Newtonian
case and only 2% lower than in GR. The GW signal
obtained with the effective TOV potential shows similar
qualitative features as the one calculated in GR, but over-
estimates the signal amplitudes at bounce by about 50%
(Fig. 1, upper left). Using the Newtonian potential, the
deviations are of comparable order, but persist also dur-
ing the ring-down phase. The frequencies of the ring-down
oscillations are off by ∼ 30 % in the Newtonian case, while

Table 4. Comparison of the rotating models A1B3G3 and
A3B3G3 calculated using the Newtonian potential (N), the
effective TOV potential (T), and GR (G) gravity (assuming
CFC). The last data are from DFM.

model tb
a ρb

b βmax
rot

c

[ms] [1014g cm−3] [%]

A1B3G3-N 48.6 3.40 8.1
A1B3G3-T 48.5 4.14 7.3
A1B3G3-G 48.6 4.23 10.6
A3B3G3-N 49.7 2.41 15.8
A3B3G3-T 49.5 3.19 17.1
A3B3G3-G 49.7 3.35 20.3

a Time of bounce.
b Maximum density at bounce.
c Maximum ratio of rotational to gravitational energy.

those resulting from the effective TOV potential agree
very well with the frequencies of the GR model.

Model A3B3G3 rotates initially quite differentially and
very rapidly (βini

rot = 1.8 %). In the Newtonian case, the
core bounces mainly due to centrifugal forces, although
it exceeds nuclear matter density during bounce. After
bounce, the core expands to sub-nuclear densities and ex-
hibits large-scale pulsations with little damping, giving
rise to a GW signal intermediate to ZM’s type I and type II
signals (Fig. 1, lower panels). In GR the core reaches a
∼ 40 % higher density during bounce and settles into a
pressure supported equilibrium of supra-nuclear central
density after some ring-down oscillations. The gravita-
tional wave signal is of type I. The gross features of the GR
density evolution are reproduced by the effective TOV po-
tential, and the maximum density at bounce agrees within
5 % with that of the GR simulation. However, there are
considerable differences in the GW signal. Contrary to the
Newtonian potential, the TOV potential gives the correct
signal type (I), but the amplitude of the dominant neg-
ative peak at bounce exceeds that of the Newtonian run
by ∼ 30 %, whereas the correct GR amplitude is ∼ 10 %
smaller than the Newtonian one (Fig. 1, lower right).

The above results show that the TOV potential is able
to reproduce the results of full GR simulations quite well
for slowly rotating cores. For rapidly rotating models the
evolution of the maximum density is reproduced very well,
and the GW signal is of the correct type, but consider-
able differences are found concerning the amplitude of the
GW signal. A more comprehensive investigation of the
performance of effective TOV potentials in hydrodynamic
simulations of rotational core collapse will be presented
elsewhere (Müller et. al., in preparation).

3.2. Magnetohydrodynamic simulations

We consider four models from Paper I to explore the
effects of relativistic gravity on the dynamics and the
GW signal of magnetorotational core collapse. Three of
these models exhibit the same type of signal as the cor-
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Fig. 1. Evolution of the maximum density ρmax (left panels) and the GW amplitude AE2
20 (right panels) of models A1B3G3

(upper panels) and A3B3G3 (lower panels) computed with the Newtonian (dashed red lines) and the effective TOV (solid black
lines) potential, and in full GR (dotted green lines) assuming CFC. A color version of the figure can be found in the on-line
edition of the journal.

responding Newtonian models of ZM: A1B3G3 (type I),
A2B4G1 (type II), and A3B3G5 (type III). In the fourth
model (A3B3G3), the GW signal changes from transition
type I/II to type I when changing from Newtonian to rela-
tivistic gravity. For each of these selected models, we sub-
stitute the Newtonian potential by the effective TOV po-
tential Eqs. (13, 14) and perform three MHD simulations
with an initially weak (1010 G), strong (1012 G), and very
strong magnetic field (1013 G), respectively (see Figs. 2 to
7, and the tables in Appendix A).

Before we compare the results of the Newtonian ver-
sions of these MHD models (see Paper I) with those ob-
tained with the effective TOV potential, we outline some
relevant findings of Paper I. In Newtonian gravity, type I
and type III models show a secular contraction when a
strong initial magnetic field (>∼ 1012 G) is imposed, while
the structure of the core remains unchanged from the
hydrodynamic case. Type II models lose their centrifugal
support and begin to depart from the rotational equi-
librium established in the corresponding non-magnetic

model. Eventually, they transform into a pressure sup-
ported configuration. All initially strongly magnetized
models develop collimated bipolar outflows.

