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ABSTRACT

Most hydrodynamical simulations of galaxy cluster formation carried out to date have tried
to model the cosmic gas as an ideal, inviscid fluid, where only a small amount of (unwanted)
numerical viscosity is present, arising from practical limitations of the numerical method
employed, and with a strength that depends on numerical resolution. However, the physical
viscosity of the gas in hot galaxy clusters may in fact not be negligible, suggesting that a
self-consistent treatment that accounts for the internal gas friction would be more appropriate.
To allow such simulations using the smoothed particle hydrodynamics (SPH) method, we
derive a novel SPH formulation of the Navier–Stokes and general heat transfer equations
and implement them in the GADGET-2 code. We include both shear and bulk viscosity stress
tensors, as well as saturation criteria that limit viscous stress transport where appropriate. Our
scheme integrates consistently into the entropy and energy conserving formulation of SPH
employed by the code. Using a number of simple hydrodynamical test problems, e.g. the flow
of a viscous fluid through a pipe, we demonstrate the validity of our implementation. Adopting
Braginskii parametrization for the shear viscosity of hot gaseous plasmas, we then study the
influence of viscosity on the interplay between AGN-inflated bubbles and the surrounding
intracluster medium (ICM). We find that certain bubble properties like morphology, maximum
clustercentric radius reached or survival time depend quite sensitively on the assumed level
of viscosity. Interestingly, the sound waves launched into the ICM by the bubble injection
are damped by physical viscosity, establishing a non-local heating process. However, we find
that the associated heating is rather weak due to the overall small energy content of the sound
waves. Finally, we carry out cosmological simulations of galaxy cluster formation with a
viscous ICM. We find that the presence of physical viscosity induces new modes of entropy
generation, including a significant production of entropy in filamentary regions perpendicular
to the direction of the clusters encounter. Viscosity also modifies the dynamics of mergers
and the motion of substructures through the cluster atmosphere. Substructures are generally
more efficiently stripped of their gas, leading to prominent long gaseous tails behind infalling
massive haloes.

Key words: hydrodynamics – plasmas – methods: numerical – galaxies: clusters: general –
cosmology: theory.

1 I N T RO D U C T I O N

Studies of the intracluster medium (ICM) provide unique
information about the complex interplay of the physical processes
that determine the fate of baryons in galaxy groups and clusters.
In recent years, remarkable observational progress has in fact un-
veiled a completely revised picture of the ICM where a plethora of
non-gravitational physical processes are responsible for key obser-
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vational phenomena. Indeed, the list of recent discoveries in the field
of ICM physics is quite long, and includes cold fronts, long X-ray
tails in the wake of late type galaxies passing through the hot cluster
environment, or the presence of radio haloes and ghosts associated
with past active galactic nucleus (AGN) activity. Theoretical studies
of these phenomena increasingly rely on direct numerical simula-
tions, which are in principle capable of accurately computing the
non-linear interplay of all these processes and their consequences
for the thermodynamics of the ICM. A prerequisite is that the sim-
ulations are capable of representing all the physics relevant for the
system, which represents a significant ongoing challenge.
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A particularly important question in cluster physics concerns the
observed absence of strong cooling flows on to the massive elliptical
galaxies at the centres of the potential wells of groups and clusters
of galaxies (e.g. Balogh et al. 2001; Edge 2001; Peterson et al. 2001;
Tamura et al. 2001; Böhringer et al. 2002; Edge et al. 2002; Peterson
et al. 2003). There is now growing observational evidence for the
relevance of AGN heating in these objects (e.g. McNamara et al.
2000; Mazzotta et al. 2002; Sanders & Fabian 2002; McNamara
et al. 2005; Fabian et al. 2006), supporting the widespread theoreti-
cal notion that the central AGN is providing enough energy to offset
the radiative cooling losses. However, it is still not understood in
detail how this energy is coupled into the ICM. X-ray observations
with the XMM–Newton and Chandra telescopes (e.g. Blanton et al.
2001; Bı̂rzan et al. 2004; Nulsen et al. 2005) have revealed that in
many cooling-flow clusters there are so-called X-ray cavities which
interact with the surrounding intracluster gas. It is believed that these
bubbles are inflated by the powerful AGN jets that are generated by
an accreting central black hole. The expanding bubbles heat the ICM
by mechanical work, and by the buoyant uplifting of cool gas from
the central regions and subsequent mixing with the hotter atmo-
sphere at larger radii. At the same time, the bubbles trigger sound
waves that travel through the cluster, and they may excite global
oscillations modes of the ICM in the cluster potential. It has been
suggested that viscous damping of these sound waves may provide
an important non-local heating source for the ICM (e.g. Fabian et al.
2003). A significant cluster viscosity may in principle exist, but its
strength should depend critically on the magnetic field strength and
the field topology.

Radio observations (e.g. Owen, Eilek & Kassim 2000; Clarke
et al. 2005; Dunn, Fabian & Taylor 2005) have clearly shown that
the X-ray cavities are filled with relativistic gas, and probably have
inherited some of the magnetic fields transported by the AGN jet.
While the structure of the magnetic fields filling the bubbles is not
well known yet, it has by now been firmly established that galaxy
clusters are permeated by magnetic fields (for reviews see Carilli
& Taylor 2002; Govoni & Feretti 2004). Faraday rotation measure-
ments (Clarke, Kronberg & Böhringer 2001; Eilek & Owen 2002;
Vogt & Enßlin 2003; Clarke 2004; Vogt & Enßlin 2005) have found
that the magnetic fields in clusters appear to be random, with an
rms strength of order of 1–10 μG, and with a coherence length of
1–20 kpc. Assuming a fully ionized plasma (Spitzer 1962), this im-
plies a very high magnetic Prandtl number for the ICM of order of
∼1029, suggesting that magnetohydrodynamic (MHD) turbulence is
probably relevant. On the other hand, the inferred typical Reynolds
numbers for the intracluster gas are quite small, �100, indicating
that the gas viscosity might be quite important. Moreover, the co-
herence length-scale of the magnetic fields is comparable to the ion
mean free path, as well as to the typical size of galaxies and of AGN-
driven bubbles that could drive turbulence in the ICM. In fact, there
have been some observational studies that found evidence for the
presence of turbulence in clusters (Schuecker et al. 2004; Rebusco
et al. 2005), suggesting that the injection scale of the turbulence
would be of order ∼10–100 kpc.

All these observational pieces of information do not yet combine
to a definitive picture of the magnetic and viscous properties of the
ICM, and the theoretical understanding is also not yet mature (for a
recent review see Schekochihin & Cowley 2005). It is clear, how-
ever, that an approximation of the ICM as an ideal, inviscid gas – as
usually made in most hydrodynamical simulations of galaxy cluster
formation – may be a poor approximation for hot clusters with non-
negligible (and perhaps chaotically tangled) magnetic fields. It is
therefore the aim of this work to explore the potential imprints of gas

viscosity on galaxy cluster properties in a fully self-consistent way,
using cosmological simulations of cluster growth from Lambda cold
dark matter (�CDM) initial conditions. As a prerequisite for such
simulations, we develop a numerical scheme capable of accurately
solving the Navier–Stokes equations in smoothed particle hydro-
dynamics (SPH), which we use instead of the commonly employed
much simpler Euler equation. We will assume a simple parametriza-
tion of the shear and bulk viscosity tensors, without explicitly deal-
ing with the MHD equations. For this purpose, we adopt Braginskii
parametrization (Braginskii 1958, 1965) of the shear viscosity, to-
gether with a phenomenological suppression factor to mimic the
influence of the magnetic fields. The bulk viscosity coefficient is
kept constant if included.

In order to test our new hydrodynamical scheme, we apply it to
a number of simple test problems with known analytic solutions.
These tests yield robust results in agreement with the expectations.
We then carry out simulations of galaxy clusters where we include
different physics, with or without physical viscosity. These simula-
tions include models with non-radiative hydrodynamics, and models
with radiative cooling, star formation and supernova (SN) feedback,
allowing us to obtain an overview about the interplay of gas dy-
namics and viscous dissipation in different environments, and the
consequences viscosity has for the structure of clusters. We also
try to identify potential observational signatures for internal friction
processes.

In an additional set of simulations, we analyse the impact of
gas viscosity on the AGN-driven bubble heating process. Previous
analytic work (e.g. Kaiser et al. 2005) and numerical Eulerian sim-
ulations (e.g. Ruszkowski, Brüggen & Begelman 2004; Reynolds
et al. 2005) have suggested that internal friction has a significant
impact on bubble properties, stabilizing them against hydrodynam-
ical instabilities that would otherwise readily disrupt them. We ex-
plore this issue in some detail with our simulation methodology, in
particular studying bubble morphologies, maximum clustercentric
distance, and survival times, as a function of the assumed level of
shear viscosity. In this context we also examine the total energy in
the sound waves triggered by the bubbles. We find that this is rather
small, something that could in part be caused by deficiencies in our
models, as we discuss later on.

The outline of this paper is as follows. In Section 2, we review the
fundamental physical laws of viscous fluids, focusing in particular
on astrophysical plasmas and a discussion of the role of magnetic
fields. The detailed description of our numerical implementation of
physical viscosity in SPH is given in Section 3, while we illustrate
the validity of our numerical scheme with a number of basic hydro-
dynamical test problems in Section 4. In Section 5, we analyse the
heating effects caused by AGN-driven bubbles rising through vis-
cous intracluster gas, while in Section 6, we discuss internal friction
during merging episodes and its impact on substructure motion in
cosmological simulations of galaxy cluster formation. Finally, we
summarize and discuss our results in Section 7.

2 T H E O R E T I C A L C O N S I D E R AT I O N S

In the following discussion, we concentrate on viscous gases in
the astrophysical context of galaxy and galaxy cluster formation.
We briefly review the basic physical equations governing the hy-
drodynamics of the relevant class of ‘real’ (as opposed to ideal)
fluids, and the constraints that exist for some of the free parameters
that describe their properties. This includes a discussion of internal
friction processes in the collisional regime and their relevance for
astrophysical plasmas. In particular, we examine viscous effects in
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intracluster gas, assuming that it is fully ionized and that it consists
of a primordial mixture of hydrogen and helium. We also describe
the differences and difficulties that arise when magnetic fields are
present in clusters.

