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ABSTRACT

Using a new model for quasar lifetimes and light curves derived from numerical simulations of galaxy mergers
that incorporate black hole growth, we study the faint-end slope of the quasar luminosity function (QLF) and its
evolution with redshift. Our model motivates a new interpretation of the QLF in which the bright end consists of
quasars radiating near their peak luminosities but the faint end is mostly made up of brighter peak luminosity
quasars seen in less luminous phases of evolution. The faint-end slope of the QLF is then set by the behavior of the
lifetime (light curve) of quasars with peak luminosities near the observed break when they are in less luminous stages
of evolution. We determine the faint-end slope of the QLF from the quasar lifetime, based on a set of simulations that
encompass a wide range of host galaxy, merger, black hole, and interstellar gas properties. Brighter peak luminosity
(higher black hole mass) systems undergo more violent evolution, and gas is expelled and heated more rapidly in the
final stages of quasar evolution, resulting in a flatter faint-end slope (as these objects fall below the observed break in
the QLFmore rapidly). Therefore, as the QLF break luminosity moves to higher luminosities with increasing redshift,
implying a larger typical quasar peak luminosity, the faint-end QLF slope flattens. From our model, we predict the
evolution of the faint-end slope of the QLF and find good agreement with observations. Although black holes grow in
an antihierarchical manner (with lower mass black holes formed primarily at lower redshifts), in our picture the
observed change in slope and differential or ‘‘luminosity-dependent density evolution’’ in the QLF is determined by
the nontrivial, luminosity-dependent quasar lifetime and physics of quasar feedback, and not by changes in the shape
of the underlying peak luminosity or active black hole mass distributions.

Subject headings: cosmology: theory — galaxies: active — galaxies: evolution — quasars: general
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1. INTRODUCTION

The shape and evolution of the quasar luminosity function
(QLF) is fundamental to cosmology, constraining theories of
galaxy and supermassive black hole (BH) formation, accretion
models, the X-ray, UV, and infrared backgrounds, the role of gal-
axy mergers and interactions in galaxy formation and evolution,
and reionization. Until recently, it has not been possible to reliably
measure the faint-end slope of the QLF even at low redshifts,
but this has begun to change with the advent of large, uniformly
selected quasar samples in surveys such as the Sloan Digital
Sky Survey (SDSS) and the Two Degree Field (2dF). Further-
more, a growing number of observations at various redshifts, in
radio, optical, and soft and hard X-ray bands, indicate that the
faint-end slope evolves, becoming flatter at higher redshift (e.g.,
Page et al. 1997; Miyaji et al. 2000, 2001; La Franca et al. 2002;
Cowie et al. 2003; Ueda et al. 2003; Fiore et al. 2003; Hunt et al.
2004; Cirasuolo et al. 2005; Hasinger et al. 2005).

This evolution, parameterized either as direct evolution in the
faint-end slope or as luminosity-dependent density evolution
(LDDE), has been the subject of much speculation, as it implies
that the density of lower luminosity quasars peaks at lower red-
shift. In traditional models of the quasar lifetime and light curve,
this evolution is directly related to the properties of quasar hosts,
implying, e.g., significant and rapid evolution in the shape of the
distribution of host galaxy masses, which cannot be accounted

for in either semianalytical models or numerical simulations and
is not consistent with a wide range of galaxy observations. Mod-
els that adopt these idealized prescriptions for quasar evolution
have had some success predicting the evolution of the bright end
of the QLF, generally succeeding at high redshift but failing to
account for the decrease in counts of bright quasars at low red-
shift (e.g., Kauffmann & Haehnelt 2000; Wyithe & Loeb 2003;
Enoki et al. 2003), without invoking either feedback mechanisms
to suppress growth of high-mass spheroids (e.g., Scannapieco &
Oh 2004) or evolution in the BH accretion efficiency with red-
shift (e.g., Haiman & Menou 2000) or characteristic gas density
(e.g., Cattaneo et al. 2005).
In either case, such models do not have a natural explanation

for the faint-end slope or its evolution and thus cannot be ex-
trapolated to low luminosities or to redshifts where the slope is
undetermined. Observations at high redshifts are uncertain, and
no large, uniformly selected samples yet exist that measure the
faint-end slope at both low (z P 1) and high (z k 3) redshifts.
The high-z, faint-end slope is important in determining the early
formation history of BHs, and especially their contribution to
reionization, as well as possible connections between quasars
and, e.g., the low-luminosity Seyfert galaxies seen at z � 0.
Without a physical model of quasar evolution, attempts to rec-

oncile observations of evolution in the faint-end QLF slope and
BH populations (e.g., Merloni 2004) have generally fitted the
QLF and BHmass population to somewhat arbitrary distributions
of lifetimes/duty cycles and accretion rates as a function of red-
shift. Even so, this phenomenological approach has elucidated
the antihierarchical nature of BH growth, with smaller mass
BHs formed at lower redshift as an implication of this evolution
in the QLF. Similarly, Cattaneo (2001) fitted these distributions
with different forms for the quasar light curve, suggesting that
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the quasar lifetimemust increase at lower luminosities (following,
e.g., a power-law decay in the quasar light curve) to reproduce
the faint-end QLF if the quasar host galaxy mass function de-
creases at lowmasses, as suggested by observations (e.g., Bahcall
et al. 1997; Hamilton et al. 2002). With this argument, he con-
cluded that faint quasars are mostly fading massive BHs accret-
ing at low rates, rather than low-mass BHs accreting close to the
Eddington limit. But an actual prediction of the faint-end slope
requires a more detailed model for both quasar lifetimes and the
QLF.

Recently, BH growth and feedback have been incorporated
into numerical simulations of galaxy mergers (Springel et al.
2005a, 2005b). In these simulations, gravitational torques drive
inflows of gas into the nuclei of merging galaxies (e.g., Barnes
& Hernquist 1991, 1996), triggering starbursts (e.g., Mihos &
Hernquist 1996) and feeding the growth of central supermassive
BHs (Di Matteo et al. 2005). As the BHs accrete, some of the
radiated energy couples to the surrounding gas, and the growth
eventually stalls when this feedback energy is sufficient to unbind
the reservoir of gas. These results connect galaxy evolution,
the formation of supermassive BHs, and the self-regulated na-
ture of quasar activity, and they provide quantitative predictions
that agree well with observations of, e.g., the MBH-� relation
(Di Matteo et al. 2005; Robertson et al. 2006), quasar lifetimes
(Hopkins et al. 2005a, 2005d), and the QLF in various wave
bands (Hopkins et al. 2005b, 2005c, 2006b). These simulations
provide a self-consistent description of the light curve of quasar
activity and the implied quasar ‘‘lifetime’’—i.e., the duration of
time that a quasar spends at a given luminosity—and its depen-
dence on the properties of the merging galaxies.