Overall, the MHD TOV models show the same qual-
itative dynamic behavior and the same GW signal types
as the corresponding Newtonian ones, but they also ex-
hibit several quantitative differences. The efficiency of the
field amplification by winding due to differential rotation
differs from the Newtonian case as the collapse proceeds
to higher densities in the TOV models. This effect slightly
shifts the borders between the various signal types in pa-
rameter space. As a consequence the new type IV GW
signal, which was observed with the Newtonian potential
for one single MHD model only (Paper I), is encountered
more frequently when using the effective TOV potential.

Models of series A1B3G3-D3Mm-N/T show a quali-
tatively very similar behavior, but several small quanti-
tative differences are observed. For the weak-field model
A1B3G3-D3M10-T, both the maximum density at core
bounce and in the post-bounce equilibrium state are larger
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Fig. 2. The evolution of the maximum density (upper panels) and GW amplitudes (lower panels) of models A1B3G3-D3M10-
N/T (left), A1B3G3-D3M12-N/T (middle), and A1B3G3-D3M13-N/T (right). Solid and dashed lines show TOV and Newtonian
models, respectively.

than the corresponding Newtonian values by ∼ 25 %
(Fig. 2, top left). The magnetic field is amplified by the
differential rotation of the core in the same way as in
the Newtonian case, and the TOV model also satisfies
the MRI condition (Balbus & Hawley 1991; Balbus 1995;
Akiyama et al. 2003) in large regions of the post-bounce
core. The MRI growth times and saturation fields are of
a similar order as in the Newtonian case, i.e. a few mil-
liseconds and ∼ 1016 G, respectively (see also Paper I),
but due to the faster rotation of the collapsed inner core,
the growth times are slightly smaller and the satura-
tion fields are slightly stronger than in the Newtonian
case. The topologies and the energies of the magnetic
field of the cores are quite similar in the post-bounce
quasi-equilibrium state, the latter differing by only about
30% at t = 89 ms (ET

mag = 7.0 × 1051 erg compared to

EN
mag = 9.8 × 1051 erg). The magnetic field is predomi-

nantly toroidal, but also exhibits an additional complex
structure consisting of cylindrical sheets and regions of
field lines wound up like balls of wool. The GW amplitudes
at bounce agree very well, the differences being smaller
than 10%, while the immediate post-bounce ring-down
amplitudes are about 50% smaller in the TOV model
(Fig. 2, lower left). Concerning these results we point out
that the evolution of the model in full GR is only approxi-
mated by the use of an effective TOV potential, and hence

some additional, but probably small, modifications of the
results are expected when repeating the simulations in full
GR.

In the strong-field models A1B3G3-D3M12-T (Fig. 2,
upper middle) and A1B3G3-D3M13-T (Fig. 2, upper
right), considerable amounts of rotational energy are
extracted from the central core by the transport of
angular momentum caused by magnetic field stresses.
Consequently, the core loses centrifugal support and be-
gins to contract. This effect is qualitatively the same in
Newtonian and TOV gravity, and with respect to the time
scales, the amount of rotational energy lost, and the in-
crease in the central density also are quantitatively very
similar. The GW amplitude (Fig. 2, lower right) at bounce
is enhanced by about 40% compared to the non-magnetic
or weak-field case (Fig. 2, lower left). The post-bounce GW
signal shows the typical type I ring-down behavior super-
imposed on an initially rising (tb <∼ t <∼ tb+5 ms) and then
roughly constant positive mean GW amplitude. The later
contribution to the GW signal is due to the emergence of
a high speed (v ∼ c/3) collimated outflow (jet) along the
rotation axis.

As in the Newtonian case, the magnetic field of the ini-
tially most strongly magnetized model A1B3G3-D3M13-T
already affects the angular momentum distribution of the
core considerably during core collapse. At bounce the ro-
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tational energy of this core (ET
rot = 4.2×1051 erg) is lower

by 18% compared to that of models A1B3G3-D3M12-
T and A1B3G3-D3M10-T (ETOV

rot = 5.1 × 1051 erg). In
model A1B3G3-D3M12-T, the magnetic field is too weak
at bounce to be dynamically important. However, a few
milliseconds after bounce the poloidal field energy starts
to grow exponentially when meridional circulation flow
develops near the surface of the inner core. The flow
winds up the radial magnetic field component, and mag-
netic stresses begin to transport angular momentum out-
wards. Furthermore, a weak bipolar outflow develops in
this model towards the end of the simulation, which is
driven primarily by magnetic hoop stresses. Because of
this outflow, the GW amplitude rises slowly towards a
positive mean value, which is however smaller than in the
case of model A1B3G3-D3M13-T (Fig. 2, lower middle and
right).