2.1 Navier–Stokes equation

To describe real fluids, two of the fundamental equations of hydro-
dynamics that hold for ideal gases, namely Euler’s equation and the
energy conservation law, need to be revised. The continuity equa-
tion remains in its familiar form, i.e.

∂ρ

∂t
+ ∂(ρvk)

∂xk
= 0. (1)

It expresses mass conservation as usual, where ρ is the gas density,
vk denotes the local velocity vector of the fluid, and the summation
convention has been employed.

When there is relative motion between different parts of a real
fluid, internal friction forces lead to an additional transfer of mo-
mentum that is absent in an ideal gas, and which in general will
act to reduce velocity differences. The friction forces modify the
momentum flux density tensor, which becomes

�ik = pδik + ρvivk − σik . (2)

In this equation, p is the gas pressure and σ ik represents the viscous
stress tensor, which to first approximation can be assumed to be a
linear function of the first spatial derivatives of the velocity field. It
can be shown (Landau & Lifshitz 1987) that the most general tensor
of rank 2 satisfying the requested criterion is given by

σik = η

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik

∂vl

∂xl

)
+ ζ δik

∂vl

∂xl
, (3)

where η is called the coefficient of shear viscosity, and ζ represents
the bulk viscosity coefficient. Bulk viscosity becomes important
when the fluid is rapidly compressed or expanded on a time-scale
shorter than the relaxation time of the fluid, in which case consider-
able energy can be dissipated. The coefficients of viscosity can be
functions both of gas pressure and temperature, but not of gas ve-
locity, because of the criterion imposed above on the viscous stress
tensor.

The generalized form of Euler’s equation describing the motion
of viscous fluids can be written as

ρ

(
∂vi

∂t
+ vk

∂vi

∂xk

)
= − ∂p

∂xi
− ρ

∂


∂xi

+ ∂

∂xk

[
η

(
∂vi

∂xk
+ ∂vk

∂xi
− 2

3
δik

∂vl

∂xl

)]
+ ∂

∂xi

(
ζ

∂vl

∂xl

)
, (4)

where 
 is the gravitational potential. When the coefficients of shear
and bulk viscosity are assumed to be constant, equation (4) is called
Navier–Stokes equation.

2.2 General heat transfer equation

Unlike ideal gases which are isentropic outside of shock waves,
entropy conservation does not hold for viscous fluids. In the latter
case, the energy conservation law needs to be augmented with ad-
ditional terms which depend on the viscous stress tensor and on the
temperature gradient (Landau & Lifshitz 1987). This results in

∂

∂t

(
1

2
ρv2 + ρε

)
= −∇

[
ρv

(
1

2
v2 + w

)
− vσ − κ ∇T

]
, (5)

where w is the heat function given by w = ε + p/ρ, and κ is the
coefficient of thermal conduction. Using the continuity equation and
the Navier–Stokes equation, the energy conservation law can be
rewritten as

ρT
dS
dt

= ∇(κ ∇T ) + 1

2
η σαβσαβ + ζ (∇ v)2, (6)

which is called the general heat transfer equation. Here, σαβ denotes
the shear part of the viscous stress tensor, or ‘rate-of-strain tensor’.
This equation expresses how much entropy is generated by the inter-
nal friction of the gas and by the heat conducted into the considered
volume element. From the general heat transfer equation it is evi-
dent that the coefficients of viscosity and thermal conduction need
to be positive, given that the entropy of the gas can only increase, as
imposed by the second law of thermodynamics. In the following, we
will not consider thermal conduction any further, which has recently
been discussed in independent studies that analysed its impact on
cluster cooling flows (e.g. Narayan & Medvedev 2001; Dolag et al.
2004; Jubelgas, Springel & Dolag 2004).

2.3 The viscous transport coefficients in astrophysical plasmas

2.3.1 Kinetic theory approach

In the kinetic theory of neutral gases, the viscosity coefficients are
kinetic coefficients of the Boltzmann transport equation, and can
be estimated by solving this equation under the assumption that
the characteristic length-scale of the problem under consideration is
much larger than the mean free path l of particles, which is the so-
called collisional regime.1 From this approach it follows (Landau &
Lifshitz 1981) that the shear viscosity coefficient can be expressed
as

η ∼ m v̄ n l ∼
√

m T
σ

, (7)

where v̄ ∼ √
T /m is the mean gas velocity, n is the gas number

density and σ ∼ 1/(n l) is the collisional cross-section. Equation (7)
implies that at a given gas temperature the shear viscosity coefficient
does not depend on gas pressure. When the Boltzmann transport
equation is solved for the bulk viscosity coefficient, one then obtains
that ζ vanishes for the case of a monatomic non-relativistic gas.

If magnetic fields are absent in a collisional plasma, the main
transfer of momentum due to internal friction comes from the mo-
tion of ions. Hence, it is sufficient to consider only collisions be-
tween ions, neglecting the ones occurring with electrons, in order
to estimate the amount of shear viscosity. The cross-section in the
limit of small angle scattering in the unmagnetized Coulomb field
is given by

σc = 4π(Ze2)2

μ2|ve − vi|4 ln �, (8)

where μ is the reduced mass of electrons and ions, and ln � is the
Coulomb logarithm, which can be approximately taken to be 37.8 for
intracluster gas (Sarazin 1988). Under the assumption that electrons
have much higher velocity than the ions, it follows that μ(ve −vi)2 ∼
Te, for the ‘e–e’ and ‘e–i’ collisions, giving an expression for the

1 In this study, we will not discuss internal friction processes in the collision-
less regime, because the relevant scales for this regime are at best partially
resolved (and often completely below the spatial resolution) in current state-
of-the-art numerical simulations of galaxy clusters.
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mean free path of electrons in the form

λe ∼ T 2
e

4πe4 ne ln �
. (9)

Similarly, the ion mean free path reads

λi ∼ T 2
i

4π(Ze)4 ni ln �
. (10)

Thus, based on the simple derivation of the shear viscosity in the
framework of the kinetic theory (equation 7) and using the expres-
sion for the mean free path of ions, one obtains an estimate of the
shear viscosity in the case of a fully ionized, unmagnetized plasma
(Landau & Lifshitz 1981), viz.

η ∼ m1/2
i T 5/2

i

(Ze)4 ln �
. (11)

The exact magnitude of the shear viscosity coefficient is given by
(e.g. Braginskii 1958, 1965),

η = 0.406
m1/2

i (kB Ti)5/2

(Ze)4 ln �
, (12)

while the bulk viscosity coefficient remains zero.

2.3.2 Saturation of the viscous stress tensor

When the length-scale on which the velocity is changing becomes
similar or smaller than the mean free path of ions, an unphysical
situation would occur if the momentum transfer due to viscous forces
propagates faster than the information on changes of the pressure
forces, i.e. faster then the mean sound speed of ions (Frank, King
& Raine 1985; Sarazin 1988). Thus, internal friction forces need
to saturate at the relevant length-scales to a strength of order of
the pressure forces. More specifically, let us define a characteristic
length-scale lv such that the shear viscous force2 obeys

Fvisc ∼ η
σ

lv
∼ η

vi

l2
v

∼ η
cs

l2
v

, (13)

where vi is the mean velocity of ions, and cs is the sound speed of
the ions. The criterion for viscosity saturation can be expressed as

cs

l2
v

<
cs

λ2
i
, (14)

implying that if lv < λi , the viscous stress tensor has to saturate to
a value of the order of cs/λi .

2.3.3 Magnetized plasmas

In the presence of magnetic fields, the viscous transport coefficients
will depend on the quantity ω τ , where ω is the cyclotron frequency
of the considered species (electrons or ions) and τ is the collisional
time. The transport coefficients along the field lines will have the
same form as in the case of an unmagnetized plasma, because the
charged particles can move freely along the magnetic field lines
and can cover distances of order of their mean free path. On the
other hand, in the case of strong magnetic fields, with ωτ � 1,
the transport coefficients will be suppressed in the perpendicular
direction to the field lines, and this suppression will be of order
of ωτ or (ωτ )2 for different viscosity terms. If the temperatures of
electrons and ions are similar, as expected for intracluster plasmas,

2 An analogous argument holds for the bulk part of the viscous force as well.

the viscosity will be dominated by ions, even in the presence of
strong magnetic fields.

It is worth pointing out that unlike to the case of an unmagnetized
plasma, where internal friction of a compressible fluid is determined
by two scalar transport coefficients, the viscous transport coefficient
becomes a tensor of rank 4 when there is a non-vanishing magnetic
field. Thus, given the symmetry of the viscous transport tensor, there
will in general be seven independent viscosity coefficients, five re-
lated to the shear, and two to the bulk flows. Therefore, the treatment
of viscous flows in magnetized plasmas becomes extremely diffi-
cult, and includes the possibility that compressional motions provide
additional viscous heating. In fact, a plasma compression in the di-
rection perpendicular to the magnetic field (assuming that the field
lines are ordered locally) will produce an excess of transverse pres-
sure, and thus will give rise to a viscous stress with unsuppressed
transport coefficient, which is known as gyrorelaxational heating.
Potentially, this heating mechanism could operate in the case of
AGN-driven bubbles that buoyantly rise in the ICM, pushing the
intracluster gas in front of them, as is seen in a number of numeri-
cal simulations (e.g. Churazov et al. 2001; Quilis, Bower & Balogh
2001; Dalla Vecchia et al. 2004; Hoeft & Brüggen 2004; Reynolds
et al. 2005; Sijacki & Springel 2006) and also indicated by recent
X-ray observations (e.g. Bı̂rzan et al. 2004; McNamara et al. 2005;
Nulsen et al. 2005; Fabian et al. 2006). However, so far it has only
been possible to poorly constrain the topology of magnetic field
lines in clusters with observations, while theoretical models offer a
broad range of possible magnetic field configurations. It will still
take some time before fully radiative MHD simulations of galaxy
clusters can overcome their present limitations and provide clearer
theoretical predictions. Hence, it is presently difficult to put robust
constraints on the magnetic field topology in clusters, its evolution
over cosmic time, and its dependence on the dynamical state of
a cluster, even though some interesting predictions can be made
based on non-radiative MHD simulations (e.g. Dolag, Bartelmann
& Lesch 2002). In our numerical modelling of gas viscosity we
therefore parametrize the role of magnetic fields by introducing a
suppression parameter f in front of the Braginskii viscosity. We will
assume f to be constant in time and to be independent of cluster
mass.

