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ABSTRACT

Spherically symmetric (1D) and two-dimensional (2D) supernova simulations for progenitor stars between 11 M� and 25 M� are
presented, making use of the Prometheus/Vertex neutrino-hydrodynamics code, which employs a full spectral treatment of neu-
trino transport and neutrino-matter interactions with a variable Eddington factor closure of the O(v/c) moments equations of neutrino
number, energy, and momentum. Multi-dimensional transport aspects are treated by the “ray-by-ray plus” approximation described
in Paper I. We discuss in detail the variation of the supernova evolution with the progenitor models, including one calculation for
a 15 M� progenitor whose iron core is assumed to rotate rigidly with an angular frequency of 0.5 rad s−1 before collapse. We also
test the sensitivity of our 2D calculations to the angular grid resolution, the lateral wedge size of the computational domain, and to
the perturbations which seed convective instabilities in the post-bounce core. In particular, we do not find any important differences
depending on whether random perturbations are included already during core collapse or whether such perturbations are imposed
on a 1D collapse model shortly after core bounce. Convection below the neutrinosphere sets in 30−40 ms after bounce at a density
well above 1012 g cm−3 in all 2D models, and encompasses a layer of growing mass as time goes on. It leads to a more extended
proto-neutron star structure with reduced mean energies of the radiated neutrinos, but accelerated lepton number and energy loss
and significantly higher muon and tau neutrino luminosities at times later than about 100 ms after bounce. While convection inside
the nascent neutron star turns out to be insensitive to our variations of the angular cell and grid size, the convective activity in the
neutrino-heated postshock layer gains more strength in better resolved models. We find that low (l = 1, 2) convective modes, which
require the use of a full 180 degree grid and are excluded in simulations with smaller angular wedges, can qualitatively change the
evolution of a model. In case of an 11.2 M� star, the lowest-mass progenitor we investigate, a probably rather weak explosion by
the convectively supported neutrino-heating mechanism develops after about 150 ms post-bounce evolution in a 2D simulation with
180 degrees, whereas the same model with 90 degree wedge fails to explode like all other models. This sensitivity demonstrates the
proximity of our 2D calculations to the borderline between success and failure, and stresses the need to strive for simulations in 3D,
ultimately without the constraints connected with the axis singularity of a polar coordinate grid.
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1. Introduction

The mechanism by which massive stars explode is still unclear.
State-of-the-art models with a spectral treatment of the neu-
trino transport by solving the Boltzmann equation or/and its mo-
ments equations agree in the finding that in spherical symme-
try (1D) neither the prompt bounce-shock mechanism nor the
delayed neutrino-driven mechanism lead to explosions for pro-
genitors more massive than about 10 M� (e.g., Rampp & Janka
2002; Liebendörfer et al. 2001, 2004; Thompson et al. 2003;
Sumiyoshi et al. 2005). Previous two-dimensional (2D) simu-
lations (e.g., Herant et al. 1994; Burrows et al. 1995; Janka
& Müller 1996; Fryer 1999; Fryer & Heger 2000) and three-
dimensional (3D) models (Fryer & Warren 2002, 2004) show
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am Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748
Garching, Germany.

the importance of convective overturn in the neutrino-heating
layer behind the stalled supernova shock, which can enhance
the energy transfer from neutrinos to the stellar matter and
thus cause “convectively supported neutrino-driven explosions”.
These multi-D models, however, employed radical simplifica-
tions of the treatment of neutrinos, mostly by grey diffusion or
in a parametric way as heating terms. Concerns about the relia-
bility of such approximations of crucial physics in studies of the
supernova explosion mechanism were expressed by Mezzacappa
et al. (1998).

Also the influence of convective activity inside the nascent
neutron star, i.e. below the neutrinosphere, on the explosion
mechanism has long been a matter of debate and requires further
studies. The Livermore group (Wilson & Mayle 1988, 1993) ob-
tained explosions in their basically 1D models by assuming that
so-called neutron-finger mixing instabilities exist in the newly
formed neutron star, which accelerate the energy transport from
the neutron star interior to the neutrinosphere. Thus the neutrino
luminosities are boosted and the neutrino heating behind the
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supernova shock is enhanced. The analysis by Bruenn & Dineva
(1996) and more recently by Bruenn et al. (2004), however,
has demonstrated that neutrino diffusion leads to lepton num-
ber equilibration between perturbed fluid elements and their sur-
roundings that is faster than assumed by Wilson & Mayle (1988,
1993). Therefore neutron fingers are unlikely to occur in the
supernova core. Bruenn et al. (2004) instead discovered a new
mode of doubly-diffusive instability, which they termed “lepto-
entropy fingers” and which is also associated with neutrino-
mediated thermal and lepton diffusion. The importance of this
phenomenon during the early, critical phases of the explosion,
however, was recently questioned by Dessart et al. (2005) be-
cause of its slow growth compared to Ledoux convection. The
latter, in turn, was predicted to play a role in supernovae on
grounds of 1D models of the neutrino cooling phase of nascent
neutron stars. A Ledoux-type of convection was indeed found to
be present during the first second after neutron star formation in
2D hydrodynamic simulations by Keil (1997), Keil et al. (1996),
Janka & Keil (1998) and Janka et al. (2001). The latter simula-
tions, however, considered only the proto-neutron star without
self-consistently following its feedback with the environment of
the supernova core. Moreover, a grey, flux-limited equilibrium
“ray-by-ray” diffusion code for the neutrino transport was used,
with strong simplifications in the description of the opacities.

Only recently multi-dimensional simulations of stellar core
collapse and post-bounce evolution with a spectral treatment
of the neutrino transport have become possible (Buras et al.
2003, 2006; Livne et al. 2004; Walder et al. 2005; Swesty &
Myra 2005a,b; Burrows et al. 2006). Although these current ap-
proaches are the first steps of removing the severe deficiencies of
the previous generation of multi-dimensional models, all of them
still contain approximations of various, and different, aspects in
the treatment of 2D transport. Swesty & Myra (2005a,b), for ex-
ample, use a flux-limited diffusion description, an approximation
also made by Walder et al. (2005) and Dessart et al. (2005), who
in addition solve the transport for all neutrino energy groups in-
dependently. In contrast, Buras et al. (2006) have developed a
“ray-by-ray plus” approximation based on a variable Eddington
factor solver for the coupled set of neutrino moments equations
and Boltzmann equation, including a full coupling of the energy
bins by neutrino reactions and by Doppler and gravitational red-
shift effects.

The approximations employed by the different groups are
diverse and might hamper a detailed quantitative comparison
of the results in the near future, and might constrain such ef-
forts to a purely qualitative level. Eventually it will be neces-
sary to test and possibly replace the current approximations by
a more rigorous solution of the transport problem in the five-
or six-dimensional phase space and in a relativistic framework,
once the corresponding codes have become available and the
necessary substantial increase of computer power has happened
(Cardall 2004; Cardall et al. 2005).

Here we present results obtained with the multi-dimensional
neutrino-hydrodynamics code MuDBaTH, which is the “ray-
by-ray plus” implementation of the Prometheus/Vertex code
described in detail in Buras et al. (2005, Paper I). In continua-
tion of our previous work (Buras et al. 2003, 2006), where also a
broader introduction into the status of the field and its open ques-
tions is provided, we present here 1D simulations for nine dif-
ferent progenitor stars with masses between 11.2 M� and 25 M�,
and compare them with 2D simulations for three of these stars.
The core collapse and post-bounce evolution of these models
was followed until nearly 300 ms after shock formation.

Using a state-of-the-art treatment of spectral neutrino trans-
port for hydrodynamical supernova simulations, the main goals
of our work are:

– we compare 1D and 2D models in order to obtain quantita-
tive information about the influence of convection below the
neutrinosphere on the neutrino emission, the evolution, and
the structure of the nascent neutron star. We analyse the in-
fluence of proto-neutron star convection on the conditions in
the neutrino-heating layer behind the shock, and assess quan-
titatively the impact of convective activity in the postshock
layer on the possibility for reviving the stalled shock and for
getting a delayed explosion;

– we also study the differences of convection between a non-
rotating and a rotating 15 M� model, whose iron core spins
rigidly before collapse with a period of about 12 s, leading to
an “extreme” period of the settled neutron star of the order
of 1 ms. In addition, we investigate the effects of low-mode
(dipolar, l = 1, or quadrupolar, l = 2) hydrodynamic insta-
bilities during the post-bounce evolution of an 11.2 M� star,
comparing simulations with a full 180◦ polar grid and sim-
ulations which are contrained to a ∼90◦ equatorial wedge
(with periodic angular boundary conditions), thus prevent-
ing the development of such low modes in the pattern of the
fluid flow;

– moreover, we perform tests for the influence of (i) the nu-
merical resolution, in particular in the lateral direction of
our 2D polar grid, (ii) of the chosen size of the angular
wedge, and (iii) of the way in which we perturb our models
to initiate the growth of convective instabilities, i.e., whether
we follow a perturbed 2D model through core collapse and
core bounce, or whether we map a 1D model to the 2D grid
shortly after bounce, imposing random perturbations at that
time.

The paper is structured in the following way. Main results of
our 1D supernova simulations for the chosen set of progenitor
models – whose basic properties are compared in Appendix A
– will be discussed in Sect. 2, supplemented with more details
in Appendix B. The 2D models will be presented in Sect. 3,
with an analysis of the effects of convection in the forming neu-
tron star in Sect. 3.1, a discussion of convection in the neutrino-
heating layer in Sect. 3.2, a description of our full 180◦ model in
Sect. 3.3, of the rotating model in Sect. 3.4, and of neutrino emis-
sion anisotropies in Sect. 3.5. Most of our 2D simulations with-
out rotation were started from 1D collapse models only shortly
after bounce, at which time small random perturbations were
imposed to seed convective instabilities. Since the adequacy of
such an approach may be disputed, we also performed simula-
tions where the collapse phase was followed in two dimensions.
This allowed us to investigate the growth of inhomogeneities
during infall and to assess the possible influence of that on the
growth of convection after bounce (Appendix E). A summary
and conclusions will follow in Sect. 4. Appendix C contains a
linear analysis of the structural changes of the proto-neutron star
which can be expected as a consequence of convection below
the neutrinosphere, and Appendix D introduces a simple mixing
scheme by which we achieved to reproduce in 1D simulations
the main effects of proto-neutron star convection as observed in
our 2D models.

2. One-dimensional models

We have chosen a total of nine progenitors from different groups
doing stellar evolution modeling. Details of the models can be
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found in Appendix A. These models are listed there in Table A.1
and cover a zero age main sequence mass (ZAMS mass) range
from 11 to 25 M�. They represent various types of pre-collapse
stellar structures.

The one-dimensional core-collapse simulations were per-
formed with our 1D neutrino-hydrodynamics code Vertex with
spectral neutrino transport, using spherical coordinates and the
physics described in detail in Buras et al. (2006). This includes
a state-of-the-art treatment of neutrino interactions and an ap-
proximative description of general relativistic effects. The sim-
ulations described in the previous and in the present paper were
done with the equation of state (EoS) of Lattimer & Swesty
(1991), supplemented by a general lepton-photon-baryon EoS
(ideal gases with Coulomb corrections) that extends to densities
below those described by the Lattimer & Swesty EoS1 The nu-
merical resolution used for hydrodynamics and neutrino trans-
port was also specified in Buras et al. (2006).

The evolution can be separated into the phases of collapse,
bounce, prompt shock propagation, neutrino burst, and accretion
phase, which is in some cases accompanied by a transient shock
expansion. None of our 1D simulations yields a prompt or de-
layed explosion.

The phases of core collapse, shock formation and propaga-
tion, and νe burst at shock breakout reveal only little differences
between the progenitors because the core structure and proper-
ties are very similar or become very similar during collapse (for
details, see Appendix B and also Liebendörfer et al. 2002). At
the moment when the νe burst is emitted the shock has reached
an enclosed mass of ∼1.0 M� outside of which differences in
the progenitor structure become larger. Therefore the mass in-
fall rate through the shock begins to differ between the models.
At the same time the postshock velocities become negative and
the shock has converted to a stalled accretion shock. Since the
rate of mass accretion by the shock is very high shortly after
bounce, the shock is still pushed outward for some time due to
matter accumulating behind it. This “passive” expansion of the
shock comes to an end when the mass accretion rate has dropped
sufficiently and the neutrino cooling and settling of the accreted
matter withdraw support from the shock. The conditions dur-
ing this phase change only slowly. The situation can therefore
roughly be characterized by steady-state conditions that depend
on a number of parameters governing the accretion phase, i.e. the
mass accretion rate through the shock, ∂t Msh, the mass MPNS and
radius rPNS of the proto-neutron star (PNS)2, and the neutrino
luminosity Lν (for a detailed discussion, see Appendix B). In
recent analytic studies (Janka 2001; Arcones Segovia 2003) hy-
drostatic solutions are discussed which fairly well describe the
nearly stationary accretion of the stalled shock as seen in the nu-
merical simulations at later post-bounce times, provided that the
model does not encounter quick changes such as a sudden drop
of ∂t Msh, or the onset of the explosion.

1 The error in the α-particle mass fraction that was recently discoved
in the EoS of Lattimer & Swesty (1991) was tested to have no impor-
tant influence on our simulations; for details see Buras et al. (2006). In
some models, we replaced the Lattimer & Swesty EoS below a den-
sity of 1011 g cm−3, i.e. in the regime of possible α-particle presence af-
ter bounce, by our low-density EoS without discovering any significant
dynamical differences.

2 For simplicity, we identify the PNS mass and radius with the mass
and radius enclosed by the electron neutrinosphere, Mνe and rνe , respec-
tively. Throughout this paper, neutrinospheres are defined as “transport
spheres”, using the opacities for momentum transfer between neutrinos
and stellar medium in calculating optical depths, as given in Eq. (28) of
Buras et al. (2006).

All 1D models fail to explode and the shock retreats
to <100 km towards the end of our simulations (see top panel
in Fig. B.4 in Appendix B). What is the effect of neutrino heat-
ing behind the shock? To discuss this question we consider two
timescales, following Janka & Keil (1998), Janka et al. (2001),
and Thompson et al. (2005). The advection timescale of matter
falling inward from the shock to the gain radius is

τadv(t) = −
∫ rsh(t)

rgain(t)

1
vr(r, t)

dr , (1)

where the gain radius rgain is defined as the innermost radial
position where neutrino heating dominates neutrino cooling,
and vr(r, t) is the radial velocity (which is negative when mat-
ter is accreted by the PNS). The heating timescale is

τheat(t) =
4π

∫ rsh(t)

rgain(t)
εshell

bind (r, t)ρ(r, t)r2dr

4π
∫ rsh(t)

rgain(t)
Q(r, t)r2dr

, (2)

where Q is the net neutrino heating rate per unit of volume and

εshell
bind (r, t) ≡ ε(r, t) + Φenclosed

1D (r, t), (3)

is the so-called local specific binding energy already introduced
in Buras et al. (2006). Here, ε = eint +

1
2 v

2 is the specific en-
ergy, eint is the internal energy per unit of mass, and v is the
absolute value of the fluid velocity. The gravitational poten-
tial Φenclosed

1D (r, t) is calculated taking into account only the mass
enclosed by the radius r.

While the advection timescale represents the time matter
spends in the gain layer (between shock and gain radius), the
heating timescale measures the time needed for neutrino heating
to deposit an energy equivalent to the binding energy of the mat-
ter. Clearly, heating is of no importance as long as τadv � τheat.
Thus, for obtaining a neutrino-driven explosion, the condition
τheat <∼ τadv must hold for longer than a time interval τheat (see
the discussion in Janka & Keil 1998; Janka et al. 2001; Janka
2001; and Thompson et al. 2005). Note that this condition is not
necessarily sufficient for an explosion but it tells one when a vis-
ible shock expansion can be expected.

Looking at the timescales and their ratio (Figs. 1, 2), one
recognizes that most models have long heating timescales and
thus neutrino heating is inefficient in causing shock expansion.
The ratio τadv/τheat is always less than 1/2 except in the two low-
mass models, s11.2 and n13, where neutrino heating is stronger
during a short period of time.

The ratio becomes largest during the transient shock ex-
pansion associated with the times when composition interfaces
reach the shock and the entropy makes a jump. This phe-
nomenon, which is most extreme at the edges of the small
iron cores in Model n13 at tpb ∼ 30 ms and in Model s11.2
around tpb ∼ 100 ms, but in a weaker form is also present in
Models s1b, s20.0, and s15s7b2 at around tpb = 120 ms, 135 ms,
and 170 ms, respectively, occurs because the density and there-
fore the mass accretion rate of the infalling matter drops at the
interfaces of shells of different composition (Appendix A). The
sudden decrease of the ram pressure allows for a transient shock
expansion until the shock finds a new equilibrium position at a
larger radius.

With a larger shock radius the postshock velocities are lower
and the advection timescale increases. More efficient neutrino
heating further strengthens the shock, the shock can there-
fore expand to even larger radii. This behaviour is obtained in
Model n13, and especially in Model s11.2, where τadv/τheat is
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Fig. 1. The advection timescales as defined in Eq. (1) versus post-
bounce time. The lines are smoothed over time intervals of 5 ms.

Fig. 2. The timescale ratios, τadv/τheat, as functions of time. The lines
are smoothed over time intervals of 5 ms.

close to unity for a period of about 20 ms. This, however, is
shorter than the heating timescale τheat � 30 ms. The pronounced
growth of the shock radius and of the advection timescale for
Model s11.2, which results in the large local maxima of the cor-
responding curves in Figs. 1, 2, and B.4, is produced by a con-
tinuous strong decrease of the mass accretion rate, see Fig. B.4.
After 113 ms post bounce this phase is over and the mass accre-
tion rate continues to decline less rapidly. The shock then retreats
quickly and finds a new quasi-stationary radius, where, however,
neutrino heating becomes less efficient again.