To illustrate the effects of the magnetic field on the an-
gular momentum distribution we compare the evolution of
the angular averaged rotation profiles Ω(r) for three cores
from our model series at different times (Fig. 3). Although
rotating almost rigidly initially, all three cores develop a
strongly differential rotation profile at bounce. At this evo-
lutionary stage, there is only very little difference between
the profiles of models A1B3G3-D3M10-T and A1B3G3-
D3M12-T, whereas angular momentum transport by mag-
netic fields has already slightly altered the rotation profile
of model A1B3G3-D3M13-T. At t ≈ 65 ms, the weak-field
core still has essentially the same rotational profile as it
had at bounce, while the the rotation profile of the strong-
field cores has changed quite considerably. The rotation
rate of the inner core of model A1B3G3-D3M12-T is down
by a factor of ∼ 2, and angular momentum transport by
magnetic fields has created a fast rotating region outside
of the inner core.

In the case of model A1B3G3-D3M13-T, angular mo-
mentum transport is even more efficient, and at interme-
diate radii, 7 km <∼ r <∼ 100 km, a region of slow retrograde
rotation develops near the equator. At similar radii, the
fluid along the polar axis still rotates in a prograde direc-
tion but quite slowly, whereas the rotation rate of matter
outside ∼ 70 km is much faster than in the corresponding
models with weaker initial fields. Spatially, the rapidly ro-
tating matter is concentrated along the axis in the jet-like
outflow driven by the magnetic fields.

The differences between the rotation profiles reflect
different modes of angular momentum redistribution to
some extent. When amplified by compression during col-
lapse, the initially strong field in model A1B3G3-D3M13-
T manages to launch a prominent outflow, which carries
angular momentum away from the center towards the out-
flow axis. In the less strongly magnetized model A1B3G3-
D3M12-T, on the other hand, most transport is due to
the magnetic field growing near the boundary of the inner
core (r ≈ 20 km) at all latitudes by the action of MHD in-
stabilities. A few vortices develop, where the off-diagonal
Maxwell-stress components responsible for angular mo-
mentum transport become large. Consequently, a consid-

erable loss of rotational energy from the inner core occurs
due to these vortices that extend further outwards with
time. Only later in the evolution the appearance of a weak
polar outflow opens up an additional channel of angular
momentum transport similar to the one discussed above.

The efficient transport of angular momentum along
the outflow and the collimation of the fluid by magnetic
stresses together give rise to the very characteristic struc-
ture of the outflow (Fig. 4). The outflow drags along and
bends the poloidal field lines that are initially located near
the surface of the core, giving rise to the formation of a
cylindrically shaped magnetic sheet (Fig. 4). This mag-
netic sheet separates the outflow into two concentric re-
gions: an interior region resembling the beam of a jet and
an exterior region resembling the jet cocoon. The fluid
is collimated mainly by the magnetic field and predom-
inantly by its hoop stress. Fig. 4 (left panel) shows the
ratio β ≡ Pmag/Pgas of the magnetic pressure and the
gas pressure, as well as the direction and magnitude of
the Lorentz force exerted by the magnetic field on the
gas. The outflow is magnetically dominated, β being much
larger than unity. Regions of differently oriented Lorentz
force can be identified, which gives rise to the formation
of two regions, contractive and expansive, in the outflow
that roughly match the division into beam (contractive)
and cocoon (expansive) as sketched above. This feature
appears to be inherent to the evolution of magnetized jets
(see, e.g., Leismann et al. (2005)). As the gas is compressed
towards the rotational axis, both the field strength and
the angular velocity increase, i.e, the gas in the jet beam
begins to rotate very rapidly (see Fig. 4, right panel).

The next series of models to be discussed is A3B3G5-
D3Mm. Simulating these type III models with the effec-
tive TOV potential significantly changes neither the dy-
namics nor the GW signal compared to runs performed
with the Newtonian potential (Fig. 5). The TOV models
reach a slightly higher rotation rate than the correspond-
ing Newtonian ones, which leads to a slightly more efficient
amplification of the magnetic field. At 14ms post bounce,
the total magnetic energies of the Newtonian and TOV
cores are EN

mag = 3.8×1046 erg, and ETOV
mag = 6.0×1046 erg,

respectively. For models with a sufficiently strong mag-
netic field, the maximum density of the core increases
like in the Newtonian case as the core loses rotational
support due to the redistribution of angular momentum
by magnetic field stresses. In model A3B3G5-D3M13-T
the maximum density reached in the post-bounce quasi-
equilibrium configuration is about 20% higher than in
the corresponding Newtonian model (Fig. 5, upper right).
This statement also roughly holds for the weak-field model
A3B3G5-D3M10 (Fig. 5, upper left; but note the different
evolution of the maximum density for models with weak
and strong initial magnetic fields). The type III GW sig-
nals of all three magnetized models are quite similar for
the Newtonian and the effective TOV potential (Fig. 5,
lower panels).

