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ABSTRACT

Context. The detection and identification of oscillation modes (in terms of their �, m, and successive n) is a great challenge for present
and future asteroseismic space missions. “Peak tagging" is an important step in the analysis of these data to provide estimations of
stellar oscillation mode parameters, i.e., frequencies, rotation rates, and further studies on the stellar structure.
Aims. Our goal is to increase the signal-to-noise ratio of the asteroseismic spectra computed from the time series that are representative
of MOST and CoRoT observations (30- and 150-day observations).
Methods. We apply the curvelet transform – a recent image processing technique that looks for curved patterns – to echelle diagrams
built using asteroseismic power spectra. In the resulting diagram, the eigenfrequencies appear as smooth continuous ridges. To test
the method, we use Monte-Carlo simulations of several sun-like stars with different combinations of rotation rates, rotation-axis
inclination, and signal-to-noise ratios.
Results. The filtered diagrams enhance the contrast between the ridges of the modes and the background, allowing a better tagging of
the modes and a better extraction of some stellar parameters. Monte-Carlo simulations have also shown that the region where modes
can be detected is enlarged at lower and higher frequencies compared to the raw spectra. In addition, the extraction of the mean
rotational splitting from modes at low frequency can be done more easily using the filtered spectra rather than the raw spectra.
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1. Introduction

Helioseismology – the study of solar oscillations – is a powerful
probe of the structure and dynamics of the Sun that has provided
great improvements in our understanding of stellar evolution
and structure (Turck-Chièze et al. 1993; Christensen-Dalsgaard
2002, and references therein). Those successes push the com-
munity to apply seismic techniques to other stars, opening the
doors to asteroseismology, the study of stellar oscillations. These
oscillations have already been observed from the ground and
space. The ground-based observations are limited by the day-
night cycle, which introduces aliases in the observations, but
they allow us to use Doppler velocity measurements. They have
provided data with sufficient quality to detect solar-like oscilla-
tions (see Bouchy & Carrier 2003; Bedding & Kjeldsen 2003,
and references therein). To reduce the aliases, multi-site cam-
paigns have been carried out, but they are too short to have good
frequency resolutions. Space photometry missions and ground-
based velocity networks must be used to provide observations
of stellar oscillations without these limitations. With the current
MOST1 and WIRE2 satellites, and the future COROT3 mission,
asteroseismology is blooming. However, in the case of solar-like
oscillations, we still have to deal with very small signal-to-noise

1 Microvariability and Oscillations of Stars (Matthews 1998).
2 Wide-field Infrared Explorer (Buzasi et al. 2000).
3 Convection Rotation and planetary Transits (Baglin et al. 2001).

ratio (hereafter S/N) observations as a consequence of the weak-
ness of the luminosity variations. Moreover, stars cannot yet be
spatially resolved. Instead, only global oscillation modes can
be observed. In addition, we cannot have access to the rotation
rates and the rotation-axis inclination separately. Without know-
ing these two key stellar properties, the tagging of the modes
in terms of their properties (�,m) and successive n may be ex-
tremely difficult. In fact, the main problem to overcome will not
be fitting the peaks (“peak-bagging”), but providing a good de-
scription of the model to be fitted, after having put the correct
labels on the modes (“peak tagging”). Using the echelle dia-
gram, where the modes follow ridges depending on the stel-
lar properties, is one method that has been proposed to pro-
vide such description. To improve the S/N ratio, Bedding et al.
(2004) suggested filtering this diagram by a vertical smoothing.
However the smoothing works well only when the ridges are
quasi-vertical, which requires a very good a priori knowledge
of the large difference and is restricted to the asymptotic part of
the spectrum. We propose, here, to follow a similar approach,
but using new mathematical denoising techniques better suited
to the study of curved ridges.

At the end of the last decade, the application of mathe-
matical transforms based on wavelets to analyze astronomi-
cal images was widely developed. The first wavelet algorithms
were well-adapted for treating images with isotropic elements.
However, this description presented a limitation in the context
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of astrophysics, where objects such as filaments or spiral struc-
tures exhibit a highly anisotropic character (in shape and scale).
New transforms, the ridgelet (Candès 1998) and curvelet trans-
forms (Candès & Donoho 1999; Starck et al. 2002), were then
developed to deal efficiently with such objects. Astrophysical
applications (image denoising) of this technique have been pre-
sented in Starck et al. (2003, 2004) to analyze images of gravita-
tional arcs, the rings of Saturn, or the CMB (Cosmic Microwave
Background) map.