In Models s15s7b2, s20.0, and s1b the drop of ∂t Msh leads
also to shock expansion, but the effect is not strong enough to
change τadv significantly; also, in these models the composi-
tion interface reaches the shock so late that the shock is already
deep in the gravitational potential well and the postshock ve-
locities are considerably higher than in Models n13 and s11.2.
Therefore τadv/τheat remains well below unity.

In summary, we find that all our 1D simulations evolve both
qualitatively and quantitatively in a similar way. In spite of max-
imum shock radii around 130−150 km the models do not reveal
explosions. Only in the two lightest progenitor models, s11.2
and n13, the drop in ∂t Msh at the composition shell interfaces
is sufficiently steep and large and happens sufficiently early to
allow the shocks to reach a radius of 170 km. Nevertheless, the
models are far from producing explosions because the advec-
tion timescales remain always shorter than the timescales for
neutrino heating, and the phases where the ratio of both ap-
proaches unity are much shorter than the heating timescale it-
self. Therefore neutrino heating is not strong enough to drive an
explosion.

The one-dimensional models analyzed so far have one sig-
nificant shortcoming: they do not take into account hydrody-
namic instabilities in the stellar core. Convection, especially the
so-called hot bubble (HB) convection in the gain layer, has been
seen to strengthen the shock in previous multi-dimensional su-
pernova simulations. We can analyze our 1D models for the exis-
tence of Ledoux-unstable regions. For this purpose we introduce
the new variable (defined as parameter χ in Foglizzo et al. 2005),

ngrow(t) ≡
∫ rsh(t)

rgain(t)

[
ωBV(r′, t)

]
>0

dr′

vr(r′, t)
, (4)

where vr is the radial component of the velocity and the Brunt-
Väisälä frequency is defined as

ωBV(r, t) ≡ sgn
(
CL(r′, t)

) √∣∣∣∣∣CL(r′, t)
ρ(r′, t)

dφ (r′, t)
dr

∣∣∣∣∣ , (5)

with dφ /dr being the local gravitational acceleration. CL is the
Ledoux-criterion, which is given by

CL =

(
∂ρ

∂s

)
Ye ,p

ds
dr
+

(
∂ρ

∂Ye

)
s,p

dYe

dr
· (6)

It predicts instability in static layers if CL > 0. The
Brunt-Väisälä frequency denotes the growth rate of fluctuations,
if it is positive (instability), and the negative of the oscillation
frequency of stable modes, if it is negative. In the gain layer be-
tween shock and gain radius, however, the gas is falling inward
and the instability condition for Ledoux convection is not just
given by CL > 0 (Foglizzo et al. 2005). Here the parameter ngrow
is of crucial importance and represents the number of e-foldings
which short-wavelength perturbations will transiently be ampli-
fied during their advection from the shock to the gain radius.
Since advection has a stabilizing influence, the threshold for con-
vective instability in the gain layer is found to be ngrow ∼ 3, and
the growth of modes of lowest order (i.e., longest wavelengths)
becomes possible only when ngrow >∼ 5−7 (Foglizzo et al. 2005).
Figure 3 shows that only some of our models get close to the
critical value of ngrow for which Ledoux convection can be ex-
pected according to a linear perturbation analysis. In case of
Models s11.2 and n13, the value of ngrow clearly exceeds the
critical threshold because in these models high entropy jumps at
shell interfaces cause the shock to reach particularly large maxi-
mum radii (see Fig. B.4). This means that the postshock veloci-
ties entering the denominator in the integrand of Eq. (4) become
smaller than in other models. It should be noted, however, that
the discussion in Foglizzo et al. (2005) applies exactly only when
the initial perturbations are very small. In case of our relatively
large initial perturbations of order 1%, the fluctuations can grow
to the non-linear regime – which is not accessible to the stability
analysis – already for smaller values of ngrow.
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Table 1. Parameters of computed 2D models for progenitor stars with different masses. Ωi is the angular velocity of the Fe-core, which is assumed
to rotate uniformly, prior to collapse, θ0 and θ1 are the polar angles of the lateral grid boundaries, and Nθ is the number of grid points in the lateral
direction. t2D denotes the time (relative to the bounce time) when the simulation was started or continued in 2D.

Model ∗ Progenitor Ωi [θ0, θ1] Nθ Resolution Collapse t2D Perturbation Boundary
(rad s−1) (degrees) (degrees) in 2D [ms] (%) conditions

s112_32 s11.2 – [46.8, 133.2] 32 2.70 – 6.4 v,±1 periodic
s112_64 s11.2 – [46.8, 133.2] 64 1.35 – 7.3 v,±1 periodic
s112_128_f s11.2 – [0, 180] 128 1.41 – 6.4 v,±1 reflecting
s15_32 † s15s7b2 – [46.8, 133.2] 32 2.70 – 6.5 v,±1 periodic
s15_64_p s15s7b2 – [46.8, 133.2] 64 1.35 + −175 ρ,±2 periodic
s15_64_r s15s7b2 0.5 [0, 90] 64 1.41 + −175 ρ,±1 reflecting
s20_32 s20.0 – [46.8, 133.2] 32 2.70 – 6.5 v,±1 periodic

s15_mix ‡ s15s7b2 – – 1 – – – –
∗ Models s112_32, s112_64, s15_32, s15_64_p, s15_64_r, and s20_32 were discussed in overview in Buras et al. (2003).
† This is Model s15Gio_32.b from Buras et al. (2006). Different from the other models presented in this paper, Model s15_32 was computed
with an older implementation of the gravitational potential, which contained a slightly different treatment of the relativistic corrections in the
potential (see also the comment in Table B.1). This affects only the neutrino luminosities and average neutrino energies by a few percent. We have
corrected this difference in our plots for the luminosities and mean energies. The correction was calculated as ∆L = L1D,new − L1D,old, where L1D,new

and L1D,old are the luminosities of the 1D simulations with the “new” and “old” versions of the gravitational potential, respectively. Then the
corrected luminosity is given by L2D,corr = L2D,old + ∆L, where L2D,old is the luminosity of the 2D model which was simulated with the old version
of the gravitational potential. For the average neutrino energies the procedure is analogous.
‡ This model was calculated in 1D using the mixing algorithm described in Appendix D for treating effects from PNS convection.

Fig. 3. Number of e-foldings that the amplitude of perturbations is esti-
mated to grow during advection of the flow from the shock to the gain
radius in our 1D models (cf. Eq. (4)). The lines are smoothed over time
intervals of 5 ms. For Model n13, ngrow starts with values around 20 at
tpb = 25 ms, and begins to decrease at tpb = 35 ms. Note that the entropy
profile was smoothed before calculating the Brunt-Väisälä frequency,
see the discussion in Buras et al. (2006, Sect. 2.5). The dotted line
marks the instability criterion in advective flows according to Foglizzo
et al. (2005), and corresponds to an amplification factor of about 20.

3. Two-dimensional models

For our two-dimensional studies with assumed azimuthal sym-
metry we used the numerical code, input physics, and resolution
as described in Buras et al. (2006) and specified in Table 1. The
innermost core of 1.7 km radius was computed in spherical sym-
metry. We have chosen three representative progenitors: s11.2,
which shows favorable conditions for developing strong Ledoux
convection in the neutrino-heated postshock layer, as well as the

two less promising progenitors, s15s7b2 and s20.0. A total of
seven simulations were performed in 2D, see Table 1. Most sim-
ulations were started from a 1D model around 7 ms after bounce,
at which time the radial velocity was randomly perturbed with an
amplitude of ±1%. For each progenitor we calculated a model
with low angular resolution (2.7◦) with a 86.4◦ lateral wedge
around the equatorial plane of the polar grid. In addition, we
calculated high-resolution (1.35◦) versions for the two lighter
progenitors s11.2 and s15s7b2. The corresponding 15 M�
2D simulation was started at the onset of core collapse with an
initial random density perturbation (in Model s15_64_p) of ±2%
in order to address the question whether the onset of convec-
tion after bounce changes when nonradial perturbations in the
stellar core are followed through infall instead of being im-
posed shortly after bounce on a 1D collapse model in mapping
the latter onto a 2D grid. Another simulation for the 11.2 M�
progenitor, Model s112_128_f, with a resolution of 1.41◦, was
performed with a full 180◦ grid. Finally, one simulation with
the 15 M� progenitor, Model s15_64_r, included rotation. The
angular frequency at the onset of core collapse was assumed
to be Ωi = 0.5 rad s−1 and constant in the Fe and Si core,
and decreasing (spherically symmetrically) like r−3/2 outside
of 1750 km (1.43 M�). This choice of the rotation rate and ro-
tational profile was motivated by results for pre-collapse stellar
cores of stars whose evolution is followed including the angu-
lar momentum transport by magnetic fields (Heger et al. 2005).
Our choice of Ωi in the iron core is roughly ten times lower than
the core rotation of non-magnetic stars (Woosley et al. 2002)
and about ten times larger than Heger et al.’s rotation rates of
magnetized stars. It intends to maximize the effects of rotation
during core collapse under the constraints that (a) the initial star
can well be considered as spherically symmetric, and that (b) the
assumed rotation, which is superimposed on a 1D stellar model,
does not imply significant deviations from the hydrostatic equi-
librium and gravitationally bound state of the progenitor model.
In order to fulfill both requirements we limit the rate of rotation
such that the influence of centrifugal forces is very small prior
to collapse: Fcent/Fgrav < 1% everywhere for the initial ratio of
the centrifugal force to the gravitational force. The density of
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the stellar model was perturbed by ±1% and the simulation was
carried out with a lateral resolution of 1.41◦ in a wedge from
the polar axis to the equator (i.e. besides axial symmetry also
equatorial symmetry was assumed).

In Sect. 3.1 we shall focus on convection below the neu-
trinosphere of the proto-neutron star (“PNS convection”). We
will try to classify this convection and will describe its effects
on the evolution of the supernova and on the neutrino emission.
To this end we will develop a mixing algorithm as described in
Appendix D and will present a 1D simulation performed with
it. We shall finish by discussing resolution and perturbation ef-
fects and differences between the simulations with different pro-
genitors. In Sect. 3.2 a description of convective overturn in the
neutrino-heating layer behind the shock (“hot bubble (HB) con-
vection”) will follow. Again, we will first discuss differences
compared to 1D models. Here, the resolution and size of the
angular wedge play a much more important role and we need
to elaborate on both aspects. Also the sensitivity of the onset
of HB convection to the size of the seed perturbations will be
discussed, and our results for the evolution of pre-collapse per-
turbations during the infall phase in Model s15_64_p can be
found in Appendix E. Since differences of this model compared
to Model s15_32 were minor, the results of this simulation will
be included in the plots following below mostly without any spe-
cial discussion. In Sect. 3.3 we shall describe our calculation
with the full 180◦ grid, which allows low (l = 1, 2) modes to
develop with important consequences. Section 3.4 will contain
our results for the rotating 15 M� model. We shall discuss the
influence of rotation on the PNS, its neutrino emission, and con-
vection according to the Solberg-Høiland-criterion (generalized
to include the effects of Ye-gradients on convection). The role of
centrifugal forces for the HB convection and shock propagation
will also be addressed.

3.1. Proto-neutron star convection

Many phenomena inside the PNS, e.g. the conditions for con-
vection in its interior, can mostly be discussed without taking
into account the convective activity in the HB layer (but not in-
versely!). For several of the discussed models (s15_32, s20_32,
s15_64_p) this is true, because they develop only weak HB con-
vection with little impact on the shock propagation and on the
PNS. Therefore nearly steady-state conditions prevail around the
PNS, the mass in the gain layer changes only very slowly, and
the mass accretion rate onto the PNS is approximately the same
as the mass accretion rate through the shock. Moreover, the
accretion flow onto the PNS is nearly laminar and isotropic.

Stability criterion. In order to analyze the hydrostatic neutron
star for convective instability we consider the Brunt-Väisälä fre-
quency, Eq. (5). However, since neutrinos are strongly coupled
with the dense plasma and close to equilibrium with the mat-
ter in the PNS, we generalize the Ledoux-criterion to a “Quasi-
Ledoux criterion”, in which the effects of neutrino transport are
approximately accounted for (see Wilson & Mayle 1993; Buras
et al. 2006),

CQL ≡
(
∂ρ

∂stot

)
〈Ylep〉,〈p〉

d 〈stot〉
dr

+

(
∂ρ

∂Ylep

)
〈stot〉,〈p〉

⎛⎜⎜⎜⎜⎜⎜⎝d
〈
Ylep

〉
dr

− βdiff
dYlep

dr

⎞⎟⎟⎟⎟⎟⎟⎠ > 0, (7)

for instability, where stot ≡ s + sν is the entropy including the
neutrino entropy, Ylep ≡ Ye + Yν is the electron lepton num-
ber, and βdiff ∼ 1 is a parameter which expresses the efficiency
of lepton number exchange between buoyant fluid elements and
their surroundings via neutrino diffusion. For our evaluation we
choose βdiff = 1, following Keil (1997). The brackets 〈〉 de-
note angular averages, whereas the last term, βdiffdYlep/dr, in-
volves local evaluation because it describes the change of lepton
number along the paths of buoyant fluid elements by the neu-
trino exchange between such fluid elements and their surround-
ings. Note that due to the nearly perfectly central gravitational
acceleration in case of non-rotating neutron stars, only the ra-
dial components of the gradients of stot and Ylep occurring in
the general vector form of the Ledoux criterion (cf. Eq. (9)) are
relevant (buoyancy acts only perpendicular to equipotential sur-
faces). Moreover, we simplified the analysis by performing it
on the laterally averaged stellar background. The determination
of stable and unstable layers on the basis of laterally averaged
stellar quantities leads to essentially the same conclusions as the
lateral average of the Ledoux criterion after evaluation with the
2D data.

Recently, Bruenn et al. (2004) presented an elaborate dis-
cussion of hydrodynamic instabilities in the PNS including the
effects of neutrino diffusion (an extension of a previous anal-
ysis by Bruenn & Dineva 1996). They argue that local per-
turbations in the lepton number will be reflected in the neu-
trino phase space and thus cause a net neutrino diffusion which
tries to wash out the perturbations, an effect which can be ac-
counted for by a “response function”. Since neutrinos also carry
entropy, the neutrino diffusion that smoothes the lepton num-
ber perturbations will create entropy perturbations. This effect
is characterized by a “cross response function”. Of course, en-
tropy perturbations will in an analogous way induce an equili-
brating net neutrino diffusion which at the same time transports
lepton number between the fluid elements and their surround-
ings, corresponding to another “response function” and a “cross
response function”. Bruenn et al. (2004) found in a numerical
analysis that perturbation-induced neutrino lepton number trans-
port by diffusion is considerably more rapid than thermal trans-
port, and that the transport of lepton number reacts faster to
entropy perturbations than to lepton number perturbations. For
such a situation convective instability should set in for most stel-
lar conditions, even when the fluid is Ledoux stable. In partic-
ular, Bruenn et al. (2004) describe two kinds of instabilities in
the presence of neutrino diffusion: one instability occurs when
the entropy difference between a displaced fluid element and its
surroundings in a background with an entropy gradient results
in a lepton fraction difference, which provides a driving force
such that the induced perturbation grows. The buoyant rise of
a perturbed fluid element, together with neutrino diffusion, will
thus further increase the difference in entropy between the fluid
elements and their surroundings and will create lepton number
fluctuations from entropy perturbations, which continue to drive
buoyant motion. A second instability exists where the neutrino
diffusion creates an “overstable” situation, i.e. where the effect
of neutrino diffusion will drive a perturbed fluid element back to
its original position, but to such an extent that the fluid element
overshoots and thus oscillates around its original position with
increasing amplitude. Bruenn et al. (2004) call these two doubly-
diffusive instabilities “lepto-entropy finger” (LEF) convection
and “lepto-entropy semiconvection” (LESC), respectively. They
also distinguish Ledoux convection. However, Ledoux and LEF
convection are closely related (LEF convection is an extension
of Ledoux convection).
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Bruenn et al.’s analysis of stellar profiles shows that
Ledoux/LEF convection should appear in an extended region of
the PNS from around 15 km to the neutrinospheres, whereas
LESC should be visible deeper in the core. We suppose that
our stellar profiles might yield qualitatively similar results if
one applied their analysis. Our two-dimensional simulations,
however, do not confirm their predictions in detail. For exam-
ple, Model s15_32 shows convective instability between 17 km
and 30 km at tpb = 48 ms, see Fig. 5a. We interpret this as
Ledoux convection and determine growth rates of the Ledoux
instability (cf. Figs. 6 and 9) that are typically more than a factor
of 10 higher than those of LEF found by Bruenn et al. (2004).
Our hydrodynamic simulations reveal a behavior in agreement
with our larger rate estimates. Moreover, the region showing
convective activity does not extend to the neutrinospheres, which
are beyond 60 km at that time (Fig. 11), and also at later times
the upper boundary of the convective layer stays well below the
neutrinospheres (Fig. 5b).

We suspect that the discussion by Bruenn et al. (2004) is
not fully applicable up to the neutrinospheres. It is based on
the assumptions that the mean free path (mfp) of neutrinos is
much smaller than the size of the displaced fluid elements and
shorter than local gradients in the background medium so that
neutrinos diffuse and stay close to local equilibrium. In con-
trast, Fig. 4 reveals that the neutrino mfp becomes large near
the upper edge of the convective zone, in particular for muon
and tau neutrinos. As a consequence, the neutrinos start stream-
ing increasingly rapidly and the neutrino densities in this region
(first for νµ and ντ, then for ν̄e and finally for νe) begin to deviate
from local chemical equilibrium. The net rate of neutrino losses
therefore grows strongly, leading to a quick rise of the neutrino
luminosities. Despite their growing mfp, the production of neu-
trinos in the stellar medium is sufficiently strong to allow for effi-
cient energy and lepton number drain. We therefore suspect that
in the semitransparent layer below the neutrinosphere the accel-
erating radial transport causes enhanced neutrino release such
that entropy and lepton number fluctuations are wiped out by
neutrinos streaming off. This happens before local exchange be-
tween fluid elements and their surroundings can efficiently take
place as assumed by Bruenn et al. (2004). LEF instabilities thus
have no time to grow.

