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ABSTRACT

We calculate the redshift-space power spectrum of the Sloan Digital Sky Survey (SDSS) Data Release 4 (DR4) Luminous Red Galaxy (LRG)

sample, finding evidence for a full series of acoustic features down to the scales of ~0.2 4 Mpc™

!. This corresponds to the 7th peak in the

CMB angular power spectrum. The acoustic scale derived, (105.4 + 2.3) h~! Mpc, agrees very well with the “concordance” model prediction
and also with the one determined via the analysis of the spatial two-point correlation function by Eisenstein et al. (2005, ApJ, 633, 560). The
models with baryonic features are favored by 3.30 over their “smoothed” counterparts without any oscillatory behavior. This is not only an
independent confirmation of results by Eisenstein et al. (2005), made with different methods and software but also, to our knowledge, is the

first determination of the power spectrum of the SDSS LRG sample.
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1. Introduction

At the beginning of the 1970’s it was already realized that
acoustic waves in the tightly coupled baryon-photon fluid
prior to the epoch of recombination will lead to character-
istic maxima and minima in the post-recombination matter
power spectrum. The same mechanism is also responsible
for the prominent peak structure in the CMB angular power
spectrum (Sunyaev & Zeldovich 1970; Peebles & Yu 1970;
Doroshkevich et al. 1978). The scale of these features reflects
the size of the sound horizon, which itself is fully determined
given the physical densities Q4% and Q4. The acoustic hori-
zon can be calibrated using the CMB data, thus turning it
into a standard ruler which can be used to carry out classi-
cal cosmological tests. For example, if we are able to measure
the redshift and angular intervals corresponding to the phys-
ically known acoustic scale in the matter power spectrum at
a range of redshifts, we can immediately find the angular di-
ameter distance dx and Hubble parameter H as a function of
redshift. Having good knowledge of these dependencies al-
lows us to place constraints on the properties of the dark en-
ergy. To carry out this project one needs a tracer population
of objects whose clustering properties with respect to the un-
derlying matter distribution are reasonably well understood.
There have been several works discussing the use of galaxies

* Appendices A-G are only available in electronic form at
http://www.edpsciences.org

http://www.edpsciences.org/aa

(Blake & Glazebrook 2003; Hu & Haiman 2003; Linder 2003;
Seo & Eisenstein 2003) and clusters of galaxies (Hu & Haiman
2003; Majumdar & Mohr 2004; Hiitsi 2005) for this pur-
pose. What is most important is that already currently ex-
isting galaxy redshift surveys have lead to the detection of
acoustic features in the spatial distribution of galaxies, thus
providing clear support for the standard gravitational instabil-
ity picture of cosmic structure formation. In Eisenstein et al.
(2005) the detection of the acoustic “bump” in the two-point
redshift-space correlation function of the SDSS' LRG sam-
ple was announced. The discovery of similar features in the
power spectrum of 2dF? galaxies is presented in Cole et al.
(2005). These results clearly demonstrate the promise of fu-
ture dedicated galaxy redshift surveys like KAOS?® Similarly,
useful measurements of the acoustic scale may be obtained
by the planned SZ cluster surveys like those of the PLANCK
Surveyor* spacecraft and SPT® (Hiitsi 2005) and also with fu-
ture large photometric redshift surveys (Blake & Bridle 2005).
For the SZ surveys one needs an additional optical follow-
up to obtain estimates for the cluster redshifts. In this paper
we calculate the redshift-space power spectrum of the SDSS
LRG sample finding evidence for acoustic oscillations down

http://www.sdss.org/
http://www.mso.anu.edu.au/2dFGRS/
http://www.noao.edu/kaos/
http://astro.estec.esa.nl/Planck
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Fig. 1. Acoustic oscillations in the CMB (upper panel) and linear mat-
ter power spectrum (lower panel) for the “concordance” cosmological
model. Here, as we have plotted the spectra against spatial wavenum-
ber k, we have changed the standard notation of C; to Cy. Due to the
I3 factor the first CMB acoustic peak is barely visible. Density fluc-
tuations in matter at smaller scales, being mostly induced by the ve-
locity fields, are out of phase with respect to the fluctuations in the
CMB component. The fluctuation period is also twice as large.

to the scales of ~0.2h2Mpc™!, which effectively correspond
to the 7th peak in the CMB angular power spectrum. These
scales in the CMB are very strongly damped due to the fi-
nite width of the last-scattering surface and also due to the
Silk damping (Silk 1968). This can be seen in Fig. 1° where
the CMB data is plotted in a somewhat unusual way to enhance
the acoustic features at the high wavenumber damping tail.
Also, at those scales the secondary CMB anisotropies (mostly
the thermal Sunyaev-Zeldovich effect; Sunyaev & Zeldovich
1972, 1980) start to dominate over the primary signal. On the
other hand, features in the matter power spectrum, although
small (~5% fluctuations), are preserved by the linear evolution
and so allow probe of acoustic phenomena at scales smaller
than the ones accessible by CMB studies.

The paper is structured as follows. In Sect. 2 we describe
the dataset to be analyzed. Section 3 presents the method of
the power spectrum calculation. In Sect. 4 we determine power
spectrum errors and the covariance matrix. Section 5 discusses
the convolution effect of the survey window. Analytical model
spectra are presented in Sect. 6. The results of the measurement
of the acoustic scale are given in Sect. 7. A correlation function
analysis is carried out in Sect. 8. In Sect. 9 we compare the
measured power spectrum with the published results for the
2dF and SDSS main sample, and conclude in Sect. 10.

2. Data

We analyze the publicly available data from the SDSS
DR4 (Adelman-McCarthy et al. 2005). Specifically, we carry
out our power spectrum measurements using the subset of
the SDSS spectroscopic sample known as the Luminous
Red Galaxy (LRG) sample. The LRG selection algorithm

® Here instead of the usual multipole number ¢ we have plotted
the CMB angular power spectrum against the wavenumber k. For the
“concordance” cosmological model £ = 9990 k[h Mpc’l].
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Fig. 2. Comoving number density of galaxies as a function of comov-
ing distance. Smooth solid line shows a cubic spline fit to the number
density estimated for 50 discrete radial bins.

(Eisenstein et al. 2001) selects ~12 galaxies per square degree
meeting specific color and magnitude criteria’. The resulting
set of galaxies consists mostly of early types populating dense
cluster environments and as such are significantly biased (bias
factor b ~ 2) with respect to the underlying matter distribution.
The selection method is very effective in producing a galaxy
sample with reasonably high density up to a redshift of z ~ 0.5.