In this paper, we suggest using the curvelet transform to
analyze asteroseismic observations (more precisely the stellar
echelle diagrams), to improve the “peak tagging” of the oscilla-
tion modes and even the resultant “peak bagging”. To illustrate
the application of this denoising technique in the asteroseismic
case, we performed Monte-Carlo simulations of ideal asteroseis-
mic data contaminated by different levels of stochastic noise. We
begin Sect. 2 with a short summary of the properties of stellar os-
cillation modes in the solar-like case and the construction of the
echelle diagram. In Sect. 3, we introduce multiscale transforms,
in particular the ridgelet and the curvelet transforms. In Sect. 4,
the simulated data of a star with an oscillation spectrum simi-
lar to the Sun, but with different rotation axis inclinations and
rotation rates, are presented. In Sect. 5, we discuss the results
obtained in the simulations.

2. Properties of solar-like oscillations

Only low-degree stellar oscillation modes can be detected
and observed with the present generation of instruments. The
asymptotic theory of oscillation modes (n � �) is then ad-
equate and can be used to study them. First order (Tassoul
1980) and second order developments (Vorontsov 1991;
Lopes & Turck-Chièze 1994; Roxburgh & Vorontsov 2000a,b)
have been made to describe solar and stellar oscillations. In the
case of solar-like stars, where p-modes predominate, the fre-
quencies can be developed as:
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where cs is the internal stellar sound speed, α is a phase-
shift term, and ψ is a function that allows us to take
the gravitational potential in the central region into account
(Lopes & Turck-Chièze 1994). From the asymptotic approach,
we can extract general properties of modes and better understand
the physics hidden in the frequencies’ behavior. The large fre-
quency spacing, defined as ∆νn,� = νn+1,� − νn,�, tends asymptot-
ically to ∆ν0, related to the mass and radius of the star; the small
frequency spacing, δ�,�+2ν = νn,� − νn−1,�+2, can be approximated

to first order by (4� + 6)∆ν0/(4π2νn,�)
∫ R�

0
dcs

dr
dr
r . This variable is

related to the derivative of the sound speed and enhances the ef-
fect coming from the central regions, providing constraints on
the age of the star. Finally, the second difference is defined as
δ2ν = νn+1,� − 2νn,� + νn−1,�. Its variations provide information

Fig. 1. Portion of the theoretical spectrum (top) and echelle diagram
(bottom) for a sun spinning ten times faster than the Sun and seen from
an angle of 50◦. This is the ideal power spectrum used in the simulations
described in Sect. 5.

about the extent of the convective zone (Monteiro et al. 2000;
Ballot et al. 2004b) or the helium abundance in the stellar enve-
lope (Basu et al. 2004).

Under the rotation effects, the azimuthal order m (−� �
m � �) is needed to characterize the oscillation spectrum. If
the angular velocity Ω is uniform (Ledoux 1951), the mode fre-
quencies are asymptotically approximated by:

νn,�,m ≈ νn,� + mΩ/2π = νn,� + mδν, (2)

where δν is the rotational splitting. Equation (2) shows that
modes are (2� + 1)-times degenerated in the azimuthal order:
a single peak in the spectrum becomes a multiplet. Its corre-
sponding structure depends on the rotation rate, the inclination
axis of the star, and its stochastic excitation. The solar-like mode
lifetimes (a few days) are expected to be much shorter than the
length of the future space observations (a few months). In conse-
quence, the relative amplitude ratios inside a multiplet will only
depend, on average, on the inclination angle and the spacing be-
tween these different m-components (Gizon & Solanki 2003).
Thus, if the different m-components of a multiplet can be identi-
fied and tagged with the correct (�,m), they can provide a good
estimation of both the rotation-axis inclination i and the rota-
tional splitting δν, allowing for a better mode parameter extrac-
tion through the fitting of the spectra. The effect of the stochastic
excitation on an isolated mode could be minimized by comput-
ing the average of these parameters on several modes (see, for
example, the n-collapsogramme; Ballot et al. 2004a).