LESC as predicted by Bruenn et al. (2004) to occur far in-
side the PNS is not visible in our models. However, these authors
mention that the existence of LESC is very sensitive to the exact
values of the response functions, which in turn depend on the
details of the neutrino interactions. We suspect that the differ-
ent description of neutrino-matter interactions in our simulations
might prevent LESC. In any case, convection very far inside the
PNS should have less influence on the shock dynamics than the
PNS convection which we see in our models. Therefore we will
ignore the possibility of LESC in the following discussion and
consider its effects on the neutrino emission and the explosion
mechanism as negligible.

Phenomenology. In Figs. 6–8, we see that a convectively unsta-
ble layer begins to develop in the PNS about 30 ms after bounce.
This happens in a region which initially is stable due to a pos-
itive entropy gradient, see Fig. 7. As neutrino diffusion carries
entropy away more efficiently at larger radii where the optical
depth is lower, the entropy profile flattens, and finally the en-
tropy gradient turns negative and the PNS becomes Ledoux un-
stable. Ten ms later the perturbations have grown (with a growth
rate of about ωBV ∼ 0.5−1.0 ms−1, see Figs. 6 and 9) to become

Fig. 4. Top: transport mean free paths of muon and tau neutrinos and
antineutrinos for different energies as functions of radius at 243 ms
after bounce, about 200 ms after the onset of PNS convection in
Model s15_32. Also shown is the local density scale height (bold solid
line). The vertical line marks the radius of the outer edge of the con-
vective layer in the PNS (cf. Fig. 5). Bottom: mean free paths of νe, ν̄e,
and νx as functions of neutrino energy at a radius r = 25 km (marked
by the vertical line in the upper panel). The arrows indicate the mean
energies of the νe flux (solid), ν̄e flux (dashed), and νx flux (dotted, co-
inciding with the dashed arrow) at this position in the star.

non-linear and strong PNS convection has set in. This can be
seen in the large lateral velocities in Fig. 8 (dark shaded). Similar
to Keil (1997), we find that the structure of the convective cells
is initially that of rolls with angular sizes between 20◦ and 30◦
and radial extension between 10 and 15 km (Fig. 5a). The rolls
are stable for about 5 ms, then decay and form again at different
locations in the same layer. 200 ms later, the contraction of the
PNS has reduced the radial size of the convective cells to 10 km.
The overturn velocities are around 3× 108 cm s−1 with peaks of
up to 5 × 108 cm s−1. At later times the velocities decrease to
values around 2 × 108 cm s−1.

The region with large lateral velocities (>700 km s−1, dark
shaded in Fig. 8) is wider than the layer with instability accord-
ing to Eq. (7). This has two reasons: First, rising or sinking
fluid elements can over- and undershoot into the adjacent sta-
ble layers. Second, the periodic boundary conditions applied in
some of our simulations allow rings of uniform, lateral velocity
to occur. This artificial phenomenon is associated with matter
that settles from the neutrino-heated convective postshock layer
onto the PNS and has obtained large lateral velocity components
by participating in the overturn motion in the gain layer. The
rings show up in Fig. 8 as a layer with high lateral velocities that
moves from the “hot-bubble” (HB) convective zone to the con-
vection zone in the PNS between 100 and 150 ms post-bounce.
Looking at the velocity distribution in 2D snapshots of the sim-
ulation, Fig. 5b, the rings can be identified around r = 30 km.

Throughout our simulations, PNS convection occurs exte-
rior to an enclosed mass of 0.6 M�3, see Fig. 8. This inner

3 Note that in 2D simulations the “enclosed mass” is not a Lagrangian
coordinate but corresponds to the sphere which contains a certain
amount of mass at a given time.
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a b

c d
Fig. 5. Snapshots of PNS convection in Model s15_32 at 48 ms a) and 243 ms b) after bounce. The upper left quadrants of each plot depict
color-coded the absolute value of the matter velocity, the other three quadrants show for νe, ν̄e, and νx (clockwise) the ratio of the local neutrino
flux to the angle-averaged flux as measured by an observer at infinity. The diagonal black lines mark the equatorial plane of the computational grid
and the thick circular black lines denote the neutrinospheres (which have a radius larger than 60 km in figure a)). The figures c) and d) show at the
same times the relative lateral variations of lepton number and entropy (including neutrino entropy), i.e. δX ≡ (X − 〈X〉ϑ)/ 〈X〉ϑ for a quantity X.

Fig. 6. Brunt-Väisälä frequency (Eq. (5)), using Eq. (7) as stability cri-
terion, evaluated for different 1D models at 20, 30, and 40 ms after
bounce.

boundary changes only little during the simulations, whereas
the outer boundary of the convective layer moves outward in
mass as time goes on, following the ongoing accretion of mat-
ter on the PNS. Keil et al. (1996) found in their models that
PNS convection develops in an initially narrow layer, but the in-
ner edge of this layer moves continuously deeper into the PNS.

Fig. 7. Lepton number and total entropy versus enclosed mass in the
PNS for the 1D model s15s7b2 for different post-bounce times before
the onset of PNS convection in the corresponding 2D simulation.

Their models, however, were evolved until 1.3 s after bounce,
and the inward motion of the lower boundary of the convective
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Fig. 8. Convective region in Model s15_32. The dark-shaded regions
have lateral velocities above 7 × 107 cm s−1, the light-shaded regions
fulfill the Quasi-Ledoux criterion, Eq. (7). The solid lines mark the radii
up to 30 km in 5 km steps, and 50 km; the dashed lines indicate density
contours for 1014, 1013, 1012, and 1011 g cm−3.

Fig. 9. Brunt-Väisälä frequency in the 1D simulation of the stel-
lar progenitor s15s7b2 (thin) and the corresponding 2D simulation,
Model s15_32 (thick), at 30 ms (dashed), 62 ms (solid), and 200 ms
(dash-dotted) post-bounce. At 30 ms, the thin and thick dashed lines
coincide. All lines are truncated at 50 km. Positive values indicate in-
stability. For the 2D model the evaluation was performed with laterally
averaged quantities.

zone may take place at times not covered by our present calcula-
tions. Moreover, the velocity at which the convective layer digs
deeper into the PNS must be expected to depend on the treatment
of the neutrino transport, which was described very approxima-
tively by grey, radial, flux-limited equilibrium diffusion by Keil
et al. (1996) and Keil (1997), who also made quite radical ap-
proximations for the neutrino-matter interactions (see Appendix
in Keil & Janka 1995).

We note here that a closer discussion of the first 200−300 ms
of post-bounce evolution, comparing these older diffusion sim-
ulations with our present models, is not useful to convey our
understanding particularly of the possible deficiencies of the
simpler diffusion treatment. Such a comparison is hampered
by other very important differences between the simulations.
Firstly, the post-collapse models from which the calculations of
Keil et al. (1996) and Keil (1997) were started, were provided
by Bruenn and thus were computed with a neutrino transport
treatment that was not compatible with the one used for the sub-
sequent 2D evolution. This must be suspected to have caused
transient effects during an early phase of the post-bounce evo-
lution of undetermined length. Such transients are not present
in our current, consistent models. Secondly, the simulations by
Keil et al. (1996) and Keil (1997) considered a neutron star
of 1.1−1.2 M� and thus much smaller in mass than the com-
pact remnants of the models in this paper, which grow in mass
particularly rapidly during the first hundreds of milliseconds
after bounce when the mass accretion rates are still high (see
Fig. B.4). And thirdly, neglecting the accretion layer outside of
the neutron star and placing the outer grid boundary near the
neutrinosphere by Keil et al. (1996) and Keil (1997) may also
have caused differences of their results from the present, full
simulations of the collapsing supernova core. We therefore re-
frain from attempting a closer comparison of these old and our
new models beyond the level of qualitative statements about the
existence, long-lasting presence, and basic structural features of
a convective layer inside the nascent neutron star.

The convective flow transports energy and lepton number
from deeper layers of the PNS closer to the neutrinospheres,
thereby flattening the entropy gradient and the lepton number
profile, see Fig. 10. However, at the end of the calculation the
initially quite steep negative Ylep gradient has not disappeared
completely. This suggests that the convective mass motions can
not efficiently transport lepton number over large distances. The
reason for this is the fact that buoyant mass elements exchange
leptons easily with their local surroundings via neutrino diffu-
sion. Therefore rising bubbles with initially large Ylep end up
with low Ylep when they reach the outer stable layers of the PNS.
For this to happen the timescale of Ylep-equilibration between
buoyant bubbles and their surroundings via neutrino diffusion
must be of the same order as the rise timescale of the bubbles.
This situation corresponds to a value of βdiff in Eq. (7) close to
unity. If the rise time were much longer, the 1D and 2D pro-
files of Ylep in the convective region would not differ, while if it
were much shorter, the Ylep profile would be flat like the entropy
profile.

A second effect contributes in establishing the observed con-
ditions in the convective PNS layer. In contrast to the energy
loss from the stellar medium, which is small in the considered
period of time compared to the huge heat capacity of the ac-
cretion layer, lepton number is radiated away very efficiently, at
least initially. At early times, when Ylep is still large in the con-
vective PNS layer, the number flux of νe is much larger than that
of ν̄e and the lepton number loss proceeds very rapidly. At later
times, however, it slows down because Ylep has decreased and
the release of νe and ν̄e has become more similar.

Effects on radial structure and neutrino emission of the PNS.
The redistribution of lepton number and energy gradually af-
fects the structure of the PNS. The “drain” region, where Ylep
and internal energy eint are extracted, has densities close to the
nuclear density (0.3−2 × 1014 g cm−3), whereas the “dump”
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Fig. 10. Lepton number, total entropy, specific internal energy, and den-
sity profiles versus enclosed mass in the PNS for a sample of 1D
(dotted) and 2D simulations of different progenitor stars, 200 ms after
bounce (i.e., approximately 160 ms after the onset of PNS convection).
For the 2D models angle-averaged quantities are plotted.

region, where lepton number and energy are deposited, has lower
densities (1012−1013 g cm−3), see Fig. 8. A detailed analysis pre-
sented in Appendix C reveals that the transport of lepton number
from the drain region to the dump region will effectively lead to
expansion. Also the transfer of energy from the drain region to
the dump layer leads to an expansion of the PNS. Consequently
the neutrinosphere radii in 2D simulations are larger than in the
corresponding 1D models, see Fig. 11.

The changes in the radial profiles of energy and lepton num-
ber and the expansion of the PNS relative to 1D simulations have
interesting consequences for the neutrino emission. Convection
in the PNS alters the emission of neutrinos in and above the
dump region and therefore the PNS loses energy and lepton
number at a different rate than without convection. In this case
the linear analysis (Appendix C) shows that an increased loss of
lepton number in and above the dump region leads to a more ex-
tended PNS, while an increased loss of energy leads to a more

Fig. 11. Radius of the electron neutrinosphere (as a measure of the
PNS radius) for the 2D models and their corresponding 1D models.
For Model s15_64_r we show the equatorial (upper) and polar (lower)
neutrinospheric radii. For other 2D models, angle-averaged quantities
are plotted.

compact PNS (Fig. C.1). As will be discussed in detail below,
PNS convection causes enhanced lepton number release and ini-
tially reduced energy loss via neutrinos, both supporting the “ex-
pansion” of the PNS relative to the 1D simulations. At times later
than 150 ms post bounce, the energy loss in neutrinos is also en-
hanced relative to the 1D models, without however being able to
compensate the inflative effects on the PNS structure caused by
the convective redistribution of energy and lepton number and by
the enhanced lepton losses form the neutrinospheric layer due to
neutrino emission.

Immediately after the onset of PNS convection the increase
of Ylep near the upper boundary of the convective region leads
to a higher electron chemical potential µe and therefore a higher
electron neutrino chemical potential µνe = µe +µp −µn. Thus the
ν̄e abundance (given by equilibrium conditions) decreases sig-
nificantly in this layer. Although this happens in a region where
the ν̄e luminosity has reached only 5−10% of its final value (see
Fig. 5a) the decrease is sufficiently large to lower the total ν̄e
luminosity by several percent. When the PNS convection has
developed to full power, Lν̄e can be lowered by up to 10% in
comparison to the 1D models, see Fig. 12. The decrease of the ν̄e
equilibrium abundance also affects the heavy-lepton (“νx” for νµ,
ν̄µ, ντ, or ν̄τ) luminosity via the process νeν̄e → νxν̄x, which is
the dominant νx production process in the region where the re-
duction of the ν̄e abundance happens. However, Lνx in that region
has already attained 70% of its final value, and therefore the re-
duced νx production rate leads to a decrease of the radiated νx

luminosity by at most 5%, typically less (Fig. 12).
After 100 ms post-bounce these moderate effects are over-

ridden by the structural changes of the PNS, which lead to larger
neutrinospheric radii than in 1D models, as well as the ongo-
ing convective transport of energy into the region below the
νx-sphere. Moreover, the convective layer now extends to lower
densities so that the region affected by PNS convection con-
tributes now 30%, 30%, and 90% to the radiated νe, ν̄e, and νx lu-
minosities, respectively (see Fig. 5b), although this region has a
transport optical depth (for a definition see Buras et al. 2006,
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Fig. 12. Luminosities of electron neutrinos, νe, (top) electron antineutri-
nos, ν̄e, (middle), and one kind of heavy-lepton neutrinos, νµ, ν̄µ, ντ, ν̄τ,
(denoted by νx; bottom) for the 2D models and for their corresponding
1D counterparts, evaluated at a radius of 400 km for an observer at rest.
Note that the luminosities of Model s15_32 were corrected for the dif-
ferences arising from the use of a slightly different effective relativistic
potential as described in the context of Table 1.

Eq. (28)) in excess of 40, 14, and 10 for νe, ν̄e, and νx, respec-
tively, and therefore is still well inside the neutrinosphere.

Larger neutrinospheric radii without the described convec-
tive inflow of energy would lead to lower luminosities as a
consequence of an associated decrease of the neutrinospheric
temperature Tν. This, for example, is seen in simulations with
different EoSs where the PNS radius depends on the high-
density EoS properties. A larger PNS radius correlates with
lower luminosities (Janka et al. 2005). In contrast, in our
2D models the luminosities increase. We indeed find lower Tν,
which result in lower mean neutrino energies 〈εν〉 (defined by the
ratio of energy to number flux), see Fig. 13. The difference can
be up to 10% for all neutrino kinds after 200 ms of PNS convec-
tion. Because of the energy transport to the neutrinospheres by
convection, however, this reduction in Tν is much weaker than
it would be in an adiabatically expanding layer. Apparently, the
larger neutrinospheric radii and only slightly lower temperatures

Fig. 13. Average energies of the radiated neutrinos (defined by the ratio
of energy to number flux) for the 2D models and for the corresponding
1D models, evaluated at a radius of 400 km for an observer at rest. The
lines are smoothed over time intervals of 5 ms. Note that the average
neutrino energies of Model s15_32 were corrected for the differences
arising from the slightly different effective relativistic gravitational po-
tential as described in the context of Table 1.

lead to a net increase of the luminosities relative to the 1D re-
sults, see Fig. 12. The effect is strongest for νx, which decouple
energetically from the medium already near the upper boundary
of the convective layer (Fig. 5b); after 200 ms of convection,
Lνx is almost 20% higher than in the 1D models. Lνe increases
only by a few percent, while Lν̄e is almost identical in 1D and
2D models, which means that the higher electron chemical po-
tentials and the effects associated with the convective energy
transport and structural changes of the PNS nearly compensate
each other.

After the onset of PNS convection the 2D models delep-
tonize faster than their 1D counterparts (Fig. 14). The lepton
number loss is enhanced after 250 ms of post-bounce evolution
by typically 8−10% (compare Fig. 14 with Fig. B.5). The evo-
lution of the total energy loss is more complex and is smaller
than in the 1D simulations for the first ∼100−140 ms of reduced
energy emission. Only afterwards the losses become stronger in
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Fig. 14. Differences between the total lepton number (top) and energy
losses (bottom) of the 2D models and their corresponding 1D models as
functions of post-bounce time. Here, L is the total lepton number flux,
and L is the total neutrino luminosity.

the 2D cases. However, even 250 ms after bounce, the total en-
ergy loss is only 2−4% higher with PNS convection.

Note that the neutrinospheric luminosities in 2D models rel-
ative to 1D models are increased by 25%, 15%, and 25% for νe,
ν̄e, and νx after 200 ms. The effect of the PNS convection there-
fore manifests itself more strongly at the neutrinospheres than
farther outside, because the luminosity differences get reduced
due to structural differences above the neutrinospheres and thus
resulting differences in the neutrino absorption and emission out-
side of the neutrinospheres.

We have performed several 2D simulations with varied res-
olution (2.7◦ and 1.35◦ or 1.41◦) and different choices of the
lateral grid (either a wedge with 86.4◦ around the equator or a
full 180◦ grid). The results show that these differences affect the
behaviour of the PNS convection only little. The flattening of the
Ylep profile appears to be slightly more effective at higher resolu-
tion, see Fig. 10, but the difference is too small to be distinguish-
able in other observables. Thus, a resolution of 2.7◦ seems suffi-
cient to simulate PNS convection, mainly because the convective
cells have a size of 20◦−30◦ and are therefore much larger than
the size of the angular grid zones. Similarly, the convective cells
are sufficiently small to fit several times into the angular wedge
in each of our simulations. Boundary conditions are therefore
found to have no visible influence, and our simulation with a
full 180◦ grid revealed no important differences of PNS con-
vection and of its consequences compared to the models with
a 90◦ angular wedge.

The PNS convection also evolves in a similar way in our
simulations with different progenitors. The relative differences
compared to the 1D models are quite similar for all progenitors.