In the simulations, the quasar lifetime depends on both the
instantaneous and peak luminosities of a given quasar, such that
the lifetime is longer at lower luminosities; i.e., a given quasar
spends more time (and is more likely to be observed) at a lumi-
nosity well below its peak luminosity. This differs from previous
models, which generally assume that quasars radiate at a fixed
luminosity for some characteristic lifetime or adopt idealized
exponential light curves, but it is suggested by both recent ob-
servations of quasar clustering (Adelberger & Steidel 2005; Lidz
et al. 2006) and comparison of semianalytical (e.g., Granato et al.
2004) and empirical (e.g., Cattaneo & Bernardi 2003) models to
the observed QLF.

The complex character of quasar lifetimes in our picture mo-
tivates a new interpretation of the QLF in which the bright end
consists of quasars radiating near their peak luminosities, while
the faint end consists mainly of quasars evolving toward or
declining from peak activity. The ‘‘break’’ in the QLF corre-
sponds directly to the maximum in the intrinsic distribution of
peak luminosities, which falls off at both brighter and fainter
luminosities. The faint-end slope of the QLF is then determined
by the faint-end slope of the luminosity-dependent quasar
lifetime (i.e., the differential time the quasar spends in any given
luminosity interval) for quasars with peak luminosity near the
observed break. In other words, the number of quasars in near-
peak phases of evolution needed to account for the observed
bright end of the QLF is already sufficient to mostly account for
the observed faint-end population, as any given quasar is much
more likely to be observed at luminosities well below its peak,
and thus the probability of seeing such brighter sources at these
lower luminosities determines the shape of the faint-end QLF.

This model of the quasar lifetime and its implications for the
QLF thus provide a physical interpretation for the location of
the break luminosity and the faint-end slope of the QLF. Further-
more, Hopkins et al. (2006a, 2006b) showed that this description

reproduceswellmany quasar and galaxy observables that are diffi-
cult to account for in more idealized modeling, including differ-
ences in the QLF in different bands and redshifts, Eddington ratio
and columndensity distributions, theX-ray background spectrum,
and relic red/elliptical galaxy population colors and distributions.

In this paper, we use our model of quasar lifetimes and light
curves to study the faint-end QLF slope and its redshift evolution.
We are able to reproduce the observed evolution in the slope and
corresponding LDDE based on our simulations, as a unique con-
sequence of our interpretation of the QLF and without the need
to invoke evolution in the shape of, e.g., the quasar host or gal-
axy mass distribution. We further develop a simple analytical
model of quasar feedback that gives similar predictions and dem-
onstrates the scale-dependent physics that drive the evolution of
the faint-end slope.

Throughout, we define the bolometric luminosity L ¼ Lbol.
We denote the faint-end slope � by � ¼ d�/d log (L) / L��,
where � is the differential bolometric QLF, and we are con-
sidering luminosities LTL�, where L� is the break in the QLF.
Note that d�/dL / L���1, as, e.g., in the standard ‘‘double
power law’’ form of the QLF. The sign choice (i.e., +�) fol-
lows conventional usage. We adopt a �M ¼ 0:3, �� ¼ 0:7,
H0 ¼ 70 km s�1 Mpc�1 cosmology.

2. THE FAINT-END SLOPE AS A FUNCTION
OF PEAK LUMINOSITY

If quasars spend a differential time dtQ/d log (L) per logarithmic
interval in luminosity, then the observedQLF is (at timeswhen the
quasar lifetime is short compared to the Hubble time)

�(L)¼
Z

dtQ

d log (L)
ṅ(Lpeak) d log Lpeak; ð1Þ

where ṅ(Lpeak) is the birthrate of quasars of a given peak lumi-
nosity Lpeak (per unit time per unit comoving volume per loga-
rithmic interval in Lpeak). In Hopkins et al. (2005b, 2006b), we
used this and our model of quasar lifetimes to determine
ṅ(Lpeak) and found that it does not have the same shape as the
observed QLF, as is expected for idealized models in which a
quasar turns ‘‘on/off ’’ as a step function or follows a pure ex-
ponential light curve. Instead, ṅ(Lpeak) traces the shape of the
observed QLF at the bright end (above L�), peaks at Lpeak � L�,
then falls off below this. Therefore, the slope of the faint-end
QLF, �, is dominated by the faint-end slope of dtQ /d log (L) for
quasars with Lpeak � L�; i.e., � is determined by the integrated
probability of seeing the population of brighter Lpeak sources,
dominated by sources with Lpeak � L�, at lower L.

Given this interpretation of the QLF, � should be calculable
from the LTLpeak slope of dtQ /d log (L) (since the probability
of seeing such a source at L is proportional to its lifetime at L)
for sources with Lpeak � L�. If the quasar lifetime is a function
of L and Lpeak only (i.e., not affected systematically by other
host galaxy properties), then � can be predicted by knowing
L�(z), which directly gives the peak in the ṅ(Lpeak) distribution
as a function of redshift. There may be some curvature intro-
duced because of the nonzero contributions to the faint end of
the QLF from sources with Lpeak 6¼ L�, but as such corrections
depend on the exact shape of ṅ(Lpeak) and are small, as ṅ(Lpeak)
drops off rapidly (as the bright-end QLF does) away from
L ¼ L�, we ignore them here.

2.1. The Quasar Lifetime from Simulations

We first consider the LTLpeak behavior of the quasar life-
time determined from hydrodynamic simulations. We employ
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several hundred simulations, described in detail in Robertson
et al. (2006) and Hopkins et al. (2006b), performed with the
new parallel TreeSPH code GADGET-2 (Springel 2005), which
uses an entropy-conserving formulation of smoothed particle hy-
drodynamics (SPH; Springel & Hernquist 2002) and includes
a subresolution, multiphase model of the dense interstellar me-
dium (ISM) to describe star formation (Springel & Hernquist
2003). Themultiphase gas is pressurized by feedback from super-
novae, allowing us to stably evolve even pure gas disks (see,
e.g., Springel et al. 2005b; Robertson et al. 2004; Springel &
Hernquist 2005).We generate two stable, isolated disk galaxies,
eachwith an extended darkmatter halo having a Hernquist (1990)
profile, an exponential disk, and a bulge. The galaxies are then
set to collide from a zero energy orbit.