For the third series of models, A3B3G3-D3Mm, the
changes resulting from the use of the effective TOV
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Fig. 3. Temporal evolution of the rotation profiles for the models of series A1B3G3-D3Mm-T. The panels show the angular
averaged profiles Ω(r) of models A1B3G3-D3M10-T (left), A1B3G3-D3M12-T (middle), and A1B3G3-D3M13-T (right), respec-
tively. The initial rotation profiles and the profiles at core bounce are given by the black dotted and green solid lines, respectively.
The additional lines show the profiles at t ≈ 65 ms, the red dashed and the orange dash-dotted lines corresponding to the an-
gular averaged rotation profiles of the prograde and of the retrograde rotating parts of the core, respectively. While there is no
region of retrograde rotation present in model A1B3G3-D3M10-T (left), and only a very small one in model A1B3G3-D3M12-T
(middle), large amounts of matter rotate in a retrograde way near the equator in model A1B3G3-D3M13-T (right).

  
12.67 16.11 19.55 22.98

log |FL| [cgs]

 

  
−4.00 −1.72 5.53×10−1 2.83 5.10

log β

 
200 400 600 800

r [km]

200

400

600

800

z 
[k

m
]

  
−1.24 1.91×10−1 1.62 3.05 4.48

log Ω

 
200 400 600 800

r [km]

200

400

600

800

z 
[k

m
]

Fig. 4. The left panel shows the distribution of β = Pmag/Pgas in the outflow of model A1B3G3-D3M13-T at t ≈ 65 ms (grey
scale) and the direction and modulus of the Lorentz force (arrows). The arrows are normalized to the same length, but show
the strength of the force color-coded. The right panel displays the angular velocity distribution (color scale), the velocity field
(arrows), and the magnetic field (field lines) at the same time.

potential instead of the Newtonian one depend on the
strength of the initial magnetic field (Fig. 6). The weak-
field Newtonian model A3B3G3-D3M10-N, which bounces
due to a combination of (mainly) centrifugal and pressure
forces at ρb = 2.4×1014 g cm−3 just above nuclear matter
density, shows several distinct post-bounce oscillations of
the maximum density (Fig. 6 upper left) and emits a GW
signal intermediate between a type I and a type II signal
(Fig. 6, lower left). With the effective TOV potential, the
model collapses deeper (ρb = 3.1 × 1014 g cm−3), thus
spinning faster than in the Newtonian case. Its GW signal

is almost a pure type I signal showing the typical ring-
down oscillations instead of coherent large-scale oscilla-
tions (Fig. 6, lower left). The with stronger initial fields
(A3B3G3-D3M12-T and A3B3G3-D3M13-T) collapse to
about 30% higher densities than their Newtonian coun-
terparts. The initial magnetic fields of these models are
sufficiently strong for both potentials to trigger a secular
contraction of the core, due to angular-momentum redis-
tribution by magnetic field stresses, and to cause a colli-
mated outflow.
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Fig. 5. The evolution of the maximum density (upper panels) and GW amplitudes (lower panels) of models A3B3G5-D3M10-
N/T (left), A3B3G5-D3M12-N/T (middle), and A3B3G5-D3M13-N/T (right). Solid and dashed lines show TOV and Newtonian
models, respectively.

The cores of the fourth series of models (A2B4G1-
D3Mm) considered in our study bounce due to centrifu-
gal forces as do their Newtonian counterparts (and the
GR-CFC models, see DFM) exhibiting multiple bounces
and large-scale pulsations (Fig. 7). In the weak-field case
(A2B4G1-D3M10-T), the maximum density never exceeds
nuclear matter density, and the magnetic field is ampli-
fied less efficiently than in the models of series A1B3G3-
D3Mm-T due to the longer rotation period of the less
compact core of the models of series A2B4G1-D3Mm-T.
Compared to the corresponding Newtonian model, we find
a much higher field amplification rate. Both Erot and βmag

have about the same magnitude in the TOV model at
bounce as the corresponding quantities in the Newtonian
model about 50ms past bounce (during the second pul-
sation of the core centered at t ≈ 150 ms), i.e. after a sig-
nificantly longer period of amplification. This is a conse-
quence of the deeper collapse of the TOV model, whose
maximum density exceeds that of the Newtonian model
A2B4G1-D3M10-N by a factor of about seven (Fig. 7, up-
per left). This, in turn, leads to a more compact core with
a shorter rotation period favoring a more efficient field
amplification. The core emits a type II GW signal like the
Newtonian counterpart (Fig. 7, lower left).

The effects of a strong magnetic field on models of se-
ries A2B4G1-D3Mm-T are even more pronounced than

in the Newtonian case due to the deeper relativistic po-
tential. For an initial field of ∼ 1013 G the Newtonian
model exhibits one small amplitude pulsation (centered
at ∼ 110 ms) before angular-momentum transport in-
duced by the magnetic field triggers a rapid contrac-
tion at ∼ 140 ms (Fig. 7, upper right). The dynamic im-
pact of a field of ∼ 1012 G on the core of the TOV
model is very similar to that of a field of ∼ 1013 G in
the Newtonian case. Both cores (A2B4G1-D3M12-T and
A2B4G1-D3M13-N) undergo one single post-bounce pul-
sation, where the amplitude is more pronounced in the
TOV model (Fig. 7, upper middle and right), and then
rapidly contract to densities slightly above nuclear matter
density (ρmax ≈ 2.7 × 1014 g cm−3).