Moderate differences, e.g. in the total energy loss,
∫

L2Ddt −∫
L1Ddt , between Models s11_32, s15_32, and s20_32, see

Fig. 14, appear small considering the large differences in the
mass accretion rates and post-bounce evolution of these stars.
The evolution of the energy loss is clearly different and lower
only in the rotating Model s15_64_r, where a significant amount
of energy is stored in rotation instead of being radiated by neu-
trinos. Also different seed perturbations have little effect on the
evolution of convection in the PNS. Large seeds as, e.g., in
Model s15_64_p, lead to PNS convection which starts typically
10–20 ms earlier. This short time difference of PNS convection,
however, has hardly any influence on the supernova evolution.

Effects on the gain layer. The structural differences be-
tween 1D and 2D models, which are induced by PNS con-
vection, also influence the layer between the neutrinospheres
and the shock. We can discuss these influences on the basis of
Models s15_32 and s20_32, in which HB convection remains
rather weak so that the differences from 1D result mainly from
effects associated with PNS convection. In order to understand
how much PNS convection contributes to the differences be-
tween 1D and 2D models we have also performed a 1D sim-
ulation, Model s15_mix, for the progenitor s15s7b2, in which
PNS convection was treated with the simple mixing scheme de-
scribed in Appendix D. In Fig. 10 we see that this approximative
treatment reproduces the transport of energy and lepton num-
ber by PNS convection rather well. Therefore Model s15_mix
can be understood as a simulation with PNS convection but
without HB convection. Comparing Models s15s7b2, s15_32,
and s15_mix, we conclude that model properties which basi-
cally are independent of the evolution of the gain layer, such
as neutrinosphere radii and neutrino luminosities, are sensitive
to PNS convection but not to HB convection (Figs. 11, 12). The
differences between the 1D and 2D models in the gain region,
which are visible in the mass of the gain layer, Mgl, the advec-
tion timescale, τ∗adv, and the shock radius, rsh (Figs. 17, 15), are
initially mainly caused by the HB convection, despite the fact
that it is weak. However, the changes due to PNS convection
become gradually more and more important, and make the dom-
inant influence at the end of the simulations. In the following
we will only discuss the effects which result from PNS con-
vection. Model s15_mix will therefore also be considered as a
“2D model”.

Note that in two-dimensional models with downflows and
buoyant rising bubbles in the convective, neutrino-heated layer,
Eq. (1) is not applicable as definition of the advection timescale,
and we therefore use the following definition of an “effective
advection timescale”:

τ∗adv(Mi) ≡ τ∗adv(t1) = t2(Mi) − t1(Mi), (8)

where t2 is defined by the condition M(r = rgain, t = t2) = Mi

and t1 by the condition M(r = rsh, t = t1) = Mi. This is the
time difference between the moment when the shock encloses a
mass Mi and the time when this same mass Mi is enclosed by
the gain radius. The expression is evaluated for different values
of Mi to monitor the time evolution of τ∗adv. In cases where this
definition of the advection timescale is used, we also apply it
to the corresponding 1D models for comparison. In the multi-
dimensional situation τ∗adv is a measure of the average storage
period of gas in the gain layer, providing a rough estimate for
the time interval which accreted matter is exposed to neutrino
heating, without however considering in detail the complex fluid
flow in downdrafts and rising plumes.
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Fig. 15. Maximum and minimum shock radii as functions of time for the
2D models of Table 1, compared to the shock radii of the corresponding
1D models (dotted lines).

As explained above, PNS convection leads to larger radii of
the neutrinospheres. The mass enclosed by the neutrinospheres,
however, is smaller because of a less compact PNS. The structure
of the PNS is changed such that this also applies for the gain
radius and its enclosed mass, as can be seen for Models s15s7b2,
s15_mix, and s15_32 at late times in Fig. 16. However, the mass
which is enclosed by the standing shock is identical in 1D and
2D models because it depends on the total mass accreted by the
shock and therefore on the infall region and progenitor structure,
which do not differ between the 1D and 2D models (the shock
radius has almost no influence on the enclosed mass because of
the relatively low densities behind the shock). For these reasons
the mass in the gain layer must be expected to be larger in 2D.
The top panel of Fig. 17 confirms this conclusion. We find that
the mass in the gain layer, Mgl, can be more than a factor of two
larger than in 1D. Inevitably, with larger gain radius and larger
mass in the gain layer, the shock radius is also larger than in 1D,
see Fig. 15.

Since the density at a given radius between the neutri-
nospheres and the shock is higher in a model with PNS

Fig. 16. Minimum and maximum gain radii as functions of post-bounce
time for our 15 M� 2D simulations compared to the gain radius of the
corresponding 1D models.

convection (this is a structural consequence of the larger νe-
sphere radius, which is located at ρ � 1011 g cm−3), and the
mass accretion rate Ṁ(r) is approximately constant for different
radii above the gain radius (a feature of nearly stationary con-
ditions), and Ṁ is equal in 1D and 2D (a consequence of the
conservation of the mass flow through the shock), the postshock
velocities are (on average) smaller in 2D. This implies a larger
effective advection timescale, see Fig. 17, second panel. The val-
ues of τ∗adv turned out to be larger by up to a factor of three in the
2D simulations.

Astonishingly, we find that the total heating rate of the gain
layer, δtEgl, is almost identical in 1D and 2D (Fig. 17, third
panel). Model s15_mix, however, reveals that this is a coinci-
dence. A comparison of this model with Model s15s7b2 shows
that PNS convection actually reduces δtEgl slightly. We will
not try to comprehend this behaviour analytically here, we only
mention that the lower νe and ν̄e luminosities and the lower neu-
trino energies (which the absorption rates depend on) lead to
weaker heating. Also the fact that the gain radius is larger may
contribute to this decrease. We believe that the larger mass in
the gain layer is of minor importance for δtEgl, because this ad-
ditional mass is located at larger radii where the heating rate is
small.

Since Mgl increases as a consequence of PNS convection,
also τheat ∝ Mgl/δtEgl increases. The ratio τadv/τheat, however,
changes much less (Fig. 17, fourth panel). This can be under-
stood by the fact that both Mgl and τadv increase due to PNS con-
vection, as explained above. These changes partly compensate
each other in the evaluation of the timescale ratio.

In summary, PNS convection has two important conse-
quences: First, the emitted neutrinos have lower mean energies
than in 1D models (up to 10% lower after 200 ms of PNS convec-
tion). The neutrino luminosities initially decrease due to the on-
set of PNS convection (Lν̄e by about 10% and Lνx by about 5%)
and increase at later times (t >∼ 150 ms post-bounce), to reach
several percent higher values for νe and even ∼20% higher val-
ues for νx after 200 ms of PNS convection. Second, PNS con-
vection affects the evolution of the gain layer and shock due to
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Fig. 17. First (top) panel: mass in the gain layer. Second panel: advec-
tion timescale as defined by Eq. (8). Third panel: total heating rate in
the gain layer. Fourth panel: ratio of advection timescale to heating
timescale. All lines are smoothed over time intervals of 5 ms. Note that
the evaluation of τadv fails after the onset of the expansion of the post-
shock layer in the exploding Model s112_128_f.

a less compact PNS and thus larger neutrinospheric radii with
slightly lower temperatures and significantly higher luminosities
near the neutrinospheres. This leads to a different structure be-
tween neutrinospheres and shock even without HB convection.

3.2. Hot-bubble convection

We now turn to the discussion of Ledoux-type convection in
the gain layer behind the shock, the so-called “hot bubble”
(HB) convection. Convective instability starts to develop in
this layer in Models s15_32 and s20_32 at about 30 ms after
bounce (Fig. 8), and convective anisotropies become visible,
e.g. in the velocity and entropy distributions, shortly afterwards
(see Fig. 18). The radial structure of the star, the shock radius

a

b
Fig. 18. Postshock convection in Model s15_32. Panel a) shows snap-
shots of the entropy (in kB/by) at four post-bounce times. Panel b)
shows the radial velocity at the same times (the color bar is in units of
1000 km s−1 and its upper end corresponds to 2500 km s−1). The equa-
torial plane of the polar grid is marked by the black diagonal lines.

(Fig. 15), and thus the evolution of the models after bounce
are, however, hardly affected. In this sense the convective ac-
tivity in the hot-bubble region is “weak”. The “growth num-
ber” ngrow (Eq. (4), Fig. 3) for the growth of perturbations in
the advection flow between shock and gain radius is correspond-
ingly low. Obviously, neutrino heating is not powerful enough
to drive strong buoyancy against the inward motion of the ad-
vected fluid. The small shock radius is associated with high neg-
ative postshock velocities, thus damping the growth of convec-
tion (for a general discussion, see Foglizzo et al. 2005). Only
during the transient shock expansion, which sets in when the en-
tropy jump at the Si−SiO interface reaches the shock, does the
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a

b
Fig. 19. Postshock convection in Model s112_64. Panel a) shows snap-
shots of the entropy (in kB/by) at four post-bounce times. Panel b) shows
the radial velocity (in 1000 km s−1) at the same times, with maximum
values of up to 35 000 km s−1 (bright yellow). The equatorial plane of
the polar grid is marked by the diagonal lines.

advection timescale become sufficiently long to give rise to a
phase of slightly stronger overturn motions.

More powerful HB convection occurs in Model s112_64. As
we can see from Fig. 3, the perturbation growth factor increases
to values of more than five in simulations with the s112 pro-
genitor when the Si−SiO interface passes the shock 90 ms after
bounce. The subsequent expansion of the shock is convectively
supported and much stronger than in the 1D model (see Fig. 15).
Although there is initially no obvious morphological difference
in the convective pattern before and right after the shock expan-
sion (compare Fig. 19, upper left panels with upper right pan-
els), the conditions in case of a larger shock radius become more
favorable for a significant strengthening of the neutrino-driven

Fig. 20. Mass in the gain layer with the local specific binding energy
as defined in Eq. (3) (but normalized per nucleon instead of per unit of
mass) above certain values. The results are shown for Models s112_32
and s112_64 for times later than 100 ms after core bounce.

convection, in contrast to the situation in the more massive pro-
genitors, where the composition interface has a much smaller
impact. The long advection timescale of 30−40 ms (Fig. 17,
2nd panel) leads to a ratio of advection to heating timescale close
to unity (Fig. 17, fourth panel). The mass in the gain layer with
specific energy above certain values increases (Fig. 20), the pres-
sure increases, and the shock is pushed to larger radii. The shock
is highly deformed and the average shock position therefore fluc-
tuates strongly due to the vigorous convective activity.

We find that in particular large-scale modes of the flow pat-
tern gain strength when the gain layer becomes radially more ex-
tended. Besides Ledoux-instability of the neutrino-heated layer,
the growth of these modes can be supported by the vortical-
acoustic cycle in accretion flows (cf. Foglizzo 2001, 2002; and
Foglizzo et al. 2005), which has recently been discovered at
work during the accretion phase of the stalled supernova shock
(Blondin et al. 2003; Scheck et al. 2004; Blondin & Mezzacappa
2006; Ohnishi et al. 2006; Scheck et al., in preparation). The typ-
ical wavelength of the most unstable convective modes turns out
to be linked to the radial width of the convective shell (for de-
tails, see Foglizzo et al. 2005). In Model s112_64 the number
of rising high-entropy plumes decreases from five at 50 ms to
only two at 107 ms and even only one at 115 ms after bounce
(the equatorial bubble in Fig. 19 at 107 ms merges with the other
bubble shortly afterwards). Such big structures persist for about
20 ms before they collapse and new rising bubbles form. The
pattern is very nonstationary. Also at 140 ms and 170 ms large
single bubbles appear, which dissolve again after roughly 20 ms.
After the third generation of large bubbles has disappeared, the
outer radius of the convective layer shrinks because of shock
contraction, and smaller convective cells form again.

The sequence of generations of big, floating bubbles pro-
duces an oscillatory behavior of the shock radius (Fig. 15) as a
consequence of a kind of feedback cycle between neutrino heat-
ing, bubble expansion, shock expansion and overshooting, re-
duced heating, shock contraction, bubble compression and col-
lapse, increased accretion and heating, new bubble growth, and
again shock expansion. This is similar to the oscillatory phases
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of shock expansion and recession, which we observed for one
of the 1D models discussed in Buras et al. (2006, Sect. 3.1.4).
In the present 2D situation, however, there is not the same cou-
pling between shock behavior and neutrino luminosities found
in that 1D model, where the accretion flow and thus the neutrino
luminosities and neutrino heating were quenched during phases
of rapid shock expansion. In the multi-dimensional case, down-
flows of accreted matter around a rising plume can still feed the
cooling layer near the neutrinosphere and keep the neutrino lu-
minosities at a high level (see Fig. 12). Here the expansion of
the dominant rising plume lowers the heating rate of the bub-
ble material, because its gas moves quickly away from the re-
gion of strongest neutrino energy deposition. This means that
the expanding plume cuts off its own energy supply. The ex-
pansion is, however, still too weak to push the shock outward
against the ram pressure of the infalling gas of the progenitor
star. After transiently overshooting a possible equilibrium posi-
tion, the shock therefore turns around, causing the compression
of the high-entropy bubble and thus the onset of rapid cooling
of the hot bubble gas by neutrino emission. The bubble col-
lapses, and cool gas is channelled from the shock to the gain
radius, increasing again the mass in the region of strongest heat-
ing. The energy input produces a new rising plume, which drives
the shock outward again. The crucial question is whether the en-
ergy in the gain layer and the amount of matter with high specific
energy increases or decreases during such a feedback cycle. In
the first case an explosion may be produced as it happened in
the 1D model of Buras et al. (2006) (where it was favored by
a manipulation of the neutrino transport). In the present case,
however, the feedback cycle ends after three periods (these three
periods are visible in Fig. 15 as well as in Fig. 20). The deci-
sive quantity is the ratio of advection to heating timescale, the
time-average of which should be larger than unity to obtain net
energy gain in the heating layer. For Model s112_64 this is not
the case (Fig. 17, bottom panel). Although Model s112_64 gets
much closer to success than any of the other simulations because
of its strong convection and the large timescale ratio of almost
unity, the simulation finally still fails to produce an explosion.

Turning now to resolution studies, we can compare
Model s112_64 with Model s112_32. The latter has only half
the lateral resolution but is otherwise identical with respect to
input physics and radial grid. Clearly, the shock does not expand
as far as in the high-resolution model (Fig. 15) and convection
does not become as vigorous. Although the tendency of one con-
vective cell to form with one rising plume and one downflow can
also be observed in the less resolved model, the convective ac-
tivity appears weaker and less neutrino-heated matter is involved
in the overturn motions (Fig. 20). One reason for this is the fact
that downflows become too narrow to be well resolved in the
low-resolution model. Their lateral width and stability are there-
fore numerically overestimated, thus channelling more mass into
the cooling layer below the gain radius. Numerical viscosity has
a visible influence on the calculation.

Although the resolution in Model s112_64 is probably still
not sufficient, the crucial quantity, the timescale ratio, increases
only insignificantly when the lateral resolution is improved
from 2.7 degrees to 1.35 degrees. We therefore have doubts that
a further increase of the resolution can bring the timescale ratio
above unity and thus establish favorable conditions for an ex-
plosion. Anyway, the resolution in Model s112_64 appears to be
the minimal resolution needed for reasonably converged simu-
lations. An angular cell width of one degree would be prefer-
able according to systematic resolution tests (L. Scheck, private
communication).

The size of the seed perturbations for starting convection
turns out not to have an important influence on the HB con-
vection. Comparing Models s15_32 and s15_64_p we find that
a larger seed (as in the latter model) leads to HB convection
which reaches the nonlinear regime about 10 ms earlier. The
subsequent evolution, however, is very similar, and the faster
onset of convective activity does not have any noticeable long-
time effects. The reason may be the fact that the other rele-
vant timescales, in particular τheat and τadv, are typically longer
than the perturbation-dependent differences of the growth of
HB convection.

3.3. A simulation with a grid of 180 degrees

We now discuss Model s112_128_f. The model is different from
Model s112_64 in some important technical aspects. The full
star was simulated with a lateral grid of 180◦ instead of the
∼90◦ wedge around the equatorial plane, which we used for
Model s112_64. Along the polar axis of the spherical grid the gas
flow is reflected, in contrast to our choice of periodic conditions
at the lateral boundaries of the 90◦ wedge. Due to the assumed
symmetry in case of the 90◦ grid, artificial constraints are im-
posed on the fluid flow. This has a selective influence on the type
of flow pattern which can develop in the neutrino-heated hot-
bubble layer. Global asymmetries with a dominant contribution
of low modes – i.e., flow with l = 1 (dipolar) or l = 2 (quadrupo-
lar) character in terms of orders of an expansion in Legendre
polynomials for the cosine of the polar angle – can, for example,
only be seen when the star as a whole is simulated. The pos-
sibility of long-wavelength modes in the postshock convective
zone of the 11.2 M� simulation is in fact suggested by the linear
perturbation analysis of Foglizzo et al. (2005), because ngrow of
Eq. (4) reaches values around 6−7 in our 1D run (Fig. 3). Low-
mode convection and global asymmetries of the flow morphol-
ogy are indeed found to grow and to cause significant quantita-
tive differences in the evolution of Model s112_128_f compared
to Model s112_64. These differences are large enough to change
the outcome of the simulation for the 11.2 M� progenitor even
qualitatively.

Noticeable differences between both models occur after
about 60 ms post-bounce evolution (see Fig. 21). Although the
overall morphology of the flow pattern in the convective post-
shock layer looks still similar in both simulations, bubbles at the
poles of Model s112_128_f extend to larger radii. This is prob-
ably a consequence of the numerical setup of the simulation,
which assumes axial symmetry and a polar grid with an axis
that is impenetrable for the fluid flow. Flow which converges to-
wards the axis is directed either inward or outward. Therefore
its motion and behavior are constrained by the existence of the
polar grid axis. Moreover, polar features have smaller volumes
compared to structures near the equator, which are treated as tori
around the symmetry axis. This geometrical difference of po-
lar and equatorial structures is known to lead to differences in
the growth rate of perturbations. Laser experiments (Kane et al.
2000) as well as 3D simulations (Scheck 2005) suggest that the
smaller axial bubbles can grow faster than equatorial tori and be-
have more like the mushrooms of Rayleigh-Taylor instabilities in
the truely 3D case.