The discussion above is valid under the assumption that the
plasma is in a quasi-steady state, where the mean values of rele-
vant quantities change sufficiently slowly in time and space, thus
that collisions can establish a Maxwellian distribution on the time-
scale τ . Otherwise, field fluctuations can significantly change the
magnitude of the suppression of the transport coefficients in the
direction perpendicular to the field lines.

3 N U M E R I C A L I M P L E M E N TAT I O N

We use the parallel TreeSPH-code GADGET-2 (Springel, Yoshida &
White 2001; Springel 2005) in this study, in its entropy conserving
formulation (Springel & Hernquist 2002). In addition to gravita-
tional and non-radiative hydrodynamical processes, the code in-
cludes a treatment of radiative cooling for a primordial mixture of
hydrogen and helium, and heating by a spatially uniform, time-
dependent UV background (Katz, Weinberg & Hernquist 1996).
Star formation and associated SN feedback processes can also be
tracked by the code, using a simple subresolution multiphase model
for the interstellar medium (Springel & Hernquist 2003).

Even though the bulk viscosity is identical to zero for unmag-
netized fully ionized plasmas, there are a number of cases where
bulk viscosity may still be important, for example, in the presence
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of magnetic fields where the viscosity tensor contains terms that
explicitly depend on the velocity divergence. Also for the sake of
completeness, we have therefore implemented a treatment of viscos-
ity in GADGET-2 that accounts both for shear and bulk viscosity. There
is a small number of previous studies in the literature that discuss
SPH formalisms for internal friction processes (Flebbe et al. 1994;
Schäfer et al. 2004). Our new implementation follows a somewhat
different and more complete approach, however, and it is consis-
tent with the entropy-conserving formulation of SPH introduced by
Springel & Hernquist (2002). In the following, we give a brief sum-
mary of the SPH method, and then derive the particular formulation
of the discretized Navier–Stokes and general heat transfer equations
that we adopted.

One of the central aspects of the SPH method is the idea to repre-
sent a given thermodynamic function with an interpolant constructed
from the values at a set of disordered points. These fluid particles
are usually characterized by their position r, mass m and velocity
v (Gingold & Monaghan 1977; Lucy 1977; Monaghan & Lattanzio
1985). The computation of an interpolant is based on a kernel func-
tion, which is often adopted as a simple spline kernel (Monaghan &
Lattanzio 1985),

W (r , h) = 8

πh3

⎧⎪⎨⎪⎩
1 − 6

(
r
h

)2 + 6
(

r
h

)3
, 0 � r

h � 1
2 ,

2
(

1 − r
h

)3
, 1

2 < r
h � 1,

0, r
h > 1.

(15)

where h is the smoothing length. The interpolant Q̃(r ) of a thermo-
dynamic quantity can then be constructed from the values Qi of the
particle set as

Q̃i =
N∑

j=1

Q j
m j

ρ j
Wi j (hi ), (16)

where the sum is evaluated over all particles, Wi j (hi ) is an abbrevi-
ation for W(|ri − r j |, hi ), and hi is the adaptive smoothing length
of particle i. A derivative of the interpolant can now be obtained
straightforwardly by applying the ∇ operator to the kernel function
itself, viz.

∇i Q̃i =
N∑

j=1

Q j
m j

ρ j
∇i Wi j (hi ). (17)

We use this property of the SPH formalism to derive the viscous
accelerations exerted on gas particles. The SPH discretization of
the viscous stress tensor can be readily constructed based on stan-
dard expressions for velocity gradients and velocity divergence
(Monaghan 1992). Specifically, the derivative of the α component
of the velocity of particle i with respect to xβ (where α and β range
from 0 to 2) can be written as

∂vα

∂xβ

∣∣∣∣
i

= 1

ρi

N∑
j=1

m j (vj − vi )|α [∇i Wi j (hi )]|β . (18)

Hence, the velocity divergence can be simply constructed as

∇·vi ≡ ∂vα

∂xα

∣∣∣∣
i

= 1

ρi

N∑
j=1

m j (vj − vi )|α[∇i Wi j (hi )]|α, (19)

where the summation notation for repeated Greek indexes was
adopted. Therefore, based on equations (3), (18) and (19), the SPH
formulation of the viscous stress tensor reads

σαβ

∣∣∣∣
i

= η

(
∂vα

∂xβ

∣∣∣∣
i

+ ∂vβ

∂xα

∣∣∣∣
i

− 2

3
δαβ

∂vγ

∂xγ

∣∣∣∣
i

)
+ ζ δαβ

∂vγ

∂xγ

∣∣∣∣
i

. (20)

Considering equation (4) and using the notation introduced in equa-
tion (17), the following expression for the acceleration of gas parti-
cles due to the shear forces can be readily derived

dv

dt

∣∣∣∣
i,shear

=
N∑

j=1

m j

[
ηiσi

ρ2
i

∇i Wi j (hi )

+ η jσ j

ρ2
j

∇i Wi j (h j )

]
, (21)

where the product of η and σ gives the shear part of the viscous
stress tensor, or in the other words, σi is now the rate-of-strain
tensor of particle i. The previous equation can be written in an
explicit component form as follows

dvα

dt

∣∣∣∣
i,shear

=
N∑

j=1

m j

[
ηiσαβ |i

ρ2
i

[∇i Wi j (hi )]|β

+ η jσαβ | j

ρ2
j

[∇i Wi j (h j )]|β
]
. (22)

We note that this equation conserves linear momentum, but does
not manifestly conserve the total angular momentum. A non-
conservation of angular momentum can arise due to the fact that
even though the force is clearly antisymmetric, the viscous stress
tensor can induce torques, and thus the force between two particles
is not necessarily central any more. Note that this is a consequence
of the tensor nature of the viscous stresses, and not an artificial fea-
ture of our numerical scheme. In order to circumvent this apparent
inconsistency, one could introduce an additional intrinsic property
for every gas particle, namely a spin variable, that would store how
much torque has been exerted on it and would itself be a source of
shear between two particles which would try to keep this spin close
to zero. However, the non-conservation of angular momentum due
to viscous forces in our formulation is basically negligible, as has
already been discussed in detail in Riffert et al. (1995). Comparing
the discretized form of the SPH equations to the continuum limit
shows that the angular momentum is conserved to an accuracy of
order O(h2), which is comparable to the error made in the usual
SPH kernel estimates of other fluid quantities, like the density. In
an analogous manner to equation (21), the acceleration caused by
forces due to bulk viscosity can be estimated as

dv

dt

∣∣∣∣
i,bulk

=
N∑

j=1

m j

[
ζi ∇ · vi

ρ2
i

∇i Wi j (hi )

+ ζ j ∇ · v j

ρ2
j

∇i Wi j (h j )

]
. (23)

We employ the specific entropy of an SPH particle as independent
thermodynamic variable. Instead of using the conventional thermo-
dynamic entropy directly, it is however more convenient to replace
the entropy S with an entropic function A, related to the entropy by

dA(S)

dt
= γ − 1

ργ−1
T

dS
dt

, (24)

where γ is the adiabatic gas index. Therefore, from the general heat
transfer equation it follows that the increase of the entropic function
due to internal friction forces is given by

dAi

dt

∣∣∣∣
shear

= 1

2

γ − 1

ρ
γ−1
i

ηi

ρi
σ 2

i , (25)

dAi

dt

∣∣∣∣
bulk

= γ − 1

ρ
γ−1
i

ζi

ρi
(∇·vi )

2. (26)
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Clearly, this formulation shows that the entropic function can only
increase due the action of internal friction forces if the shear and
bulk viscosity coefficients are positive, as desired.

We have implemented different parametrizations of the viscosity
coefficients in the simulation code. Besides a model with constant
viscosity, we realized a model for cosmological applications where
the shear viscosity is parametrized with equation (12), modified with
an additional prefactor that controls in a simple way the possible
shear viscosity suppression due to the presence of magnetic fields,
as discussed in Section 2.3.3. We follow the literature and vary
this prefactor in the range of 0.1–1.0. We have also introduced an
additional time-step criterion in the code in order to protect against
situations where the Courant time-step may not be small enough
to guarantee accurate integration of large viscous stresses. We have
adopted the maximum allowed time-step as

dtmax � dtvisc with dtvisc = α
A

| Ȧvisc|
, (27)

where Ȧvisc represents the rate of increase of the entropic function
due to shear and bulk viscous forces, and α is a dimensionless time-
step parameter that controls the integration accuracy.

Finally, we estimate the characteristic length-scale lv in the code.
Following the arguments expressed in equations (13) and (14), we
adopt a saturation of the relevant viscous stress tensor components
to a value given by ∼cs/λi , provided lv is found to be smaller than
the ion mean free path.

At the end of this section, we briefly discuss the differences that
exist between the functional forms of the physical and the artificial
viscosity, bearing in mind their conceptual differences. As discussed
in detail in Springel (2005), the GADGET-2 code computes the accel-
eration due to the artificial viscosity as follows

dvi

dt

∣∣∣∣
visc

= −
N∑

j=1

m j �i j∇i W i j , (28)

where W i j represents the arithmetic mean of Wi j (hi ) and Wi j (h j ).
The entropy increase due to the action of artificial viscous forces is
given by

dAi

dt
= 1

2

γ − 1

ρ
γ−1
i

N∑
j=1

m j �i j vi j · ∇i W i j , (29)

with vi j ≡ vi − vj , and �i j is defined in a slightly different form3

(Monaghan 1997) compared to the one that is usually adopted in
many SPH codes (Monaghan & Gingold 1983), namely

�i j = −α

2

(ci + c j − 3wi j ) wi j

ρi j
, (30)

if the particles are approaching each other, otherwise �i j is set to
zero. Here α is a parameter that regulates the strength of the ar-
tificial viscosity, ci and c j are the sound speeds of particles i and
j, respectively, and wi j = vi j · ri j/|ri j |. In addition, following the
arguments explained in Balsara (1995) and Steinmetz (1996), the
strength of the artificial viscosity is reduced in the presence of lo-
cal shear in order to avoid spurious angular momentum transport.
Comparing the equations for acceleration and entropy generation
due to artificial viscous forces with the analogous expressions for
the case of physical viscosity, it can be seen that the dependences
on gas velocity and temperature are quite different. In particular, the

3 For a more sophisticated form of the artificial viscous term see Cleary
(1998) and Cleary et al. (2002).

Braginskii parametrization of the shear viscosity coefficient has a
much stronger dependence on gas temperature than the artificial vis-
cosity, meaning that the relative importance of the physical viscosity
is expected to be different for objects of different virial temperature.
It should also be stressed that the artificial viscosity becomes rele-
vant only when particles are approaching each other, while that is
not the case for the physical viscosity. Furthermore, given that the
artificial viscosity is suppressed in the presence of significant local
shear, the artificial viscosity cannot mimic the behaviour of physi-
cal shear viscosity, as we explicitly confirmed with a number of test
problems that will be discussed in the next section.