BHs are represented by ‘‘sink’’ particles that accrete gas, with
an accretion rate Ṁ estimated using a Bondi-Hoyle-Lyttleton
parameterization Ṁ ¼ 4��(GMBH)

2�(v2BH þ c2s )
�3/2 with an

upper limit equal to the Eddington rate, where the local gas
density �, sound speed cs, and bulk velocity vBH are determined
from the local gas properties with the SPH formalism (Springel
et al. 2005b). We deliberately set � to a high (constant) value of
� ¼ 100 in order to roughly translate the coarse-averaged mean
density of the ISM obtained in our subresolution model to the
expected higher densities close in to the BH. Otherwise, the ini-
tial Bondi growth phase of the small seed BH mass we adopted
(Mseed ¼ 105 M�) would be artificially long, while with our
choice the BH can grow to sizes where feedback can become
important within �200–300 Myr. For a different choice of �, a
timing offset in the quasar light curve can occur, but our results
are insensitive to this and essentially degenerate in the product
�Mseed, provided the seed mass is much smaller than the final
BHmass (see, e.g., Fig. 6 of Hopkins et al. [2006b], which shows
that the simulation quasar lifetimes are independent of seed mass
and therefore, equivalently, �). The bolometric luminosity of the
BH is then L ¼ �r Ṁc2, where � ¼ 0:1 is the radiative efficiency.
We allow a small fraction (typically �5%) of L to couple dy-
namically to the gas as thermal energy. This fraction is a free
parameter, determined in Di Matteo et al. (2005) by fitting the
MBH-� relation. For a detailed description of the accretion pre-
scription, see Springel et al. (2005b), and for a discussion of the
effects of changing different feedback mechanisms, see Hopkins
et al. (2006b). For our purposes, changing the normalization of
Ṁ or �r will only alter the relation between final BHmass (peak
luminosity) and galaxy mass, not the scaling (e.g., power-law
slope) of the quasar lifetime relevant for our predictions. As
discussed in x 2.2, any feedback mechanism that involves the
injection of large amounts of energy in the central regions of the
merger in a short time should result in a similar scaling.

In our simulations, we vary the masses and virial velocities of
the initial galaxies, halo concentrations, ISM equation of state,
parameters describing feedback from supernovae and BH growth,
presence or absence of bulges in the host galaxies, initial BH
seed masses, numerical resolution (typically�2 ; 105 particles
per galaxy, but we consider up to 128 times as many), disk in-
clinations and pericenter separation of the initial orbits, and
initial disk gas fractions. We further scale all galaxy properties
appropriately to resemble galaxies at redshifts z ¼ 0 6 for a
large subset of our simulations, as described in Robertson et al.
(2006). Our simulations produce quasars with L; Lpeak from�108

to 1015 L�, spanning the entire observed range at all redshifts.
Hopkins et al. (2006b) used the simulations to determine the qua-
sar lifetime dtQ/d log (L) and found that dtQ /d log (L) shows no
systematic dependence and little scatter when the parameters
are varied, when quantified as a function of L and Lpeak. The

predictions in Hopkins et al. (2006b) did not depend sensitively
on the (much more uncertain) faint-end slope, and therefore the
authors did not consider a detailed fit to the faint-end behavior
of dtQ /d log (L), but rather parameterized the lifetime as an ex-
ponential, dtQ /d log (L) ¼ t0 exp (�L/L0), where L0 � 0:2Lpeak
and t0 depends weakly on Lpeak, which provides an acceptable fit
to the simulation results for Lk10�2 to 10�1Lpeak. Hopkins et al.
(2005a) considered the LTLpeak behavior of dtQ /d log (L) in
more detail and found that the lifetime more closely resembles
a power law at these L, with a power-law slope � as a function
of Lpeak. The combination of these results suggests that the qua-
sar lifetime is best parameterized as a Schechter function with
slope �, normalization t0(Lpeak), and turnover L0(Lpeak), for pur-
poses where the faint-end slope is important; i.e. (to clarify our
conventions),

dtQ

d log (L)
¼ t0

L

L0

� ���

exp � L

L0

� �
: ð2Þ

For a QLF with break L�(z), which implies an ṅ(Lpeak) distri-
bution peaked at Lpeak � L�, the observed faint-end QLF slope
is then � � �(Lpeak ¼ L�).
For each simulation, we fitted a Schechter function to the

quasar lifetime as a function of luminosity and quantify � as a
function of Lpeak. These faint-end slopes are subject to several
uncertainties in our modeling. One is the finite time duration of
our simulations, which may flatten dtQ/d log (L) at low L, as the
BH cannot completely relax in the time interval simulated. A
complementary means to determine � is then to consider the
rate at which L falls off after L ¼ Lpeak at time t ¼ tp ¼ t(Lpeak).
We take L(t)/Lpeak to be a function of t � tp and find that it falls
off in approximate power-law fashion for all our simulations,

L(t) / (t � tp)
��: ð3Þ

This implies

dtQ

d log (L)
/ L�1=�; ð4Þ

i.e., � ¼ � ¼ 1/�. Although these fits are not affected by the
finite time duration of the simulations, they do not include the
time spent at different L before L ¼ Lpeak and thus are entirely
accurate only at t3 tp or for a symmetric rise/fall in L and may
therefore overestimate the steepness of �, so we consider both
fitting methods below.
The uncertainties in this modeling at low luminosities are

discussed in greater detail by Hopkins et al. (2005b, 2006b).
Hopkins et al. (2005a) examined fits to the power-law behavior
of dtQ /d log (L) at LTLpeak, considering both the entire sim-
ulation and only times after the merger [similar to our fits for the
decay ofL(t)]. Furthermore, Hopkins et al. (2005b) considered the
application of an advection-dominated accretion flow (ADAF)-
type correction for radiatively inefficient accretion flows at low
accretion rates (following, e.g., Narayan & Yi 1995) to account
for more detailed variation in the radiative efficiency and spec-
trum as a function of accretion rate. We apply this correction in
our fitting as well. Although these previous works considered a
much smaller subset of the simulations that we fitted, they found
similar results, and we compare their fits and ours below to dem-
onstrate both the general agreement and range of uncertainty
introduced by these different determinations of �.
Figure 1 shows the results of this fitting for several repre-

sentative simulations.We show the quasar light curve after peak
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luminosity (left), L(t)/Lpeak as a function of t � tp, for simula-
tionswithLpeak /L� ¼ 3:1 ; 1012 (circles), 7:3 ; 1012 (diamonds),
1:7 ; 1013 (squares), and 1:4 ; 1014 (crosses), with the best-fit
power-law slope � shown (solid line). The implied faint-end
QLF slope 1/� is shown for each, and we compare to the slope
� determined from fitting to the quasar lifetime as a function of
L [right, same notation; for clarity, the integrated lifetime above
a given L, tQ(L

0 > L), is shown] to the best-fit Schechter function
(solid lines) with slope �. From the resulting faint-end slope �
for each Lpeak and each fitting method, there is a clear decrease
of � with Lpeak.