Equation (1) shows that the even (� = 0, 2) and odd (� = 1, 3)
modes have almost the same frequency, only separated by the
small spacing δ�,�+2ν. In addition, they are separated regularly in
frequency by the large spacing ∆νn,�. This property allows us to
build the so-called echelle diagram (Grec et al. 1983), which is
currently used to identify modes for solar-like oscillations. It is a
2D representation of the 1D power spectrum that has been folded
onto itself in units of the large spacing. In such a representation
the modes appear as almost locally vertical ridges (see Fig. 1).
The echelle diagram is a powerful tool for “peak tagging”, since
assigning the correct (�,m) values to the peaks is easier when the
multiplet structure is well-identified in this diagram. The succes-
sive n values are obtained from each individual horizontal line.
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Fig. 2. Examples of 2D wavelets (top panels) and ridgelets (bottom pan-
els). The top right wavelet has a greater scale parameter than that on the
left. The bottom right ridgelet has different orientation and width than
the left one.

3. Multiscale transforms

3.1. The wavelet transform

The wavelet transform provides a framework for decomposing
images into their elementary constituents across scales, by re-
ducing the number of significant coefficients necessary to repre-
sent an image. The continuous wavelet transform of a 2D signal
is defined as:

W(a, bi, b j) =
1√
a

∫∫
f (x, y)ψ∗

(
x − bi

a
,
y − b j

a

)
dxdy, (3)

where W(a, b) are the wavelet coefficients of the function f (x),
ψ(x)∗ is the conjugate of the analyzing wavelet, a > 0 is the
scale parameter, and b is the position parameter. The continuous
wavelet transform is the sum over all the positions of the sig-
nal f (x, y), multiplied by the scaled and shifted versions of the
wavelet ψ((x − bi)/a, (y − b j)/a) (cf. Fig. 2, top panels). This
process produces wavelet coefficients that are a function of scale
and position.

However, the classical wavelet transform only addresses a
portion of the whole range of interesting phenomena: isotropic
features at all scales and locations. One of the drawbacks of the
two-dimensional wavelet transform is that it does not achieve an
efficient analysis of images that present high anisotropy. For in-
stance, the wavelet transform does not efficiently approximate
2D edges, since a large number of large wavelet coefficients,
scale after scale, are required, making its analysis difficult. To
solve this problem, two new mathematical transforms, namely
the ridgelet transform and the curvelet transform, were intro-
duced.

3.2. The ridgelet transform

The ridgelet transform was developed to process images includ-
ing ridges elements (Candès 1998). It provides a representa-
tion of perfectly straight edges. A given function f (x1, x2) can
be represented as the superposition of elements of the form
a−1/2ψ((x1 cos θ + x2 sin θ − b)/a), where ψ is a wavelet, a > 0
a scale parameter, b a location parameter, and θ an orienta-
tion parameter. The ridgelet is constant along the lines where
x1 cos θ + x2 sin θ = const., and transverse to these ridges it is
a wavelet. Thus, contrary to a unique wavelet transform, the
ridgelet has two supplementary characteristics: a length, equal
to that of the image, and an orientation, allowing the analysis of

Fig. 3. Sketch illustrating the curvelet transform applied to an image.
The image is decomposed into subbands followed by a spatial partition-
ing of each subband. The ridgelet transform is applied to each block.
The finest details correspond to the highest frequencies.

an image in every direction and thus exhibiting the edge struc-
ture. Figure 2 (bottom panels) shows two examples of ridgelets.
The problem is that in nature, edges are typically curved
rather than straight, so ridgelets alone cannot yield accurate
representations.

3.3. The curvelet transform

3.3.1. Description

Ridgelets can be adapted to represent objects with curved
edges, using an appropriate multiscale localization: at a suffi-
ciently fine scale, a curved edge can be considered to be almost
straight. Candès & Donoho (1999) developed the curvelet trans-
form using ridgelets in this localized manner. Figure 3 shows the
different steps of the curvelet analysis of an image:

1. Image decomposition: using a 2D isotropic wavelet trans-
form, the image is decomposed to obtain a set of wavelet
bands. Each band corresponds to a different scale.