Since the selection criteria are very complicated, involving
both cuts in magnitude and in color, and also due to the steep-
ness of the luminosity function, the usual method of using only
the luminosity function to determine radial selection function
does not work here (Zehavi et al. 2005). Rather we build the
radial selection function as a smooth spline fit to the number
density profiles shown in Fig. 2. To calculate distances we use
the cosmological parameters as given by the WMAP® “concor-
dance” model (Spergel et al. 2003). Unfortunately the coverage
masks of the SDSS DR4 spectroscopic sample are not available
in a readily accessible format and so we chose to build the an-
gular survey masks using the galaxy data itself>. As the number
density of galaxies in the sample is rather high, one can deter-
mine relatively accurately the beginning, end and also possible
gaps in the scan stripes. We have built angular masks using both
the whole DR4 galaxy sample and LRGs only. The measured
power spectra are practically identical with only some minor
differences at smaller scales (see Fig. 6). This can be seen as
an indication that our power spectrum measurements are stable
against small uncertainties in the survey geometry. The angu-
lar distribution of the galaxies and also the boundaries of the
survey mask built in the above-mentioned way (using all the

7 Por the exact details of the selection criteria see Eisenstein et al.
(2001).

8 http://lambda.gsfc.nasa.gov/product/map/

° In principle one can build the angular masks using the raw tiling
information, but as we show later our approximate treatment is proba-
bly acceptable, since the results are stable against small uncertainties
in the mask. The issues of survey boundaries and completeness fluctu-
ations (expected to be small due to the very effective tiling algorithm
by Blanton et al. 2003) could certainly be addressed in more detail.
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Fig. 3. Angular distribution of galaxies given in the SDSS survey coor-
dinates (4, 7). The survey mask is shown with solid lines. The vertical
dashed lines show the division of the sample into 22 separate regions
each containing ~2350 galaxies. This division will be exploited in the
“jackknife” error analysis of the correlation function.

galaxies) is shown in Fig. 3. Here the angular positions are plot-
ted using the survey coordinate system of the SDSS'’.

We have selected all the objects that have a spectrum
classified as galaxy (i.e. SpecClass=2) and are additionally
flagged as GALAXY_RED or GALAXY_RED_TIT (i.e. PrimTarget
bit mask set as 0x20 or 0x4000000, respectively). Only galax-
ies for which the redshift confidence parameter, zConf, is
greater than 0.95 were used. We apply lower and upper red-
shift cutoffs of 0.16 and 0.47 as also done in Eisenstein et al.
(2005). The lower cutoff is needed since the color cuts that
define the LRG sample break down for redshifts below ~0.2
(Eisenstein et al. 2001). For the analysis presented in this pa-
per we have excluded the three southern stripes since these just
increase the sidelobes of the survey window without adding
much extra volume. We have also removed some minor parts
of the sample to obtain a more continuous and smoother
chunk of volume. In total the analyzed galaxy sample cov-
ers ~0.75 h=3 Gpc® over ~3850 square degrees on the sky and
contains 51 763 galaxies.

3. Power spectrum calculation

We calculate the power spectrum using a direct Fourier method
as described in Feldman et al. (1994) (FKP). Power spectra
determined this way are the so-called pseudospectra, meaning
that the estimates derived are convolved with a survey window.
Since in the case of the analyzed LRG sample the volume cov-
ered is very large, reaching 0.75 A3 Gpc?, and also the survey
volume has relatively large dimensions along all perpendicular
directions, the correlations in the Fourier space are rather com-
pact. On intermediate scales and if the power spectrum binning
is chosen wide enough, the FKP estimator gives a good approx-
imation to the true underlying power.

10" The transformations between various coordinate systems used by
the SDSS are given e.g. in Stoughton et al. (2002).

893
The FKP estimate for a 3D pseudospectrum is:
P(k) = |F(K) = Pspor, M
where
F(k) = f d*r F(r) exp(ik - r). (2)
Here F(r) is the weighted density contrast field:
F(r) = w(r) [ng(r) — any(r)| . 3)

ng(r) and ny(r) denote the number densities of the analyzed
galaxy catalog and a synthetic random catalog with the same
selection criteria, respectively. Since we are dealing with dis-
crete point processes, densities can be given as:

ne(r) =y 6°(r - %), )

i

ny(r)= ) r=r), )

where rig and r; denote the location of the i-th point in the real
and synthetic catalog, respectively, and 5 is the 3D Dirac delta
function. @ in Eq. (3) is the ratio of the number of galaxies to
the number of random points in the synthetic catalog i.e. @ =
x—f. In our calculations we have N; = 107 and thus @ =~ 0.0052.
For the weight function w(r) there are three choices often used
in the literature:

for volume weighting
for number weighting (6)
for an optimal FKP weighting.

L
fi(r)

w(r) « { const.

1
1+a(r)P

Here n(r) is the average number density of galaxies at the co-
moving location r i.e. the radial selection function of the survey
(see Fig. 2) times the angular mask (Fig. 3). In our calculations
we use an optimal FKP weighting scheme, although pure vol-
ume weighting would give practically the same results, espe-
cially on the larger scales (k < 0.09 A Mpc™!), since then for
the majority of the sample 7i(r)P ~ 3 '!. The weights in Eq. (3)
are normalized such that

f Era*wr) =1, (7)

which can be approximated as the following sum over the syn-
thetic catalog!?:

@ Z arHwi(r) = 1. (8)

The last term in Eq. (1) represents the Poissonian discreteness
noise and can be expressed as:

Pyt = (1 + @) f Eramw’(r) = a(l + ) Z w(r}). )

" Including all the modes down to the scales of k ~ 0.25 hMpc™"

the effective value for 7(r)P drops to ~1.5.

12 We assume that the survey selection does not have any angular
dependence other than the applied angular mask i.e. we can replace r;
by the modulus 7;.
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Since we are using Fast Fourier Transforms (FFTs) to speed
up the calculation of the Fourier sums, we have to deal with
some extra complications. As the density field is now restricted
on a regular grid with a finite cell size, we have to correct for
the smoothing effect this has caused. Also, if our underlying
density field contains spatial modes with higher frequency than
our grid’s Nyquist frequency, kny, then these will be “folded
back” into the frequency interval the grid can support, increas-
ing power close to kny — the so-called aliasing effect. The rela-
tion between the spectra calculated using direct summation and
the ones found using FFT techniques was worked out by Jing
(2005). It can be expressed as follows:

F(ORer = " IWk + 2onym) Pl + 2kym)

nez

+Pao ) Wk + 2y m), (10)

neZ

where ‘W (k) is the mass assignment function used to build a
density grid out of the point set. We use the Triangular Shaped
Cloud (TSC) assignment method (Hockney & Eastwood 1988).
Since the TSC filter can be obtained by convolving the uniform
cube (the Nearest Grid Point filter) two times with itself, the
Fourier representation of it follows immediately:

3 AT
| ak;
i];[] sin (TNy)
Wk) =|————
ki
(%)
Here the sum that represents the contribution from aliases runs
over all the integer vectors n. Equation (10) is the direct ana-
log of the previous Eq. (1). The convolution with the mass as-
signment filter has introduced W?(k) factors both in the power
spectrum and the shot noise term. The sum in the last term of

Eq. (10) can be performed analytically for the TSC filter to
yield the result (Jing 2005)"3:

3
2 _ o [ 7ki
ZlW(k+2kNyn)| = H[l—sm (TNy)

nez i=1
2 . 4( ﬂki )}
+—sin" [ —|]-
15 2kny
To recover the angle averaged pseudospectrum P(k) from
Eq. (10) we use an iterative scheme as described in Jing (2005)
with a slight modification: we do not approximate the small
scale spectrum by a simple power law, but also allow for the
possible running of the spectral index i.e. the parametric shape
of the power spectrum is taken to be a parabola in log-log.
Since on small scales the power spectrum drops fast, the sum
over n in Eq. (10) converges rapidly. In calculations we use
only integer vectors with |n| < 5. The angular average is taken
over all the vectors k lying in the same k-space shell with
width Ak. The resulting P is taken to be an estimate for the

pseudospectrum at the wavenumber kg that corresponds to the
average length of the k-vectors in that shell.

s k= (ki ko, k3). (11

12)

13" For the NGP filter this sum equals 1, and so one recovers the orig-
inal shot noise term in Eq. (1).
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Thus, our power spectrum calculation consists of the fol-
lowing steps:

1. Determination of the survey selection function i.e. mean
underlying number density 7(r) (including the survey
geometry);

2. Calculation of the overdensity field on a grid using a

TSC mass assignment scheme;

Fourier transformation of the gridded density field;

Calculation of the raw 3D power spectrum |F (k)lf:FT;

5. Subtraction of the shot noise component from the raw
spectrum;

6. Recovery of the angle averaged pseudospectrum P(k) using
the iterative method of Jing (2005).

B w

We have applied the above described power spectrum calcula-
tion method to a multitude of test problems, the results of which
can be found in Hiitsi (2005). In Appendix A we show one
example where we successfully recover the underlying power
spectrum of galaxy clusters from the VIRGO Hubble Volume
simulations'#, after applying the selection criteria given in
Figs. 2 and 3.