We fitted for � (Lpeak) in each of all our simulations with both
methods described above. We found that � decreases with Lpeak
in a manner similar to that in Figure 1. Given the scatter, the
resulting slopes �(Lpeak) are well fitted by a loglinear relation,

�(Lpeak)¼ �12 þ
d�

d log (Lpeak)
log (Lpeak=L�)� 12
� �

; ð5Þ

where �12 � 0:5 and d� /d log (Lpeak) � �0:3. This is illustrated
in Figure 2, where the value of � determined from fitting
Schechter functions to the quasar lifetime is plotted as a function
of the peak luminosity of those simulations (circles with error
bars), with the best-fit loglinear relation (line). The results for
both fitting methods are summarized in Table 1. We also show
the results of Hopkins et al. (2005a, 2005b), described previously.
As discussed in Hopkins et al. (2006b), we find no systematic
dependence on redshift, host galaxy properties, or other varied
parameters in the simulations.

In the simulations, gas is expelled when feedback from ac-
cretion rapidly unbinds it in the gravitational potential of the

remnant. Around more massive BHs (i.e., higher Lpeak quasars),
this ‘‘blowout’’ event is progressively more violent; the higher
luminosity of the quasar heats the gas more rapidly and to higher
temperatures, resulting in more efficient, more rapid expulsion
of the gas (see also Cox et al. [2005], who showed that the gas
mass fraction expelled increases with BH mass).

2.2. A Simple Model of Quasar Feedback

To understand this trend better, we construct an analytical de-
scription of quasar blowout. This model reproduces the late-time
(post–peak activity) quasar evolution, although the early phases

Fig. 1.—Left: Bolometric luminosity over peak luminosity (L/Lpeak) as a function of time [tf ¼ t � t(Lpeak)], with the best-fit power law of slope �, for representative
mergers with peak luminosities Lpeak /L� ¼ 3:1 ; 1012 (circles), 7:3 ; 1012 (diamonds), 1:7 ; 1013 (squares), and 1:4 ; 1014 (crosses). Right: Quasar lifetime (integrated
time above a given luminosity) for the same simulations, with the best-fit Schechter functions (lines) of slope �. The predicted faint-end QLF slopes � ¼ � ¼ 1/� are
also shown. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 2.—Faint-end QLF/quasar lifetime slope � ¼ � determined from fits to
the quasar lifetime as a function of peak luminosity Lpeak in our simulations. The
best-fit loglinear relation (see Table 1) is shown (solid line).
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(which contribute significantly to the lifetime at low-L) are de-
termined by the complex merger process and are more difficult to
describe analytically. We note that this problem has been con-
sidered in previous works (e.g., Barkana& Loeb 2001; Furlanetto
& Loeb 2001; Scannapieco & Oh 2004), but these authors have
considered the large-scale structure of the blowout and impact of
these outflows on the outer regions of halos and clusters, the
surrounding IGM, and reionization; we are instead interested in
the small-scale, rapid expulsion of gas from the innermost BH-
dominated regions of the galaxy. Interestingly, these other works
suggest that feedback on large scales is critical in regulating the
slope of the bright end of the QLF, which highlights the impor-
tance of quasar feedback over the entire QLF.

In our simulations (Di Matteo et al. 2005) and most analytical
models of the MBH-� relation (e.g., Silk & Rees 1998; Fabian
1999; Ciotti & Ostriker 2001; Wyithe & Loeb 2002), feedback
energy fromBH growth heats the surrounding gas (or momentum
from coupling of the radiation field to dust drives a wind). In early
merger stages, this is a small luminosity, and the gas is able to cool
efficiently and reradiate this energy. However, in peak merger
stages, the BH growth is exponential (Eddington limited), even-
tually reaching a critical threshold where the surrounding gas can
no longer cool efficiently in a local dynamical time. Consequently,
the gas is rapidly expelled, and what remains is heated to the virial
temperature, preventing it from being easily accreted, shutting
down further accretion. The threshold for this behavior is deter-
mined by the local gas properties and gravitational potential of the
host, but essentially all models of feedback-driven self-regulation
(owing to exceeding a critical energy input in a dynamical time)
predict a relation between final BH mass and virial velocity or
spheroid velocity dispersion of roughlyMBH / V 5

vir or MBH / �4,
respectively.

Because the gas in the inner regions is able to cool efficiently
during early stages and is then suddenly heated and driven out in a
short time (in our simulations, this occurs over a timescale�107 yr
in massive mergers) by an exponentially increasing luminosity, it
is reasonable to model the outflow as a Sedov-Taylor–type blast
wave (Sedov 1946, 1959; Taylor 1950), with energy injection
from a point explosion with energyE ¼ 	L LEdd(M

f
BH) tdyn (	L de-

scribes the efficiency of feedback coupling, �5% in our simula-
tions and similar inmost analytical models of theMBH-� relation).
A detailed examination of this problem (e.g., Furlanetto & Loeb
2001) shows that this is a reasonable approximation to a full
solution including radiative cooling, the pressure of the external
medium, magnetic fields, and further effects.

Modeling the accretion with a Bondi-Hoyle (Bondi & Hoyle
1944; Bondi 1952) parameterization (as we are considering times

when the accretion rate falls below the Eddington limit), considered
at the radius of influence of the BH, RBH ¼ GMBH�

�2 (� being
the spheroid velocity dispersion), gives L / M 2

BH�(RBH)c
�3
s (RBH),

where cs is the isothermal sound speed (in our simulations, the
effective sound speed of the multiphase ISM is used; see Springel
& Hernquist 2003). As the accretion rate is rapidly falling from
its peak during this stage, we can reasonably approximateMBH ¼
M f

BH ¼ constant, and thus RBH ¼ constant, and we only need to
calculate the time evolution of the gas density � and sound speed
cs at fixed r ¼ RBH to determine the time evolution of luminosity
L in this stage. We are only interested in the scaling of L(t) / t��

(where t is the time since the peak quasar luminosity or beginning
of this blowout stage), so we could theoretically pick any fixed
radius to evaluate these quantities, and thus the choice of the
radius of influence of the BH as opposed to the transonic radius,
for example, is not significant.
We first consider the simplest, scale-invariant solution to this

problem, in which we neglect the gravitational field of the BH
and halo, following Ostriker &McKee (1988) in our derivation.
We also ignore the consequences of radiation as noted above,
but this should not be a large effect in the very inner regions of
the blast wave expansion in which we are interested (see also
Murray et al. [2005], who considered in detail the coupling of
BH radiation to dust and gas opacity and showed that it pro-
duces a similar MBH-� relation and blowout behavior).
As we need to describe �(r; t) at small radii (relative to the

size of the galaxy and the final radius of the blast wave), we
account for density gradients by adopting a one-power approxi-
mation (OPA) � / r�k� for the ambient (preshocked) medium.
In principle, there could be departures from spherical symmetry
in the surrounding gas or the energy input from the quasar, but
the complex gas flows and short dynamical times in the central
regions of the merger should isotropize the blast wave.
For a self-similar OPA Sedov-Taylor solution, the shock ra-

dius Rs expands as Rs / t	 with the postshock (internal) density
profile � ¼ �1(r/Rs)

l� , where �1/ � (Rs) is the density just inside
the shock front. At fixed r ¼ RBH, we then have