2. Smooth partitioning: each subband is partitioned into
squares (blocks), whose size is appropriate to each scale. The
finer the scale is, the smaller the blocks are.

3. Ridgelet analysis: it is applied to each square.

The implementation of the curvelet transform offers an ex-
act reconstruction and a low computational complexity. Like
ridgelets, curvelets occur at all scales, locations, and orienta-
tions. Moreover, contrary to ridgelets, which have a given length
(the image size) and a variable width, the curvelets also have
a variable length (the block size) and, consequently, a variable
anisotropy. The finer the scale is, the more sensitive to the cur-
vature the analysis is. As a consequence, curved singularities can
be well-approximated with very few coefficients.

3.3.2. Denoising images: filtering curvelet coefficients

To remove noise, a simple thresholding of the curvelet coeffi-
cients has been applied to select only significant coefficients.
One possible thresholding of a noisy image consists of setting
all non-significant curvelet coefficients c̃i, j,l, i, j, and l respec-
tively, the indexes of the line, row, and scale to 0. This is called
hard-thresholding:

c̃i, j,l =

{
1 if ci, j,l is significant
0 if ci, j,l is not significant. (4)
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Commonly, ci, j,l is significant if the probability that the curvelet
coefficient is due to noise is small, i.e., if the curvelet coefficient
is greater than a given threshold. A basic problem remains: the
choice of the threshold. Usually, this threshold is equal to kσ j,
where σ j is the noise standard deviation at the scale j and k is a
constant, equal to 5 in our filterings.

Simple thresholding of the curvelet coefficients is very com-
petitive (Starck et al. 2002) with “state of the art” techniques
based on wavelets, including thresholding of decimated or un-
decimated wavelet transforms.

4. Simulation of data

To characterize the curvelet denoising technique applied to the
asteroseismic data, we have simulated typical solar-like obser-
vations while varying different parameters: S/N ratios, observa-
tional lengths, rotation-axis inclinations, rotation rates, etc. With
this approach, we know the input parameters in advance, and
we can evaluate the quality of the results given by the curvelet
analysis and its limits.

In the simulations shown in this paper, we use the oscilla-
tion spectrum of a star similar to the Sun, but seen under differ-
ent conditions. We consider different rotation-axis inclinations
(i = 50◦ and 90◦) and rotation rates (Ω = Ω�, 5 Ω�, and
10 Ω�). An ideal power spectrum was constructed first. Only
the modes � ≤ 3, n = 12–25 were simulated. The mode pa-
rameters – frequencies (ν), amplitudes (A), and widths (Γ) –
were obtained from the analysis of GOLF (Global Oscillations at
Low Frequency) data (García et al. 2004). The amplitudes were
corrected to take into account the difference between intensity
and velocity observations. Modes were simulated with symmet-
rical Lorentzian profiles as the asymmetry is expected to be at
the level of the noise. Following the method described in Fierry
Fraillon et al. (1998), a multiplicative noise, a χ2 with 2 d.o.f.
statistics, has been introduced to reproduce the stochastic excita-
tion of such modes (see also Anderson et al. 1990). The S/N ratio
of the “resultant” raw power spectrum was defined as the max-
imum of the bell-shaped p-mode power (i.e., the highest sim-
ulated p-mode) divided by the noise dispersion. The simulated
background is flat, assuming that it has been previously fitted
and removed, as it is usually done for the Sun (Harvey 1985).

Several Monte-Carlo simulations have been performed for
each ideal spectrum. Realistic S/N, with values ranging from 5
to 15, have been used to cover a wide range of situations that
is compatible with what is expected (see Baglin et al. 2001). In
each realization of the Monte-Carlo simulation, the same level of
noise has been randomly added to the corresponding ideal spec-
tra. Therefore, all the realizations, in a given Monte-Carlo simu-
lation, have the same S/N ratio. The simulated spectra have been
computed for two resolutions, ≈0.38 and ≈0.077 µHz, corre-
sponding respectively to 30-day and 150-day observations. The
first are representative of the MOST observations and the short
CoRoT runs, while the latter are of the same length as the long
CoRoT runs.

