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ABSTRACT

Aims. Kluźniak & Abramowicz explain the high frequency, double peak, “3:2” QPOs observed in neutron star and black hole sources
in terms of a non-linear parametric resonance between radial and vertical epicyclic oscillations of an almost Keplerian accretion disk.
The 3:2 ratio of epicyclic frequencies occurs only in strong gravity. Recently, a simple model incorporating their suggestion was
studied analytically: the result is that a small forcing may indeed excite the parametric 3:2 resonance. However, no explanation has
been provided on the nature of the forcing which is given an “ad hoc” deterministic form.
Methods. In the present paper the same model is considered. The equation are numerically integrated, dropping the ad hoc forcing
and adding instead a stochastic term to mimic the action of the very complex processes that occur in accretion disks as, for example,
MRI turbulence.
Results. We demonstrate that the presence of the stochastic term is able to trigger the resonance in epicyclic oscillations of nearly
Keplerian disks, and it influences their pattern.
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1. Introduction

Quasi Periodic Oscillations (QPOs) are a common phenomenon
in nature. In the last few years many kHz QPOs have been de-
tected in the light curves of about 20 neutron star and few black
hole sources (for a recent review, see van der Klis 2004). The
nature of these QPOs is one of the mysteries which still puzzle
and intrigue astrophysicists: apart from giving important insights
into the disk structure and the mass and spin of the central ob-
ject (e.g. Abramowicz & Kluźniak 2001; Aschenbach 2004;
Török et al. 2005), they offer an unprecedented chance to test
Einstein’s theory of General Relativity in strong fields.

High frequency QPOs lie in the range of orbital frequen-
cies of geodesics just few Schwarzschild radii outside the central
source. This feature inspired several models based directly on or-
bital motion (e.g. Stella & Vietri 1998; Lamb & Miller 2003),
but there are also models that are based on accretion disk oscil-
lations (Wagoner et al. 2001; Kato 2001; Rezzolla et al. 2003;
Li & Narayan 2004). The Kluźniak & Abramowicz resonance
model (see a collection of review articles in Abramowicz 2005)
stresses the importance of the observed 3:2 ratio, pointing out
that the commensurability of frequencies is a clear signature of
a resonance. The relevance of the 3:2 ratio and its intimate bond

� Appendix A is only available in electronic form at
http://www.edpsciences.org

with the QPOs fundamental nature is supported also by recent
observations: Jeroen Homan of MIT reported at the AAS meet-
ing on the 9th of January 2006 that the black hole candidate
GRO J1655−40 showed in 2005 the same QPOs (at ∼300 Hz
and ∼450 Hz) first detected by Strohmayer (2001).

The main limitation of the resonance model is that it does not
yet explain the nature of the physical mechanism that excites the
resonance. The idea that turbulence excites the resonance and
feeds energy into it (e.g. Abramowicz 2005) is the most natural
one, but it has never been explored in detail. The turbulence in
accretion disks is most probably due to the Magneto-Rotational
Instability (MRI, Balbus & Hawley 1991). At present, numeri-
cal simulations of turbulence in accretion disks do not fully con-
trol all the physics near the central source. For this reason, they
cannot yet address the question of whether MRI turbulence does
play a role in exciting and feeding the 3:2 parametric resonance.
A situation like this is not specific of astronomy, but it is shared
by other fields in applied research and engineering. The most
common and, at the same time, effective, solution consists of
modelling the unknown processes as stochastic ones. Such pro-
cesses are characterized by a huge number of degrees of free-
dom and therefore they can be assumed to have a stochastic na-
ture (e.g. Garcia-Okjalvo & Sancho 1999). Lacking any a priori
knowledge, the most natural choice is represented by Gaussian
white-noise processes. Of course, such an assumption is only an
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approximation. However, it can provide an idea of the conse-
quences on the system of interest of the action of a large num-
ber of complex processes. This approach leads to the modelling
of physical systems by means of stochastic differential equa-
tions (SDE) (Maybeck 1979, 1982; Ghanem & Spanos 1991;
Garcia-Okjalvo & Sancho 1999; Vio et al. 2005).