4. Power spectrum errors and covariance matrix

We determine power spectrum errors by three different
methods:

1. Prescription given by FKP that assumes the underlying den-
sity field to be Gaussian. This method also does not treat
redshift space distortions. Under those simplifying assump-
tions the power spectrum variance can be expressed as:

G0 = = 30 PROK — K"+ 5K ~ K, (13)
k Kk k"
Q(k) = f & ra(rw*(r) exp(ik - r)
~ azﬁ(r;)w2(r;) exp(ik - %), (14)
j
Sk) = (1+a) f &Eraryw(r) exp(ik - r)
.y (15)

a(l + @) Z wz(rj) exp(ik - rj.).
J

Here the sum is over all the wavevectors k” and k" pop-
ulating the same k-space shell with radius £ and thick-
ness Ak, and N, denotes the total number of modes in
that shell. Since the direct summation over all the vec-
tor pairs kK’ and k’ is very slow for the wide k-space
shells and 5123 grid we use, a Monte Carlo sum is per-
formed instead. Thus we calculate the average of the quan-
tity |P(k)Q(k’ — k") + S (k' — k’"))> over the random pairs
of vectors k’ and k”’ from the same shell. For the result to
converge properly we need on average ~107 random pairs.

14 http://www.mpa-garching.mpg.de/Virgo/
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Fig. 4. Power spectrum of the SDSS LRG sample with the bin width
Ak =~ 0.005 h Mpc™". The upper solid line shows the best fitting model
spectrum and the lower one corresponds to the linearly evolved matter
power spectrum of the “concordance” cosmological model multiplied
by the square of the bias parameter b = 1.95. Both of the spectra
are convolved with a survey window. The dashed lines represent the
corresponding unconvolved spectra.

2. The second method is a simple analytical approximation to
the first one, also due to FKP (see also Tegmark et al. 1998).
Here the variance is given as:

2P2(k)
Ve Vi’

oak) = (16)

where V; = 4nk?>Ak/(2)? is the volume of the k-space shell
and Vg is the effective volume given by:

Vo = [f d3r ﬁz(l‘)wz(r)]2

= (I7)
fd3r a*(ryw*(r) [1 +

)
)
3. The third method is a Monte Carlo approach that

uses 1000 mock catalogs generated in the way described

in Appendix B. Here, as we use the 2nd order Lagrangian
perturbation theory, we get a good approximation for the
mode-mode couplings that are induced during the quasi-
nonlinear regime of the evolution of the density fluctua-
tions. Also the large-scale redshift distortions are properly

accounted for. In terms of the Halo Model (see Appendix C)

the halo-halo clustering term is relatively well approxi-

mated. Contributions from the one-halo term can be added
later, as these allow an analytic treatment.

The results of the power spectra for the SDSS DR4 LRG
sample are shown in Figs. 4 and 5. In Fig. 4 the bin width
Ak ~ 0.005 hMpc™!, while in Fig. 5 Ak =~ 0.02 - Mpc~!. With
different lines we have shown various model spectra, which
will be discussed in Sect. 6.

The comparison of the power spectrum errorbars calculated
in the different ways is provided in Fig. 6. We see that the var-
ious error estimates are in very good agreement. In the follow-
ing we will use only the errorbars given by the 3rd method.

So far we have only found the diagonal terms of the covari-
ance matrix. In order to answer the question of how strongly
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Fig. 5. Power spectrum of the SDSS LRG sample with the bin width
Ak =~ 0.02 hMpc™". The upper solid line shows the best fitting model
spectrum and the lower one corresponds to the linearly evolved matter
power spectrum of the “concordance” cosmological model multiplied
by the square of the bias parameter b = 1.95. Both of the spectra
are convolved with a survey window. The dashed lines represent the
“smoothed” versions of the above model spectra. The dotted line is
the cubic spline fit to the data points.
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Fig.6. The comparison of the different power spectrum error esti-
mates. For clarity slight relative shifts of the data points have been
applied. The errorbars resulting from the 1st method are the rightmost
ones and the ones from the 3rd method are displayed in the middle.
The lines show cubic spline fits to the data points. The solid line cor-
responds to the case when all the available galaxy data is used to find
the angular mask of the survey, while the dashed line represents the
case when LRGs only are used for this purpose.

different power spectrum bins are correlated, we must estimate
the full covariance matrix.

The FKP result for the full covariance matrix, C;;, is a sim-
ple generalization of the Eq. (13):

2
Nu N

2.2,

Kk

C,‘j =
1D kl+k./ ’ ’” ’ ” ?
P(—2 )Q(k—k)+S(k—k) , (18)
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Fig.7. Covariance (left column) and correlation matrices (right column). Top row represents the results from the FKP prescription (see Eq. (18))
and the middle row the ones from 1000 mock catalogs. The last row displays the nonlinear contribution due to the 1-halo term.

where the k-vectors k” and k”’ lie in shells with width Ak and
radii k; and k;, respectively. The FKP approach, as mentioned
above, does not treat mode couplings arising from nonlinear
evolution and also from the redshift space distortions. Linear
redshift space distortions can be, in principle, included in the
FKP estimate for the covariance matrix. One can generalize
the results presented in the Appendix of Zaroubi & Hoffman
(1996), where the covariance matrix for the Fourier modes
has been found. Since linear redshift distortions applied on a
Gaussian field do not change the Gaussian nature, one can still
use the result from the Appendix B of FKP that relates the
power spectrum covariance matrix to the covariance matrix of
the Fourier modes. Also one has to add the shot noise terms
to the result of Zaroubi & Hoffman (1996). We have carried

out this exercise, leading to the high dimensional integrals (up
to 12 dim.) that turn out to be too time consuming to solve in
practice. As from the mock catalogs we can hopefully obtain
more realistic estimate for the covariance matrix'> we have not
followed this path any further.

The results for the covariance matrix calculation are given
in Fig. 7. Here the left hand column shows the covariance and
the right hand column the respective correlation matrices:

C[j

15 Since now we are also able to handle quasi-nonlinear mode-mode
couplings.

19)

rij:
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The power spectrum binning is the same as shown in Fig. 5
ie. Ak =~ 0.02hMpc™'. The top row represents the results
from Eq. (18), while the middle row the ones from mock cata-
logs. Although the diagonal terms of the covariance matrices in
the 1st and 2nd row are in very good agreement (see Fig. 6), the
off-diagonal components differ strongly. This can be explained
as the result of the extra mode-mode couplings that are not ac-
counted for by the FKP approach. We see that even well sepa-
rated power spectrum bins can be correlated at a 30—40% level.
The bottommost row in Fig. 7 represents the nonlinear contri-
bution to the covariance matrix arising from the 1-halo term
(see Appendix C). We see that this contribution is subdominant
at the scales of interest to us'®.