Simulations of other stars, including some potential main
CoRoT targets, with different masses, ages, and, in consequence,
internal structures, have been made. The results have already
been presented and discussed during the CoROT workshops #8
and #9 obtaining the same qualitative results. For the sake of
clarity, they are not shown here.

Fig. 4. Effect of the curvelet denoising on the mode visibility for
S/N = 5. Each picture shows 120 realizations out of the 500 done in
our Monte-Carlo simulation. Each horizontal line corresponds to a sin-
gle realization. The top panel is the raw spectra, and the bottom is the
curvelet filtered one.

5. Discussion

Once the spectra have been computed, the echelle diagrams can
be built with a fixed folding frequency. This frequency corre-
sponds to the mean large frequency spacing ∆ν0, identified ei-
ther by the computation of the FFT, the autocorrelation of the
spectra, or any other technique (see for example Régulo & Roca
Cortés 2002). The denoising based on the curvelet transform is
then applied to these echelle diagrams. It is important to note
that artifacts may appear in the filtered spectra at frequencies
ν∗ = ν0 + k∆ν0, with an integer k, when random small struc-
tures appear in the echelle diagrams. However, their appearance
and position strongly depend on the folding frequency and are
very sensitive to its value. Therefore, they can be easily iden-
tified. The artifacts can be reduced (in contrast to the regions
containing the signal) by building echelle diagrams with slightly
different folding frequencies and averaging the resultant filtered
spectra.

To present the results of data analysis using the curvelet de-
noising method, we have selected the case of a sun-like star
seen with an inclination angle i = 50◦ and with a rotation
Ω = 10 Ω�. A portion of the ideal spectra constructed for this
star can be seen in Fig. 1 (top panel). Monte-Carlo simulations
were then performed, giving rise to different sets (each one with
500 realizations) of raw spectra with different S/N ratios. The
echelle diagrams were constructed using a folding frequency of
135.18 µHz, obtained by computing the FFT of the raw spec-
trum.

5.1. Peak tagging

In the cases with a high S/N (typically 15), the mode structure
is clearly visible in each raw spectrum, as well as on the echelle
diagram. The different ridges can be easily identified and tagged.
Although the filtering gives enhanced denoised diagrams and un-
folded spectra, it does not contribute significantly to the mode
identification.

In the lower S/N cases, however, the situation is differ-
ent. Figure 4 shows some of the results of the Monte-Carlo
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Fig. 5. Raw (left) and filtered (right) power spectra (top and middle panels) and echelle diagrams (bottom panels) for a S/N = 5 realization. The
short dashed lines in the power spectra represent the position of the theoretical frequencies. From left to right, the three first equidistant lines
indicate the components m = −1, 0, and 1 of � = 1 modes, the next two indicate the strongest components of � = 2 (m = −1 and 1), and the the
last indicates � = 0. In this case, only two components of the � = 1 and the � = 0 modes are slightly visible in the raw diagram. On the curvelet
filtered one, the three � = 1 components appear as well as the � = 0 and the components m = ±1 of the � = 2 modes.

simulation for S/N = 5. The upper panel corresponds to 120
realizations among the 500 computed for the raw spectra in
the frequency range 2450–2920 µHz. Each horizontal line cor-
responds to a single realization. Some patterns can hardly be
seen. The lower panel represents the same spectra after applying
the curvelet filtering. A series of vertical ridges clearly appears.
From left to right on the panels, they can be identified as the
(� = 2; m = ±1), the � = 0 (blended with the � = 2; m = +2),
and the (� = 1; m = −1, 0,+1). The improvement of the contrast
is important in all the realizations and allows us to distinguish
the different components of a mode, making the identification
and the tagging easier.