The present paper is a first qualitative step in this direction
in the context of QPO modelling. In Sect. 2 we synthesize a
stochastic version of the non-linear resonance model. Some ex-
periments are presented and discussed in Sect. 3. The last sec-
tion summarizes our findings. Since SDEs are not yet very well
known in astronomy, Appendix A provides a brief description of
the techniques for the numerical integration that are relevant for
practical applications.

In all the experiments, we adopt the units rG = 2GM/c2 = 1
and c = 1.

2. A simplified model for kHz QPOs

2.1. The Kluźniak-Abramowicz idea

The key point of the mechanism proposed by Abramowicz &
Kluźniak (2001) is the observation that kHz QPOs often oc-
cur in pairs, and that the centroid frequencies of these pairs are
in a rational ratio (e.g., Strohmayer 2001). This feature sug-
gested to them that high frequency QPOs are a phenomenon due
to non-linear resonance. The analogy of radial and vertical fluc-
tuations in a Shakura-Sunyaev disk with the Mathieu equation
pointed out that the smallest (and hence strongest) possible res-
onance is the 3:2. In all four micro-quasars which exhibit double
peaks, the ratio of the two frequencies is 3:2, as well as in many
neutron star sources. Moreover, combinations of frequencies and
sub-harmonics have been detected: these are all signatures of
non-linear resonance. A confirmation of the fact that kHz QPOs
are due to orbital oscillations comes from the scaling of the fre-
quencies with 1/M, where M is the mass of the central object
(McClintock & Remillard 2004).

2.2. Dynamics of a test particle

A simple mathematical approach to this idea was first developed
by Rebusco (2004) and Horák (2004), in the context of isolated
test particle dynamics.

The time evolution of perturbed nearly Keplerian geodesics
is given by

z̈(t) + ω2
θz(t) = f [ρ(t), z(t), r0, θ0]; (1)

ρ̈(t) + ω2
rρ(t) = g[ρ(t), z(t), r0, θ0]. (2)

Here ρ(t) and z(t) denote small deviations from the circular orbit
r0, θ0 (radial and the vertical coordinates respectively), f and g
account for the coupling, and ωθ and ωr are the epicyclic fre-
quencies. In the case of the Schwarzschild metric, a Taylor ex-
pansion to third order leads to:

f (ρ, z, r0, θ0) = c11zρ + cbżρ̇ + c21ρ
2z + c1bρżρ̇ + c03z3; (3)

g(ρ, z, r0, θ0) = e02z2 + e20ρ
2 + ez2ż2 + e30ρ

3 + e1ze2ρż
2

+e12ρz
2 + er2ρ̇

2 + e1re2ρ̇
2ρ. (4)

The functional form of the coefficients ci and e j can be found
in Rebusco (2004). They are constants, which depend on r0,
the distance of the unperturbed orbit from the centre. In pre-
vious studies these non-linear differential equations have been
integrated numerically (Abramowicz et al. 2003) and analyzed

through a perturbative method. These coupled harmonic oscil-
lators display internal non-linear resonance, the strongest one
occurs when ωθ:ωr = 3:2 and the observed frequencies are close
(but not equal) to the epicyclic ones.

2.3. Additional terms

As we have seen the perturbation of geodesics opens up the pos-
sibility of internal resonances. However these epicyclic oscilla-
tions would not be detectable without any source of energy to
make their amplitudes grow. In Abramowicz et al. (2003) and
Rebusco (2004) this source of energy was inserted by introduc-
ing a parameter α. The effect of forcing (e.g., due to the neu-
tron star spin), and its potential to produce new (external) reso-
nances, have been addressed recently (e.g. Abramowicz 2005).
The main limit in the approach proposed by Abramowicz et al.
(2003) and Rebusco (2004) is that it represents an ad hoc so-
lution. Moreover, as stressed in Sect. 1, it does not consider the
many processes that take place in the central region of an ac-
cretion disk as, for example, MRI-driven turbulence (Balbus &
Hawley 1991). For this reason, we propose the stochasticized
version of Eqs. (1), (2)

z̈(t) + ω2
θz(t) − f [ρ(t), z(t), r0, θ0] = σzβ(t); (5)

ρ̈(t) + ω2
rρ(t) − g[ρ(t), z(t), r0, θ0] = 0, (6)

with σz a constant and β(t) a continuous, zero mean, unit vari-
ance, Gaussian white-noise process.