�(RBH; t) / t�(k�þl�)	: ð6Þ

For a self-similar, energy-conserving blast wave, 	 ¼ 2/(5� k�),
and mass conservation (coupled with the strong shock jump
conditions) requires l� ¼ 6� (�EOSþ1)k�

� �
/(�EOS � 1). Here,

we denote the ratio of specific heats as �EOS to distinguish it
from the faint-end QLF slope �. We obtain

(k� þ l�)	 ¼
4

�EOS � 1

3� k�

5� k�

� �
: ð7Þ

The pressure P ¼ � c2s also follows a power-law scaling (with
internal power-law slope lP and external slope kP), but with a
more complicated result for lP,

lP ¼
3� 2

EOSþ 20� EOSþ1� (�EOSþ1)(3�EOSþ1)k�

2(� 2
EOS � 1)

: ð8Þ

Thus, the final scaling of L(t) / � c�3
s / �5/2P�3/2 in this phase

is given by L / t��, with

� ¼ 10

�EOS � 1

3� k�

5� k�

� �
� 3

kP þ lP

5� k�

� �
: ð9Þ

This formalism has an exact, self-consistent solution corre-
sponding to, e.g., a blast wave in an isothermal sphere or wind,

TABLE 1

Faint-End Slope �(Lpeak)

Determinationa �12 ¼ �(Lpeak ¼ 1012 L�) d�=d log (Lpeak)

H05a, all times.................. 0.95 � 0.25 �0.32 � 0.11

H05a, t k t(Lpeak).............. 0.76 � 0.20 �0.30 � 0.07

H05b, all times ................. 0.94 � 0.20 �0.33 � 0.08

H05b, t k t(Lpeak) ............. 0.50 � 0.15 �0.50 � 0.15

Schechter fitting ................ 0.44 � 0.02 �0.21 � 0.02

L(t) / t� decay ................. 0.69 � 0.05 �0.30 � 0.04

Cumulative best fit............ 0.55 � 0.12 �0.25 � 0.04

Blast wave model ............. 0.35 � 0.15 �0.22 � 0.06

a H05a and H05b (Hopkins et al. 2005a and 2005b, respectively) use a small
subset of the simulations here, with H05b applying an ADAF-type correction at
low accretion rates.
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which should be a reasonable approximation to our simulations,
with k� ¼ 2 and �EOS ¼ 5/3 (yielding l� ¼ 1, lP ¼ 3). This solu-
tion gives � ¼ 2, implying a faint-end QLF slope � ¼ 1/2. But
the above equations should be a good approximation (Ostriker &
McKee 1988) for a range of �EOS � 1 5/3 (corresponding to
variability in the equation of state owing to the density and
temperature dependence of star formation and radiative cooling)
and k� � 1 3 (corresponding to, e.g., the inner regions of a
Hernquist [1990] spheroid profile with a central point mass). In
fact, it is still exact for the equilibrium structure of a filled blast
wave with the most natural v / r velocity structure, which yields

k� ¼ k�; crit ¼
7� �EOS

�EOSþ1
; ð10Þ

� ¼ 1

3�EOS � 1
20� 9

2
(þ1)

� �
: ð11Þ

For the reasonable range of equations of state 1 � �EOS � 5/3,
this results in 2 � � � 11/2; i.e., 0:2 P � P 0:5, in good
agreement with the range of � observed and determined in our
simulations.

The scale-invariant Sedov-Taylor solution then accounts for
the typical values of � implied by our simulations and the rapid
falloff of L(t) during the blowout phase of quasar evolution.
However, this does not immediately describe the dependence of
� on Lpeak. This dependence is not contained, as might be pre-
sumed from the above derivation, in �EOS, as essentially all our
simulations have �EOS in the entire range �1–5/3 in their central
regions, and we specifically find no significant systematic de-
pendence of � or the quasar lifetime on the ISM gas equation of
state (see also Hopkins et al. 2006b; their Figs. 4 and 5). Rather,
the dependence of � on Lpeak is driven, naturally, by the fact that
this problem is not precisely scale-invariant or self-similar.

To illustrate the dependence on Lpeak, consider a small
change in the initial logarithmic slope of the density in the
central regions, k� ¼ k

0
� þ 
k�. For simplicity we expand about

the k0� ¼ 2, �EOS ¼ 5/3 exact solution, but our result is similar
regardless of the choice of these parameters (within the above
ranges). This gives

� ¼ 2� 13
k�=3; ð12Þ

� ¼ 1

2
1þ 13

6

k�

� �
; ð13Þ

i.e., d�/dk� ¼ 13/12. Thus, if the initial logarithmic density
gradient in the inner regions is steeper, i.e., has a larger k�
(�0 / r�k� ), then � is actually shallower. In detail, two com-
peting effects occur. First, the density falls off more rapidly,
allowing the blast wave to propagate more rapidly as it builds
up more of its mass earlier and encounters less mass farther
from the central regions, but this effect is relatively weak; i.e.,
	 ! 	 þ 2
k� /9.

The dominant effect is the alteration of the postshock density
profile. Because the density gradient is steeper, the propagation
of the blast wave builds up a less pronounced ‘‘snowplow’’; i.e.,
the mass buildup at the front is less pronounced, implying a flatter
postshock density gradient by mass conservation (recall that �
increases with radius within the shocked region). Essentially,
with the gas mass concentrated in the center, the shocked density
profile evolves less dramatically, because less mass is added and
the early blast is able to effectively redistribute more of the ulti-
mately acquired mass. Given that less massive halos typically
have higher concentrations, we can estimate the magnitude of this

effect on the evolution of � with Lpeak. Estimating dk� /dc � 0:1
(where c is the concentration index and we estimate a variation
�10 in c changes the inner logarithmic slope at fixed r by�1), we
can determine dc/d log (Lpeak), using Lpeak / MBH / Mvir (e.g.,
Marconi & Hunt 2003) and c � 9(Mvir/10

13 M�)
�0:13 (Bullock

et al. 2001), and we find

d�

d log (Lpeak)
� �0:2

Lpeak

1012 L�

� ��0:13

; ð14Þ

in reasonable agreement with our measured dependence of
�(Lpeak) in our simulations and only weakly dependent on Lpeak.
This actually predicts that the magnitude of d�=d log Lpeak
should be larger at low Lpeak (��0.28 at Lpeak � 1011 L�) and
smaller at high Lpeak (��0.16 at Lpeak � 1013 L�); this may oc-
cur (see Fig. 2) but is most likely a coincidence, as our modeling
of the blowout in a scale-invariant fashion and adopting a simple
concentration parameter in such a chaotic period in the evolution
of the merger are rough approximations at best.