4 I L L U S T R AT I V E T E S T P RO B L E M S

The purpose of this section is to test the validity and applicability of
our new viscosity implementation. To this end, we consider simple
hydrodynamical problems with known analytic solutions for real
(viscous) fluids. We will first discuss the motion of an incompress-
ible fluid under the action of shear forces in two different situations
that illustrate the typical behaviour of viscous fluids. At the end
of this section, we then compare the behaviour of shock tube tests
when physical shear and bulk viscosity are used to capture shocks
instead of the standard artificial viscosity.

We begin our investigation with the problem of a flow between
two moving planes with a finite separation h. While there always
exists a flow solution for every particular initial condition, it is in-
teresting to note that it is not guaranteed that the solution will be
steady and stable for a different internal viscosity value. In fact, for
the case of an ideal fluid the flow is actually always unstable, because
any small perturbation in the flow will typically not be damped in
this case but rather grow in time. However, stability of the flow can
be recovered if the fluid has a sufficiently small Reynolds number,
given by

R = ρul
η

= ul
ν

, (31)

where u is the characteristic velocity of the problem, l is its char-
acteristic length-scale, and ν = η/ρ is the kinematic viscosity. It
follows that in order to ensure a laminar flow in the ‘pipe’ between
the two planes, the mean velocity times the diameter of the pipe
should be of the order of the kinematic viscosity. This condition is
satisfied in our numerical tests.

4.1 Flow between two sheets with a constant relative velocity

As a first test we simulate the elementary hydrodynamical problem
of the motion of a viscous, incompressible fluid between two infinite
parallel planes spaced a distance h apart. The space between the
planes is uniformly filled with a fluid of constant pressure, having
a fixed amount of shear viscosity and bulk viscosity equal to zero.
The planes move with a constant relative velocity with respect to
each other (along the x-axis, for definiteness), while the fluid is
initially at rest. We expect that after a brief time interval a stationary
solution should be established, with a laminar flow where all relevant
quantities depend only on the position y along the axis orthogonal
to the planes. Solving the Navier–Stokes equation for this problem
yields that the x component of the gas velocity should be a linear
function of y, with a slope and zero point such that the boundary
conditions at the planes are matched, i.e. here the fluid velocity will
be equal to the velocity of the planes themselves. If the boundary
conditions are given by vx (0) = u1 and vx (h) = u2, then the gas
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velocity is simply

vx (y) = u2 − u1

h
y + u1. (32)

The only non-zero component of the viscous shear stress ten-
sor is a linear function of the velocity gradient along the y-axis,
namely

σxy = η
∂vx

∂y
= η

u2 − u1

h
. (33)

Note also that it is directly proportional to the shear viscosity coef-
ficient, allowing us to validate whether the level of viscosity acting
in our numerical simulations actually matches the one we intended
to put in.

In order to simulate this hydrodynamical problem we have set
up initial conditions using a three-dimensional periodic grid with
equally spaced gas particles, all of equal mass and pressure, and
being initially at rest. The aspect ratio of the box was shorter in the
y direction. The motion of the two planes was imposed by treating
the particles in two thin sheets adjacent to the planes as ‘bound-
ary particles’, giving them the velocity of the corresponding plane,
and preventing them from feeling hydrodynamical forces, i.e. they
always keep moving with their initial velocity.

When the simulation is started, the x component of the gas velocity
develops a linear dependence on y under the action of the shear
viscosity, and soon the flow becomes stationary. The time needed to
reach the stationarity depends on the amount of shear viscosity. The
more viscous the medium, the sooner the flow reaches the steady
state. Note that the same behaviour cannot be obtained with the
standard artificial viscosity. Also, the presence of some amount of
artificial viscosity besides the given shear viscosity perturbs the
linear dependence of the velocity on the y coordinate.

In the left-hand panel of Fig. 1, we show the x component of the
gas velocity as a function of y when the flow has reached stationarity.

0.2 0.4 0.6 0.8
y

-1.0

-0.5

0.0

0.5

1.0

v x

10-4 10-3 10-2

η

10-4

10-3

10-2

10-1

σ x
y

analytic solution

numerical values

Figure 1. The panel on the left-hand side shows the stationary-state velocity profile of a viscous flow in between two infinite planes that move relative to each
other. The small grey dots represent individual gas particles in the simulation (only every 25th particle has been plotted for clarity). The big red dots are mean vx
values evaluated in equally sized y bins. The green diamond symbols show particles that belong to the two thin layers used to impose the boundary conditions,
while the continuous solid line is the analytic solution. This run has been performed assuming a shear viscosity coefficient of η ∼ 0.002 in internal code units.
The mean value of the viscous stress tensor, σxy , as a function of the shear viscosity coefficient for a number of similar runs is illustrated in the right-hand
panel. In each case, the mean value of σxy has been estimated once the flow has reached a stationary state and is plotted with a filled circle. The continuous line
gives the analytic expectation.

The grey little dots represent individual gas particles, while the
red big dots denote the mean vx evaluated in equally sized y bins.
The solid line is the analytic solution, while the diamonds denote
particles that are part of the boundary layers of the finite dimension
of 0.1, one moving with a velocity vx = −1, the other with vx = 1.
It can be seen that the numerical result is reproducing the analytic
solution with good accuracy. Note that the gas velocity near the
planes cannot reach the theoretically expected value, because it is
here fixed to the value prescribed for the two boundary layers. A
finite width of these layers is necessary to impose the boundary
conditions in a numerically robust way, but by using a larger particle
number, the thickness of this region could be made arbitrarily small,
if desired. In the right-hand panel of Fig. 1, we show the mean value
of the xy component of the viscous stress tensor as a function of the
shear viscosity coefficient adopted in a specific run. The numerical
values for the stress tensor have been evaluated once the flow has
reached a stationary state. The filled circles give the mean value of
σxy for the different runs, while the solid line is the analytic fit. It can
be seen that the analytic solution is recovered with high accuracy
for a significant range of shear viscosities.

4.2 Flow between two planes with a constant gravitational

acceleration

Another elementary hydrodynamic problem involves the viscous
flow of a fluid between two planes under the action of a constant
gravitational acceleration. This problem is equivalent to the clas-
sic example of a flow with a constant pressure gradient (Landau &
Lifshitz 1987). The initial situation is quite similar to the previous
problem, but this time the planes do not move with respect to each
other. However, there is a constant gravitational acceleration acting
along the x-axis. Again, we consider an incompressible fluid, so
that for symmetry reasons all quantities depend only on y if a sta-
tionary laminar flow develops. The velocity is expected to exhibit a
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Figure 2. Velocity profile for the viscous flow between two fixed planes
in a field of constant gravitational acceleration. The little grey dots are the
individual particles from the simulation output (only every 25th particle
has been plotted for clarity). The analytic solution with its characteristic
quadratic velocity dependence on the y coordinate is shown with a red solid
line. The big red dot marks the mean velocity of gas particles for y = 0.5,
while the green diamond symbols represent the particles that belong to the
layers of particles used to impose the boundary conditions.

characteristic quadratic dependence on y, of the form

vx (y) = − ρ

2η

d


dx
y2 + c1 y + c2, (34)

where ρ is the gas density, 
 is the gravitational potential, and c1 and
c2 are two constants defined by the boundary conditions. Again, the
only non-trivial component of the viscous shear tensor is σxy , and it
is related to the velocity field in the same way as in equation (33).

The initial conditions for a numerical model of this problem were
set up as before, except that a constant gravitational acceleration
along the x-axis was imposed. All particles were initially at rest,
and the particles of the two boundary layers were made to ignore the
gravitational field so that their positions stayed fixed. In Fig. 2, we
show a measurement of the velocity of the gas particles once the flow
reached a stationary state. The grey little dots are individual particles
in the simulated region between the planes, while the green diamond
symbols represent particles of the boundary layers. The solid line
gives the analytic solution, while the big red dot shows the average
velocity of gas particles for y = 0.5. The central part of the flow
matches the characteristic quadratic form of the analytic solution
accurately, with a maximum gas velocity corresponding closely to
the analytic solution, even though the simulated gas velocity near the
planes is a bit lower than the analytic expectation. Again, the latter
effect is to be expected due to the finite width of the boundary layers,
which also influences the properties of the flow in their immediate
vicinity.

We note that the magnitude of the velocity scatter of individual
particles around the mean profile depends on the strength of the
adopted gas pressure relative to the viscous forces. Even for param-
eter choices where this scatter becomes large, the mean velocity field
tracks the analytic solution well in all cases we examined, indicating
that our implemented scheme is quite robust.

4.3 Shock tube tests

In this section, we examine whether our new implementation of
physical viscosity can also be used to capture shocks, and how this
fares with respect to results obtained with the standard artificial
viscosity. For this purpose, we performed a number of shock tube
simulations which have been set up following the standard approach
outlined in Sod (1978). We considered both mild shocks with a Mach
number of order 1.5, and also stronger shocks up to a Mach number
of 10. These tests allow us to constrain the amount of physical shear
and/or bulk viscosity needed to capture the shocks accurately, and
hence to assess if and how much artificial viscosity is still required
in simulations of viscous gases.