In the further evolution of Model s112_128_f the shock and
convective layer develop a large deformation with dominant
dipole and quadrupole modes, which become more and more
prominent. Huge bubbles inflate alternatingly in both hemi-
spheres, while downflows are present near the equatorial plane.
These downflows are very nonstationary and flutter back and
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Fig. 21. Postshock convection in Model s112_128_f. Panels a)–c) show snapshots of the entropy for six post-bounce times. Panels d)–f) display
the radial velocity at the same times with maximum values of up to 47 000 km s−1 (bright yellow). In Panel d) also the convective activity below
the neutrinosphere (at radii r <∼ 30 km) is visible. It is characterized by small cells, which are very similar to those observed in all other 2D models,
too. The polar axis of the spherical coordinate grid is directed horizontally, the “north pole” is on the right side.
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Fig. 22. Shock radii at the poles and at the equator versus post-bounce
time for Model s112_128_f.

forth between the hemispheres. Eventually, 180 ms after bounce,
the gain layer is completely dominated by the two polar bubbles
and one or sometimes two downflows around the equator, sepa-
rated by a small transient bubble in between. The shock in this
model reaches a radius of about 600 km at the end of our simu-
lation (Figs. 15 and 22) and is expanding then with a speed that
is typical of exploding models (∼10 000 km s−1). Unfortunately
we had to terminate the simulation at 225 ms after bounce be-
fore it was possible to deduce the final parameters of the begin-
ning explosion. The simulation had to be stopped because of a
lack of computer time and the small timesteps enforced by large
and rapid fluctuations of physical variables in the region where
the equatorial downflow penetrates deep into the neutrinospheric
layer.

The polar plumes can be weakened transiently because of
the ram pressure of the infalling material ahead of the shock
or because of a descreasing supply of neutrino-heated matter
when the downflows feed the high-entropy lobe in the opposite
hemisphere. But the polar bubbles never collapse and contrac-
tion phases are reversed by new, powerful waves of high-entropy,
high-velocity matter expanding away from the equatorial plane.
The snapshot at 225 ms in Fig. 21 shows such a phase for the
hemisphere on the left side (the polar grid axis is oriented hori-
zontally): above 400 km the matter is still expanding, but below
it has started retreating due to the ram pressure exerted by the
matter falling through the shock. However, from below 300 km
a new plume with very high velocities is already reviving the
expansion of the gas between 300 km and 400 km. The whole
situation is very dynamical.

The dipolar expansion is therefore driven and powered by the
flow of neutrino-heated gas that is continuously replenished near
the gain radius by the equatorial downflow of accreted matter.
The consequences for the dynamical and energetic evolution of
Model s112_128_f can be easily inferred from inspecting global
quantities. In Fig. 17, bottom panel, we see that the timescale
ratio τ∗adv/τheat reaches values above unity in this model.
A crucial difference of Model s112_128_f compared to its
90◦ counterparts is the fact that the advection timescale does
not decline again after its maximum as in the other models but

remains essentially constant for t >∼ 100 ms post bounce. After
a period of the order of ∼τadv the timescale ratio starts rising
monotonically to climb to nearly 1.4 until 180 ms, associated
with an expansion of the average shock radius (Fig. 22). This
means that the dipolar instability has a stronger influence than
Ledoux convection in the other models and leads to an enhance-
ment of the efficiency of neutrino energy deposition. The total
energy transfer by neutrinos becomes sufficiently large (in fact
rises at t >∼ 170 ms after bounce; Fig. 17) so that some part of
the matter in the gain layer becomes nominally unbound and
strong expansion sets in. Figure 24 shows that the mass of the
gas with total local specific energy above some limits increases
continuously, and the mass of the matter with positive energy
follows this trend. Therefore we detect a steep growth of the
“explosion energy” (Fig. 24, upper panel) after 180 ms. This mo-
ment coincides with the accelerated expansion and marks the
onset of the explosion. In Fig. 12 we see that the neutrino lu-
minosities do not decrease compared to the luminosities of the
non-exploding Model s112_64. This suggests that in spite of the
launch of the explosion neutrino heating will go on at a signifi-
cant level and will deliver more energy to the ejecta. Therefore
Model s112_128_f does not exhibit the disadvantageous situa-
tion of explosions in spherical symmetry where the start of rapid
shock expansion quenches the accretion of the forming neutron
star and thus leads to a significant reduction of the neutrino lu-
minosity.

The development of large-scale anisotropies with l =
1, 2 modes was also seen in other 2D simulations (Blondin
et al. 2003; Scheck et al. 2004; Ohnishi et al. 2006; Burrows
et al. 2006) and occurred in some preliminary 3D simulations
(Mezzacappa & Blondin 2003; L. Scheck, private communi-
cation), too. The morphology of our 180◦ model looks sim-
ilar to the models published by Blondin et al. (2003), who
studied the hydrodynamics of nonradial instabilities of accre-
tion shocks without taking into account the effects of neutrino
transport and neutrino heating. However, we do not find that
the growth of “turbulent energy” in the expanding layer be-
hind the shock plays a significant role for the explosion of
Model s112_128_f. In contrast to the simulations by Blondin
et al. (2003), Model s112_128_f shows a saturation of the ki-
netic energy of the lateral gas motions between neutron star (or
gain radius) and shock at times later than ∼140 ms after bounce
on roughly the same level4 as in Model s112_64. We neither
find specifically large values of Ekin,lat in case of the 180◦ simu-
lation, nor do we see a continuous growth or a distinct increase
of that quantity correlated with the onset of the explosion and
the development of positive values for the explosion energy af-
ter 180 ms (Fig. 23). We therefore conclude that the explosion
of Model s112_128_f is driven by neutrino energy deposition
and not by the amplification of turbulent kinetic energy in the
postshock layer.

Dipolar asymmetries seem to be generic phenomenon in
supernova simulations in which the neutrino heating is not
strong enough to revive the stalled shock within a short time,
i.e. on a timescale of the order of the advection timescale in the
gain layer. However, the question has to be asked whether the
morphology of the flow is enforced in the 2D simulations by
the choice of the azimuthal symmetry and the coordinate grid
with its polar axis. The existence of a preferred axis direction

4 The large values of Ekin,lat between the neutrinosphere and the gain
radius in case of Model s112_64, which can be inferred from Fig. 23,
are a consequence of our choice of periodic boundary conditions at both
lateral boundaries of the 90◦ wedge used in this model, see Sect. 3.1.
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Fig. 23. Kinetic energy, as a function of post-bounce time, associ-
ated with the lateral velocities of the matter between gain radius
and shock (solid) and between the νe sphere and shock (dashed)
for Models s112_64 and s112_128_f. The rapid increase in case of
Model s112_64 at tpb >∼ 180 ms is a numerical effect associated with
lateral fluid flows which are enabled by our use of periodic boundary
conditions at the angular grid boundaries.

Fig. 24. The upper panel displays the “explosion energy” of
Model s112_128_f, defined by the volume integral of the “local spe-
cific binding energy” εshell

bind as given in Eq. (3), integrated over all zones
where this energy is positive, i.e. Eexpl =

∫
(εshell

bind > 0)ρdV . The lower
panel gives the mass in the gain layer with the local specific binding
energy (per nucleon) above certain values. The evolution of these quan-
tities as functions of post-bounce time is shown. Note the difference
from Fig. 20.

predetermines and might even support the growth of a dipolar
asymmetry in this direction. In contrast, 3D simulations with-
out a preferred axis might reveal a slower development of such
asymmetries. It therefore needs to be demonstrated that free-
dom of motion in all directions does not prevent the instabili-
ties with dominant l = 1,m = 0 contributions. In reply to such
objections one might say that in case of only a small amount

of rotation the polar axis will obtain a physical meaning and will
act as a centrifugal barrier for the flow (if the axial component of
the specific angular momentum of fluid elements is conserved).
The direction for the development of dipolar deformation might
therefore naturally be selected by the axis of (slow) rotation.
More arguments in favor of the physical nature of low-mode,
global asymmetries in the supernova core come from analytic in-
vestigations and linear analyses. On the one hand these suggest
that stalled accretion shocks are subject to nonradial instabili-
ties with highest growth rates for l = 1 deformation (Thompson
2000; Foglizzo 2002). On the other hand it was found that the
l = 1 mode is the fastest growing mode in case of volume-filling
thermal convection in a sphere (Chandrasekhar 1961). The latter
situation might apply to the supernova core, provided the shock
radius is much larger than the inner boundary of the neutrino-
heated, convective layer. But the true supernova conditions dif-
fer in important aspects, e.g., boundary conditions and accretion
flow in the postshock layer, which prevent a direct quantitative
application of Chandrasekhar’s analysis (Foglizzo et al. 2005).
In any case, 2D simulations as well as analytic and linear analy-
sis can only be taken as suggestive. The relevance of low-mode
asymmetries during the phase of shock revival will ultimately
have to be demonstrated by 3D models without the handicap of
a coordinate singularity along the polar axis of a spherical or
cylindrical grid.

Therefore, we have to cautiously interpret the results of our
present simulation. The choice of the lateral grid size and of the
boundary conditions has turned out to decide whether the dipolar
instability is suppressed as in case of the 90◦ wedge with peri-
odic boundary conditions, or whether it can develop (and pos-
sibly is supported or even enforced) as in case of the 180◦ sim-
ulation with axial symmetry and reflecting boundary conditions
along the grid axis. While Model 112_64 with the 90◦ wedge
fails marginally, Model s112_128_f yields an explosion for the
considered 11.2 M� progenitor star. Because of the relatively low
mass in the gain layer, the explosion might remain rather weak,
but our simulation had to be terminated too early to be finally
conclusive in this point. The quantitative similarity in many as-
pects but qualitative difference in the outcome of the two simu-
lations demonstrates how close Model 112_64 was already to an
explosion. Conversely, it can also mean that small effects which
weaken the growth of the dipolar instability might delay the on-
set of the explosion (and thus change quantities such as the ini-
tial mass cut and the explosion energy), or might even lead to a
failure5.

The bottomline is that our 11.2 M� simulation lingers at the
borderline between failure and explosion. But the effect which
has triggered the success in case of Model s112_128_f, i.e. the
large-scale non-radial modes of the fluid flow between shock
and gain radius, can be treated only approximately in two-
dimensional simulations. We can not exclude that the success is
a result of an overestimation of this phenomenon and of its con-
sequences. Three-dimensional (axis-free) simulations with reli-
able neutrino transport are needed to convincingly demonstrate
that the neutrino-driven mechanism, supported by low-mode
convection and accretion shock instability, is viable to explain

5 In this context it is interesting to note that for an 11 M� progenitor
from Woosley et al. (2002), which has a less steep density profile exte-
rior to the iron core, Burrows et al. (2006) did not find an explosion be-
fore about 0.5 s after bounce. Besides a different progenitor, there were,
however, also other differences. They, e.g., performed purely Newtonian
simulations and used a flux-limited diffusion treatment for the neutrino
transport, in which energy bin coupling by Doppler shifts and neutrino-
electron scattering were ignored.
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a b
Fig. 25. Radial profiles of the specific angular momentum jz, angular velocity Ω, and ratio of centrifugal to gravitational force, Fcent/Fgrav, in
the equatorial plane versus a) radius and b) mass for Model s15_64_r at different times. Note that the “enclosed mass” in multi-dimensional
simulations is defined here as the mass within a spherical volume of specified radius. Quantities plotted versus enclosed mass therefore do not
represent Lagrangian information. Time is normalized to bounce. Note that in the upper right panel the lines for times −175 ms, 0, and 10 ms lie
on top of each other because of specific angular momentum conservation and negligibly small rotational deformation of the collapsing stellar core
until later after bounce.

supernova explosions of massive stars at least for some range of
progenitor masses.

3.4. A simulation with rotation

We investigate the effects of rotation on the supernova evolu-
tion with Model s15_64_r, for which we assume that the iron
core rotates with a period of about 12 s prior to collapse. This
is rather slow compared to the conditions considered in many of
the core-collapse simulations performed by other groups (e.g.,
Ott et al. 2004; Kotake et al. 2004). The reasons for our choice of
the initial rotation law were explained in detail at the beginning
of Sect. 3 and in Müller et al. (2004). The angular frequency Ω
of the Fe-core at the beginning is 0.5 rad s−1 (Fig. 25) and in-
creases due to angular momentum conservation during collapse
to maximum values around 600−700 rad s−1 in the homologous
core shortly after bounce, see Figs. 25, 26a. Rotation generates a

centrifugal force Fcent which at this time is at most 6×10−3 of the
gravitational force Fgrav (Figs. 25, 26a). The ratio of rotational
to gravitational energy, βrot = Erot/|Egrav|, grows from an ini-
tial value of less than 10−3 to roughly 0.4% at bounce (Fig. 27).
Because of the subsequent contraction of the PNS and the inflow
of material with higher specific angular momentum ( jz), the ra-
tio Fcent/Fgrav rises up to 25% near the equator (Fig. 25) and can
reach values around 3 in the polar regions at a post-bounce time
of 271.1 ms (Fig. 26b). The angular frequency increases up to
maximum equatorial values around 2000 rad s−1, and even much
larger values close to the polar axis (Fig. 26b).

As a consequence, the forming neutron star develops an in-
creasing degree of rotational flattening. The oblateness of the
neutrinospheres is most pronounced during the later stages of
the simulated post-bounce evolution (Fig. 26, panels c, d, f and
Fig. 29), whereas the deeper interior of the PNS shows a much
smaller deformation, and the convective layer at r <∼ 25 km
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a b

c d

e f
Fig. 26. Snapshots of Model s15_64_r. The rotation axis is oriented vertically. Panels a), b) show the distributions of the specific angular momen-
tum jz, of the angular frequency Ω, and of the ratio of centrifugal to gravitational force for the moment of bounce and for a post-bounce time
of 271.1 ms, respectively. Note the different scales which represent enclosed mass M (which corresponds to values of mass enclosed by spheres
of chosen radii) and radius r. The black lines mark the shock. Panels c), d) depict quantities which are of interest for discussing the physics in
the gain layer at the time of maximum shock expansion and at the end of the simulation, respectively. The thick black line marks the shock, the
thin black lines indicate the gain radius and νe sphere. Panels e), f) provide analogous information inside the PNS at the onset of convection and
at the end of the simulation, respectively. Instead of the gas entropy and Ye, the total entropy including neutrino contributions and the total lepton
number are plotted. The three black lines in panel f indicate from outside inward the neutrinospheres of νe, ν̄e, and νµ.
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Fig. 27. Ratio of rotational energy to the gravitational energy, βrot, as
a function of time for Model s15_64_r. The quantity is shown for the
whole computational volume (solid line) and for spherical volumes with
an enclosed mass of the Fe–Si core (1.43 M�, dashed line) and of the
Fe core (1.28 M�, dotted line), respectively. Note that in the latter two
cases the time evolution of βrot does not provide Lagrangian informa-
tion, because matter is redistributed by rotational deformation and by
convection.

remains nearly spherical (Fig. 26, panels e, f). At the end of
our simulation the polar value of the radius of the νe-sphere
is about 30 km, which is roughly the same as in non-rotating
models, whereas the νe-sphere is at 40 km near the equatorial
plane (Figs. 11, 26). Also the rotation-generated differences of
the gain radius in different directions grow with time, although
the contrast visible in Fig. 16 shows the combined effects of ro-
tation and local variations due to the convective anisotropies in
the postshock region (see Fig. 26). The angular differences of
the gain radius become roughly a factor of two until the end
of our simulation for Model s15_64_r and are thus somewhat
larger than in the other models with strong convective over-
turn in the neutrino-heating layer (in particular Models s112_64
and s112_128_f). The radial structure of the rotating PNS dif-
fers most strongly from that of the corresponding non-rotating
Model s15_32 near the equatorial plane, where the centrifugal
force, Fcent, points in the opposite direction of the gravitational
force, Fgrav. Differences in the radial structure between the rotat-
ing and non-rotating PNSs are less significant at the poles.

Because of the rotational flattening the PNS as a whole is
less compact than in the non-rotating case, i.e., the volume en-
closed by the neutrinospheres is larger. The implications of a
bigger average neutrinospheric radius for the global properties of
the neutrino emission were discussed in detail in Sect. 3.1. Due
to the lower temperatures at the more extended neutrinosphere,
the mean energies of the radiated neutrinos are reduced com-
pared to the corresponding 1D model, associated with a de-
crease of the neutrino luminosities. In non-rotating models, this
reduction holds only for the first ∼150 ms after bounce and is
compensated later. In fact it is over-compensated by the con-
vective energy transport to the neutrinosphere, which leads to
higher luminosities (in particular for muon and tau neutrinos)
in 2D simulations at t >∼ 150 ms after bounce (in spite of con-
tinuously lower mean neutrino energies; Figs. 12 and 13). In
the rotating Model s15_64_r this “cooling effect” of the more
extended neutrinosphere is significantly stronger than in the

corresponding non-rotating Model s15_32, causing even lower
energies of the radiated neutrinos (Fig. 13). In fact, the neu-
trinospheric temperatures are reduced so much by rotational
expansion that this effect cannot be overridden by the con-
vective transport of energy to the neutrinosphere, in particu-
lar also because PNS convection tends to be slightly weaker in
Model s15_64_r than in Model s15_32 (compare Figs. 26 with 5
and see the discussion following later). The neutrino luminosi-
ties in the rotating model stay therefore clearly below those of
its non-rotating counterpart during all of the simulated evolution
(Fig. 12), and the integral of the radiated energy is smaller than
in the 1D case (Fig. 14, lower panel), signalling that energy is
stored in rotation instead of being converted to neutrino emis-
sion. In contrast, the rotating model does not show a particular
behavior with respect to the lepton number loss (Fig. 14, upper
panel), because the electron neutrino and antineutrino luminosi-
ties are both reduced by rotational effects in very similar ways
(Fig. 12). The emission anisotropies caused by the rotational de-
formation of the neutrinosphere and by convective effects will
be addressed in Sect. 3.5.

