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Abstract—An overview of the relationship between the astrophysics of supernovae and fundamental
physics is given. It is shown how astronomical observations of supernovae are used to determine the
parameters of matter in the most rarefied states (“dark energy”); it is also revealed that the mechanism
of supernovae explosion is related to the properties of matter in the densest states. The distinction between
thermonuclear and collapsing supernovae is explained. Some problems that arise in the theory of powerful
cosmic explositions— supernovae and gamma-ray bursts—and which require new physics for solving them
are indicated. c© 2005 Pleiades Publishing, Inc.

1. INTRODUCTION

Still being an upperclassman in secondary school,
I eagerly awaited the appearance of each successive
issue of the “Feynman Lectures on Physics,” trans-
lated into Russian by a group of physicists, including
Yu.A. Simonov. In one of his lectures, R. Feynman
said approximately the following. If asked to choose
one clause that would explain the maximum number
of phenomena in nature, he would say, “Matter con-
sists of atoms.” I recall that I was deeply impressed by
these words. Since the main subjects of my scientific
activities are associated with modern astrophysics, I
have been dealing primarily with processes that are
explained by the properties of atoms and ions in var-
ious states. Modern theoretical physics focuses pri-
marily on more fundamental things—the properties
of fields, strings, or some other geometric objects, on
the basis of which theorists try to explain the entire
micro- and macrocosm. (Yet, it cannot be stated that
all of the theoretical problems—especially those that
are needed for applications, in atomic physics, for
example—have already been solved.)

Astrophysics is flourishing at the present time.
Since the end of the twentieth century, astrophysics
and classical observational astronomy have provided
ever more data that can crucially affect the develop-
ment of the most fundamental branches of physics. In
particular, it has become clear to date that about 95%
of the mean density of the observed Universe does
not consist of ordinary matter—that is, of atoms. In
this review article, I will consider but a small num-
bers of facts concerning the impact of astronomy on
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physics—specifically, supernovae, which are explod-
ing objects, will be the focus of attention here.

At the beginning of the article, it is explained
how parameters of cosmological models can be de-
termined with the aid of a constant-power source of
light, so-called cosmological standard candle. Fur-
ther, it is shown that some subtle points in employ-
ing supernovae as cosmological standard candles are
often treated incorrectly by physicists. For example,
Dolgov writes, in his very useful review article [1],
that type Ia supernovae are cosmological standard
candles. But in fact, these supernovae are not stan-
dard candles! Nevertheless, the acceleration of the
expansion of the Universe was discovered with the aid
of precisely those objects.

There is no doubt that a thermonuclear explosion
is the mechanism underlying the explosion of type
Ia supernovae. This mechanism leads to a complete
disruption of a star. Supernovae of other types stem
from the collapse of the core of a star. In contrast
to thermonuclear supernovae, there are many more
unclear points here in the explosion mechanism. The
concluding part of this brief review article is devoted
mostly to collapsing supernovae.

2. REDSHIFT IN COSMOLOGY

In 1929, E. Hubble, who worked at a new 2.4-m
telescope of the Mount Wilson Observatory near Los
Angeles, was able to estimate the distance to galaxies
for the first time. By plotting the redshifts z of the
spectral lines of those galaxies against the estimated
distances d, he constructed a graph that, later on, was
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called the Hubble diagram. Fitting a straight line to
these data, he obtained the dependence

z =
λ − λlab

λlab
=

H0d

c
,

which is presently referred to as the Hubble law. Here,
λ is the observed value of the wavelength for some
structure in the spectrum of a specific object, while
λlab is the laboratory value for the same structure. The
value of the Hubble constant H0 was overestimated
by Hubble himself by almost an order of magnitude in
relation to present-day data [about 70 km/(s Mpc)],
but the very fact of the growth of the redshift with dis-
tance was established correctly. This fact is referred
to as the recession of masses of luminous matter
(galaxies and their clusters), in which case z is in-
terpreted as a manifestation of the Doppler effect (z =
v/c at v � c and v = H0d). I will try to show that,
although it is legitimate to interpret unambiguously
the Hubble law as a manifestation of the expansion of
the observed Universe, the treatment of the redshift
as the Doppler effect at large cosmological distances
leads to logical difficulties and is, strictly speaking,
unacceptable (sometimes, the cosmological redshift
is associated in the literature with the Doppler effect
by definition [1]).