There is no full understanding of turbulence in accretion
disks. We know that the radial component is fundamental in
producing the effective viscosity which allows accretion to oc-
cur, and that MRI-turbulence should be different in the vertical
and radial direction. Here we make a first step by introducing
a noise term only along the vertical direction: in the end this
ansatz alone gives interesting results. In the Shakura & Sunyaev
model (Shakura & Sunyaev 1973) the turbulent viscosity is
parametrized via the famous αSS. It is reasonable to assume that
σz is at maximum a fraction, smaller than αSS, of the disk height.
Hence for a geometrically thin disk one would expect a maxi-
mum σz ∼ 10−4–10−3. As shown in Appendix A, the smallness
of the stochastic perturbation permits the development of effi-
cient integration schemes for the numerical integration of the
system (5)–(6).

3. Results

We explored the dynamics of the test particle for different val-
ues of σz and initial conditions z(0) and ρ(0). All the integra-
tions are performed by means of the scheme (A.13)–(A.17), with
h = 5 × 10−4 and t = 105, for r0 = 27/5 which is the value
for which the unperturbed frequencies are in a 3:2 ratio. As a
sample, three different starting values [z(0), ż(0), ρ(0), ρ̇(0)] have
been used: [0.01, 0, 0.01, 0], [0.1, 0, 0.1, 0], and [0.2, 0, 0.2, 0],
which we refer to as models 1, 2 and 3 respectively. For each
of them we considered three values of σz: 0, 10−5 and 10−4. As
pointed out in the previous section, a noise level stronger than
these is unlike to occur, since it would destabilize the accretion
flow. Moreover when the initial perturbations z(0) and ρ(0) are
greater than about 0.5 they diverge, even in absence of noise:
this is the limit for which the system can be considered weakly
non-linear and physically meaningful.

The lower panels of Figs. 1–3 show how the amplitudes
reach greater values for greater noise dispersion. These plots are



R. Vio et al.: Stochastic modelling of QPOs 385

0 200 400 600 800 1000
0

1000

2000

3000

4000

Frequency (kHz)

P
ow

er

Power−Spectrum of z(t)

0 200 400 600 800 1000
0

10

20

30

40

Frequency (kHz)
P

ow
er

Power−Spectrum of ρ(t)

−0.4 −0.2 0 0.2 0.4 0.6
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

z(t)

dz
 / 

dt

Phase diagram for z(t)

−1 0 1 2 3 4

−0.1

−0.05

0

0.05

0.1

ρ(t)

dρ
 / 

dt

Phase diagram for ρ(t)

Fig. 1. Numerical simulation of the system (5)–(6). The upper panels
show the power spectra of z(t) and ρ(t), whereas the lower panels show
the corresponding phase diagrams. Here σz = 0 (i.e. noise-free system).
The displacements are in units of rg, the frequencies are scaled to kHz
(e.g. assuming a central mass M of 2 M�).
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Fig. 2. The same as in Fig. 1 but with σz = 10−5.

done for the initial conditions 2, but similar behavior is also ob-
tained for different initial conditions: as expected, noise triggers
the resonances. With regard to the frequencies at which the res-
onances are excited, the dominant one are always the epicyclic
frequencies (the strongest peaks in the upper part of the plots).
However, the sub- and super-harmonics also react (see Table 1),
and their signal is stronger for greater noise dispersion. As pre-
dicted by means of the perturbative method of multiple scales,
the dominant oscillations have frequencies (ω∗r and ω∗θ), close to
the epicyclic ones. The pattern of the other resonances (Table 1)
is not interesting in itself, as it depends on the initial conditions
and on the noise, but it is significant from a qualitative point of
view, as it is a signature of the non-linear nature of the system.

When the noise is ∼10−3 or greater the solution diverges,
whilst when it is too small (∼10−6) it does not differ too much
from the results without noise. The exact limit of σz over which
the epicycles are swamped depends on the initial conditions: it
is indeed lower for greater initial conditions, and vice versa.
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Fig. 3. The same as in Fig. 1 but σz = 10−4. The comparison with the
phase diagrams in the previous plots indicates how much the amplitudes
grow under the effect of slightly stronger noise.