Incorporating theweak, but nonnegligible, effects of the change
in concentration with mass breaks the scale invariance of the stan-
dard Sedov-Taylor solution, as lower mass systems have steeper
inner density profiles, which flatten the evolution of the accretion
rate in time and produce steeper �. Of course, many other effects
will break the self-similarity of this problem as well—a realistic
gravitational potential will imply a characteristic scale length, and
the physics of radiative cooling will likewise define fundamental
physical scales. Even the scale-invariant solution incorporating
radiative energy loss depends on the logarithmic slope of the
cooling function versus density and temperature, but the values
of these slopes themselves depend on the characteristic tem-
perature of the blast waves and change quite significantly over
the mass scale of our simulations (heating to virial temperatures
c2s � �2 implies temperatures T � 105 107 K over the mass
range shown in, e.g., Fig. 2). Although we do not model the
chaotic interactions and evolving BH mass of the early merger
stages, the more violent torquing associated with more massive
mergers can explain the more rapid, peaked BH evolution over
a larger range in BHmass, even in early merger stages, generating
a flatter quasar lifetime that spans a wider range in luminosity.

Given these various scalings, it is possible that our inferred
trend of �(Lpeak) could change or even reverse at low Lpeak , as in
models of stellar winds in dwarf elliptical galaxies for which
lower mass objects ( lowerMBH) are more easily unbound (e.g.,
Mac Low & Ferrara [1999], although this is more concerned
with the large-scale binding of gas, as opposed to evolution in
the inner accretion regions of interest in our modeling), but the
masses/ luminosities where this is likely to become important
(Mgal P 108 M�, i.e., Lpeak P109 L�) are well below the break
luminosity at any redshift and thus will not affect our results.
Likewise, this could occur at large radius r3a in any Lpeak
system, but again we are not attempting to model the large-scale
blast wave but only the evolution relevant to the inner regions.

2.3. Parameterizations of the Quasar Light Curve

The fits and analytical modeling above imply a simple pre-
scription for the quasar light curve as applied in semianalytical
and other approaches that cannot resolve the detailed time history
of individual objects. Generally, the quasar light curve is char-
acterized by two ‘‘modes’’: a ‘‘growing mode,’’ characterized
by a high-Eddington ratio, rapid BH growth, and a ‘‘decaying
mode,’’ characterized by the nearly self-similar power-law
falloff of the quasar luminosity as gas is heated or expelled. The
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growing mode can be parameterized by exponential growth at a
constant Eddington ratio ṁ, with an exponential light curve
L ¼ L t ¼ 0ð Þ exp (t/tQ), where tQ ¼ tS/ṁ is the e-folding time
and tS ¼ 4:2 ; 107 yr is the Salpeter time. Such BH growth is
expected in essentially all models of quasar activity in which a
plentiful fuel supply enables high accretion rates.

Once the quasar reaches a critical luminosity or mass (e.g., in
accord with the M -� relation), it begins to heat and expel the
surrounding gas, and the accretion rate rapidly falls off: i.e., the
light curve can be roughly parameterized as entering the decay
mode described above. Our fits to the quasar light curves after
blowout and analytical modeling of this phase of evolution as a
driven blast wave suggest a power-law decline in the quasar
light curve, which can be approximated as

L(t)=Lpeak � ṁ ¼ 1

1þ (t=tQ)
�
: ð15Þ

Here, Lpeak is the peak bolometric luminosity, just as the quasar
enters the blowout phase, and L(t) is the subsequent bolometric
luminosity at time t after the peak (L ¼ Lpeak at t ¼ 0). It is a
reasonable approximation to use this to describe both the light
curve and accretion rate with L(t)/Lpeak � ṁ, because not much
total BH mass is accumulated in this mode. The equation given
assumes ṁ � 1 at peak luminosity, as is true in most of our
simulations, but this can be renormalized to any assumed ṁ in
the constant Eddington ratio growing mode. The functional
form of this equation is chosen such that it joins continuously
with the constant Eddington ratio exponential light curve at
t ¼ 0 (L ¼ Lpeak, i.e., at the beginning of the blowout stage) and
behaves as our fitted power laws at times large compared to the
duration of the blowout.

From our analysis, we determine the power-law decay of the
quasar light curve at late times, L(t) / (t/tQ)

��. To lowest order, a
canonical value of � � 2 is indicated by both our fits to the
simulation light curves and the self-similar Sedov-Taylor solution
for a quasar-driven blast wave and Bondi accretion. But we have
also explicitly determined � as a function of peak luminosity,
which we inverted to determine �(Lpeak) above. Our fits to the
simulations yield

� � �12 þ
d�

d log Lpeak
log10(Lpeak=10

12 L�)
� �

; ð16Þ

where �12 � 1:7 � 0:3 and d�/d log Lpeak � 0:7 � 0:1. There
is some ambiguity in � depending on whether we are fitting to a
given blowout or a whole quasar lifetime that includes the
‘‘growing’’ phases (giving shallower effective � ), as can be
seen directly by the fact that different values of the faint-end
quasar lifetime slope � are suggested by our fitting of the quasar
light curves and our fitting of the quasar lifetime to a Schechter
function. However, for most theoretical models that require a
time-dependent quasar light curve, the parameterization desired
is that of an individual blowout, and so these fits are used to
determine equation (16) above. Furthermore, the ‘‘effective’’ �
from fitting to the entire quasar lifetime is 1/�, which can be
directly determined from the values of �(Lpeak) given in Table 1.
There is a significant amount of scatter around this mean rela-
tion in � (in contrast to the quite small scatter in �) at a given
Lpeak, �� � 1, which can easily be incorporated in theoretical
models of quasar populations if desired. Clearly, this formula
for�(Lpeak) cannot be extrapolated to arbitrary luminosities, as by
definition � > 0 always. In fact, most of the simulations that are
well fitted by a low � are so because they never reach a high