In contrast to the oblate deformation of the PNS, the shock
reveals a prolate shape during most of the computed evolution,
with a radius typically 50 km larger at the pole than at the equa-
tor (Figs. 15, 26, panels c, d). The polar bulge of the shock is
maintained by a big convective bubble which exists rather stably
between polar angles of about 10◦ and about 45◦. After an ini-
tial, transient phase in which the convective activity grows and
smaller convective cells merge to larger, volume-filling struc-
tures, this large pole-near bubble comes to exist besides one or
two additional plumes closer to the equator. Although these bub-
bles are again strongly time-dependent as in the other 2D mod-
els, and phases of bubble contraction are followed by bubble re-
inflation, the morphology is very stable and the bubbles grow
again essentially at the same places. The pattern seems to be
determined and supported by the presence of an angular mo-
mentum gradient in the neutrino-heated layer (Fig. 26, panel b)
and by the action of centrifugal and coriolis forces on the fluid
motion.

Towards the end of our simulation (from about 180 ms un-
til 280 ms post bounce) quasi-periodic large-amplitude pole-
to-equator oscillations with a cycle time of 15−25 ms set in
(Fig. 15) where phases with a larger pole-near bubble alternate
with time intervals in which the convective plume near the equa-
tor is stronger. The transition between both extrema is charac-
terized by a merging of the two convective cells into one big
plume at intermediate latitudes. The shape of the shock changes
back and forth between a pronounced prolate deformation and a
more oblate shape. During all these time-dependent variations
the maximum and minimum shock radii stay around 200 km
and 150 km, respectively (Fig. 15). The average shock radius
at t >∼ 150 ms p.b. is 50−100% larger than in the non-rotating
2D models and does not decay until the end of our simulation at
nearly 300 ms after bounce. Due to centrifugal effects the pres-
ence of angular momentum in the infalling matter has a stabi-
lizing influence on the postshock flow and on the shock. Thus
rotation ensures a more extended gain layer and supports strong
convection, in contrast to the non-rotating 15 M� Models s15_32
and s15_64_p, where the retraction of the shock after its maxi-
mum expansion strongly damps the convective activity in the
gain layer (Fig. 15; and Buras et al. 2006). The convective pat-
tern in the postshock region therefore depends on the amount
of angular momentum carried by the accreted matter. Since the
gas falling onto the shock comes from larger and larger initial
radii at later times, the angular momentum of the accretion flow
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increases continuously (Fig. 25). This may explain some of the
evolution which we observe for the morphology and dynamical
behavior of the convective post-shock layer.

The conditions for convective instability are affected by ro-
tation in a way which is expressed by the so-called Solberg-
Høiland criteria (see e.g. Tassoul 1978; Keil 1997). For the con-
sidered situation in the supernova core, the first criterion is a
generalization of our Quasi-Ledoux criterion, combined with the
Solberg-term which accounts for the stabilizing effect of a pos-
itive angular momentum gradient. With the parameter βdiff for
neutrino diffusion in the Quasi-Ledoux criterion (Eq. (7)), the
corresponding mode frequencies are

ωHoi,QL = ±
{∣∣∣∣∣∣− 1
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·
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where instability is given when ωHoi,QL > 0. The sign of this ex-
pression is identical to the sign of the absolute value term under
the square root, acent is the acceleration due to centrifugal forces,
stot is the sum of gas and neutrino entropies, and x = r sinϑ
is the distance from the rotation axis. Here, the Quasi-Ledoux
criterion was generalized further to a fully multi-dimensional
form by introducing the scalar product of the vector quantities.
In the gain layer, the adequate Solberg-Høiland criterion is ob-
tained from Eq. (9) by ignoring the neutrino entropy and lepton
number, i.e. by replacing stot by s and Ylep by Ye, and setting
βdiff ≡ 0 when neutrino diffusion effects are irrelevant. The sec-
ond Solberg-Høiland criterion for instability is given by
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where z = r cosϑ is the distance from the equatorial plane and
the suffix z denotes the z-component of vector quantities. We will
not further consider this criterion in the following because con-
vective instability requires at least one of the two criteria to be
fulfilled. An evaluation of our model, however, reveals that the
second criterion indicates instability only when the first criterion
is also fulfilled.

As already discussed in earlier publications (Keil 1997;
Janka & Keil 1998; Janka et al. 2001) the differential rotation,
which is accounted for by the first term in Eq. (9), tends to
damp convective activity near the polar axis in the PNS, see
Figs. 26e,f. The same effect is found for the hot-bubble layer, see
Figs. 26c,d. At larger distances from the polar axis the distribu-
tion of the specific angular momentum is flatter and convection is
only weakly affected by rotation, i.e. convection develops in re-
gions inside the PNS and between the gain radius and the shock
basically similar to the situation in Model s15_32. PNS con-
vection therefore has effects analogous to those discussed in
Sect. 3.1. The damping of convection near the poles leads to
a slightly slower effective transport of lepton number (and en-
ergy), see Fig. 28 for the situation after 200 ms post-bounce
evolution, especially at later times when the convection near the
axis is more strongly suppressed due to a steeper gradient of jz,
see Figs. 26e,f. Another new feature in the rotating model is the

Fig. 28. Ylep profile at 200 ms post-bounce time for a 1D model, a 2D
model, and our 2D model with rotation. The plot shows angle-averaged
quantities for the 2D cases.

transport and redistribution of angular momentum by convec-
tion. Figure 25b shows how convection in the PNS produces a
flat radial profile of jz near the equator. This happens despite the
stabilizing effect of the initially positive derivative of jz because
the negative entropy gradient dominates the Solberg-Høiland cri-
terion and drives convective instability.

How does rotation affect the possibility for getting explo-
sions by the delayed neutrino-heating mechanism? The analysis
by Yamasaki & Yamada (2005) suggests that rotation can appre-
ciably improve the conditions for shock revival in case the initial
rotation frequency is at least f ∼ 0.1 Hz at 1000 km. This corre-
sponds to a rotation period of 10 s and is therefore only slightly
faster than the rotation considered in Model s15_64_r (where the
initial spin period is 12 s in the iron core). Yamasaki & Yamada
(2005) found a sizable reduction by 25% of the “critical neutrino
luminosity” for starting a neutrino-driven explosion at a mass
accretion rate of about 1 M� s−1 or lower. The effects of rotation
are, however, diverse and modify the structure of the collapsing
star, the convection in the core, the gas motion behind the shock,
and the radius and neutrino emission of the forming neutron star.
A separate discussion of selected effects as done by Yamasaki &
Yamada (2005) can therefore be misleading. In our simulations
all effects of rotation are fully coupled and we can assess the
question how these effects in combination determine the condi-
tions for the delayed explosion mechanism. To this end we again
compare the results of our rotating model with the non-rotating
counterparts.

Rotation turns out to be helpful, but to a much lesser ex-
tent than estimated by Yamasaki & Yamada (2005). Certainly,
the shock radius is significantly larger than in the non-rotating
models of the 15 M� star (Fig. 15), the effective advection
timescale τ∗adv through the gain layer correspondingly becomes
longer by up to a factor of about 4, and the mass in the gain
layer, Mgl, increases to a value that is two or three times larger
than in the non-rotating models. These differences are on the
one hand an indirect consequence of the structural changes of
the PNS (cf. Sect. 3.1), on the other hand they result directly
from the influence of centrifugal forces on the fluid flow in
the gain layer. In contrast, however, the total heating rate, Ėgl,
and the ratio of advection to heating timescale increase only
slightly (Fig. 17). The latter remains significantly below unity,
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a

b

c
Fig. 29. a) Mass MNS and total angular momentum JNS of the “neu-
tron star” (defined by the matter with density above 1011 g cm−3)
in Model s15_64_r. b) Moment of inertia INS and average angular
frequency ΩNS = INS/JNS of the neutron star in Model s15_64_r.
c) Average radius RNS of the neutron star, defined as the radius of a
sphere with the same volume as the deformed rotating neutron star, “ef-
fective” radius defined as Reff,NS =

√
INS/MNS, and neutron star radii at

the pole (RNS,pol) and equator (RNS,eq), for Model s15_64_r. Also shown

is the eccentricity ηNS ≡
√

1 − R2
NS,pol/R

2
NS,eq.

because the heating timescale τheat has increased considerably
due to the lower energies and luminosities of the neutrinos

radiated from the rotating PNS (Figs. 12, 13). The rotating model
therefore shows no tendency to develop an explosion until we
stopped our simulation at about 280 ms after bounce.

If angular momentum conservation holds during the subse-
quent evolution, one can use our results at the end of the sim-
ulated evolution to roughly estimate the final angular frequency
of the cold neutron star after its neutrino cooling and contraction
phase, ΩcNS, assuming it to be a rigid rotator. The “NS” is de-
fined here as the mass at densities above 1011 g cm−3. In Fig. 29
we show the time evolution of several quantities for this such de-
fined “NS”, namely of the radius RNS, defined as the radius of a
sphere with the same volume as the deformed proto-neutron star,
and of the average angular frequency, defined asΩNS = INS/JNS,
where INS is the moment of inertia and JNS is the total angular
momentum of the “NS”. Taking the conditions at t = 270 ms
after bounce and assuming angular momentum convervation –
no processes happen which transport angular momentum out of
the NS or add mass and angular momentum to it –, the angu-
lar frequency of the NS after self-similar contraction (i.e., the
shape of the star does not change and thus its moment of inertia
scales with the square of the average NS radius) to a final radius
RcNS = 10−12 km is

ΩcNS = ΩNS,sim

(
RNS,sim

RcNS

)2

� 0.93 rad ms−1

(
27 km

10–12 km

)2

� 5 ... 7 rad ms−1, (11)

where ΩNS,sim and RNS,sim are the average angular frequency
and average radius of the “NS” at the end of the simulation,
respectively (Fig. 29). This corresponds to a spin period of
PcNS ≡ 2π/ΩcNS � 1 ms, which is at least 10–100 times faster
than the typical birth period of pulsars estimated from observa-
tions (see Heger et al. 2005, and references therein). Therefore
our Model s15_64_r is on the extreme side of conditions which
are present in collapsing stellar cores in typical cases (see also
the discussion in Ott et al. 2006).

3.5. Anisotropy of the neutrino emission

In this section we shall discuss the variations of the neutrino
emission with polar angle, which are a consequence of PNS con-
vection, convective overturn in the layer between gain radius and
shock, and of rotation. For this purpose we will mostly con-
centrate on the non-rotating Model s112_128_f, which devel-
ops extremely strong convection and anisotropy, and on our case
with rotation, Model s15_64_r. The anisotropy of the neutrino
emission from rotating collapsing stellar cores was first eval-
uated by Janka & Mönchmeyer (1989a,b) analytically and by
means of post-processing Monte Carlo transport calculations us-
ing 2D core-collapse models. They found that the neutrino emis-
sion is higher in the polar direction than in the equatorial plane,
verifying von Zeipel’s law of gravity darkening in case of neutri-
nos from supernova cores. This result was confirmed by Kotake
et al. (2003), who also performed a post-processing analysis of
2D core-collapse calculations in which a trapping scheme for
the neutrino treatment was employed. It must be pointed out,
however, that none of these approaches was self-consistent: the
emission anisotropy and the neutrino treatment in the hydro-
dynamic simulations were calculated with different approxima-
tive methods, the feedback of neutrino transport on the hydro-
dynamics was not taken into account (a trapping scheme only
computes local source terms), and the evaluation was based on
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simplifying concepts, e.g., the assumption that a well-defined av-
erage neutrinosphere exists6. The calculated anisotropies must
therefore be interpreted with great caution and conclusions
drawn on their basis may be very misleading, in particular con-
cerning their implications for the explosion mechanism. The lat-
ter depends on many competing effects and a discussion requires
a coupled and consistent treatment of neutrinos and hydrody-
namics. Walder et al. (2005) recently performed such simula-
tions of rotational core collapse, in which 2D flux-limited neu-
trino diffusion was followed self-consistently in 2D hydrody-
namic models. These authors pointed out the fact that the neu-
trino emission is always more isotropic than the rotationally de-
formed or convectively distorted mass distribution because of
the non-locality of the transport, i.e., the neutrino distribution at
every point is a superposition of the irradiation from different
contributing directions. The paper by Walder et al. (2005), how-
ever, does not provide quantitative information in a form which
would allow us to make comparisons with their results. In the
following we will therefore concentrate on the presentation and
discussion of our models.

Figure 30a shows the lateral maximum of the ratio of the lo-
cal neutrino flux to the average flux for νe as function of time.
In case of Model s112_128_f spikes are visible with a typical
width of about 5 ms and an amplitude that grows with time and
reaches maximum values up to 2.4 towards the end of our simu-
lation. These spikes are caused by “outbursts” of neutrino radi-
ation, which are associated with very narrow downflows of ac-
creted matter, which reach deep into the cooling layer and create
there local “hot spots” (Fig. 21). These downflows and their lo-
cation, however, are extremely time-dependent and nonstation-
ary. This can be seen in Fig. 31a where the lateral flux variations
are shown for three different times after core bounce. The large-
amplitude flux variations are mostly a phenomenon which af-
fects the neutrino emission from the cooling layer between gain
radius and neutrinosphere. The amplitudes of Fϑ/ 〈F〉 are much
smaller at the neutrinosphere (compare Figs. 31a and b).

Because the downflows are transient in space and time, the
lateral variations disappear in the time-integrated flux at different
latitudes, and only minor fluctations remain (Fig. 30b). Local
maxima or minima at the lateral edges are a consequence of the
reflecting boundary conditions, which cannot be penetrated but
redirect the flow in the inward or outward direction.

The flux ratio maxima for Model s15_64_r also exhibit
short-time variations with typical fluctuation timescales of
about 5 ms, but with lower amplitudes (up to values of 1.5) than
those in Model s112_128_f. This is mainly due to the fact that
the convective layer in Model s15_64_r has a smaller radial ex-
tension, the downflows are less narrow and hit the cooling layer
with less violence, producing less extreme local emission than
in Model s112_128_f. An exception to this is the polar region of
the rotating model, where the accretion flow is able to create a
high-luminosity spot even at the neutrinosphere, causing larger
latitudinal flux variations there than farther out (Figs. 32a,b).

While the time-integrated flux at large distances reveals a lo-
cal maximum near the equator in Model s15_64_r (Fig. 30b),
which is associated with a persistent equatorial downflow, the
time-integrated flux at the neutrinosphere is nearly featureless

6 The Monte Carlo calculations by Janka & Mönchmeyer (1989b)
did not make use of such simplifications, assumed, however, that the
transport in different lateral directions of the 2D environment can be
approximated by a “ray-by-ray” approach, in which the neutrino flux
at a given latitude is assumed to be radial and can be calculated by the
transport in a spherical background with a radial structure as it is present
in the 2D model at this latitude.

a

b
Fig. 30. a) Lateral maxima of the νe flux relative to the average νe flux
versus time for Models s15_64_r and s112_128_f, evaluated at 400 km
radius for an observer at rest. b) Time integral of the “isotropic equiva-
lent luminosity” Liso – calculated by assuming that the flux in one polar
direction is representative for all other directions – versus cos ϑ for dif-
ferent models and neutrinos. The integral was performed from 10 ms to
200 ms after bounce; cosϑ = ±1 correspond to the poles, cosϑ = 0 to
the equator. The thin lines are for an evaluation at 400 km radius for an
observer at rest, the thick lines are given only for νe and show the result
at the νe-sphere for an observer at rest.

with only a very shallow global pole-to-equator gradient. The
latter is a consequence of the rotational flattening of the PNS,
which, however, is too low to have significant effects on the
instantaneous (Figs. 32b) or time-integrated (Fig. 30b) neutri-
nospheric emission.

We point out that a discussion of the lateral variation of the
neutrino emission of our models is handicapped by the fact that
our approximation of 2D neutrino transport disregards the lat-
eral component of the neutrino flux vector and therefore tends
to overestimate the angular asymmetry of neutrinos streaming
out from radiating regions (for a more detailed discussion, see
Buras et al. 2006). Truely multi-dimensional transport should
therefore not only reveal smaller lateral variations of the time-
integrated flux as our models do, but will also show less extreme
angular variations of the instantaneous emission on short spatial
wavelengths.
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a

b
Fig. 31. a) Ratio of electron neutrino flux to average flux (for an
observer at rest at 400 km) versus cosine of the polar angle for
Model s112_128_f for different post-bounce times. The times are
picked such that large maxima of the flux ratio occur (see Fig. 30a).
b) Same as panel a, but at the νe sphere. The vertical solid lines mark
the lateral boundaries of the region where the results were evaluated for
Fig. 30a. Higher and lower latitudes were excluded because of possible
artifacts from the reflecting boundaries.

4. Summary and conclusions

We have presented results of a series of core-collapse and
post-bounce simulations for different progenitor stars be-
tween 11.2 M� and 25 M�, comparing 2D (axially symmetric)
with 1D (spherically symmetric) calculations. Doing so, our
main goals were (i) investigating the differences between con-
vection in progenitors with different masses; (ii) exploring the
effects of convection below the neutrinosphere (“PNS convec-
tion”) on the proto-neutron star structure, its neutrino emission,
and the neutrino heating-layer behind the shock; (iii) investigat-
ing the role of hydrodynamic instabilities that affect the stalled
accretion shock, i.e. convective overturn in the neutrino-heated
“hot bubble” layer (“HB convection”) and global low-mode non-
radial instability of the accretion shock (termed SASI by Blondin
et al. 2003; and possibly caused by the action of an advective-
acoustic cycle according to Foglizzo 2001, 2002); (iv) study-
ing the effects of rotation; and (v) testing the influence of

a
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Fig. 32. Same as Fig. 31, but for Model s15_64_r. The pole of the rotat-
ing model corresponds to cosϑ = 1.

numerical aspects like the grid resolution, size of the angu-
lar wedge, and magnitude of seed perturbations for convection.
Since our 2D neutrino-hydrodynamics code is a direct descen-
dant of our 1D Prometheus/Vertex code, it is particularly
well suited for performing such comparisons of 1D and 2D su-
pernova models.