Table 1. Resonant frequencies (apart from the epicyclic ones) for dif-
ferent initial conditions (1, 2, 3) and noise standard deviation (σz =
0, 10−5, 10−4).

0 10−5 10−4

1 / / ∼ω∗θ/3
2 ∼3ω∗r ∼ω∗θ/3, ∼2ω∗θ ∼ω∗θ/3
3 ∼ω∗θ/3, ∼2ω∗θ ∼ω∗θ/3, ∼2ω∗θ ∼ω∗θ/3

In the case where noise is assumed to be due to MRI tur-
bulence, this simple experiment constrains its amplitude: tur-
bulence that is too low does not supply enough energy to the
growing resonant modes, whilst too much turbulence prevents
the quasi-periodic behavior from occurring. From this oversim-
plified model we get an indication that the standard deviation of
vertical MRI must be ∼10−5−10−4, which is reasonable since it
is comparable with a small fraction of the disk height.

In a yet unpublished work (private communication, Skinner
2005) considers how far the data from a QPO source can con-
strain the properties of a simple damped harmonic oscillator
model – not only its resonant frequency and damping but also
to some extent the excitation. Not unlike the present work, he
adds random delta function shots to a simple harmonic oscilla-
tor equation, changing the amplitude and frequency of shots. He
observes that the data constrain the allowed range of parameters
for the excitation.

4. Conclusions
Up to now models for kHz QPOs have been based on determinis-
tic differential equations. The main limits of these models is that
they correspond to unrealistic physical scenarios where the many
and complex processes that take place in the central regions of
an accretion disk are not taken into account. In this paper, we
have partially overcome this problem by adopting an approach
based on stochastic differential equations. The assumption is that
the above mentioned processes are characterized by a huge num-
ber of degrees of freedom, hence they can be assumed to have
a stochastic nature. In particular, we have investigated a sim-
plified model for the Kluźniak-Abramowicz non-linear theory
and shown that a small amount of noise in the vertical direction
can trigger coupled epicyclic oscillations. On the other hand too
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much noise would disrupt the quasi-periodic motion. This is sim-
ilar to the stochastically excited p-modes in the Sun (Goldreich
& Keeley 1977).

From our simple example we get an indication that the
standard deviation of vertical noise cannot be greater than
10−5−10−4 rg, nor smaller than ∼10−6 rg, but better modelling
needs to be done. Nonetheless good estimates are still possible
without detailed knowledge of all the mechanisms in accretion
disks; this approach has the power to lead to a better understand-
ing of both kHz QPOs and other astrophysical phenomena.

Acknowledgements. We thank Marek Abramowicz for his suggestions and sup-
port. The discussions with Omer Blaes and Axel Brandenburg made this work
possible. P.R. acknowledges Marco Ajello and Anna Watts for their help and
comments and Sir Franciszek Oborski for the unique hospitality in his Castle
during the Wojnowice Workshop (2005).

References
Abramowicz, M. A. 2005, Nordita Workdays on QPOs, Astron. Nachr., 9
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Appendix A: Some notes on the numerical
integration of SDEs

A.1. General remarks

A generic system of SDEs can be written in the form

ẋ = a(t, x) + Σ(t, x)β. (A.1)

Here x, a are n-dimensional column vectors, β is a
m-dimensional column vector containing zero mean, unit vari-
ance, Gaussian white-noise processes and Σ is a n × m matrix.
Typically, this equation is written in the more rigorous form

dx = a(t, x)dt + Σ(t, x)dw, (A.2)

with solution

xt = xt0 +

∫ t

t0

a(s, xs)ds +
∫ t

t0

Σ(s, xs)dws. (A.3)

Here w is a m-dimensional Wiener process. The numerical inte-
gration of SDEs is quite a difficult problem. In fact, in the case
of ordinary differential equations (ODEs)

dx = a(t, x)dt (A.4)

numerical integration schemes are, either directly or indirectly,
based on a Taylor expansion of the solution

xt = xt0 +

∫ t

t0

a(s, xs)ds. (A.5)