Eddington ratio and cause a significant blowout event, but rather
they quiescently accrete for �Gyr at moderate Eddington ratios
(�0:1LEdd). In either case, this is only important for Lpeak P
a few times 109 L�, which implies BH masses P105 M�, well
below the regimes where the processes we have modeled should
be important (and below the limits to which our simulation light
curves can be reliably estimated).
There is, unfortunately, significant ambiguity in the appro-

priate value of tQ to use in this parameterization of the quasar
light curve. If we use equation (16) to estimate the cumulative
quasar lifetime at low luminosities (LTLpeak, low enough so
that the contribution from the growing mode is negligible) and
compare this with the Schechter function fits or direct calcu-
lation of the quasar lifetime from our simulations at these lu-
minosities, there is a well-defined approximately constant
tQ � tS ¼ 4:2 ; 107 yr (or, if we allow tQ to vary with � and
demand that this match to the low-luminosity limit of the fitted
Schechter function with the same Lpeak, tQ � �tS � 108 yr).
However, there are several minor blowout events in our simu-
lations and usually at least two major ones (one at first passage,
the other after the final merger). The tQ that we have constrained
by fitting the integrated quasar lifetime is approximately the
sum of these contributions. If we instead fit to tQ in an individual
blowout, we obtain a significantly smaller value tQ � 107 yr
(as is also suggested by direct examination of Fig. 1). The
‘‘appropriate’’ value of tQ is then somewhat determined by the
ability of a given model to resolve separate starbursts triggered
by, e.g., passage of galaxies as opposed to the final merger. How-
ever, our simulations constrain the range of reasonable tQ to
�107–108 yr, a significantly narrower range than estimated
from observations (e.g., Martini 2004). More important, to first
order, tQ only controls the normalization of various predicted
quantities and should be easily calibrated in a given theoretical
model by comparison to, e.g., quasar number counts and the
normalization of the luminosity function. Even with these un-
certainties, the implied appropriate effective tQ for a given
model is an interesting constraint on, e.g., radiative efficiencies
of quasars (as the tQ we fitted scales with the e-folding time for
BH growth and hence the radiative efficiency) and coupling of
quasar feedback. For example, a shorter tQ, especially in a model
that is summing over several different blowout events, implies
more rapid expulsion of gas and more efficient coupling of qua-
sar energy or momentum to the surrounding gas in the blowout
phase.
The quasar light curve is, of course, muchmore complex than

we have modeled here. Not only are there several such growing,
blowout, and decaying modes in a given merger event, but also
each follows a light curve that is not trivial in detail, and our
mixed exponential and power-law light curves are not always a
good fit. Whenever possible, theoretical models should adopt
the most accurate approximations to the quasar light curve
available, attempting to resolve the detailed time history where
it is important (for example, in estimating the properties and
luminosity function of the faint quasar population). However,
in many cases this is not possible or feasible, and an analytical
approximation for the quasar light curve is necessary or conve-
nient. The above approximation provides a physically motivated
parameterization of growing and decaying modes of the quasar
light curve, which capture the dependence of the quasar lifetime
on both instantaneous and peak luminosities. This does not in-
clude the effects of obscuration, which are not important (at least
along most sight lines) in the late blowout stages, but can dra-
matically change the observed quasar light curve in various bands
near peak luminosity, especially before the blowout phase (e.g.,
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Hopkins et al. 2005a, 2006b). These effects can be estimated
from the parameterization of column density as a function of
instantaneous and peak luminosity in Hopkins et al. (2006b),
but these fits are only approximate and do not accurately describe
the blowout stage in which luminosity and column density both
vary rapidly.

3. DISCUSSION AND CONCLUSIONS

Luminosity-dependent quasar lifetimes, in which quasars
spend a longer time at lower L, imply a novel interpretation of
the QLF, in which the faint-end slope � is determined by the slope
of the quasar lifetime versus L. For quasars with Lpeak � L�, the
break in the observed QLF corresponds directly to the peak in
the distribution of quasar peak luminosities at any redshift. We
have determined � from both a large range of hydrodynamic
simulations (varying BH and host galaxy properties) and from
an analytical model of quasar feedback and theMBH-� relation,
and we find that it is a monotonic decreasing function of Lpeak
over the range of observed L�.

As the break luminosity L�(z) is estimated from observations
of the QLF, we use our modeling to predict � (z). Figure 3 shows
our result for � in the redshift interval z ¼ 0 4. Above
z � 2 3, the location of L� is uncertain, and we consider both
pure density evolution (L� ¼ constant or increasing, solid line)
and pure peak luminosity evolution (declining L�, dashed line)
at higher redshifts. The shaded region shows the range pre-
dicted by different fitting methods from Table 1, and lines show
the cumulative best fit. The form of L�(z) is taken from Hopkins
et al. (2006a, 2006b) but is based directly on fits to the observed
QLFs of Ueda et al. (2003), Richards et al. (2005), and Hasinger
et al. (2005). We compare this to observations in the hard X-ray
(Ueda et al. 2003, squares), soft X-ray (Hasinger et al. 2005,
circles), optical (Wolf et al. 2003, diamonds; Hunt et al. 2004,
star; Richards et al. 2005, crosses; Pei 1995, plus signs), and
radio (Sadler et al. 2002, asterisks; Cirasuolo et al. 2005, triangle).
We convert these to bolometric luminosities and refit or rescale
� with the bolometric corrections of Marconi et al. (2004),
which are also discussed in detail in Hopkins et al. (2005c,
2006b) and are similar to those in, e.g., Richards et al. (2005).
Although the uncertainties in the observed faint-end slope � are
large, we reproduce its value at all redshifts.

Figure 4 demonstrates how our prediction for the evolution
of � with redshift translates to a LDDE. In each panel, the
integrated number density� (per comoving volume) of quasars
in each of several luminosity intervals is plotted as a function of
redshift for z < 5. The top left panel shows � for intervals in
bolometric luminosity L. The effects traditionally fitted to LDDE
forms are clear: the density of larger L systems rises more rapidly
to a peak at higher redshift, then falls off more slowly. The dif-
ference in evolution between two luminosity intervals becomes
less dramatic with increasing L, as observed.

Using the bolometric conversions of Marconi et al. (2004)
described above, we also consider the observed density evolution
in other bands. The top right panel shows density evolution in
the B band in intervals of B-band magnitude. This modeling
demonstrates why observations in the optical have not found
the dramatic LDDE seen in X-ray samples, as the effects do not
become pronounced until low luminosities not usually probed
in B-band samples (as low as MB k�18), and the bolometric
corrections also slightly blur out the effect.

The bottom left panel shows our prediction for the hard X-ray,
in three intervals of L(2 10 keV) ¼ LHX. In order to directly
compare with the observations of Ueda et al. (2003), we adopt
centimeter gram second (cgs) units. For each interval, we show

the observed best-fit LDDE model with approximate 1 � errors
at each observed redshift (circles). Likewise, the bottom right
panel shows our prediction for the soft X-ray in intervals of
L(0:5 2 keV) ¼ LSX, where we compare to Hasinger et al.
(2005). Again, we show the observed best-fit LDDE model in
each observed z interval (circles), but we have multiplied the
QLF normalization of Hasinger et al. (2005) by a factor of 10 to
account for the mean obscured fraction (Hopkins et al. 2006b).
For all the above, we adopt pure density evolution for zk2. We
do not show the errors in our predictions, as these are actually
dominated by the uncertainty in the fitted ṅ(Lpeak) distribution,
not the uncertainty in �(Lpeak).