The identification is harder when looking at each individual
spectrum and requires the use of the echelle diagram. Figure 5
shows an example of raw (left) and filtered (right) 150-day ob-
servation power spectra (top and middle panels), and the corre-
sponding echelle diagrams (bottom panels) for a S/N = 5 real-
ization. Input frequencies are indicated by the short dashed lines
above the spectra. The mode peaks can hardly be distinguished
in the raw spectrum and can easily be confused with noise. For
the range 2780–2920 µHz, only a strong peak at 2900 µHz can
be considered not to be noise. In the region 3060–3180 µHz, the
peaks are visible, and we can attempt to identify the � = 1 and
� = 0 modes, although they are still unclear. On the contrary, on
the corresponding parts of the filtered spectrum, the structures of
the � = 1 mode with three components, the � = 0 mode, and even
the strongest components of the � = 2 mode are visible. The raw
echelle diagram gives no extra information because of the very
weak ridges and low contrast with the background. The weak-
est components can hardly be detected, and no tagging can be
done. The curvelet filtering provides a contrast enhancement of
the ridges on the echelle diagram. Thus, three almost equidistant

strong ridges appear on the left of the diagram and one strong
ridge with two weaker ones on the right. The corresponding pat-
terns can be seen on the filtered spectrum corresponding well to
the theoretical frequencies. Since the modes � = 3 are not vis-
ible, and in agreement with the amplitude of the strongest peak
on the left, we can suggest that the three strongest peaks corre-
spond to a � = 1 multiplet and the other ones to the � = 2 and
� = 0 modes.

Consequently, when the tagging is done, it is also easier to
have a first estimation of both the mean rotational splitting and
the rotation-axis inclination, since the visibility of the multiplet
is increased. From the spacing between the components of the
mode � = 1, a first estimation of the mean rotational splitting of
the star, as well as an estimation of the inclination angle, accord-
ing to their relative amplitude ratios, can be done. We have se-
lected the extraction of one parameter: the mean rotational split-
ting of the � = 1 mode at low frequency (2540–2550 µHz), to
quantify the improvement of the curvelet filtering. This region
is particularly interesting because the line width is still small,
and the modes, when they are visible, can be easily identified.
Thus, in a sample of 100 realizations of the Monte-Carlo simu-
lation, we obtained a better estimation of this parameter in the
filtered spectra in 90 of them. In fact, it was very exceptional to
obtain a good result in the raw spectra. With the filtered spectra,
a mean rotational splitting of 〈δν〉 = 4.05± 0.30 µHz was found,
which is very close to the actual splitting included in the ideal
spectra 〈δν〉 = 4.0 µHz. In addition, specific methods can be
applied to improve the extraction of these parameters by using
different strategies of spectra fitting, such as the ones developed
by Gizon & Solanki (2003) or Ballot et al. (2006). In the case
of the 30-day observation, the curvelet filtered echelle diagram
is still very noisy, and it does not help in recognizing the ridges.
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Fig. 6. Differences between the mean fitted frequencies 〈ν̃n,�〉 and the input frequencies νin, for � = 0, 1, and 2, for the raw (dashed line with
triangles) and filtered (full line with diamonds) spectra (S/N = 5, 150-day observation). The error bars correspond to the dispersion σ∗(ν̃n,�) of the
frequency distribution. For clarity, the values for the raw case are shifted by 20 µHz towards the right.

However, the corresponding denoised power spectrum is much
better, despite the lower resolution (5 times less than in the long
runs), even for small S/N ratios (∼5). The modes � = 0, 2 and
� = 1 can be distinguished, at the maximum power, while it is
not easy to do so in the raw spectra. Therefore, we consider that a
30-day run is the minimum length needed to have reliable results
with the curvelet denoising technique.

García et al. (2006) analyzed the first available MOST pub-
lic Procyon A data (32-day observation) using the curvelet tech-
nique. Previous analysis by Matthews et al. (2004) did not reveal
the presence of any p-mode structure in this star. Therefore, due
to its tiny S/N ratio, the results of the curvelet denoising should
be taken with care. Nevertheless, an excess of power seems to
appear in the region where it is expected, and taking the 15 most
prominent peaks in this region, many are in agreement, inside
the error bars, with previous tagged modes using ground-based
velocity observations.