During the immediate post-bounce evolution, the GW
signals emitted by the strong field models are very sim-
ilar to those of the weak-field model A2B4G1-D3M10-
T. However, later in the evolution, the GW signals are
radically different from those of the corresponding non-
magnetic and initially weakly magnetized cores (Fig. 7,
lower panels). For t >∼ 130 ms, the GW amplitude of model
A2B4G1-D3M12-T exhibits rapid oscillations with periods
in the range of milliseconds (Fig. 7, lower middle), while it
rises to high positive values in the case of model A2B4G1-
D3M13-T at t ≈ 115 ms (Fig. 7, lower right) also showing
superimposed oscillations. The frequency of the oscilla-
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Fig. 6. The evolution of the maximum density (upper panels) and GW amplitudes (lower panels) of models A3B3G3-D3M10-
N/T (left), A3B3G3-D3M12-N/T (middle), and A3B3G3-D3M13-N/T (right). Solid and dashed lines show TOV and Newtonian
models, respectively.

tions increases as the density of the core grows. When it
reaches supra-nuclear densities, we observe oscillation pe-
riods in the sub-millisecond range and oscillation ampli-
tudes on the order of 100 cm. The large positive amplitude
(∼ 900 cm) of model A2B4G1-D3M13-T at late times is
due to the very prolate shape of its shock wave (jet).

As the GW signals of models A2B4G1-D3M12-T and
A2B4G1-D3M13-T do not belong to any of the familiar
types I, II, or III, we classify them as belonging to a new
(magnetic) type IV GW signal, introduced in Paper I.

Finally, we discuss the process of shock formation in
model A2B4G1-D3M13-T in some more detail, which is
also relevant to models A2B4G1-D3M12-T and A2B4G1-
D3M13-N. In a type I model, the shock forms by the steep-
ening of pressure waves created as successive shells of core
matter feel the stiffening of the equation of state during
bounce. The pressure waves move outwards and evolve
into a shock as they accumulate near the sonic point. The
typical time scale for this process is on the order of the
sound-crossing time of the inner core (that part of the
core that is located inside the sonic point), which is ap-
proximately 1 ms. In contrast, the shock wave is launched
in a type II model at the edge of the inner core, when
it bounces due to the effect of the centrifugal force and
expands into the still infalling matter of the outer core
with supersonic speed. The strength of this shock may

vary strongly with polar angle and may even develop for
different angles at different times.

Both modes of shock generation are at work in model
A2B4G1-D3M13-T. During its collapse the rotational en-
ergy rises considerably, but less than in the non-magnetic
or weak-field case. The rotation rate βrot already reaches a
maximum during collapse when ρmax = 8.4×1013 g cm−3,
i.e. well below the bounce density ρb = 3.5× 1014 g cm−3,
as very efficient angular momentum transport by the
strong magnetic fields extracts rotational energy from the
core. This effect creates a rotation profile in the core where
matter with the same density as in the corresponding non-
magnetic or weakly magnetized models rotates faster near
the pole. The extraction of rotational energy from the in-
ner core also causes the post-shock gas to continue to fall
towards the center, and further shock waves are created
by the pressure-bounce mechanism.

Two shock waves form at high latitudes near the sur-
face of the inner core (at r ≈ 100 km and r ≈ 140 km; see
Fig. 8, upper left, last snapshot), while matter near the
equator is still falling in. No shock is present there yet
(Fig. 8, lower left). About 5 ms later at t ≈ 110 ms a third
polar shock (at r ≈ 30 km; see Fig. 8, upper middle, first
snapshot) and an equatorial shock (at r ≈ 130 km; see
Fig. 8, lower middle, first snapshot) have formed. The sec-
ond polar shock, which is stronger and propagates faster
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Fig. 7. The evolution of the maximum density (upper panels) and GW amplitudes (lower panels) of models A2B4G1-D3M10-
N/T (left), A2B4G1-D3M12-N/T (middle), and A2B4G1-D3M13-N/T (right). Solid and dashed lines show TOV and Newtonian
models, respectively.

than the first one, is about to merge with it about 6 ms
later at t ≈ 116 ms (Fig. 8, upper right, first snapshot).
Two more polar shock and one additional equatorial one
form up until the end of our simulation at t ≈ 118 ms
(about 10ms after bounce), when the first and second po-
lar and equatorial shocks have merged, and are located
at a radius of rp ≈ 410 km along the polar direction and
re ≈ 310 km along the equator, respectively (Fig. 8, right,
last snapshots). The creation and propagation of the vari-
ous shock waves gets imprinted on the density distribu-
tion, which is strongly anisotropic and exhibits several
distinct discontinuities, their number and radial location
depending on polar angle.