Convection inside the proto-neutron star starts 30−40 ms af-
ter bounce in all of our 2D models and encompasses a layer
growing in mass until the end of our simulations (which were
typically terminated about 250 ms after bounce). It leads to a
more extended neutron star than in the 1D simulations with
lower temperatures at the neutrinosphere. For this reason the
mean energies of the neutrinos emitted from the neutrinosphere
are reduced (up to 10% after 200 ms of PNS convection). Despite
the larger radiating surface, the lower neutrinospheric temper-
atures also cause a slight reduction of neutrino luminosities
during the first 150 ms after bounce. This holds in particular
for ν̄e, because the convective transport of lepton number main-
tains a higher electron degeneracy in the neutrinospheric region
and accelerates the lepton number loss compared to 1D sim-
ulations. Only at t >∼ 150 ms after bounce, convectively en-
hanced energy transport in the nascent neutron star also leads to
increased energy loss, and the luminosities of heavy-lepton
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neutrinos become significantly (15%−20%) higher than in the
spherical models.

PNS convection of the kind found in our simulations leads
to a slightly reduced total energy deposition in the gain layer
mainly because of the lower average energies of the radiated νe
and ν̄e. Since the effects of convection below the neutrinosphere
are hard to disentangle from those of hydrodynamic instabilities
in the neutrino-heating layer behind the stalled shock, we devel-
oped a simple “mixing algorithm”. It allowed us to reproduce all
major effects of PNS convection in 1D simulations and thus to
separate them from the consequences of multi-dimensional fluid
flow in the postshock layer and to arrive at the above conclusion.

Convective overturn in the neutrino-heating layer remained
rather weak in case of the 15 M� and 20 M� progenitors. The
main reason for that is the rapid contraction of the accretion
shock after its maximum expansion. This causes the gain layer
to be very narrow and the infall velocities of the gas ahead and
behind the shock to be very high. As a consequence, the ad-
vection timescale of the gas through the gain layer is very short
compared to the typical neutrino-heating timescale. Buoyancy
forces therefore hardly achieve bubble rise in the flow of gas
accreted from the shock to the gain radius. As suggested by
Janka & Keil (1998) and Janka et al. (2001) and verified by
Thompson et al. (2005), the ratio of the advection timescale to
the neutrino-heating timescale, τadv/τheat, turned out to be a use-
ful diagnostic parameter to measure the proximity of a model
to a neutrino-driven explosion. A necessary condition for an ex-
plosion is that the timescale ratio rises above unity for a time
interval of at least the neutrino-heating timescale. In case of the
15 M� and 20 M� models, HB convection increases the heating
rate and the timescale ratio to values only slightly larger than
in the 1D simulations, but still roughly a factor of two below
the critical limit. We therefore found explosions of these stars
neither in spherical symmetry (in agreement with Liebendörfer
et al. 2002; Thompson et al. 2003; Sumiyoshi et al. 2005) nor
in 2D.

Also rotation did not change this negative outcome. We stud-
ied one 15 M� model with pre-collapse rigid iron core rotation
of ∼12 s period, which leads to a neutron star with a spin pe-
riod of about 1 ms, if the angular momentum of the core after
collapse is conserved. Rotation of this size is probably on the
extreme side of what can be expected for the cores of “normal”
supernovae, which are supposed to give birth to neutron stars
with an initial period of 10 ms or more (see the discussions in
Heger et al. 2005; and Ott et al. 2006). Our simulations reveal a
number of important differences of the rotating model compared
to its non-rotating counterparts. The proto-neutron star develops
an eccentricity of more than 0.6 until we stopped the simula-
tion at nearly 300 ms after bounce. At this time the luminosi-
ties of the radiated neutrinos are significantly smaller (10−20%)
and their mean energies up to 2 MeV lower than in the non-
rotating 2D model, because the equatorially more extended neu-
trinosphere is significantly cooler and energy is stored in rota-
tion instead of being released by neutrinos. Despite the clear
oblateness of the proto-neutron star, its rotation-induced emis-
sion anisotropy is very small. Nevertheless, rotation has a favor-
able influence on the conditions and parameters which determine
neutrino-driven explosions. Centrifugal forces stabilize the ac-
cretion shock at larger radii, increase the advection timescale of
the postshock gas significantly, and thus allow for a layer of well
developed, strong convective overturn activity behind the shock.
Because more mass stays in the gain layer for a longer time, the
total energy deposition rate behind the shock is higher at later
post-bounce times (t >∼ 130 ms p.b.) than in the non-rotating

models. In spite of these healthy effects, however, the timescale
ratio τadv/τheat remains still well below unity (τadv/τheat <∼ 0.6).

Even without rotation postshock convection becomes violent
in case of the 11.2 M� star. The shock in this model is able to stay
longer at large radii than in the more massive stars. This is due to
the fact that the rather low-mass progenitor has a steeper density
decline at the transition to the Si+O layer, which leads to a rapid
decrease of the mass accretion rate of the shock at about 90 ms
after bounce. This allows the shock to reexpand in adjusting to
the situation of reduced ram pressure. The increased advection
timescale gives convection the possibility to gain strength and
thus to support the shock at a much larger radius than in the cor-
responding 1D model. Also the total neutrino heating rate be-
hind the shock and the efficiency of net neutrino-energy transfer
to the gas in the gain layer is higher by up to a factor of two. The
timescale ratio τadv/τheat approaches unity and remains close to
– but slightly below – this threshold until the end of our simu-
lations. The 11.2 M� model computed with a 90◦ lateral wedge
therefore lingers at the border to success.

Such a situation is extremely sensitive to relatively little
changes. We saw this when we repeated the simulation with a
full 180◦ grid instead of using the wedge around the equator.
While PNS convection turned out not to depend on the wedge
size, convective activity in the neutrino-heating layer can change
significantly when the available degrees of freedom are not con-
strained by periodic boundary conditions of a 90◦ equatorial
wedge and therefore low-mode deformation of dipolar (l = 1)
and quadrupolar (l = 2) character is allowed for. Convection be-
comes sufficiently strong so that the accretion shock continues to
expand. This ensures that the effective advection timescale does
not decrease after it has reached its maximum. At t >∼ 140 ms
after bounce, the timescale ratio τadv/τheat then becomes larger
than unity, thus further improving the conditions for efficient
energy deposition by neutrinos in the postshock layer. After
about 180 ms of post-bounce evolution the total energy in the
gain layer becomes positive and continues rising because the
mass in the gain layer and the energy per nucleon grow. The
model has passed the critical threshold and is on its way to ex-
plosion. A closer inspection of the involved energies shows that
this explosion is powered by neutrino heating.

This qualitative difference of the outcome of 2D simulations
with 90◦ and 180◦ grids is another confirmation of the proximity
of our 2D simulations, and in particular of the 11.2 M� case, to
a success of the convectively supported neutrino-driven mecha-
nism. Together with the recent models for stars in the 8−10 M�
range with O-Ne-Mg cores, which explode even in spherical
symmetry (Kitaura et al. 2006), our current results seem to in-
dicate that the neutrino-heating mechanism is viable at least for
stars near the low-mass end of supernova progenitors.

The sensitivity to numerical variations, however, also
stresses the need to remove some of the shortcomings and limi-
tations of axially symmetric simulations. One must suspect that
in 3D simulations morphological differences of the structures
(plumes instead of azimuthal tori), different growth rates of in-
stabilities, or additional degrees of freedom (e.g. triaxial asym-
metries and vortex motion caused by Coriolis forces) might lead
to sizable quantitative differences which could be crucial when
collapsing stellar cores are close to the threshold for explosion.
Also the existence of the polar axis of a spherical or cylindri-
cal coordinate grid is a potential source of numerical uncertain-
ties, because it is a coordinate singularity which is impenetra-
ble for approaching fluid flow and thus defines a preferred grid
direction.
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Our results therefore suggest the need to strive for 3D simu-
lations, preferentially without the disadvantages connected with
the polar grid axis. The importance of low-mode convection or
low-mode hydrodynamical instabilities as suggested by our re-
sults implies that such simulations will have to be done for the
full star and cannot be contrained to a limited wedge.
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Appendix A: The progenitor models

The properties of the nine progenitor models used in this work
are summarized in Fig. A.1 and Table A.1. In Fig. A.1 the initial
pre-collapse data as given by the stellar evolution modelers are
displayed, in Figs. A.2 and A.3 we compare the cores at a cen-
tral density of ρc = 1011 g cm−3, which was reached by evolving
the models with our 1D Boltzmann transport code Vertex. Up
to this point the infall velocities are still subsonic and neutrinos
stream off almost unhindered. Compared to the original progen-
itor data in Fig. A.1 the electron number Ye has changed sig-
nificantly and strongest for those models which started out with
the lowest initial densities at the center. The evolution proceeded
nearly adiabatically, the entropy changes are therefore small.

Looking at Fig. A.2, we see that the density structure of the
inner ∼1.0 M� of the iron core is extremely similar in all pro-
genitors, correlated with only small differences in the electron
fraction Ye (Fig. A.3). The central value of Ye varies only by 5%
between the progenitors. In contrast, the entropy per baryon s
and infall velocity v exhibit differences of up to 40%. There
is a general trend that |v| and s increase with the ZAMS mass,
while Ye decreases.

Outside of the core, larger differences between the progen-
itors exist and are associated with the location of the interfaces
between layers of different chemical composition and the den-
sity structure in these layers. In particular, the Fe−Si and the
Si−O interfaces can have significant influence on the evolution
of the supernova shock. The enclosed mass at which the inter-
faces are located differs strongly between the progenitors and in-
creases non-monotonically with the ZAMS mass, see Table A.1.
In most cases the composition changes discontinuously from the
heavy to the lighter nucleus at the interfaces, but also a more
gradual enrichment of a layer with elements of the neighboring
shell is possible. In both cases the progenitor structure shows a
more or less large entropy jump at the interfaces. For larger en-
tropy jumps, which are underlined in Table A.1, also large steps
occur in the density profile.

Appendix B: One-dimensional models: more details

With the exception of Model n13, the collapse times from a
core central density of ρc = 1011 g cm−3 until bounce dif-
fer only by 10−20% between the models, lying between ∼20
and ∼25 ms (see Fig. B.1 and Table B.1). In general, the re-
sults listed in Table B.1 and visible in Figs. A.3 and B.1−B.3
reveal an astonishing degree of convergence of the core evo-
lution for the different progenitors during the phases of col-
lapse, shock formation, prompt shock propagation and break-
out νe burst (cf. also Liebendörfer et al. 2002). Initially, the stel-
lar cores differ in the amount of deleptonization and have been
evolved differently close to the onset of collapse. Less delep-
tonized cores, however, need a longer time until the collapse be-
comes dynamical (because their Ye and thus electron pressure
are higher and photodisintegrations of Fe-group nuclei proceed
more slowly), thus allowing deleptonization to catch up with that
of the more evolved progenitors. Despite of remaining differ-
ences at ρc = 1011 g cm−3 (Figs. A.3 and B.2), the central quan-
tities and radial profiles, in particular of entropy and Ye, become
very similar after neutrino trapping sets in at ρc >∼ 1012 g cm−3

(Figs. B.2, B.3). This suggests a strongly self-regulating char-
acter of the hydrodynamics coupled with the neutrino transport,
which ensures that the characteristic properties of the homolo-
gous core at bounce are almost independent of the initial condi-
tions (Liebendörfer et al. 2002). Only Model s25a28 has such a

high value of the entropy and such a low value of Ye at the time
when ρc = 1011 g cm−3 (Figs. A.3 and B.2) that both quantities
do not fully converge to those of the other models. In this model
the higher entropy implies that the EoS yields a much larger free
proton abundance, which leads to slightly stronger deleptoniza-
tion and thus a somewhat larger entropy (the entropy level is
higher by about ∆s ∼ 0.07 kB/nucleon) after trapping7.

As a consequence of the similar collapse evolution, all mod-
els lose approximately the same amount of energy via neutrino
emission during collapse, i.e. around 1051 erg, and because of
the similar core structure and collapse history, the shock in all
cases is created at an enclosed mass of Msc � 0.49 ± 0.01 M�,
corresponding to a radius of rsc � 10.7 ± 0.1 km (Table B.1 and
Fig. B.3a). Following Bruenn & Mezzacappa (1997) we define
the shock creation (sc) time and location by the moment and po-
sition where the entropy first reaches 3 kB per baryon. From now
on all times will be normalized to the time of core bounce, tcb.

Also the prompt shock propagation is quite similar. In most
models, the velocities behind the shock become negative af-
ter 0.9 ms (time tpse in Table B.1) when the shock encloses
a mass of Mpse = 0.78 ± 0.01 M� and has reached a radius
of rpse = 32 ± 1 km (pse stands for “prompt shock ends”). Only
in case of the progenitors from Limongi et al. (2000) the prompt
shock pushes out a bit farther. It is interesting to note that in
all cases the stagnation of the shock happens earlier than the νe
burst is released. The corresponding time tνe−burst in Table B.1
is defined as the moment when the νe luminosity maximum is
produced at the shock8.

Although the prompt shock “stalls” in the above defined
sense, the radial expansion velocity of the shock remains large,
see Fig. B.4, upper left panel, because of mass of the collapsing
star being accreted through the shock and accumulating on the
central, collapsed core. When the shock has passed the neutri-
nosphere after 4 ms at a radius of 60−70 km (Table B.1), the
energy and lepton number drain via neutrino emission in the νe
burst reduces the thermal and degeneracy pressure of the elec-
trons in the accreted material, so that the shock continues to ex-
pand more slowly. The strength of this neutrino burst is very
similar for all models, see Fig. B.4, lower left panel (cf. also
Kachelrieß et al. 2005).

Our models show that the four parameters which character-
ize the subsequent quasi-stationary accretion phase, the mass
accretion rate through the shock, ∂t Msh, the mass MPNS and ra-
dius rPNS of the proto-neutron star (PNS), and the neutrino lu-
minosity Lν, are not independent but coupled (Fig. B.4). The
governing variable is the time-dependent mass accretion rate
through the shock, which is determined by the progenitor struc-
ture. Since the mass accreted by the shock is further advected
onto the PNS with a small time delay, the mass of the PNS is es-
sentially the time integral of ∂t Msh plus an initial value. Starting
at tpb = 4 ms, this initial PNS mass is approximately 1.0 M�
for all models due to the similar progenitor core structure. Also
the neutrino luminosity depends on ∂t Msh: the gravitational
binding energy of the accreted matter must be radiated away
when accretion proceeds in a stationary way. The total neu-
trino luminosity therefore contains a part from the cooling of the

7 Note that the small differences in Ye and in Ylep after trapping disap-
pear completely, and those in entropy remain slightly larger, when the
simulations are done with the sophisticated implementation of electron
captures on nuclei of Langanke et al. (2003).

8 Technically this moment is determined by taking the time of maxi-
mum luminosity at 400 km minus the time of flight between the neutri-
nosphere and this radius.
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Table A.1. List of progenitors used in the simulations. MFe−Si and MSi−O are the enclosed masses at composition interfaces defined by entropy
jumps. With (e) we denote that a shell interface is connected with a gradual enrichment of the lighter nucleus, i.e. these cases are Fe–FeSi and
Si–SiO interfaces where the mass fractions of Si or O grows gradually outwards. The underlined numbers indicate an entropy increase of more
than 1 kB per nucleon in case of an Fe–Si interface and an entropy increase of more than 2 kB/by in case of a Si–O interface.

Model MZAMS [M�] Reference MFe−Si [M�] MSi−O [M�] Notes
s1b >2.26 Woosley, personal comm. 1.34 1.38 model for Type Ib supernova
s11.2 11.2 Woosley et al. (2002) 1.24 1.30(e) from www.stellarevolution.org
n13 13 Nomoto & Hashimoto (1988) 1.18 1.50
s15s7b2 15 Woosley & Weaver (1995) 1.28(e) 1.43(e)
l15 15 Limongi et al. (2000) 1.16(e) 1.60
s15a28 15 Heger et al. (2001) 1.42(e) 1.81
s20.0 20.0 Woosley et al. (2002) 1.46 1.82 from www.stellarevolution.org
l25 25 Limongi et al. (2000) 1.58 1.84(e)
s25a28 25 Heger et al. (2001) 1.62 1.98(e)

Fig. A.1. The progenitor data for temperature
T , electron fraction Ye, density ρ, and the mass
fractions of Si and O, XSi and XO, respectively,
as provided to us by the stellar evolution model-
ers (see Table A.1 for references). The binding
energy and entropy were derived with the EoS
used in our simulations.

contracting core of the PNS (which loses its binding energy over
a timescale of about 10 s) plus a contribution from the settling
accretion layer, which is proportional to ∂tMsh with some lag,
because the material has to fall from the shock to the cooling
layer, where neutrinos are then released over a thermal cooling
timescale of some 10 ms. Interestingly, also the neutrinosphere
radii reveal a variability with ∂t Msh. A large (small) accretion
rate leads to an approximately stationary solution with more

(less) matter piling up on the nascent neutron star before it can
radiate away its energy in form of neutrinos. Thus the PNS ob-
tains a hot, extended (cool, narrow) mantle with relatively high
(low) densities and optical depths, releasing neutrinos only on a
longer (shorter) timescale. The neutrinosphere therefore moves
to a larger (smaller) radius rν in case of mass accretion proceed-
ing at high (low) rates (Fig. B.4).
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Fig. A.2. Radial profiles of the models during
core collapse when the central density is ρc =
1011 g cm−3.