Our initial conditions consist of a three-dimensional periodic box
that is elongated in the x direction, with a total length L. The box is
filled with gas particles of equal mass arranged on a grid. The left
half of the box (x < L/2) has a higher initial pressure with respect
to the right half (x >L/2), such that shocks of different strength can
be driven into the right-hand side, depending on the initial pressure
ratio. The adopted adiabatic index is γ = 1.4. All gas particles are
initially at rest, and we have evolved the simulations until a final
time of t = 3.5.

Before we discuss the results it should be noted that there is
an important conceptual difference between simulations with our
new implementation of internal friction and simulations that use
the artificial SPH viscosity. In the former case, we consider real
gases which have different hydrodynamical properties in the region
of shocks (where the velocity field has strong gradients) than ideal
fluids for which the analytic solutions of shock tubes refer to. In
order to properly treat real fluids in shocks, one in principle needs
to invoke the kinetic theory of gases, because the mean free path of
particles is of the order of the shock width. This is beyond the scope
of this work. However, the analytic solutions for ideal gases outside
the shock region provide a very good approximation because the
viscous forces there are negligible, as we will explicitly confirm
below.

In Fig. 3, we show the profile of gas density, velocity, entropy
and pressure in a shock tube calculation where the gas particles ex-
perience a shock of strength M = 1.48. The simulation results are
represented by blue circles, the dotted lines denote the initial con-
ditions, and the continuous red lines give the analytic solution, ob-
tained by solving the hydrodynamical equations of an ideal gas with
imposed Rankine–Hugoniot conditions (e.g. Courant & Friedrichs
1976; Rasio & Shapiro 1991). The three different columns give re-
sults for the standard artificial viscosity with α = 0.7 (left-hand
panel), physical shear viscosity with η = 0.04 (middle panel), and
physical bulk viscosity of ζ = 0.03 (right-hand panel). The only
difference between these three runs lies in the gas viscosity, all the
other code parameters and the initial conditions were kept exactly
identical in order to facilitate a clear comparison. Fig. 3 shows that
the numerical model for physical viscosity is capable of capturing
the shock, and it results in quite accurate estimates of the post-shock
quantities. This holds both for shear and bulk viscosity. Compared
to the case with an artificial viscosity, there is more velocity noise
in the post-shock region, however. Also, the shock front itself is
sharper when an artificial viscosity is used, and the analytic solu-
tion for the rarefaction wave is recovered more accurately in the
transition region to the constant density sections of the flow. In gen-
eral, the physical viscosity solutions appear more smoothed in the
transition regions between the different parts of the flow.

In Fig. 4, we examine the viscous stress tensor of gas particles in
this problem. The first two panels show the diagonal components of
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Figure 3. Hydrodynamical properties along a shock tube simulation with a shock of Mach number M = 1.48, at time t = 3.5. The initial conditions are drawn
with dotted lines, the analytic solutions are shown with continuous red lines, and the symbols give the SPH result. The three vertical columns refer to a run
carried out with the standard artificial viscosity (left-hand column), to one with physical shear viscosity instead (middle column), or to one with physical bulk
viscosity (right-hand column). From top to bottom, the individual rows show the profiles of density, velocity, entropy and pressure, respectively.
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Figure 4. Viscous stress tensor profile in the case of a M = 1.48 shock tube simulation. The first two panels refer to the physical shear viscosity, showing
diagonal components of the stress tensor, while in the right-hand panel the bulk stress tensor is plotted. In the middle panel, the dots give only results for σ yy ,
because the σ yy and σzz components of the shear tensor show a practically identical dependence on the x coordinate, given the symmetry of the problem.

the shear stress tensor, while the last panel gives the bulk viscosity
tensor. The viscous stress tensor is different from zero only in the
region between the head of the rarefaction wave and the shock wave,
implying that the viscous forces are important in that region and are
negligible elsewhere. The σyy and σzz components of the shear tensor
behave almost identically because of the symmetry of the problem,
and thus in the middle panel of Fig. 4 the dots are for σ yy only. It
can be noted that σxx , σ yy and σzz have sign and magnitude such
that their sum is zero to high accuracy, as it should be given that
the shear tensor is traceless. Also, the off-diagonal components of
the shear stress tensor are negligible, as expected. The bulk stress
tensor shows very similar features as the σxx component of the
shear tensor, due to the fact that the dominant term in both cases is
∂vx/∂x. However, σ bulk shows more scatter for x ∈ [3, 5] because
the noise in the remaining velocity derivatives in the corresponding
simulation is larger. In our simulations with larger Mach numbers,
we obtained qualitatively very similar results as the ones presented in
Fig. 4.

The above analysis has shown that both shear and bulk physical
viscosity are in principle capable of capturing shocks, provided the
viscosity coefficients are sufficiently large. This means that in sim-
ulations of low Reynolds number one can probably avoid the use
of any additional artificial viscosity. In general however, it seems
clear that an artificial viscosity is still needed even when physical
viscosity is modelled. This is simply because the strength of the
physical viscosity can be quite low, and can vary locally with the
flow if a physical parametrization like that of Braginskii is used.
Without artificial viscosity, shocks would then not be captured ac-
curately in a narrow shock front, and particle interpenetration would
not be properly avoided. Instead, strong fluid instabilities could de-
velop in the shock region, growing to such large enough size that
the residual physical viscosity can damp them out. In the rest of our
study, we will therefore invoke when necessary an additional artifi-
cial viscosity in the standard way when we model physical viscosity
in astrophysically interesting situations. This guarantees that shocks
are always captured equally well as in standard SPH.

5 AG N - D R I V E N BU B B L E S I N A V I S C O U S I C M

In this section, we study the interaction of AGN-induced bubbles
with a viscous ICM. This represents an extension of the study of
Sijacki & Springel (2006), and we refer to this paper for a detailed

description of the models, and the simulation set-up, while we here
give just a brief overview.

We consider models of isolated galaxy clusters under a range of
different physical processes. The initial set-up consists of a static
NFW dark mater halo (Navarro, Frenk & White 1996, 1997), and
a gas component which is initially in hydrostatic equilibrium. The
adopted initial gas density profile closely follows the dark mater
profile, except for a slightly softened core. A certain level of rota-
tion has been included as well, described by a spin parameter of
λ = 0.05. AGN heating has been simulated with a phenomenologi-
cal approach in the form of centrally concentrated hot bubbles that
are injected into the ICM in regular time intervals. The basic param-
eters of the AGN feedback scenario are the bubble radius, distance
from the cluster centre, duty cycle and bubble energy content. These
parameters have been constrained by recent cluster observations and
also by the basic empirical laws of black hole accretion physics.

We used 106 gas particles to construct initial conditions for a
massive isolated galaxy cluster of mass 1015 h−1 M	, with a spa-
tial resolution in the gravitational field equal to 6.5 h−1 kpc. Starting
from these identical initial conditions, we carried out different runs,
characterized as follows: (1) radiative cooling and star formation to-
gether with standard artificial viscosity; (2) cooling, star formation,
and AGN-bubble heating with artificial viscosity; (3) cooling, star
formation, AGN-bubble heating and physical shear viscosity, based
on the Braginskii parametrization and with a suppression factor that
we varied in the range of 0.3–1.0.4 The radius of the bubbles was
chosen as 30 h−1 kpc, and they were injected into the ICM every
108 yr along a fixed spatial axis, with an energy content equal to
2.5 × 1060 erg per bubble.

5.1 Radial heating efficiency and profiles

In Fig. 5, we show radial profiles of our massive galaxy cluster after
a simulated time of 0.15tHubble. Gas density is plotted in the left-
hand panel, mass-weighted temperature in the central panel, and gas

4 In these runs, we used only the physical viscosity, switching off the artificial
viscosity completely. This is here justified because we are simulating an
isolated halo where no strong shocks are present, and due to the fact that the
bubble heating keeps most of the gas above 107 K, such that sufficient shear
viscosity is present to evolve the hydrodynamics correctly, as we explicitly
checked.

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 371, 1025–1046



Physical viscosity in SPH simulations 1035

10 100 1000
 r  [ h-1kpc ]

100

102

104

106

 ρ
g
as

(r
) 

[ 
h2

M
O •
 k

p
c

-3
 ]

 cool+sf 
 cool+sf+bub: art 
 cool+sf+bub: f=0.3 

 cool+sf+bub: f=1.0 

 cool+sf 
 cool+sf+bub: art 
 cool+sf+bub: f=0.3 

 cool+sf+bub: f=1.0 

 cool+sf 
 cool+sf+bub: art 
 cool+sf+bub: f=0.3 

 cool+sf+bub: f=1.0 

 cool+sf 
 cool+sf+bub: art 
 cool+sf+bub: f=0.3 

 cool+sf+bub: f=1.0 

10 100 1000
 r  [ h-1kpc ]

106

107

108

 T
 [

K
] 

 cool+sf 
 cool+sf+bub: art 

 cool+sf+bub: f=0.3 
 cool+sf+bub: f=1.0 

 cool+sf 
 cool+sf+bub: art 

 cool+sf+bub: f=0.3 
 cool+sf+bub: f=1.0 

 cool+sf 
 cool+sf+bub: art 

 cool+sf+bub: f=0.3 
 cool+sf+bub: f=1.0 

 cool+sf 
 cool+sf+bub: art 

 cool+sf+bub: f=0.3 
 cool+sf+bub: f=1.0 

10 100 1000
 r  [ h-1kpc ]

1010

1011

1012

 S
 ~

 T
/ρ

2
/3
 

 cool+sf 

 cool+sf+bub: art 
 cool+sf+bub: f=0.3 
 cool+sf+bub: f=1.0 

 cool+sf 

 cool+sf+bub: art 
 cool+sf+bub: f=0.3 
 cool+sf+bub: f=1.0 

 cool+sf 

 cool+sf+bub: art 
 cool+sf+bub: f=0.3 
 cool+sf+bub: f=1.0 

 cool+sf 

 cool+sf+bub: art 
 cool+sf+bub: f=0.3 
 cool+sf+bub: f=1.0 

Figure 5. Radial gas profiles of a 1015 h−1 M	 isolated halo at time t = 0.15tHubble. We show the gas density (left-hand panel), mass-weighted temperature
(middle panel), and gas entropy (right-hand panel), and compare runs with cooling and star formation only (blue solid lines) with runs having additional AGN
heating as well. The green dotted lines are for simulations with standard artificial viscosity. The red dashed lines give results when the Braginskii parametrization
of the shear viscosity is ‘switched on’, with a suppression factor of 0.3. For comparison, the orange dot–dashed lines show the results when no suppression
factor is used for the shear viscosity.

entropy in the right-hand panel. A number of interesting features can
be noticed from the gas profiles. First, regardless of the assumed gas
viscosity, the bubble heating prevents the creation of a strong cooling
flow, and gas is heated efficiently in the inner regions. Moreover, the
spatial extent of the central region in which AGN feedback alters
the gas profiles does not depend on the level of gas viscosity – in all
the runs, bubbles influence the ICM out to ∼150 h−1 kpc. This scale
is indicated with a vertical arrow on the panels. Thus, the radial
extent of bubble heating is determined by other factors, like for
example by the initial entropy excess of bubbles with respect to the
surrounding gas, by the injection mechanism, or by the equation of
state of the gas filling the bubbles. Secondly, it can be seen that
an increase of the gas viscosity produces a systematically stronger
heating in the innermost ∼50 h−1 kpc, and this trend is also present
at subsequent simulation output times until 0.25tHubble where we
stopped the simulations. The heating is most prominent in the case of
unsuppressed Braginskii viscosity (orange dot–dashed lines), where
an entropy inversion occurs, and the temperature of the gas keeps
increasing until the very centre. Such a temperature profile is not
favoured by observational findings, suggesting that if the intracluster
gas viscosity is indeed so high then the bubble energy content has to
be substantially lower, or the energy transport from the bubbles into
the ICM has to be somehow inhibited, possibly by magnetic fields.