In the corresponding weak-field core, we find an almost
isotropic expansion of the post-shock matter supported by
centrifugal forces. At t ≈ 109 ms the nearly spherically
symmetric, leading shock wave has reached a polar and
equatorial radius of rp ≈ 320 km and re ≈ 300 km, respec-
tively. The density distribution is almost spherical and
shows much less structure than in the strong-field case.

3.3. Gravitational wave spectra

We also calculate the spectral energy distribution
|h̃(ν)|ν1/2 of the gravitational wave signals emitted by
our models. The Fourier-transformed amplitudes h̃(ν) as

a function of the signal frequency ν are obtained from the
GW signals h(t) using fast Fourier transforms (for details,
see e.g. Müller et al. 2004).

Spectra of non-magnetic models were already dis-
cussed by Dimmelmeier et al. (2002b). Typical GW spec-
tra of type I (A3B3G3-D3M10-T) and type II (A2B4G1-
D3M10-T) models are shown in Fig. 9 for a source located
at a distance of 10 kpc. The GW spectrum of a type I
model peaks at high frequencies (∼ 800 Hz), whereas the
spectrum of a multiple bounce (type II) model possesses a
very broad maximum at frequencies of ∼ 30− 200 Hz, re-
flecting the different bounce mechanisms of the inner cores
of the two models. In the former case, the core is very com-
pact, and thus having a short dynamic time scale of a few
milliseconds, leading to rapid ring-down oscillations and
a high-frequency signal. The multiple centrifugal bounces
of model A2B4G1-D3M10-T recurring on comparatively
long time scales of ∼ 35 ms cause the low-frequency max-
imum in the spectrum. This difference is also present in
a comparison of the spectra of the Newtonian and the
TOV version of model A3B3G3-D3M10. The spectrum
of the Newtonian model, being of transition type I/II,
peaks at considerably lower frequencies (∼ 150 − 500 Hz)
than the one computed with the effective TOV potential
(>∼ 400 Hz). Most of the weak-field models are marginally
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Fig. 8. Radial velocity profiles for the strong-field model A2B4G1-D3M13-T along the rotation axis (top) and at the equator
(bottom) at different epochs. Each panel shows three snapshots, plotted in black, green, and red. Solid and dashed lines
mark subsonic and supersonic radial motion, respectively. The snapshots are taken at t = 94.8, 100.4, 105.0 ms (left), t =
110.0, 110.7, 112.3 ms (middle), and t = 115.9, 117.0, 117.9 ms (right). A color version of the figure can be found in the on-line
edition of the journal.

detectable with the LIGO interferometer for a source lo-
cated at a distance of 10 kpc.

At very low-frequencies, the characteristic modifica-
tion imprinted onto the GW spectrum by strong magnetic
fields is a dominant feature. The main differences between
weak-field and strong-field versions of a given model are
visible in the low frequency range for type I models, while
the high-frequency part is affected relatively modestly.
Model A3B3G3-D3M13-T has a considerable excess of
spectral power at frequencies <∼ 100 Hz compared to model
A3B3G3-D3M10-T. In contrast to the latter, the spec-
trum of model A3B3G3-D3M13-T is flat at frequencies
below the peak frequency ∼ 800 Hz. This feature can be
attributed to the jet-like outflow, giving rise to a strongly
positive GW amplitude of slow temporal variability. Both
the magnetic and the non-magnetic contributions to the
GW amplitudes have strong low-frequency contributions
reflecting how the outflow is neither purely magnetic nor
purely hydrodynamic, but of a magnetohydrodynamic na-
ture. Note that the magnetic and non-magnetic contribu-
tions to the spectrum may have different signs. Therefore,
the total spectral power is suppressed by a factor of ∼ 2.5
with respect to both contributions. For a source at a dis-
tance of 10kpc, the flatter spectrum of the strong-field

model improves its detectability with the laser interfer-
ometers such as the LIGO detector. The high-frequency
part of the spectrum, as well as the frequency and am-
plitude of the peak in the spectrum are insensitive to the
magnetic field.