In the following calculations we mostly use the covariance
matrix given in the middle row of Fig. 7!7.

5. Relation to the true spectrum

Since masking in real space is equivalent to convolution in
Fourier space, our measured power spectrum P is actually a
convolution of the real spectrum P with a survey window (see
e.g. FKP):

P - [ L paow - Ky (20)
- J @np? ’
where
W(k) = fd3r n(ryw(r)exp(ik - r), (2))
and the survey window |W(k)|? is normalized as follows:
d*k 2
f 22 IWk)I” = (22)

The angle averaged survey window |W(k)|? is plotted in Fig. 8.
Here the core part of the window is well approximated by the
functional form:

W(k)?

(a ~0.0030,b ~ 0.0028),  (23)

1

(5 = 6)
and asymptotic wings are close to the power law with spectral
index —4. These approximations are shown with dashed lines in
Fig. 8. With the gray shaded stripe we have marked the scales
where [W(k)|? is above 1% of its maximum value. This stripe
serves as a rough guide to the effective width of the survey

window and it is also shown in many of the following figures.
Since the survey geometry of the analyzed SDSS LRG sam-
ple is far from spherically symmetric, an isotropized window in
Fig. 8 gives only a poor representation of the true 3D window,

which is displayed as an isosurface corresponding to the iso-
value of 0.01 in Fig. 9.

16 In calculating this contribution to the covariance matrix we have
taken the best fit model parameters as obtained in Sect. 6. The small-
ness of this term is caused by the high value of the parameter M, i.e.
the majority of the “occupied” halos contain only one LRG.

17 This matrix along with the power spectrum results in Fig. 5 is also
given in a tabular form in Appendix G.
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Fig. 8. Isotropized survey window. Here the normalization is taken
such that [W(0)| = 1. The light gray stripe marks the region where
the window is above 1% of its maximum value of 1. Dashed lines
show approximations discussed in the text.

Fig.9. 3D survey window embedded in a box with a side length of
0.04 hMpc™'. Here the isosurface corresponding to 1% of the maxi-
mum value of the window is shown. Note the symmetry of the win-
dow, [W(k)|* = |W(=k)[?, as expected when taking a modulus of the
Fourier transform of a real 3D scalar function.

In order to compare theoretical models to the measured
power spectrum we have to take into account the smearing ef-
fects caused by the survey window. Using Eq. (20) we can ex-
press an isotropized power spectrum as:

P(k) = f @P(k) = f dk’ K2P(K)K (K k), (24)

where the coupling kernels18
dQ dQy
KK ) = K k) = 2 f : f —Flwk- k)P (25

18 We prefer to use “coupling kernels” instead of the more common
“window functions” since the word “window” has already been used
to mean the modulus square of the Fourier transform of the weighted
survey volume.
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Fig. 10. Coupling kernels K;(k) = K(k;, k) for the power spectrum bins
k; shown in Fig. 5. Numerically evaluated kernels are shown with solid
lines. The dashed lines correspond to the fitting functions given in
Appendix D.

Numerically evaluated coupling kernels along with the analyt-
ical approximations (see Appendix D) for the analyzed galaxy
sample are presented in Fig. 10. Here the solid lines corre-
spond to the numerical results and the dashed ones repre-
sent an analytical approximation. We have used the notation
Ki(k) = K(k;, k) where k; denote the central values of the power
spectrum bins shown in Fig. 5.

6. Model spectra

It is well known that redshift space distortions and nonlinear
effects modify simple linear spectra. In order to treat these ef-
fects we make use of the very successful analytical model — the
Halo Model. For a review see Cooray & Sheth (2002) (see also
Seljak 2000). The details of the model we use are presented in
Appendix C. The model introduces four free parameters: Moy,
@, My and y. Here M, is the lower cutoff of the halo mass
i.e. below that mass halos are assumed to be “dark”. @ and M,
are the parameters of the mean of the halo occupation distri-
bution (N|M), which gives the average number of galaxies per
halo with mass M. We take (N|M) to be a simple power law:

(NIM) = (ﬂ) -

Mo (26)

The last parameter, 7y, is the amplitude factor for the virial ve-
locities of galaxies inside dark matter halos. A one dimensional
velocity dispersion of the galaxies inside a halo with mass M is
taken to follow the scaling of the isothermal sphere model:

|GM
o= s
4 2Rvir

where Ry, is the virial radius of the halo.

For the model fitting we have used the Levenberg-
Marquardt method as described in Press et al. (1992) with mod-
ifications (described in Appendix E) that allow us to incorpo-
rate correlations between the data points. As the input data

27)
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Fig.11. 1o error contours for the free model parameters. Best fit pa-
rameter values are marked with crosses.

we take the power spectrum estimates given in Fig. 5. The
covariance matrix used is the one shown in the middle row
of Fig. 7. We also perform fits where we use one additional
power spectrum bin on a larger scale (not shown in Fig. 5). All
of this data are given in a tabular form in Appendix G. The
transfer functions needed for the linear spectra are taken from
Eisenstein & Hu (1998). There the authors also provide trans-
fer function fits where the baryonic acoustic oscillations have
been removed. We use these “smoothed out” transfer functions
to assess the significance of the oscillatory features we see
in the data. Throughout this paper we have kept the cosmol-
ogy fixed to the best-fit WMAP “concordance” model (Spergel
et al. 2003). The implications for the cosmology, and especially
for the dark energy equation of state parameter, are planned to
be worked out in a future paper.

As the cosmology is kept fixed, we have only four free
parameters. In order to eliminate some of the degenera-
cies between the parameters we have imposed one additional
constraint. We have demanded that the resulting number of
galaxies should agree with the one that is observed with a rel-
ative error of 1% i.e. (51,763 + 518)!°. The resulting 1o er-
ror “ellipses” for the free parameters are shown in Fig. 11.
The “ellipses” appear deformed since instead of Moy, and M
we have fitted log(Mjow) and log(Mp). We have marked with
crosses the best fit values: Migw =~ 3 X 10287 My, @ ~ 0.9,
My ~ 1.4 x 10"h™! M, and y ~ 0.7. The model spectra cor-
responding to these best fit parameters are shown in Figs. 4
and 5. In both figures we have also given the simple linear spec-
tra multiplied by the square of the bias parameter b = 1.95.
In Fig. 4 we have additionally demonstrated the effect of the
window convolution. There the dashed lines correspond to the
unconvolved case. In Fig. 5, along with the “wiggly” spectra
we have shown their “smoothed” counterparts. Using all the
16 power spectrum bins (the 1st not shown in Fig. 5) plus an
additional constraint on the total number of galaxies, resulting
in 17 — 4 = 13 independent degrees of freedom, we obtain
x? values of 8.8 and 19.9 for the “wiggly” and “smoothed”?

19 The 1o Poisson error in this case would be 228. The large-scale
structure amplifies the variability in the number of objects and a factor
of a few increase above the Poissonian case seems to be reasonable.