Another interesting feature of bubble heating in a viscous ICM
can be noticed when the bubble morphologies and the radial heating
efficiency are examined in more detail. In Fig. 6, we show mass-
weighted temperature maps of the central cluster regions, for the
case of Braginskii viscosity with suppression factor of 0.3 (up-
per panel) and for unsuppressed Braginskii shear viscosity (lower
panel). The velocity-flow pattern is indicated with white arrows on
these maps. Even though the radial extent of the bubble heating
is similar for different magnitudes of internal friction, the mor-
phologies of evolved bubbles, their maximum clustercentric dis-
tance reached and their survival times vary. When the gas viscos-
ity is as high as the full Braginskii value, the bubbles rise up to
∼300 h−1 kpc in the cluster atmosphere without being disrupted,
and traces of two up to three past bubble episodes can be detected,
indicating that the bubbles survive at least as long as ∼2 × 108 yr.
However, when the gas viscosity is lowered (upper panel of Fig. 6)
bubbles typically start to disintegrate at ∼150 h−1 kpc and multiple
bubble events can typically not be identified.

This suggests that a relatively high amount of gas viscosity may
be needed to explain the recent observations of the Perseus clus-
ter (e.g. Fabian et al. 2006), where several bubble occurrences have
been detected. However, an alternative explanation could be that the
bubbles are stabilized against fluid instabilities by magnetic fields
at their interface with the ICM instead of by viscosity. A relativis-
tic particle component (cosmic rays) filling the bubble will also
change the dynamical picture. Nevertheless, it is interesting that the
observed morphology of bubbles can in principle constrain the level
of ICM viscosity, an aspect that we plan to explore further in a future
study.

In the velocity fields shown in Fig. 6, it can be seen that the flow
of the gas in the wake of the bubbles is approximately laminar,
while at the bubble edges the velocity field shows a significant curl
component. This perturbed motion is not only present for the most
recently injected bubbles, but also for the bubbles that are already
∼2 × 108 yr old, albeit with a smaller magnitude. In the case of the
full Braginskii viscosity the magnitude of the velocity perturbations
induced by the bubbles is of the order of �100 km s−1 for the recent
bubbles, while it decreases to �20 km s−1 for the older ones.

5.2 Sound waves dissipation

We also examined how the occurrence of sound waves produced by
the bubbles and the associated non-local heating is influenced by
different amounts of ICM viscosity. In Fig. 7, we show unsharp-
masked images of the X-ray emissivity, produced by subtracting
a map smoothed on a 50 h−1 kpc scale from the original luminosity
map. It is clear that for higher gas viscosity (right-hand panel, un-
suppressed Braginskii value) the damping of sound waves in the
central region is stronger than for a simulation with lower vis-
cosity (left-hand panel: 0.3 of Braginskii viscosity). Nevertheless,
the radial profiles of the gas entropy show that only in the inner
∼50 h−1 kpc a more efficient heating of the ICM can be observed
when the viscosity is increased. This suggests that the energy con-
tent of the sound waves produced by the bubbles is not very large
and probably not capable of providing significant heating at larger
radii.

In order to put more stringent constraints on the influence of the
sound waves, we have estimated their energy content by evaluating
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Figure 6. Mass-weighted temperature maps of a 1015 h−1 M	 isolated halo, subject to AGN bubble feedback. The velocity field of the gas is overplotted with
white arrows. The maps show how the morphology, survival time and maximum distance reached of AGN-driven bubbles depend strongly on the amount of
physical viscosity assumed: in the upper panel, the Braginskii shear viscosity has been suppressed by a factor 0.3, while in the lower panel, the simulation has
been evolved with the full Branginskii viscosity.
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Figure 7. The upper panels show unsharp-masked X-ray emissivity maps of a 1015 h−1 M	 isolated cluster with AGN bubble feedback. On the left-hand
side, a case with lower viscosity is shown (suppression factor f = 0.3), while on the right-hand side, a case with the maximum value of the shear viscosity is
displayed (suppression factor f = 1.0). The sound waves generated by the bubbles in the ICM are clearly more efficiently dissipated when the ICM has a higher
viscosity. The panels on the bottom illustrate the projected energy density in sound waves for the same cases, estimated as explained in the text. On these maps,
both compressed and rarefied regions are visible, containing a significant amount of acoustic energy density. Nevertheless, the total energy of the sound waves
is not substantial in our models, and amounts to only a small fraction of the thermal energy of an injected bubble.

(Landau & Lifshitz 1987)∫
Es dV =

∫
ρ0v

2 dV =
∫

ρ ′2

ρ0
c2

s dV , (35)

where Es is the sound energy density, ρ0 is the unperturbed gas
density, v is the fluid velocity, ρ ′ is the change in gas density due
to the sound waves, and cs is the sound speed. Strictly speaking,
this equation is valid only for travelling plane waves, but it should
still provide us with a reliable order of magnitude estimate of the
sound waves energy in our geometrically more complex case. We
computed projected energy density maps (see lower panels of Fig. 7)
by taking the smoothed density field for ρ0, while we estimated ρ ′

as the difference between the actual density field and the smoothed
one. Both compressed regions (which correspond to the rings in the
upper panels) and rarefied regions store a considerable amount of
energy. However, it should be noted that the sound wave energy in
the rarefaction regions is overestimated when computed in this way,
because the bubbles themselves contribute to it, being underdense
with respect to the background and having similar dimension to the
smoothing scale. Nevertheless, when the total sound wave energy
is estimated in this way we obtain ∼5 × 1059 erg, which is only a
small fraction of the initially injected bubble energy. As pointed out
by Churazov et al. (2002), a number of the same order of magnitude
is obtained if as a crude estimate of the sound wave energy one

considers the sound waves generated by the motion of a solid sphere
through a medium of a given density ρ (Landau & Lifshitz 1987).

Based on these findings, the viscous damping of sound waves
provides only an insignificant contribution in coupling the AGN-
injected energy into the ICM. Note that in these models of isolated
haloes we have deliberately included physical shear viscosity only.
Thus, our estimate for the damping of sound waves is not affected
by any residual artificial viscosity. A caveat, however, is that our
simulations do not self-consistently model the initial phase of bub-
ble injection, where the AGN jet deposits its energy and inflates
the bubble. It is conceivable that the associated processes produce
energetically more important sound waves and weak shocks, which
could then increase the importance of viscous damping of sound
waves compared to the result found here.

6 C O S M O L O G I C A L S I M U L AT I O N S

O F V I S C O U S G A L A X Y C L U S T E R S

In this section we discuss the effects of internal friction on clusters of
galaxies formed in fully self-consistent cosmological simulations.
We have carried out a variety of runs that follow different physi-
cal processes, including non-radiative hydrodynamical simulations,
described in detail in Section 6.1, and runs with radiative gas cool-
ing, star formation and feedback processes, which are discussed in
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Table 1. Numerical parameters of the cosmological galaxy cluster simulations used in this study. The values listed from the second to the fifth
column refer to the number and to the mass of high-resolution dark matter particles and of gas particles. Note that the actual values of Ngas and
mgas may vary in time due to star formation, if present. The last three columns give the initial and final redshifts of the runs, and the gravitational
softening length ε.

Simulation NHR Ngas mDM (h−1 M	) mgas ( h−1 M	) zini zfin ε (h−1 kpc)

g1/g8 4937886 4937886 1.13 × 109 0.17 × 109 60 0 5.0

Table 2. Physical properties of our sample of simulated galaxy clusters at
z = 0 and at 200ρc. For two different galaxy clusters, labelled in the first
column, and for the different runs, cluster radius, total mass, mass-weighted
gas temperature and X-ray luminosity are listed, respectively. Subscripts
in the first column denote runs including different physics, namely cooling
and star formation for the g1 cluster, and non-radiative gas hydrodynamics
for the g8 cluster, in both cases also with Braginskii shear viscosity with
suppression factor of 0.3.

Cluster R200 M200 Tmw LX

(h−1 kpc) (h−1 M	) (K) (erg s−1)

g1 csf 2857 1.63 × 1015 7.3 × 107 1.0 × 1045

g1 csfv 2832 1.58 × 1015 8.1 × 107 1.0 × 1045

g8 ad 3306 2.52 × 1015 9.7 × 107 1.1 × 1046

g8 adv 3276 2.45 × 1015 1.1 × 108 4.5 × 1045

Section 6.2. For all these simulations, we carried out matching pairs
of runs without physical viscosity and with physical shear viscosity
(using the Braginskii parametrization with a suppression factor of
0.3), in order to be able to clearly identify differences due to the
viscous dissipation processes.