Something similar holds also for SDEs. However, the stochas-
tic counterpart of the deterministic Taylor expansion is rather
complex. In order to understand this point without entering into
overly technical arguments, it is instructive to compare the ex-
pansions relative to a one-dimensional autonomous version of
Eqs. (A.4) and (A.2) with m = 1. In this case, for the ODE (A.4)
the first-order integral form of the Taylor formula in the interval
[t0, t] is

xt = xt0 + a(xt0)
∫ t

t0

ds + R2, (A.6)

where R2 is the remainder. For the SDE (A.2) the corresponding
expansion is

xt = xt0 + a(xt0)
∫ t

t0

ds + σ(xt0 )
∫ t

t0

dws

+σ′(xt0 )σ(xt0 )
∫ t

t0

∫ s

t0

dwzdws + R̄, (A.7)

where the symbol “ ′ ” denotes differentiation with respect to x,
and R̄ is the remainder. From Eq. (A.7) it is possible to see the
presence of the additional terms
∫ t

t0

dws,

∫ t

t0

∫ s

t0

dwzdws. (A.8)

When n,m � 1, it is possible to show that in the higher order
expansions some quantities appear as

I( j1, j2,···, jl) =
∫ t

t0

∫ sl

t0

· · ·
∫ s2

t0

dw j1
s1
· · · dw jl−1

sl−1
dw jl

sl
, (A.9)

where j1, j2, · · · , jl ∈ [0, 1, . . . ,m]. Such quantities are termed
multiple stochastic integrals. The main problem in dealing with

them is that they cannot be computed exactly. Unfortunately, in
its turn, numerical approximation is also a difficult affair.

The consequence of this situation is that, even in the case
of simple systems, only integration schemes of very low order
strong convergence1 can be used. In fact, for the autonomous
version of system (A.2) the most commonly used technique is
the Euler scheme

x[k+1] = x[k] + a[k]h[k] + Σ[k]∆w[k], (A.10)

where h[k] = t[k+1] − t[k] is the integration time step at the time
t[k], and the elements of the vector

∆w[k] =

∫ tk+1

tk

dwt = wt[k+1] − wt[k] (A.11)

are independent identically-distributed Gaussian random vari-
ables with mean equal to zero and variance equal to h[k].

A.2. Small noise approximation

If one takes into account that the order of strong convergence for
the scheme (A.11) is only γ = 0.5, in contrast to γ = 1 for its
deterministic counterpart, then it easy to understand why SDEs
are not yet a standard tool in physical applications.

In order to improve this situation, Milstein & Tretýakov
(1997) note that in many problems the random fluctuations that
affect a physical system are small. This means that the sys-
tem (A.2) can be written as

dx = a(t, x)dt + εΣ(t, x)dw, (A.12)

where ε is a small positive parameter. This is an important ob-
servation since, for small noise, it is possible to construct special
numerical methods that are more effective and easier to imple-
ment than in the general case. In fact, the term of the expansion
depends not only on the time step h but also on the parameter ε.
Typically, the mean-square global error of the schemes proposed
by Milstein & Tretýakov (1997) is of order O(hp + εkhq) with
0 < q < p. Although the strong order of these methods is given
by q, typically not a large number, they are able to reach high
exactness because of the factor εk at hq. For example, the simple
scheme

x[k+1] = x[k] +
1
6

(K1 + 2K2 + 2K3 + K4) + εΣ∆w[k] (A.13)

where

K1 = ha(t[k], x[k]), (A.14)

K2 = ha(t[k] + h/2, x[k] + K1/2), (A.15)

K3 = ha(t[k] + h/2, x[k] + K2/2), (A.16)

K4 = ha(t[k+1], x[k] + K3), (A.17)

is of orderO(h4+εh+ε2h1/2). In other words, the order of strong
convergence is 0.5, as for the Euler scheme, but better results are
to be expected because of the term ε2 that multiplies h1/2.

1 We shall say that a discrete time approximation x[k] converges
strongly with order γ > 0 at time T if there exists a positive con-
stant C, which does not depend on δ, and a δ0 > 0 such that ε(δ) =
E(|xT − x[T ]|) ≤ Cδγ for each δ ∈ (0, δ0).