20 The best fit Miow, @, M, and y for the “smoothed” models differ
slightly from the values quoted above for the “wiggly” spectra.
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models, respectively. So the models with oscillations are fa-
vored by 3.30 over their “smoothed” counterparts!. Since both
models have the same number of free parameters, and if addi-
tionally the assumption of Gaussianity is valid, the Bayesian
approach should give similar results. Actually, Bayesian results
should favor “wiggly” models even more, since prior weight for
these should probably be taken higher (assuming knowledge of
the other experimental results).

7. Determination of the acoustic scale

To measure the scale of the acoustic oscillations we divide the
spectrum shown in Fig. 5 by the best fitting “smoothed” spec-
trum. The result of this procedure is given in the upper panel of
Fig. 12. There the solid line shows a cubic spline fit to the data
points and the long-dashed line corresponds to the best fitting
model spectrum also shown in Fig. 5. The above data is fitted
with a parametric form:

f() = 1+¢ -sin(es - x) exp [(—ci) 4}- (28)

3
Again we use the Levenberg-Marquardt method with the
data covariance matrix obtained from mock catalogs. After
marginalizing over the other parameters we find the best fit-
ting value of (105.4 + 2.3) h~! Mpc for the parameter c,%. The
best fitting member of the parametric family in Eq. (28) is
shown with short-dashed lines in the upper panel of Fig. 12.
Using the FKP covariance matrix instead gives an acoustic
scale of (105.4 +2.8) h~! Mpc.

The sinusoidal modulation in the power spectrum is a con-
sequence of the adiabatic initial conditions. By relaxing this
assumption and fitting with a more general functional form:

f() = 1+c1-sin(es - x + c3) exp [(—i) 5] (29)

Cq
instead, we get the following value for the acoustic scale:
(103.0+7.6) h~' Mpc. In the case of the FKP covariance matrix
the corresponding value is (103.1 +9.1) h~! Mpc.

Eisenstein et al. (2005) determined various distance scales
(like D,, which is a specific combination of the comoving dis-
tances along and perpendicular to the line of sight (see their
Eq. (2))) and their ratios, using SDSS LRGs and the constraints
from other cosmological sources. The typical relative accuracy
of these measurements is ~4%, which seems worse than the ac-
curacy of the acoustic scale measurement, (105.4+2.3) h~' Mpc
i.e. ~2%, presented in this paper. This apparent inconsistency

2l Dropping the first power spectrum bin the obtained y? values are
5.0 and 16.5. 5.0 is an anomalously low value of y? for 12 degrees
of freedom. (One would expect y? ~ 12 + 5.) If we would have used
the simple FKP covariance matrix instead of the one obtained from
the mock catalogs, the resulting x? values would be even lower: 2.9
and 8.5, respectively. This might hint that the 2nd order Lagrangian
approach, although very successful, might still have problems in cap-
turing some extra mode-mode couplings.

22 Here and in the following the errors refer to the 1-o level. Values
for the other parameters are as follows: ¢; = (4.9 + 2.1) X 1072, ¢3 =
(0.176 £ 0.023) AMpc™", ¢y = (7 + '7).
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Fig.12. Upper panel: power spectrum from Fig. 5 divided by the best
fitting “smoothed” spectrum. Solid line shows a cubic spline fit to
the data points and long-dashed line corresponds to the best “wiggly”
model. The short-dashed line represents the most favorable fit from the
parametric family of Eq. (28). Lower panel: various input power spec-
tra used to calculate the two-point correlation function. The dashed
line is the cubic spline fit from the upper panel. The solid lines repre-
sent a transition sequence from the best fitting “wiggly” model to the
best “smoothed” model. In each step we have erased more oscillatory
features. For clarity slight vertical shifts have been introduced.

can be attributed to the fact that in our analysis, as stated above,
we have kept the cosmology fixed to the WMAP “concor-
dance” model, whereas the Eisenstein et al. (2005) estimates
include the extra uncertainties due to the imperfect knowledge
of the various cosmological parameters. Of course, the given
length of the acoustic scale, (105.4 + 2.3) h~! Mpc, can be eas-
ily transformed in order to accommodate other preferences for
the background cosmology. We also note that the use of the
parametric form in Eq. (28) might be too restrictive, since the
acoustic modulation in the case of adiabatic models can be
only approximately described as a damped sinusoidal wave
(Eisenstein & Hu 1998). For this reason the given sound hori-
zon constraint should not be used in cosmological parameter
studies. Instead one should directly use the measured power
spectrum in combination with the parametrized models that are
physically well motivated.

8. Correlation function analysis

We determine the two-point correlation function of the
SDSS LRGs using the edge-corrected estimator given by
Landy & Szalay (1993):
DD - 2DR + RR

RR ’
which has minimal variance for a Poisson process. Here DD,
DR and RR represent the respective normalized data-data,

&(r) = (30)
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Fig. 13. Left panel: two-point correlation functions as determined in
this paper (circles with solid lines) and by Eisenstein et al. (2005).
Right panel: correlation functions corresponding to the models shown
in the lower panel of Fig. 12 in comparison to the one obtained directly
from the data. Here all the data points have been lowered by 0.0035.

data-random and random-random pair counts in a given dis-
tance range. Random catalogs were generated with 25 times
the number of objects in the main catalog. We calculated cor-
relation function for 10 bins (r;, i = 1...10) in the pair dis-
tance range of 60...160 4~ Mpc. The errors were estimated
by a “jackknife” technique. For this purpose we divided the full
sample into 22 separate regions each containing ~2350 galax-
ies (see Fig. 3). The two-point function was calculated 22
times, each time omitting one of the regions. Denoting the re-
sulting estimates as &;(r;), (j = 1...22), the “jackknife” esti-
mate for the variance is (see e.g. Lupton 1993):

w20 = Y1 S g e (31
e\ N < j\i i >

_ 1 &

Er) = N;@(n), (32)

where in our case N = 22. The results of this calculation are
presented in the left panel of Fig. 13. With the crosses and
dashed-line errorbars we show the two-point function as deter-
mined by Eisenstein et al. (2005). In general our results agree
reasonably well with their calculations.

It would be interesting to study how the oscillations in the
observed power spectrum transform into the peak in the two-
point correlation function seen at the scale of ~110 /7! Mpc.
For this purpose we use the cubic spline fit shown in Fig. 12
and extend it outside of the observed range by smoothly join-
ing it to the power spectrum of the best fitting “smoothed”
model. The correlation function is now simply calculated as
the Fourier transform of the power spectrum?®. The resulting

2 To be precise, in redshift space the two-point correlation func-
tion and power spectrum are no longer exact Fourier transforms of
each other. Nevertheless, we think that this simplified exercise is still
useful. Also, as the correlation function estimator in Eq. (30) is an
edge-corrected estimator, we use an unconvolved model spectra here.
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correlation function is plotted with a dashed line in the right
panel of Fig. 13. To study the significance of the oscillatory
features in the power spectrum in relation to the observed peak
in the correlation function, we have calculated correlation func-
tions for several models that have oscillations “switched off”
at various scales. The spectra of these models are shown with
solid lines in the lower panel of Fig. 12, where for clarity we
have introduced slight vertical shifts between the curves, so
that the scales where the transition to the featureless spectrum
takes place are easily visible. The corresponding correlation
functions are given with solid lines in the right hand panel of
Fig. 13. As expected, we see the peak in the correlation func-
tion becomes broader and also decreases in amplitude as we
successively erase features in the power spectrum. This clearly
demonstrates the importance of many of the fluctuations in the
power spectrum to produce a relatively sharp feature in the two-
point correlation function.