For our simulations, we selected two massive galaxy clusters that
have been extracted from a cosmological �CDM model with a box
size of 479 h−1 Mpc (Jenkins et al. 2001; Yoshida, Sheth & Diaferio
2001), and were prepared by Dolag (2004) for resimulation at higher
resolution using the zoomed initial condition technique (Tormen,
Bouchet & White 1997). In Tables 1 and 2, we summarize the basic
parameters of the simulations and the main physical properties of
the galaxy clusters. The cosmological parameters of the simulations
correspond to a concordance �CDM model with �m = 0.3, �b =
0.04, σ 8 = 0.9 and H0 = 70 km s−1 Mpc−1 at the present epoch.

6.1 Non-radiative simulations

In Fig. 8, we show projected gas density maps at different redshifts
for our non-radiative cluster simulations. It is evident that already
at early times, at around z ∼ 5, the gas distribution in the presence
of shear viscosity (panels on the right-hand side) starts to deviate
substantially from the corresponding simulation without internal
friction (panels on the left-hand side). Also, the amount of gas that
is bound to dark matter subhaloes is reduced, and there appears to
be more diffuse gas in the outskirts of massive objects. Furthermore,
small structures that are falling into the most massive halo at each
epoch (located in the centre of the panels), lose their gas content
more quickly due to the shear forces, and feature prominent tails
that extend up to several hundred kpc. These general features are
present at all epochs from z ∼ 5 to z = 0. At low redshifts, however,
the central parts of the main halo appear quite similar, although the
central density is somewhat reduced in the simulation with phys-
ical viscosity, while there appears to be more diffuse gas with a
smaller number of prominent gas concentrations in the outskirts.

These trends can be readily understood as a consequence of viscous
dissipation, which increases the stripping of gas and helps to expel
gas from shallow dark matter potential wells in the infalling regions
of larger structures.

A more quantitative analysis of how viscosity affects the thermo-
dynamics of clusters is obtained by studying the radial profiles of
gas density, mass-weighed temperature and entropy. In Fig. 9, we
compare these profiles at two different epochs, z = 1 and 0. The
solid blue line refers to the non-radiative run, while the dotted green
line gives the result when physical shear viscosity is included. The
effects of viscosity increase systematically with time, and manifest
themselves in a reduction of the gas density throughout the cluster.
The suppression is particularly strong in the very centre, where it
reaches almost an order of magnitude at z = 0. At early times, the
temperature is mainly boosted in the outer regions of the cluster,
while for z < 0.5, also the central gas temperature starts to be sig-
nificantly increased. As a consequence, the entropy profile shows
two different features: at early times, the central rise of entropy is
caused by a lower gas density, while at late times, the entropy is even
more enhanced in the inner regions, out to a radius of ∼100 h−1 kpc,
because of a lower gas density and an increased temperature. In the
outer parts of the halo, the increase of the gas entropy is always a
result of the joint action of temperature and density change. We will
come back to a discussion of the physical reason for this behaviour
in Section 6.2.

As a consequence of the strong modification of the density and
temperature structure of the cluster in the viscous case, we also find
a significant reduction of the X-ray luminosity. This is reflected in
Table 2, which lists some of the basic properties of these clusters.
Interestingly, a similar change of the X-ray luminosity is not found
in the case of the simulations that also include cooling and star
formation, which we will discuss next.

6.2 Simulations with cooling and star formation

In Fig. 10, we show the radial gas profiles of basic thermodynamic
quantities of our cluster simulations that included radiative cooling
and star formation, either without (blue solid line) or with (dotted
green line) additional shear viscosity. At high redshifts, the signa-
tures of viscosity are quite similar to the previously considered case
where gas cooling was absent. However, the formation of a cooling
flow for z < 0.5 changes the central gas properties dramatically at
later times. Even though viscous dissipation is acting in the cluster
centre, the gas cooling times become so short there that all the ther-
mal energy gained from internal friction is radiated away promptly.
In fact, the gas starts to cool even more in the central regions in the
viscous case, as can been seen from the entropy profiles at z = 0.
The gas density is increased in the innermost regions as well.

Apparently, while the viscous heating in the centre is not suffi-
ciently strong to raise the temperature significantly, the mild heating
does reduce the star formation rate and therefore the associated non-
gravitational heating from SNe. The net result is an increase in the
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Figure 8. Projected gas density maps of the g8 galaxy cluster simulation at redshifts z = 1.0, 0.1 and 0.0, as indicated in the upper left-hand corner of the
panels. The panels in the left-hand column show the gas density distribution in the case of a non-radiative run, while the panels in the right-hand column give
the gas density distribution when Braginskii shear viscosity is ‘switched on’, using a suppression factor of 0.3. It is evident from these panels that the presence
of a modest amount of shear viscosity has a significant impact on the gas distribution, removing more gas from infalling structures when they enter the massive
halo, and producing pronounced gaseous tails behind them.
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Figure 9. Radial profiles of gas density, mass-weighted temperature, and entropy of the ‘g8’ galaxy cluster simulation. The blue continuous lines are for the
non-radiative run, while the dotted green lines are for the run with additional Braginskii shear viscosity with suppression factor of 0.3. The panels in the left-hand
column refer to the gas profiles evaluated at z = 1.0, while the ones in the right-hand column are for z = 0. The dotted vertical lines denote the gravitational
softening length and the virial radius at the given redshift.

X-ray luminosity due to the sensitive density and temperature de-
pendence of the cooling luminosity. Interestingly, there is still a
reduction of the X-ray luminosity in the outskirts of the cluster in
the viscous simulation, because the gas density is lowered there,
but this is just compensated for by a matching increase in the inner
parts. Another important aspect of the viscous heating process is
that it makes the temperature profile closer to isothermal, suggest-
ing that the viscosity helps to level the temperature of the cluster on
large scales. It is interesting to note that our results on the profiles
resemble the findings of self-consistent cosmological simulations
of cluster formation with thermal conduction (Dolag et al. 2004;

Jubelgas et al. 2004). The transport coefficients of viscosity and
heat conductivity have the same temperature dependence, and this
fact may contribute to the similarity of the behaviour with respect to
the role these transport processes play in shaping the gas properties.

We now turn to a discussion of the radial dependence of viscous
dissipation in clusters of galaxies. As can be seen from equation (25),
the entropy increase due to shear viscosity involves two factors:
one is given by the shear viscosity coefficient, which basically has
only a dependence on temperature to the 5/2 power, and the other
is the ratio of the rate-of-strain tensor squared to that of the gas
density elevated to the γ . Thus, viscous entropy injection will be
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Figure 10. Radial profiles of gas density, mass-weighted temperature, and entropy of the ‘g1’ galaxy cluster simulation. The blue continuous lines are for the
run with cooling and star formation, while the dotted green lines are for the run with additional Braginskii shear viscosity with suppression factor of 0.3. The
panels in the left-hand column refer to the gas profiles evaluated at z = 1.0, while the panels in the right-hand column are for z = 0. The dotted vertical lines
indicate the gravitational softening length and the virial radius at the given redshift. It can been seen that the viscous effects are similar to the non-radiative case
at high redshifts, while they differ significantly at low z due to the formation of a central cooling flow.

favoured in regions of high temperature, low density and strong
velocity gradients. In order to disentangle the relative importance
of these different dependencies we show the radial profiles of the
shear viscosity coefficient η, the rate-of-strain tensor squared σ 2

αβ ,
and of the kinematic viscosity ν in Fig. 11, at z = 0.

Let us first consider the non-radiative case, which is shown with
solid green lines. At all radii, the gas density is reduced in the pres-
ence of shear viscosity, and this modification of the density profile
influences the rate of entropy production. Nevertheless, the contri-
bution of the shear coefficient is more important in the outer regions,

for r > 100 h−1 kpc, having a maximum at ∼ 1000 h−1 kpc, where
also the gas temperature is highest. On the other hand, the rate-of-
strain tensor is monotonically increasing from the outskirts towards
the centre, and this is also true for its individual components, indi-
cating that the velocity gradients are largest in the inner regions.

The dashed red lines show the results when cooling and star for-
mation are included. The differences that arise in the shear viscosity
coefficient compared with the non-radiative case can be simply ex-
plained by the different temperature profiles: in the outer regions,
for r > 100 h−1 kpc, the ‘g1’ cluster run has lower η because its
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Figure 11. From top to bottom, radial profiles of the mass-weighted shear
viscosity coefficient, of the rate-of-strain tensor squared, and of the kine-
matic viscosity coefficient in the ‘g1’ and ‘g8’ galaxy cluster simulations,
respectively. The red dashed line is for the g1 simulation with cooling, star
formation and shear viscosity, while the continuous green line represents the
non-radiative g8 simulation with the same amount of shear viscosity. The
dotted vertical lines indicate the gravitational softening and the virial radius
at z = 0, respectively. In the bottom panel, the observational upper limit
for the Coma galaxy cluster (Schuecker et al. 2004) at a scale of 100 kpc is
shown with a blue arrow.

temperature there is smaller due to the fact that this cluster is some-
what less massive than the ‘g8’ galaxy cluster. Instead, the temper-
ature of the ‘g1’ cluster in the innermost regions is larger, because
the introduction of radiative cooling increases the central gas tem-
perature, except for the innermost cooling flow region. Also, σ 2

αβ of
the ‘g1’ cluster is higher near the centre due to the motions induced
by the prominent cooling flow that has formed in it.

Finally, we study the kinematic viscosity in the last panel of
Fig. 11, which is given by the ratio of the shear viscosity coefficient
to the gas density. Both for the ‘g1’ and ‘g8’ cluster simulations, the
kinematic viscosity coefficient is very similar in the outer regions,
and is highest for large radii. In the inner 100 h−1 kpc, the kinematic
viscosity of the ‘g1’ cluster is higher, due to the efficient gas cooling.
Overplotted with a blue arrow is an upper limit for the kinematic
viscosity on a scale of 100 kpc estimated for the Coma galaxy clus-
ter by Schuecker et al. (2004). The kinematic viscosity of the ‘g8’
galaxy cluster, which is slightly more massive then the Coma cluster,
is in agreement with this observational constraint, suggesting that
a suppression factor as large as 0.3 is not ruled out observationally.
On the other hand, the kinematic viscosity of the ‘g1’ cluster, with
the same suppression factor, is only marginally in agreement with
the observational upper limit. However, this comparison needs to be
taken with a grain of salt: the intrinsic amount of shear viscosity is
certainly overestimated in our simulations, because they suffer from
strong central cooling flows which are not observed in real galaxy
clusters.