For multiple-bounce (type II) models there is a sub-
stantial difference between weak-field and strong-field
versions both at low frequencies (like in type I mod-
els) and high frequencies. A particularly good exam-
ple for such a difference are the models of series
A2B4G1-D3Mm-T, ranging from the weak-field type II
model A2B4G1-D3M10-T to the type IV model A2B4G1-
D3M13-T. Unlike the spectrum of the former model with
its broad low-frequency maximum and a rapid decrease
towards high frequencies, the spectral energy distribution
of model A2B4G1-D3M13-T has a rather strong contri-
bution above ∼ 700 Hz. At a frequency of ≈ 1500 Hz the
latter signal has about 10 times more power than the for-
mer one. This part of the spectrum is produced by the
very rapid oscillations of the core as it collapses to nuclear
matter density, and the dynamical time scale drastically
decreases.
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Fig. 9. The GW spectral energy distribution |h̃(ν)|ν1/2| of a weak-field (A3B3G3-D3M10-T, upper left) and strong-field
(A3B3G3-D3M13-T, upper right) model bouncing due to pressure forces, and of a weak-field (A2B4G1-D3M10-T, middle left)
and strong-field (A2B4G1-D3M13-T, middle right) model bouncing due to centrifugal forces. The magnetic and non-magnetic
contributions to the GW amplitude of model A3B3G3-D3M13-T are displayed in the lower left and right panels, respectively.
The grey-shaded regions give the detection limits of the current (LIGO I) and the Advanced LIGO interferometer. The source
is assumed to be located at a distance of 10 kpc.

4. Summary and conclusions

We have presented an investigation of the gravitational
collapse of rotating magnetized stellar cores including an
approximate relativistic TOV potential to mimic the ef-
fects of general relativity in our simulations. The imple-
mentation of this potential requires only minor modifi-
cations of an existing Newtonian MHD code and pro-
vides a good approximation to full GR dynamics in the
case of the collapse of a stellar core to a neutron star.
In particular, we are able to reproduce the change in
the bounce mechanism (centrifugal vs. pressure) occur-

ring in some (non-magnetic, rotating) models when chang-
ing from Newtonian to GR gravity. The maximum densi-
ties obtained with the approximate relativistic TOV po-
tential are, as expected, higher than the corresponding
Newtonian ones. This also holds for the rotational ener-
gies, although some exceptions exist to this rule. The grav-
itational wave signals exhibit the same qualitative behav-
ior as in full GR, but they differ quantitatively.

Comparing the results obtained with the approximate
TOV potential with those of our previous Newtonian cal-
culations of the magneto-rotational collapse of stellar cores
(described in detail in Paper I), we find that the main dif-
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ference corresponds to a “shift” in the parameter space.
In TOV gravity, one needs faster or more differential rota-
tion to cause centrifugal effects of similar strength for the
same equation of state. Given the same initial model and
the same equation of state, a core in TOV gravity will col-
lapse to higher densities. This deeper collapse of the TOV
model leads in many of our models to a faster rotation of
the inner core than in the corresponding Newtonian case,
causing a more efficient amplification of the magnetic field
by differential rotation (Ω dynamo). In principle, an α-Ω-
type dynamo could develop due to differential rotation
and possible 3D MHD instabilities, as in the Newtonian
case (Spruit 2002). However, in our axisymmetric simula-
tions, the transformation of toroidal into poloidal fields is
suppressed, hence we are unable to simulate this kind of
dynamo.

We find that the magneto-rotational instability can de-
velop in the TOV models as well as in the Newtonian ones.
The growth times and saturation fields of the magnetic
fields resulting from the MRI are within the same order
of magnitude as in the Newtonian case, i.e. in the range of
milliseconds and >∼ 1015 G, respectively. Due to the grid-
resolution problem already discussed for the Newtonian
models (see Paper I), we are unable to simulate the evo-
lution of the MRI unless the seed field is already quite
strong. In models belonging to the latter class, we find
an exponential growth of the poloidal field of the inner
core during the post-bounce evolution by the action of
the MRI.

The influence of strong magnetic fields on the dynam-
ics and the GW signal of the core by braking its rotation
and thus triggering a post-bounce contraction is aided by
the deeper TOV potential. For type II multiple bounce
models, we find that magnetic fields affect the dynam-
ics and GW signal of the core by a similar amount to
what is observed for Newtonian models with a consider-
ably (i.e.∼ 10 times) stronger initial magnetic field.

For the most extreme type II model (A2B4G1-D3M13-
T), the rotation rate βrot already decreases during the final
stages of the initial core collapse. When the rotation rate
reaches its maximum value of about 12%, a centrifugally
supported shock wave is launched that fails to explode
the core. The core continues to collapse and eventually
bounces at supra-nuclear densities due to the stiffening of
the equation of state. The GW signal of this model belongs
to the magnetic-type GW signal (type IV) introduced in
Paper I. At early epochs it resembles a type II signal, but
after the launch of the first shock it shows quite a different
nature. Instead of the long-period oscillations character-
istic of a type II signal, the GW amplitude shows violent
oscillations whose frequencies increase as the local sound-
crossing time scale decreases in the core when it collapses
to nuclear matter density. Such a signal is also produced
by a less magnetized TOV model of the same model series
(A2B4G1-D3M12-T) and by the corresponding strongly
magnetized Newtonian model (A2B4G1-D3M13-N).