In order to achieve good agreement we have lowered all the
data points by 0.0035 in the right hand panel of Fig. 13. Similar
shifts were also suggested in Eisenstein et al. (2005) in order
to get a better match to the theoretical models. A 0.0035 shift
in ¢ translates to the 0.175% shift in the mean density. Thus, if
one wishes to determine the amplitude of the correlation func-
tion correctly at those large scales, one has to determine the
survey selection function with a very high precision, which in
practice is very difficult to achieve. By using model spectra that
have more large scale power than the “concordance” cosmol-
ogy predicts (as might be suggested by Fig. 4), we are able
to match the amplitude of the correlation function without any
additional vertical shifts. Here we try to avoid making any def-
inite conclusions. The behavior of the power spectrum on the
largest scales is a whole interesting topic on its own and there
exist much better methods than the direct Fourier approach to
investigate these issues (see e.g. Tegmark et al. 1998).

9. Comparison with other surveys

In this section we compare our power spectrum measurements
with the ones obtained by Percival et al. (2001) and Cole et al.
(2005) for the 2dF redshift survey and by Tegmark et al. (2004)
for the SDSS main galaxy sample. The results of this com-
parison are provided in Figs. 14 and 15. For clarity we have
given a variant of Fig. 14 where we have omitted the error-
bars. The amplitudes of the SDSS main and 2dF spectra have
been freely adjusted to match the clustering strength of the
SDSS LRGs. The corresponding bias parameters with respect
to the SDSS LRGs are 0.53, 0.61 and 0.50 for the 2dF sam-
ple analyzed by Percival et al. (2001), for the one analyzed
by Cole et al. (2005), and for the SDSS main sample, respec-
tively. Percival et al. (2001) also provide power spectrum mea-
surements for k 2 0.15 2 Mpc™! but without errorbars. These
small-scale measurements along with our SDSS LRG results
are shown with solid lines in Fig. 14.

In general the shapes of the spectra agree remarkably well.
With the only exception of the Tegmark et al. (2004) results,
the power spectrum bins are significantly correlated. Also the
Tegmark et al. (2004) measurements are corrected for the red-
shift space distortions.
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Fig. 15. The same as Fig. 14 with the errorbars omitted.

10. Discussion and conclusions

In this paper we have calculated the redshift-space power spec-
trum of the SDSS DR4 LRG sample, finding evidence for a
series of acoustic features down to the scales of ~0.2 2 Mpc™'.
Models with baryonic oscillations are favored by 3.30" over
their “smoothed” counterparts without any oscillatory behav-
ior. Using the obtained power spectrum we predict the shape
of the spatial two-point correlation function, which agrees very
well with the one obtained directly from the data. Also, the
directly calculated correlation function is consistent with the
results obtained by Eisenstein et al. (2005). We have made
no attempts to put constraints on the cosmological parame-
ters, rather we have assumed the “concordance” cosmologi-
cal model in our analysis. The derived acoustic scale (105.4 +
2.3) ™' Mpc agrees well with the best-fit WMAP “concor-
dance” model prediction of ~106.5 4~! Mpc.

The existence of baryonic features in the galaxy power
spectrum is very important, allowing one (in principle) to ob-
tain the Hubble parameter H and angular diameter distance d4
as a function of redshift, this way opening up a possibility to
constrain properties of the dark energy (Hu & Haiman 2003).
The currently existing largest redshift surveys, which are still
quite shallow, do not yet provide enough information to do this
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properly. On the other hand, it is extremely encouraging that
even with the current generation of redshift surveys we are al-
ready able to see traces of acoustic oscillations in the galaxy
power spectrum, showing the promise for dedicated future sur-
veys like KAOS. We have seen that acoustic features seem to
survive at mildly nonlinear scales (k 2 0.1 AMpc™'), which
is in agreement with the results of the recent N-body simula-
tions (Springel et al. 2005; Seo & Eisenstein 2005). In order
to fully exploit the available information one needs a complete
understanding of how nonlinear effects influence these features.
Nonlinear bias and redshift space distortions also add compli-
cations. In general, redshift-space distortions, biasing and non-
linear evolution do not create any oscillatory modulation in
the power spectrum and so acoustic features should be readily
observable. So far there have been only a few works study-
ing these important issues (e.g. Springel et al. 2005; Seo &
Eisenstein 2005; White 2005) and currently we do not have
a full theoretical description of them. In our paper we have
modeled the above-mentioned effects using the results from the
2nd order Lagrangian perturbation theory in combination with
the Halo Model. Although these models are very successful in
capturing many important aspects of structure formation, they
are still approximations.

The existence of baryonic oscillations in the galaxy power
spectrum gives us important information about the underlying
cosmological model and the mechanism of structure forma-
tion. First, it confirms the generic picture of the gravitational
instability theory where the structure in the Universe is be-
lieved to have been formed by the gravitational amplification
of the small perturbations layed down in the early Universe.
Under linear gravitational evolution all the density fluctuation
modes evolve independently i.e. all the features in the power
spectrum will be preserved. We are now indeed able to iden-
tify features in the low redshift galaxy power spectrum that
correspond to the fluctuations seen in the CMB angular power
spectrum (which probes redshifts z ~ 1100), providing strong
support for this standard picture of structure formation. We can
even probe scales that are inaccessible to CMB studies due to
the strong damping effects and steeply rising influence of the
secondary anisotropies, effectively reaching wavenumbers that
correspond to the 6th-7th peak in the CMB angular power spec-
trum. Second, the ability to observe baryonic features in the low
redshift galaxy power spectrum demands rather high baryonic
to total matter density ratio. In Blanchard et al. (2003) it has
been shown that it is possible to fit a large body of observa-
tional data with an Einstein—de Sitter type model if one adopts
a low value for the Hubble parameter and relaxes the usual as-
sumptions about the single power law initial spectrum. In the
light of our results these models are disfavored due to the fact
that the high dark matter density completely damps the bary-
onic features. Finally, purely baryonic models are also ruled out
since for them the expected acoustic scale would be roughly
two times larger than observed here’*. Thus the data seems
to demand a weakly interacting nonrelativistic matter compo-
nent and all the models that try to replace this dark matter

24 For a clear discussion of this see Daniel Eisenstein’s home page
http://cmb.as.arizona.edu/~eisenste/acousticpeak/
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component with “something else” e.g. modifying the laws of
gravity, might have severe difficulties in fitting these new ob-
servational constraints.
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Fig. A.1. Power spectra of galaxy clusters from the z = 0 Hubble
Volume simulation box. The solid line represents the spectrum for the
full sample of 1560995 clusters. The circles with errorbars denote
the recovered spectrum from the 50 mock catalogs having similar se-
lection effects as the analyzed SDSS LRG sample. The dotted lines
demonstrate the convolution effect of the survey window on the best
fitting model spectrum.