The results in Figure 4 show that our modeling of the quasar
lifetime reproduces the LDDE seen in X-ray samples. We may
slightly underpredict the low-luminosity, high-redshift number of
sources, but this is not surprising, as it is both where the obser-
vations are most uncertain and where, for a fixed low L, the break
luminosity becomes much larger than L, meaning that our mod-
eling is based on the quasar lifetime at Lwell below Lpeak, where
it is not well constrained. The ṅ(Lpeak) distribution that yields
the LDDE seen in Figure 4 has a simple functional form: a
lognormal, with constant narrow width and normalization, and
a center/peak directly related to the observed break L�(z) in the
QLF. The observed faint end is dominated by brighter peak
luminosity sources in dimmer stages of their evolution, and we
have demonstrated that, as a result, the observed LDDE is entirely
accounted for by the quasar lifetime as a function of peak lumi-
nosity, not by a change in the shape of the peak luminosity or BH
mass distribution.

A more detailed analysis of the faint-end slope should account
for several effects. Sample selection from reddening and extinction
can be significant, especially if the fraction of obscured objects
is a function of luminosity (e.g., Ueda et al. 2003; Hopkins et al.
2006b). Our results agree best with the hard X-ray data, where
attenuation is least important, but accurate estimates of � in
other wave bands should account for the joint evolution of ob-
scuration and luminosity. For example, although the observed
faint-end B-band QLF is generally too bright to be dominated
by obscured sources, extinction of moderately obscured quasars
from optical samples means that the B-band QLF will consist of

Fig. 3.—Predicted faint-end QLF slope � as a function of redshift z from the
fits in Table 1. The shaded area shows the �1 � range depending on fitting
method; lines show the mean prediction. Above z � 2, the solid line assumes
pure density evolution for the QLF, and the dashed line assumes pure peak
luminosity evolution. Observations are shown (converted to bolometric QLF
slopes) from different wavelengths as noted. [See the electronic edition of the
Journal for a color version of this figure.]

SLOPE EVOLUTION OF QSO LUMINOSITY FUNCTION 707No. 2, 2006



sources in or following the blowout phase (as opposed to objects
in earlier, growing phases), introducing corrections in the faint-
end slope, as discussed in x 2.3. To probe low accretion rates
LT10�2Lpeak, higher resolution simulations with more sophisti-
cated models for low-efficiency accretion (rates well below Bondi
or Eddington) and spectral modeling of the corresponding radia-
tively inefficient accretion flows are needed. Furthermore, the
contributions to the faint-end QLF from quasars with Lpeak 6¼ L�
(seeHopkins et al. 2006b)will introduce overall curvature into the
QLF (weakening the observed break, as observed by, e.g., Wolf
et al. [2003] andRichards et al. [2005]), whichmay aid in constrain-
ing the ṅ(Lpeak) distribution. Finally, at low enough L (typical of
low-ionization nuclear emission-line regions [LINERs] and low-
L Seyfert galaxies), we expect different, perhaps stochastic, fuel-
ing mechanisms to contribute, which we do not account for.

Nevertheless, our modeling provides physical motivation for
both the break luminosity L� and faint-end slope �. The break
L� corresponds to the peak in the birthrate of quasars with a
given peak luminosity (final BH mass), and � is determined (to
first order) by the differential lifetime of these objects, as they
spend substantial time at low LTLpeak. The observed � and its
evolution with redshift are a consequence of L� and its evolution.
At high z, L� is larger, implying that most quasars have higher
peak luminosity. From our simulations and analytical modeling
of quasar feedback, we expect higher Lpeak objects to both grow
and expel gas more rapidly, when they reach their final mass.
Thus, brighter Lpeak objects ‘‘die’’ more quickly, resulting in a
flatter � as they spend less relative time in any given L < Lpeak.

The observed values and evolution of � provide a direct test
of themodel of quasar lifetimes and theQLF proposed inHopkins

et al. (2005a, 2005b, 2005c, 2005d, 2006a, 2006b) and are not
predicted by models that invoke idealized on/off or pure ex-
ponential quasar light curves. We have also provided analytical
forms for the quasar light curve, for use in semianalytical and
other theoretical models that require the time-dependent quasar
light curve (not merely the statistical properties contained in the
quasar lifetime fits we have previously calculated) and that cannot
resolve the detailed time dependence of quasar activity in indi-
vidual mergers and interactions.
Our present results suggest that observations of � can be used

to constrain the differential quasar lifetime, even at LTLpeak,
as the faint-end QLF effectively traces the quasar lifetime of
Lpeak � L� sources. These observations will further limit models
of the distribution of quasar masses and host properties [through
ṅ(Lpeak)] and models of quasar fueling mechanisms and accretion
(through the form of the lifetime/slope at low-L). As is clear in
Figure 3, the QLF faint-end slope as a function of redshift is still
only poorly constrained by observations. Samples that cover the
relevant redshift range in a uniform rest-frame wavelength would
be particularly valuable, and measurements in different wave-
lengths can provide different constraints. For example, the faint-
end hard X-ray QLF is relatively less affected by obscuration
and so provides a better indicator of the bolometric luminosity
function, tracing, e.g., relatively low luminosity stages hidden by
circumnuclear starbursts. The optical QLF, on the other hand, is in
our modeling more closely associated with the peak quasar lumi-
nosity and blowout phase, meaning that the faint-end optical QLF
(measurement of which would require extending the complete-
ness of current high-redshift optical surveys by several magni-
tudes) can constrain the underlying peak luminosity distribution,

Fig. 4.—Predicted comoving number density in different luminosity intervals as a function of redshift. Top left: Bolometric, log (L/L�) ¼ 9 10 (solid line); 10–11
(dotted line); 11–12 (short-dashed line); 12–13 (dot-dashed line); 12–14 (triple-dot–dashed line); and 14–15 (long-dashed line). Top right: B band, �20 >
MB > �22:5 (solid line); �22:5 > MB > �25 (dotted line); �25 > MB > �27:5 (dashed line); and �27:5 > MB > �30 (dot-dashed line). Bottom left: Hard X-ray,
log (LHX/ergs s

�1) ¼ 41:5 43 (solid line); 43–44.5 (dotted line); and 44.5–46 (dashed line), compared to observations of Ueda et al. (2003, circles). Bottom right:
Soft X-ray, log (LSX /ergs s

�1) ¼ 42 43 (solid line); 43–44 (dotted line); 44–45 (dashed line); 45–46 (dot-dashed line); and >46 (triple-dot–dashed line), compared
to observations of Hasinger et al. (2005, circles, normalization adjusted for obscuration). [See the electronic edition of the Journal for a color version of this figure.]
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a particularly valuable quantity in itself because it determines
the QLF in all other bands and reflects much more directly the
underlying cosmological context, such as merger rates as a func-
tion of host galaxy mass. The combination of the two, yielding
a reliable bolometric faint-end luminosity function slope and
underlying peak luminosity distribution, would allow measure-
ments of �(z) to be translated reliably into �(Lpeak) and could be
deconvolved to construct an entirely observational determination
of the quasar lifetime as a function of luminosity.
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