In some of our models we observe that the GW sig-
nal exhibits an almost constant positive amplitude to-

wards the end of the respective simulations (see, e.g. model
A3B3G3-D3M13-T/N), or it oscillates around a positive
value (see, e.g.model A3B3G5-D3M13-T/N). This is due
to the presence of the jet-like outflow along the rotation
axis in those models. It is tempting to interpret this behav-
ior of the GW signal as a “burst with memory” (Braginsky
& Thorne 1987), as suggested by T. Pradier (private com-
munication), which results e.g. when a blob of matter that
is initially at rest is accelerated during some time interval
and moves at a constant speed afterwards, giving rise to a
non-vanishing constant gravitational wave amplitude (see,
e.g. Segalis & Ori 2001). However, we do not think that the
GW signals of our models show a “memory” effect. The
almost constant GW amplitude in some models is a tran-
sient resulting from the combined action of a decelerating
jet-like outflow and the related magnetic contributions to
the total quadrupole moment.
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Appendix A: Synopsis of our results

Tables A.1 and A.2 provide an overview of the dynamic
evolution of the flow and the magnetic field and include
information on the resulting gravitational wave signal of
all our models.
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Table A.1. Some characteristic model quantities.
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a Time of bounce.
b Maximum density at bounce (in units of 1014g cm−3). A density value with an exclamation mark indicates that the maximum

density of the model exceeds the bounce density during the later evolution.
c Maximum GW amplitude.
d Magnetic contribution to the maximum GW signal
e A rough mean value of the wave amplitude (in cm) at some late epoch; no value is provided when the amplitude does not

approach a quasi-constant asymptotic value. A large absolute value of this amplitude indicates the presence of an aspheric
outflow.

f Maximum value of the ratio of rotational to gravitational energy.
g Maximum value of the ratio of magnetic to gravitational energy. An exclamation mark indicates that the magnetic field is

still growing at the end of the simulation.
h The time when βmag reaches its maximum value.
i Maximum value of the ratio of toroidal magnetic to gravitational energy.
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Table A.2. Some characteristic model quantities (name of model given in column 1) when the core has reached a quasi-
equilibrium state.

Model t a rc
b Mc

c 2π/Ω d |b| e |bφ| f rp

sh
g re

sh
h

[ms] [km] [M�] [ms] [G] [G] [km] [km]

A1B3G3-D3M10-T 70 19.7 0.58 4.2 7.1 × 1013 7.0 × 1013 528 471
A1B3G3-D3M12-T 70 19.6 0.56 3.2 1.6 × 1015 1.2 × 1015 549 490
A1B3G3-D3M13-T 70 18.0 0.60 −1631 2.9 × 1015 2.3 × 1014 1170 563

A2B4G1-D3M10-T 167 134 1.26 34 9.8 × 1010 8.5 × 1010 — —
A2B4G1-D3M12-T 141 45.3 0.97 9.0 2.7 × 1014 2.6 × 1014 — —
A2B4G1-D3M13-T 129 23.9 0.91 139 1.9 × 1015 3.4 × 1014 — —

A3B3G3-D3M10-T 68 22.0 0.64 3.8 9.1 × 1013 9.1 × 1013 532 427
A3B3G3-D3M12-T 68 25.5 0.55 9.4 6.7 × 1014 5.6 × 1014 545 458
A3B3G3-D3M13-T 68 23.0 0.54 28 1.3 × 1015 3.9 × 1014 1008 590

A3B3G5-D3M10-T 50 12.6 0.19 3.0 4.0 × 1013 4.0 × 1013 241 241
A3B3G5-D3M12-T 41 10.9 0.17 2.4 4.1 × 1015 3.9 × 1015 144 144
A3B3G5-D3M13-T 50 13.0 0.24 −31 3.5 × 1015 1.2 × 1014 822 329

a Time at which the quantities given were determined. For the models of series A2B4G1-D3Mm-T, which do not reach a
quasi-equilibrium state by the end of the simulation, we provide the corresponding quantities for the final model of the
respective simulation.

b The surface radius of the gravitationally bound quasi-equilibrium configuration. Since it is still surrounded by an (expanding)
envelope of high density matter, the definition of its surface radius rc is somewhat uncertain.

c The mass of the gravitationally bound quasi-equilibrium configuration.
d The rotation rate at the surface. The angular velocity Ω is averaged over the angle θ. Note that this quantity varies strongly

and on short time scales near the surface. Thus, the values provided should be used with care. Negative values of the rotation
rate signify counter-rotating cores.

e The total magnetic field at the surface. Note that this quantity varies strongly and on short time scales near the surface.
Thus, the values provided should be used with care.

f The toroidal magnetic field at the surface. Note that this quantity varies strongly and on short time scales near the surface.
Thus, the values provided should be used with care.

g The radius of the shock wave at the polar axis. No entry here implies that the shock has already left the computational grid.
h The radius of the shock wave at the equator. No entry here implies that the shock has already left the computational grid.