Appendix A: Test problem

Here we present a test of our power spectrum calculation soft-
ware?. As the input we use the z = O cluster catalog of the
VIRGO Hubble Volume simulations2®, which covers the co-
moving volume of 3000 4~ Mpc?® and contains 1 560 995 clus-
ters above the mass limit of 6.75 x 10341 M. The average
bias parameter of this catalog is b = 1.9, which is comparable
to the SDSS LRG value of b = 1.95. The power spectrum of
the full sample is shown in Fig. A.1 with a solid line. Here for
clarity we have not shown the errorbars, which are rather small
for a sample of that size. Out of the full sample we generate
50 mock catalogs that have the same radial and angular selec-
tion functions as the SDSS LRG sample analyzed in this paper
(see Figs. 2 and 3). The mean number of objects in the result-
ing catalogs is ~18 500 i.e. the number density is roughly one
third of the spatial density of the SDSS LRGs. The observer’s
location and pointing angles are taken randomly for each of the
catalogs. The mean recovered power spectrum with 1o error-
bars is shown in Fig. A.1. We see that the power spectrum of
the underlying sample is recovered very well. On the largest
scales there are some deviations, which can be explained as be-
ing caused by the smearing effect of the survey window. This is
demonstrated by the dotted lines, where the lower/upper curve
corresponds to the model spectrum with/without survey win-
dow convolution applied.

Appendix B: Mock catalogs

We build mock catalogs for the SDSS LRG by a 3 step
procedure:

1. Generation of the density field using an optimized 2nd or-
der Lagrangian perturbation calculation (2LPT).

25 Further tests can be found in Hiitsi (2005)
% http://www.mpa-garching.mpg.de/Virgo/

2. Poisson sampling of the generated density field with the
intensity of the process adjusted to obtain a galaxy sample
that has a clustering strength enhanced by a factor b*> with
respect to the underlying field, and a number density equal
to the observed LRG sample density at the minimal used
redshift of 0.16 (see Fig. 2).

3. Extraction of the final catalog by applying the radial and
angular selection function as given in Figs. 2 and 3,
respectively.

In contrast to the Eulerian perturbation theory, where one
does a perturbative expansion of the density contrast field, the
Lagrangian approach considers an expansion of the particle tra-
jectories (see e.g. Buchert & Ehlers 1993; Bouchet et al. 1995;
Sahni & Coles 1995; Bernardeau et al. 2002). Here the central
quantity is the displacement field W¥(q), which relates particle’s
initial comoving position (Lagrangian position) ¢ to its final
Eulerian position x:

x=q+Y¥Y(q). (B.1)

Due to the decay of the rotational perturbation modes in
the expanding Universe each order of the perturbation the-
ory displacement field separates into a time-dependent and a
Lagrangian position dependent factor (Ehlers & Buchert 1997).
The position dependent part, due to its irrotational nature can
be given as a gradient of a scalar potential. As a result, one can

expand the displacement field as follows:
Y(q) = DV,¢'"" + D,V,¢. (B.2)

Here the 1st term describes the classical Zeldovich approxima-
tion (Zel’Dovich 1970). The time independent potentials ¢V
and ¢® are found from the Poisson equations:

ApV(q) = —5(q)

and

(B.3)

1
8 =5 3 ) (45 @6)@ -0 @60 @). (B
i

where ; denotes the partial derivative with respect to the
Lagrangian coordinate g;. 6(g) is the initial density contrast.
We generate 6(q) using the standard Zeldovich approximation
on a regular cubical grid.

D, in Eq. (B.2) is the linear growth factor. The second-order
growth factor D, for flat models with a cosmological constant
is to a good precision approximated as (Bouchet et al. 1995):
D, ~ —EQ;'/143Df.

7
According to Eqgs. (B.1) and (B.2) the peculiar velocity field is
given as:

(B.5)

v =D fiHV ¢V + D2 L HV ;6@ . (B.6)

Here H = £ and f; = 922 For flat models with a cosmological
a dlna

constant logarithmic derivatives of the growth factors can be
approximated as (Bouchet et al. 1995):

fi=@Ql,  f=20y" (B.7)
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Fig. B.1. A 25 h~! Mpc thick slice through a 1280 4~! Mpc computational box. The gray scale image represents the underlying density field
obtained by the optimized 2LPT approach. White dots mark the positions of the “galaxies” generated by the Poisson sampler.

The Lagrangian perturbative approach works well up to the
Ist shell-crossing. After that the formed sharp caustic struc-
tures will start to disappear, since the particles keep mov-
ing without experiencing the gravitational pull of the dense
sheets/filaments. It is possible to resolve this problem signif-
icantly by filtering out the small-scale Fourier modes. This is
what is meant by the “optimization”. The method applied to
the 1st order Lagrangian perturbation calculation is known as
the truncated Zeldovich approximation (e.g. Coles et al. 1993;
Melott et al. 1994; Weiss et al. 1996). Weiss et al. (1996) sug-
gest to remove the small-scale power by applying a Gaussian
k-space filter with a characteristic smoothing scale kg to the
initial density field. Thus the power spectrum of the filtered
field is given by:

k2
Poptimized(k) = P(k) €xXp (_kT) . (B.8)

gs

They recommend the value ks =~ 1.2k, where the nonlinearity
scale k; is defined as:

N

2
b fd3kP(k) =1.

W (B.9)
0

Although they studied only models with Q;, = 1, it was later
shown by Hamana (1998) that this “recipe” performs well for
arbitrary Friedmann-Lemaitre-Robertson-Walker models.

In our calculations we assume the WMAP “concordance”
cosmology (Spergel et al. 2003). The linear power spectrum
is taken from Eisenstein & Hu (1998). We build a 2LPT den-
sity field on a 256°-grid with 54! Mpc cell size using the
same number of particles as the number of grid cells?’. Four
copies of this box are combined to form a large 2560 x 2560 x
1280 =3 Mpc? volume. Out of that big box a sample of “galax-
ies” is selected with a radial number density as given in Fig. 2
and with an angular mask presented in Fig. 3. The parame-
ters of the Poisson sampler?® are tuned to give a sample with
a bias parameter b ~ 2 in agreement with the observed value
for the SDSS LRG sample. The redshift-space catalog is built
by altering the radial distances of the “galaxies” by v,/H),
where v, is the radial component of the peculiar velocity field
(see Eq. (B.6)) and Hy = 100 hkm/s/Mpc.

In Fig. B.1 we show a 25 h~! Mpc thick slice through a box
with 1280 4~! Mpc side length. The underlying density field is

27 Due to the large cell size the truncation of the initial spectrum has
a rather mild effect.

28 We use a simple model where the intensity of the inhomogeneous
Poisson process is linearly related to the underlying density field.
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Fig. B.2. The power spectrum of ~350 000 “galaxies” from the simu-
lation box shown in Fig. B.1. The solid line shows the linearly evolved
input spectrum multiplied by the square of the bias parameter b = 2.0.
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presented as a gray scale image with white dots marking the
positions of the “galaxies”. The power spectrum of the sample
of ~350 000 “galaxies” is shown in Fig. B.2?°. We see that the
shape of the spectrum is in good agreement with the linearly
evolved power spectrum up to the scales of k ~ 0.5 h Mpc™'.

This approach gives us a “galaxy” sample that has realistic
large-scale clustering properties. In terms of the Halo Model
(see Appendix C) the halo-halo clustering term is properly ac-
counted for. 2LPT also gives reasonably accurate higher order
correlations on quasi-nonlinear scales (e.g. Bouchet et al. 1995;
Scoccimarro & Sheth 2002).