5.2. Extraction of p-mode parameters

Once the mode identification and tagging are done, the extrac-
tion of the mode parameters can be performed. To illustrate how
this extraction can be improved by using the denoised spectrum,
we have extracted the central frequency of the modes in both
the raw and the filtered spectra. To determine this parameter,
modes have been fitted by Lorentzian profiles using a maximum-
likelihood estimator in the classical way: adjacent pairs of even
(� = 0 and � = 2) modes are fitted together, while � = 1 is
fitted alone, due to the small amplitudes of � = 3 modes. For
each multiplet, the fitted parameters are the central frequency
ν̃n,�, the amplitude Ãn,�, the linewidth Γ̃n,�, and the background
b. The amplitude ratios inside the multiplets and the rotational
splittings have been fixed thanks to the preliminary estimation
done in the previous section (cf. Sect. 5.1). The fitting procedure

provides an associated error σ(X̃), computed by Hessian-matrix
inversion, for each adjusted parameter X̃.

The raw spectra follow a χ2 with 2 d.o.f. statistics, whereas
the filtered spectra have a χ2 with a higher d.o.f. statistics (close
to a Gaussian distribution, depending on the number of filtered
coefficients). According to Appourchaux (2003), it is possible
to fit spectra following a χ2 with more than 2 d.o.f. statistics
with a classical procedure developed for a χ2 with 2 d.o.f. statis-
tics: parameters are correctly fitted, but computed errors have to
be adapted a posteriori. However in our case, due to filtering,
points of filtered spectra are correlated (we have estimated that
one point is correlated with ∼10 neighboring points). This cor-
relation should have to be considered, but we have neglected its
effect on the fitting procedure in the present study. This assump-
tion is validated by the Monte-Carlo simulations. Such a global
filtering also induces correlations between the different lines of
the echelle diagram. Thus, the errors on parameters of different
modes (typically (n, �) and (n + 1, �)) can be correlated. These
correlations will have to be taken into account, especially during
the comparison of frequencies extracted in this way from stellar
models.

From the 500 realizations of the Monte-Carlo simulation, we
derived the mean value of the extracted frequencies 〈ν̃n,�〉, their
mean computed errors 〈σ(ν̃n,�)〉, and the dispersion of the fre-
quency distribution σ∗(ν̃n,�) (the real error), for each mode and
for both the raw and the filtered spectra. We have verified that
σ∗(ν̃n,�) ≈ 〈σ(ν̃n,�)〉 for fits performed on the raw spectra, and we
have σ∗(ν̃n,�) < 〈σ(ν̃n,�)〉 for fits performed on the filtered ones.
As expected, the error bars on the fitted frequencies, computed
by Hessian-matrix inversion, are overestimated.

Figure 6 shows the difference between the mean fitted fre-
quencies 〈ν̃n,�〉 and the theoretical frequencies νin of the simu-
lated star discussed in the previous section (S/N = 5). The error
bars correspond to the dispersion σ∗(ν̃n,�). For each �, the er-
ror bars of the filtered spectra are smaller than those of the raw
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spectra. In addition, the range where modes can be detected,
tagged, and fitted is extended. While the difference 〈ν̃n,�〉 − νin
is only flat in the central region of the raw power spectrum (e.g.,
for � = 0, in the range n = 18–22), it extends at higher and lower
frequencies (e.g., for � = 0, the range is extended to n = 16–23)
in the filtered one.

6. Conclusions

The application of a noise reduction technique based on the
curvelet transform to echelle diagrams improves the identifica-
tion – “peak tagging” – of stellar acoustic modes. In observations
with a S/N ratio as small as 5, we are still able to recover the
mode pattern and extract reliable asteroseismic information in
both small and long runs (30-day and 150-day observations, re-
spectively). Below this S/N and with shorter observations, the
method efficiency is reduced drastically. The rotational split-
tings and the rotation-axis inclination can be better estimated
using the filtered spectrum. In particular, Monte-Carlo simula-
tions showed that a better extraction of the mean rotational split-
ting from modes at low frequency can be done in 90 out of
100 realizations using the filtered spectra. The uncertainty on
the extracted rotational splitting of a typical sun-like star seen
with an inclination angle i = 50◦ and with a rotation Ω = 10 Ω�
is very small, ∼0.30 µHz. These parameters can then be used to
create a set of guesses or a priori values to perform individual
fits of the spectra. We have also shown that the range of the fre-
quency extraction can be extended at higher and lower frequen-
cies using the filtered spectra. Finally, simulations of the short
run observations have demonstrated that this method can also be
applied to lower resolution spectra with good results.
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