6.3 Viscous dissipation during merger events

The radial profiles of gas temperature and entropy discussed above
indicate that the gas is heated very efficiently in cluster outskirts
by viscous dissipation during accretion and merger events. In this
section, we study this phenomenon in more detail. In particular, we
analyse the spatial distribution of entropy production just before and
during a merger episode. To this end we compare projected density
maps, which give us an indication on the exact position and extent of
the merging clumps, to entropy maps, which tell us where the heating
takes place. In Fig. 12, we show an example of these maps for the
‘g1’ galaxy cluster. The upper panels refer to the run with cooling
and star formation only, and the lower panels show the run where
shear viscosity was included as well. The panels for the runs with
different physics are not at the same redshift because the shear forces
influence the dynamics of structure formation sufficiently strongly
that timing offsets in the merging histories occur. We tried however
to select snapshots with similar merging configuration at comparable
cosmic epochs so that the visible differences arise primarily because
of the introduction of the shear viscosity. We note that we analysed a
number of different merger configurations at multiple redshifts, also
considering the non-radiative simulations. We find that the features
visible in Fig. 12 are ubiquitous; viscous dissipation of shear motions
not only considerably boosts the gas entropy, but also generates this
entropy in special spatial regions which have no counterparts in
the simulations that only include an artificial viscosity. The relevant
regions are located perpendicular to the direction of a halo encounter,
and appear as entropy-bright bridges. These regions of enhanced
entropy, which are never found in the runs without shear viscosity,
are responsible for heating the clusters outskirts, already at early
times.

We have also constructed maps of the viscous entropy increase,
based on equation (25). All the filamentary high-entropy regions are
corresponding to the ones shown in Fig. 12, demonstrating that they
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Figure 12. Projected maps of gas density and entropy for the g1 galaxy cluster simulation, at an instant just before a merger event. The upper panels are for
the run with cooling and star formation, while the lower panels, at somewhat different redshift, are for the run with additional shear viscosity. It can be seen
that the entropy of the gas is considerably boosted by internal friction processes (note the different scales of the entropy maps), and in addition it appears that
much of this entropy is generated in different regions which have a filamentary kind of structure.

are caused by η σ 2
αβ/ργ . The dominant factor appears to be η/ργ ,

while the spatial distribution of σ 2
αβ is preferentially confined to the

regions characterized by relatively high overdensities.
Finally, in order to better understand the gas dynamics in these

high-entropy regions, we computed the velocity-flow field during
the merger event, and show it overlaid on the X-ray emissivity map in
Fig. 13. It can be seen that there are two galaxy clusters approaching
each other, one located in the centre of the figure and the other one
being above it, at (x, y) ∼ (0, 1000) h−1 kpc. The high-entropy bridge
is lying between the merging clusters, roughly perpendicular to their
direction of motion. Considering the velocity-flow pattern, it can be
noticed that there are two velocity streams: one starting from the
lower right-hand corner, and the other from the upper right-hand
corner. The velocity currents meet in the central region where the
merger will occur. Therefore, the gas is not flowing along the high-
entropy bridge, but rather perpendicular to it. This shows that the
material of the high-entropy bridge is not funnelled towards the
centre from the cluster outskirts but rather that it is heated in situ by
significant viscous dissipation, creating the entropy bridges between
the merging structures.

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this study, we discussed a new implementation of viscous fluids
in the parallel TreeSPH code GADGET-2, in the framework of a self-
consistent entropy and energy conserving formulation of SPH. We

presented a discretized form of the Navier–Stokes and general heat
transfer equations, considering both shear and bulk internal friction
forces, subject to a saturation criterion in order to avoid unphysi-
cally large viscous forces. The shear and bulk viscosity coefficients
have either been modelled as being constant, or are parametrized
in the case of shear viscosity with Braginskii’s equation, modified
with a suppression factor to describe in a simple fashion a possi-
ble reduction of the effective viscosity due to magnetic fields. Our
methodology for physical viscosity in SPH extends previous works
(Flebbe et al. 1994; Schäfer et al. 2004) that analysed viscosity
effects in the context of SPH simulations of planet formation.

We have here applied our new method to simulations of the
physics of galaxy clusters, and in particular to their growth in cos-
mological simulations of structure formation. However, our imple-
mentation is general and could, for example, also be used in studies
of accretion discs around black holes, or for simulations of planet
formation.

We have tested our implementation in a number of simple hy-
drodynamical problems with known analytic solutions. For exam-
ple, we simulated flows between two planes that move with a con-
stant relative velocity, or that are fixed and embedded in a constant
gravitational field. The stationary solutions we obtained were in
good agreement with the analytic expectations and demonstrated
the robustness of our scheme. We also performed shock tube tests
where we investigated the ability of physical shear and bulk vis-
cosity to capture shocks, instead of using the artificial viscosity
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Figure 13. Projected X-ray emissivity map of the g1 galaxy cluster, simulated with physical viscosity. The map corresponds to the lower panel of Fig. 12, but
here the velocity field is overplotted with white arrows. The flow field suggests that the bright entropy bridges are generated in situ due to viscous dissipation.

normally invoked in SPH codes to this end. We found that for flu-
ids with sufficiently high physical viscosity, shocks can be captured
accurately without an artificial viscosity. However, since in practi-
cal applications the physical viscosity is often comparatively low,
an additional artificial viscosity is still indicated in most cases. In
particular, for our applications in cosmological simulations where
we invoked Braginskii parametrization for the shear viscosity, we
are dealing with an effective viscosity which is a strong function of
gas temperature. If an artificial viscosity was omitted, simulations
would suffer from particle interpenetration at low temperatures.

We have applied our new numerical scheme to study the influ-
ence of viscosity on clusters of galaxies. We first considered the
physics of hot, buoyant bubbles in the ICM, which are injected by
an AGN. In a previous study (Sijacki & Springel 2006), we have
already studied this type of feedback in some detail, but we were
here interested in the specific question to what extent the introduc-
tion of a certain amount of shear viscosity changes the interaction
of the bubbles with the surrounding ICM. We found that the AGN
bubbles can still heat the intracluster gas efficiently in the viscous
case, but depending on the strength of the viscosity, the proper-
ties of the ICM in the inner ∼150 h−1 kpc are altered. The viscous
dissipation of sound waves generated by the bubbles does not result
in a significant non-local heating of the ICM. To confirm this claim,
we estimated the energy budget and the spatial extent of the sound
waves for different amounts of viscosity. We found, in agreement
with a previous estimate of Churazov et al. (2002), that the total
energy in sound waves is only a small fraction of the initial bubble

energy. However, a caveat lies in the fact that the initial stages of
bubble generation by the AGN jets are not modelled in our simula-
tion. It is conceivable that these early stages provide stronger sound
waves with a potentially bigger impact on the ICM.

We also analysed bubble morphologies, dynamics and survival
times as a function of increasing shear viscosity. Similar to pre-
vious analytic and numerical works (Kaiser et al. 2005; Reynolds
et al. 2005) we find that an increasing gas viscosity stabilizes bubbles
against Kelvin–Helmholtz and Rayleigh–Taylor instabilities, delay-
ing their shredding. Thus, bubbles can rise further away from the
cluster centre for the same initial specific entropy content. Because
we simulated a long time span, we could follow many bubble duty
cycles. This allowed us to conclude that the observation of multiple
bubble episodes, as is the case in the Perseus cluster (e.g. Fabian
et al. 2006), can be used to infer a minimum value for the ICM
gas viscosity, otherwise the bubbles could not survive for such a
long time. This constraint is however weakened by the possibility
that magnetic fields or relativistic particle populations change the
dynamics of the bubbles.

Finally, we addressed the role of gas viscosity in the context
of cosmological simulations of galaxy cluster formation. Using a
set of non-radiative cluster simulations, we showed that already a
modest level of shear viscosity (with a suppression factor of 0.3)
has a profound effect on galaxy clusters. The gas density distri-
bution is significantly changed compared to the case where only
an artificial viscosity is included, with substructures loosing their
baryons more easily, leaving behind a large number of prominent
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gaseous tails. Only recently XMM–Newton and Chandra observa-
tions (Wang, Owen & Ledlow 2004; Sun & Vikhlinin 2005; Sun et al.
2006) have started discovering long (from 60 to 88 kpc) and narrow
(<16 kpc) X-ray tails behind late type galaxies in hot clusters. Fur-
ther observational studies could put constraints on the amount of
gas viscosity by analysing the X-ray features of the tails. In princi-
ple, this could be directly compared with our numerical simulations
when synthetic X-ray emissivity maps are constructed. Another in-
teresting imprint of internal friction processes was found in merger
episodes of clusters. The entropy of the gas is not just boosted every-
where by a fixed amount due to the viscous dissipation, but instead
the entropy increase occurs in filament-like structures which have
no corresponding counterparts in simulations where only artificial
viscosity is included.

When the physics of radiative gas cooling is included as well, the
effects of internal friction remain similar in the cluster periphery,
while in the innermost regions, the radiative cooling time-scale be-
comes so short that the whole energy liberated by internal friction
is radiated away. Therefore, in cosmological simulations of cluster
formation with radiative cooling, gas viscosity cannot prevent the
formation of a central cooling flow. On the other hand, the gen-
eral tendency of gas viscosity to flatten the temperature profile, and
to boost the gas entropy in the outskirts, brings the simulations of
galaxy clusters closer to observational results. At least one other
physical ingredient is needed to simultaneously solve the overcool-
ing problem while keeping the benefits of viscous effects. AGN
feedback appears to be a promising candidate in this respect, but it
remains a complex task to construct a fully self-consistent simula-
tion model that includes all these processes accurately, and with a
minimum of assumptions.
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Böhringer H., Matsushita K., Churazov E., Ikebe Y., Chen Y., 2002, A&A,

382, 804
Braginskii S. I., 1958, JETP, 33, 459
Braginskii S. I., 1965, Rev. Plasma Phys., I, 205
Carilli C. L., Taylor G. B., 2002, ARA&A, 40, 319
Churazov E., Brüggen M., Kaiser C. R., Böhringer H., Forman W., 2001,
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