Fig. A.3. Profiles as functions of enclosed mass
of the models during core collapse when the
central density is ρc = 1011 g cm−3. The data
are only shown for the stellar mass range that
was included in the simulations. It corresponds
to r ≤ 10 000 km.
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Table B.1. Characteristic parameters of the 1D models for the phases of collapse, prompt shock propagation, and neutrino burst. tcoll is the time
between the moment when the collapsing core reaches a central density of 1011 g cm−3 and the moment of shock creation (which is nearly identical
with the time of core bounce), i.e. the time when the entropy behind the shock first reaches a value of 3 kB/by. The shock creation radius rsc

and enclosed mass Msc are defined by the radial position where this happens. The energy loss Eν,loss
coll via neutrinos during the collapse phase is

evaluated by integrating the total neutrino luminosity (for an observer at rest at r = 400 km) over time from the moment when the core reaches
ρc = 1011 g cm−3 until the moment when the dip in the νe luminosity is produced around 2.5 ms after shock formation. We call the time when
the velocities behind the shock drop below 107 cm s−1 the end of the prompt shock propagation phase. This time, tpse, is measured relative to the
moment of shock creation. At the end of the prompt shock propagation phase, the shock is at radius rpse and its enclosed mass is Mpse. The time
of the νe burst, tνe−burst, is defined as the post-bounce time when the νe luminosity maximum is produced at the shock, which then is located at
the radius rνe−burst and mass Mνe−burst. Finally, the energy emitted during the prompt νe burst is defined as the time-integrated νe luminosity for the
FWHM of the burst, Eνburst, evaluated at 400 km for an observer at rest.

Model tcoll rsc Msc Eν,loss
coll tpse rpse Mpse tνe−burst rνe−burst Mνe−burst Eνburst

[ms] [km] [M�] [1051 erg] [ms] [km] [M�] [ms] [km] [M�] [1051 erg]
s1b 23.9 10.7 0.49 1.00 0.87 32 0.78 3.8 64 1.00 1.48
s11.2 25.2 10.7 0.50 1.00 0.87 32 0.78 3.7 63 1.00 1.38
n13 28.9 10.7 0.50 0.96 0.88 32 0.78 3.7 61 0.98 1.29
s15s7b2 † 23.9 10.7 0.49 1.01 0.91 32 0.78 3.8 64 1.00 1.47
l15 20.9 10.6 0.50 1.04 1.03 35 0.82 4.1 68 1.04 1.74
s15a28 21.6 10.7 0.49 1.03 0.95 33 0.79 4.0 66 1.02 1.60
s20.0 22.7 10.6 0.49 1.03 0.91 32 0.79 3.8 64 1.01 1.50
l25 20.0 10.7 0.49 1.06 1.15 37 0.83 4.1 68 1.03 1.82
s25a28 19.8 10.6 0.48 1.06 1.00 34 0.79 4.1 68 1.03 1.93

† This model is identical with Model s15Gio_1d.b in Buras et al. (2006) except for a slightly different, improved implementation of the relativistic
corrections to the gravitational potential. This difference causes only small changes in the neutrino luminosities of a few percent, but otherwise
has no visible consequences.

Fig. B.1. Central density versus time remaining until core bounce for all
1D models.

In summary, all the variables which determine the structure
of the postshock accretion layer depend on the time evolution
of ∂tMsh: a high ∂t Msh leads to larger values of rν and Lν, and
a faster increase of MPNS. Figure B.4 shows this dependence.
Looking, e.g., at tpb = 80 ms we see that ∂t Msh varies by a factor
of five between the models, being 0.8 and 1.3 M� s−1 in case of
Models n13 and s11.2, respectively, at the low mass end of con-
sidered progenitors, and 3−4 M�/s for Models l25 and s25a28 at
the high end of the progenitor mass spectrum. Consistently, rν at
tpb = 80 ms is only 60 km for the low-mass progenitors and 25%
higher, i.e. about 80 km, for the high-mass models. Also the lu-
minosities differ by a factor of two, and the PNS masses show
differences of order 25%.

The shock radius follows the time evolution of the neutron
star radius qualitatively, but with some time delay. Interestingly,
during phases of slowly changing ∂t Msh the influence of differ-
ent values of ∂t Msh on the shock position is rather modest. The
shock radii are nearly identical for all progenitors until ∼25 ms
after bounce and differ at most by about 10% until about 80 ms
post-bounce. During this phase, the significantly larger

a

b
Fig. B.2. Central entropy (panel a)) and central electron and lepton
fraction (panel b)) versus central density during core collapse for all
1D models. The vertical dotted line marks the time of comparison at a
central density 1011 g cm−3 in Figs. A.2 and A.3.

differences in ∂t Msh, MPNS, rν, and Lν mentioned above seem
to partly compensate each other in their influence on the shock
radius. For higher values of ∂t Msh the shock radius is smaller
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a

b
Fig. B.3. Entropy (panel a)) and electron and lepton fraction (panel b))
versus enclosed mass at the time of shock formation.

because of the higher ram pressure. A larger MPNS increases the
gravitational pull and thus also lowers rsh. But on the other hand
a higher Lν increases the heating and thus leads to an expansion
of the heating region, which is supported from below by a larger
PNS (because rν is larger).

Of course, the counteracting effects do not compensate each
other perfectly. As can be seen at later times, the shock radii dif-
fer more strongly when the PNSs begin to show a wider spread
in mass, although with nearly the same radius, and in particu-
lar when the mass accretion rates show differences of a factor
of about 10 instead of the factor of 2 at early times. The ana-
lytic study of Arcones Segovia (2003) and Arcones & Janka (in
preparation) reveals that the steady-state accretion shock radius
is a sensitive function of the PNS radius (rsh ∝ r1.5...2

ν ), and de-
creases less strongly with higher mass accretion rate and proto-
neutron star mass (see also Fryer et al. 1996).

Note that a sudden decrease of ∂t Msh as it happens when
an infalling composition shell interfaces reaches the shock (see
Sect. 2, also nicely demonstrates the dependence of rν, Lν,
and MPNS on this variable: immediately after such a drop,
Lν starts decreasing, the decrease of rν becomes steeper, and

the increase of MPNS slows down (Fig. B.4). Also, the total lep-
ton number and energy loss via neutrino emission, see Fig. B.5,
depends strongly on ∂t Msh and thus on the progenitor struc-
ture during the post-bounce accretion phase. These facts could
be used to infer the progenitor structure from a supernova neu-
trino signal which is measured with good time resolution (cf.
also Liebendörfer et al. 2003).

Appendix C: Linear analysis of PNS structural
changes

A linear analysis is performed to determine the sensitivity of the
PNS structure, i.e. contraction or expansion, to changes or re-
distribution of lepton number and energy in some layer. This
analysis is then applied to the main effects of convective activity
in the nascent neutron star, (1) the transport of lepton number
and energy within the convective layer, and (2) the differences
in the loss of lepton number and energy by neutrino emission in
2D simulations compared to 1D models.

We demonstrate the analysis in case of lepton number varia-
tions, holding the specific internal energy fixed, but variations
of the internal energy can be investigated in the same way.
Assuming Newtonian gravity, which is sufficient here because
we are interested in qualitative, not quantitative results, the hy-
drostatic structure of the PNS is determined by

dp(r)
dr

= −GM(r)ρ
r2

, (C.1)

with G being the Newtonian gravitational constant. Using the
relation dM = 4πρr2dr , we get

dp(M)
dM

= − GM
4πr4(M)

· (C.2)

An infinitesimal change δY(M) of lepton number, e.g. by remov-
ing one electron from a layer with infinitesimal mass ∆M and
baryon number ∆Nby at mass coordinate Mp (we here and in the
following drop the subscript of Ylep), i.e.

δY(M) = −1 · ∆N−1
by = −

(
∆M/mby

)−1
(C.3)

if Mp < M < Mp + ∆M, and δY(M) = 0 otherwise, will lead to
a variation of the pressure according to

δp(M) =
∂p
∂Y

∣∣∣∣∣
ρ

(M) δY(M) +
∂p
∂ρ

∣∣∣∣∣
Y

(M) δρ(M), (C.4)

where δρ(M) is the structural change induced by the change of
lepton number. The new hydrostatic solution is

d(p + δp)
dM

= − GM
4π(r + δr)4

, (C.5)

where δr(M) is the movement of mass shell M.
Expanding the RHS to first order, inserting Eq. (C.4), and

subtracting Eq. (C.2) leads to

d
dM

[
∂p
∂Y

∣∣∣∣∣
ρ
· δY + ∂p

∂ρ

∣∣∣∣∣
Y
· δρ

]
=

GM δr

π r5
· (C.6)

Now setting the RHS of Eq. (C.6) to zero for the moment, the
solution reads

δρ(M) = − ∂p
∂Y

∣∣∣∣∣
ρ

(M) ·
[
∂p
∂ρ

∣∣∣∣∣
Y

(M)

]−1

· δY(M). (C.7)
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Fig. B.4. Post-bounce evolution of the models in spherical symmetry. The left panels show phases around the core bounce with the last stage of
infall (t < 0), prompt shock propagation, neutrino burst, and early accretion phase of the shock. The right panels depict the post-bounce accretion
phase of the stalled shock. From top to bottom, the panels display the shock radius, the mass accretion rate through the shock, the mass enclosed
by the shock (left) or PNS baryonic mass (right), the PNS radius, and the electron neutrino (left) or total neutrino (right) luminosity at r = 400 km
for an observer at rest. The PNS mass and radius are defined by the corresponding values at the νe sphere.

In terms of the “mass shift” δM the resulting expan-
sion/contraction of the PNS is now evaluated at a radius R >
r(Mp):

δM(R) ≡
∫ R

0
4πδρ(M(r′))r′2dr′

� ∂p
∂Y

∣∣∣∣∣
ρ

(Mp) ·
[
∂p
∂ρ

∣∣∣∣∣
Y

(Mp)

]−1

· mby

ρ(Mp)
, (C.8)

where we have expanded to first order and made use of
Eqs. (C.7) and (C.3) and of the relation ∆M = 4πr2ρ(Mp)δr. The

change in mass δM is independent of R and means expansion, if
negative (i.e. less mass within a given radius R).

A relation between changes of mass and radius can be ob-
tained by using M =

∫ r

0
4πρr′2dr′ ≡ ∫ r+δr

0
4π(ρ + δρ)r′2dr′ .

Expanding to first order, we thus get a relation between δr
and δρ:

δr = − 1
4πρr2

∫ r

0
4πδρr′2dr′ . (C.9)

Note that the radius displacement δR(M) depends on R, see
Eq. (C.9), and is therefore less suitable for our analysis.
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Fig. B.5. Integrated lepton number (top) and energy loss of the 1D mod-
els versus time.

In order to take into account the RHS of Eq. (C.6) we ap-
ply an iterative procedure: The solution δri(M) of iteration step i
is inserted on the RHS of Eq. (C.6), which is then numerically
integrated over M to find the solution δρi+1(M). In the first itera-
tion step the solution for δρ(M) from Eq. (C.7) is used to calcu-
late δri(M) from Eq. (C.9). We find that for typical PNS profiles
Eq. (C.7) provides a very good approximation already; the next
iteration step changes δM by 10−5 at most.

In Fig. C.1 we present the change of δM when one elec-
tron or an energy of 10 MeV is removed from the PNS at dif-
ferent radii (or densities, corresponding to different enclosed
masses Mp) for two representative times in the evolution of
Model s15_32. Note that adding one electron or 10 MeV would
have the opposite effect. We see that removing this amount of
energy always leads to contraction, while the extraction of one
electron always causes expansion of the PNS. The latter finding
can be understood from the fact that the electron is taken away
but its degeneracy energy is assumed to remain in the PNS as
thermal energy.

When discussing the effects of the convective transport of
energy and lepton number on the PNS structure, it is interest-
ing to compare the values of δM in the drain region, where eint
and Ylep drop, and in the dump region, where eint and Ylep in-
crease due to convection. For example, at t = 73 ms, the removal
of 10 MeV from the drain region will lead to an increase of the
mass enclosed by some large radius R by (0.7−1.3) × 10−24 g
(Fig. C.1), while adding these 10 MeV in the dump region will
reduce δM(R) by (0.9−2.1) × 10−24 g (Fig. C.1). This means a
net decrease of δM(R), and thus an expansion of the PNS. This
behaviour is also seen at later times and in a similar way for the
transport of Ylep.

Appendix D: Mixing scheme for reproducing
PNS convection

In order to test the consequences of PNS convection on the
PNS and supernova evolution in 1D simulations, we have devel-
oped a simple numerical “mixing algorithm”, which reproduces

the energy and lepton number transport found in 2D models to a
high degree.

In this algorithm we assume that any convective activity in
the PNS leads instantaneously to a redistribution of energy and
lepton number in the unstable region so that the convectively
unstable gradients disappear, i.e. CQL = 0 is established. Setting
βdiff = 1 and assuming d

〈
Ylep

〉
/dr = dYlep /dr in Eq. (7), we

find that the instability is mainly driven by a negative gradient
of the entropy (including neutrino entropy). CQL = 0 then corre-
sponds to a flat entropy profile, consistent with what is observed
in the PNS convective region in 2D simulations, see Figs. 9
and 10. The numerical mixing scheme redistributes the energy
in an unstable layer in a conservative way such that the entropy
profile develops a plateau.

As a second constraint we introduce the empirically derived
relation

Ylep
new = NYlep

old

⎡⎢⎢⎢⎢⎣1 + αenew
int − eold

int

eold
int

⎤⎥⎥⎥⎥⎦ , (D.1)

where “old” denotes the lepton number Ylep and internal en-
ergy eint before the application of the mixing scheme in a time
step of the simulation, “new” denotes the variables after such an
application, and N is a global normalization factor which ensures
that lepton number is globally conserved.

The mixing algorithm is executed in an operator splitting
step after each hydrodynamic step. The algorithm detects re-
gions with a negative entropy (s+ sν) gradient inside the PNS. In
these regions energy and lepton number are then redistributed in
such a way that Eq. (D.1), d(s + sν )/dr ≡ 0, and global energy
and lepton number conservation are fulfilled (GR gravitational
effects are ignored).

We find empirically that for α = 2 the evolution of the
profiles of Ylep, s + sν, and eint inside the PNS for simulations
with the mixing scheme reproduce very well the results of the
2D model, see Fig. 10. Near the boundaries of the convectively
unstable layer small differences can appear. The over- and un-
dershooting of dynamically moving matter into convectively sta-
ble layers can, of course, not be properly accounted for by this
simple scheme. Another deficiency of the scheme is best vis-
ible shortly after the onset of convection around 50 ms after
bounce, when the Brunt-Vaisälä frequency can reach values of
up to 2 ms−1 (Figs. 9 and D.1, panel b), and the convective layer
has not yet fully developed and the transient starting phase with
growing perturbations is not yet over. In this nonstationary, early
phase of PNS convection the results with the mixing scheme can-
not reproduce the Ylep-profiles of the 2D simulations very well
(Fig. D.1, panel a); lepton number is transported more efficiently
in the 2D models.

Appendix E: Perturbation growth during collapse

The majority of our models were computed through the phases
of core collapse, bounce, shock formation, and shock stagna-
tion in spherical symmetry, and then continued in 2D with
random perturbations added during the mapping from the
1D to the 2D grid. In contrast, we followed the evolution of
Models s15_64_p and s15_64_r in two dimensions also during
core collapse, shock formation, and early shock propagation. In
this case the spherically symmetric density structure of the pro-
genitor core was perturbed in each cell of the computational grid
in a random way, in case of Model s15_64_p with an ampli-
tude of 2%, in Model s15_64_r with 1% amplitude (Table 1). We
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Fig. C.1. Results of a linear analysis of the
structural changes of the PNS in response to
the removal of lepton number or energy, respec-
tively, at different densities and thus enclosed
masses Mp. The lower lines correspond to the
expansion when one electron is removed, while
the upper lines depict the contraction when an
energy of 10 MeV is extracted. The lines cor-
respond to post-bounce times of 73 ms (solid)
and 240 ms (dashed). The labels “dump” and
“drain” denote the density windows between
the vertical, dotted lines, which roughly in-
dicate where PNS convection deposits or ex-
tracts, respectively, lepton number and energy.

a

b
Fig. D.1. Panel a) depicts the Ylep profiles for three times around
the onset of PNS convection, comparing a 1D model (s15s7b2),
a 2D model (s15_32, for which angular-averaged values are plot-
ted), and a 1D model with PNS mixing scheme (s15_mix). Panel b)
shows Ylep, the total entropy s+ sν, the radial velocity vr , and the Brunt-
Väisälä-frequency ωBV (clockwise from top left to bottom left) in the
PNS convective region for Model s15_32 shortly after the onset of
PNS convection.

Fig. E.1. Maximum fluctuations of the density within the core of 1.5 M�
at four times during the collapse of Model s15_64_p (top). The initially
imposed random perturbations are damped strongly during the subsonic
collapse in the inner part of the Fe core. The corresponding density
and velocity profiles (averaged in latitude) are shown in the middle and
bottom panels, respectively. The short solid lines cutting the profiles in
the bottom plot indicate the position of the sonic point.

will discuss here briefly the evolution of the perturbations dur-
ing the core collapse phase, concentrating on Model s15_64_p.
Since the initial spin is too low, rotation hardly affects the pre-
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Fig. E.2. Standard deviations of the density fluctuations in lateral direc-
tion, σρ, as defined in Buras et al. (2006, Eq. (24)) for different mass
shells versus the (time-dependent) radius rM of these mass shells. The
dashed lines represent fits according to σρ ∝ r−1/2

M , the thick black bars
mark the phases of the collapse when the infall velocity of a mass shell
is more than 60% of the local sound speed, and the white bars mark the
phases when the local infall velocity is supersonic.

bounce evolution of Model s15_64_r, and the latter model does
not show any important rotation-induced differences with re-
spect to the perturbation growth. When running the simulations
continuously in 2D instead of mapping 1D post-bounce models
on a 2D grid some milliseconds after bounce, we detect a slightly
earlier onset of convection, which is seeded by the density and
velocity fluctuations in the convectively unstable layers that de-
velop below the neutrinosphere and in the neutrino-heating layer
behind the stalled shock. Despite the earlier start of convec-
tion behind the shock, no significant differences of the evolu-
tion could be discovered between Models s15_32 and s15_64_p
(Figs. 11−17). We therefore have included the results of the lat-
ter model in the relevant plots in Sect. 3, but have not specifically
discussed them in the text.