Appendix C: Power spectrum from the halo model

The halo model description of the spatial clustering of galax-
ies is a development of the original idea by Neyman & Scott
(1952), where one describes the correlations of the total point
set as arising from two separate terms: (i) the 1-halo term, that
describes the correlations of galaxies populating the same halo,
(ii) the 2-halo term, which takes into account correlations of the
galaxies occupying different halos. For a thorough review see
Cooray & Sheth (2002). Here we briefly give the results rele-
vant to the current paper (see Seljak 2001; Cooray 2004).

The power spectrum of galaxies in redshift space can be

given as:
P(k) = P""(k) + P*(k), (C.1)

where the 1-halo term:

£

and the 2-halo term:

Ry (ko) lug (KM, (C.2)

it (NN - DIM) < 1

if (NN - DIM) > 1 (€3

p:

2 1
P (k) = (grgz + 3T + 57—‘3) Piin(k). (C.4)

2 Here as in the previous figure the SDSS LRG selection functions
are not yet applied.

Here:

B P\ _ ﬁ erf(a)
Rp(a—k(r\/;)— fret@ (C5)
Fe = fdMn(M)b(M)<Nl_lM>R1(k0')ug(k|M), (C.6)
Fo=f" fdM n(M)b(M)R, (ko )u(k|M). (C.7)

In the above expressions n(M) is the mass function and b(M)
halo bias parameter. We calculate them using the prescription
by Sheth & Tormen (1999) and Sheth et al. (2001). 72 represents
the mean number density of galaxies:

i = f dM n(M)(NIM). (C.8)

We take the mean of the halo occupation distribution in the
following form:

(NIM) = (ﬁ) ,

e (C.9)

where Mj and « are free parameters. The second moment is
chosen as (see Cooray 2004):

(N(N = DIM) = BA(M)NIM)?, (C.10)
S0 - {%log(m) if M <105 M, i
1 otherwise.

f in Eq. (C.7) denotes the logarithmic derivative of the linear
growth factor: f = ddl;‘nz L. u(k|M) and uy(k|M) are the nor-
malized Fourier transforms of the dark matter and galaxy den-
sity distributions within a halo of mass M. In our calculations
we take both of these distributions given by the NFW profile
(Navarro et al. 1997) and the concentration parameter c(M) is
taken from Bullock et al. (2001). The one dimensional velocity
dispersion of the galaxies inside a halo with mass M is taken to
follow the scaling of the isothermal sphere model:

[GM
o= s
4 2Rvir

where Ryi; is the virial radius of the halo and y is a free
parameter.

After specifying the background cosmology the above de-
scribed model has four free parameters: My, @ (Eq. (C.9)),
o (Eq. (C.12)) and Moy The last parameter Mo, represents the
lower boundary of the mass integration i.e. halos with masses
below M,y are assumed to be “dark”.

One can also use the halo model to estimate nonlinear con-
tributions to the power spectrum covariance matrix. The ad-
ditional term to the covariance matrix CZL (i, j denote power
spectrum bins) arising from the parallelogram configurations
of the trispectrum? is given by (Cooray 2004):

Ty 1 (& (dk
i ' J !

(NN — 1N = 2)(N — 3)|M)

ﬁ4

(C.12)

et (il M) P ug (k| M)

(C.13)

30 Here only the contribution due to the 1-halo term is given.
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f denotes an integral over a k-space shell centered at wavenum-

ber k; with a volume V; = 47Tki2Ak. The 4th moment of the halo
occupation distribution is taken as:

(NN = DN = 2)(N = 3)[M) = (M) [28°(M) ~ 1]
[387(m) - 2| (NIMY*, (C.14)

where (M) and (N|M) are given in Egs. (C.11) and (C.9)
above. Performing calculations in redshift space a factor
of Rlz,(k(r) (see Eq. (C.5)) must also be included in Eq. (C.13).

Appendix D: Fitting formulae for the coupling
kernels

In this appendix we provide analytical fitting formulae for the
coupling kernels K(k, k') in Eq. (24)3!. The analytic form is
motivated by the fact that the angle averaged survey window
(W) (see Fig. 8) can be reasonably well approximated by
the analytical form:

1

2 s
+(5) +(5)
Now assuming that [W(k)|? is isotropic (which certainly is not

the case as seen from Fig. 9), we can find the coupling kernels
K(k, k') as:

|W(k)I*

= f(k) = (D.1)

Kk, k)= C- f dQy f dQu |W(k - k")?
k+k'
= kk’ ff(x)xdx
|k=k’|

For f(k) given by Eq. (D.1) the integral in Eq. (D.2) and the
normalization constant C can be found analytically. The ker-
nels are normalized such that

f Kk, kKHK*dk’ = 1

(D.2)

(D.3)

is satisfied.
Depending on the values of a and b there are two different
solutions.

1. b* > 4a*:
, gk — k)
Kk, k) = 1 s D.4
(k) = kk' gk + k) (D4
where
u+b*+2a%x
= D.5
9(x) = —b* = 2a2x%° (D-5)
U= b2 Vb4 - 4a* (D.6)
and the normalization constant:
D.7)

" AVI(VB - AP )

31 To avoid confusion we do not call them window functions since
the word “window” has been already used to mean the Fourier trans-
form of the survey volume.

2. b* < 4a*:
’ C ’ ’
K(k, k') = [g(k +k) =gk —k)], (D.8)
where
b* + 2a2x2
g(x) = arctan(i) (D.9)
b2 Vaa* - b
and the normalization constant:
1
C = (D.10)

Although the isotropy assumption is certainly not correct, the
above parametric family provides a very good fit to the nu-
merically evaluated kernels as seen in Fig. 10. The best fit-
ting a and b for the analyzed SDSS LRG sample are 0.00457
and 0.00475, respectively.

Appendix E: Nonlinear model fitting. Correlated
data

We find the best fitting parameters for the nonlinear model
by minimizing y?, which in the case of Gaussian errors is
equivalent to finding the maximum likelihood solution. For this
purpose we use Levenberg-Marquardt method as described in
Press et al. (1992), where it was assumed that data values are
uncorrelated. Since we are interested in the case with correlated
errors, we have to make slight modifications to their implemen-
tation of the algorithm.
Using their notation, /\{2 is now calculated as:

N N
x(a) = Z —yGia)] - G |y -yepe]. B
i=1 j=
and the quantities B and ay; as follows:
N N
_1 Oy(xjia)
j— o — . . 1 . 7‘}
m—;;m O vt (E2)
(X,,a) _1 ay(xj’ a)
E.3
= ; Z]: 361]( 8611 ( )

In the above relations C;; represents the data covariance matrix.

Appendix F: Goodness of fit. Correlated Gaussian
data

Under the assumption that statistical fluctuations Ay; = y; —
y(x;;a) (i=1...N)in Eq. (E.1) are Gaussian distributed, with
covariance matrix Cj;, one can easily derive probability den-
sity function (pdf) for the quantity y2, and thus open up a way
to estimate the goodness of fit. The y? goodness-of-fit estima-
tor is usually exploited in the case of independent Gaussian
variables. Here we show that calculating y? for the correlated
Gaussian data as given in Eq. (E.1), one obtains the same result
that is well known for the independently distributed case.
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According to our assumption Ay is Gaussian distributed:

32 The metric in the new frame is an identity matrix.
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