Theoretically, the expansion of the Universe was
discovered by Friedmann [2, 3] long before Hubble’s
studies. (De Sitter [4] derived his solutions still earlier,
but his treatment of these solutions was purely for-
mal; only the studies of Friedmann [2, 3] established
the physics pattern of a nonstationary universe—that
is, they created the framework within which modern
physical cosmology develops.) Friedmann’s line of
reasoning can be traced in the following way.

A two-dimensional sphere specified by the metric
d�2 = a2(dθ2 + sin2 θdϕ2) is curved, but, since it is
the surface of the ball x2 + y2 + z2 = a2, the sphere is
obviously isotropic and uniform, in just the same way
as a two-dimensional (2D) plane, whose metric can
be represented in the form d�2 = a2(dθ2 + θ2dϕ2),
where the polar radius is denoted by θ instead of
conventional r.

If we now take a flat three-dimensional (3D) space
and replace its metric

d�2 = da2 + a2(dθ2 + sin2 θdϕ2)

by

d�2 = a2[dχ2 + sin2 χ2(dθ2 + sin2 θdϕ2)], (1)

then, by analogy with a 2D sphere, we obtain an
isotropic and uniform 3D space in the form of the
surface of the 4D ball,

w2 + x2 + y2 + z2 = a2,

where a is the radius of curvature of the 3D space.
Writing ds2 = c2dt2 − d�2 for four-dimensional space-
time, we will arrive at the metric of the world in
the form discovered by Friedmann and used in the
cosmological section of the textbook by Landau and
Lifshitz [5]. A somewhat different form is obtained
upon the substitution sin χ = r, in which case dχ2 =
dr2/(1 − r2); as a result, the interval can be written
in the form

ds2 = c2dt2 − a2(t)

×
[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)

]
.

(We note that, here, r is a dimensionless quantity!)
This is the Friedmann metric in the Robertson–
Walker form. At k = 1, we have a closed Friedmann
universe (where the curvature of 3D space is positive),
while, at k = 0, there arises a 4D world with a flat 3D
space. In the latter case, the quantity a(t) loses the
meaning of the radius of curvature; therefore, it would
be better to refer to it as a scale factor for all of the
versions. It can easily be verified that the case of k =
−1 corresponds to yet another world, that where 3D
space is of negative curvature, featuring Lobachevski
geometry [3]. It is obtained from the case of k = +1
by means of the substitution sin χ → sinhχ. In all of
these cases, the point r = 0 can be chosen arbitrarily
in a uniform space, in just the same way as a pole
on a uniform 2D sphere. We assume that galaxies
are points associated with fixed values of r, θ, and ϕ
(comoving coordinates) and that the scale factor a(t)
determines the expansion of the Universe. According
to present-day data, it is better, strictly speaking, to
take the centers of mass of galaxy clusters (rather
than galaxies) for “fixed” points, since galaxies can
move within clusters at peculiar velocities of about
1000 km/s.

Friedmann did much more than just a number of
coordinate transformations. He showed (taking into
account the possibility that the cosmological Λ term
in nonzero) that all versions of the metrics that he
considered can provide exact solutions to the Ein-
stein equations for a reasonable choice of equation of
state for matter. It is only necessary to determine the
behavior of the scale factor a(t) for a nonstationary
world with allowance for this equation of state.

From the Einstein equations (see, for example, [5])
or directly from the Hilbert variational principle
(see [6]), one can easily obtain(

ȧ

a

)2

=
8πGN

3c2
E − kc2

a2
, (2)

where ȧ ≡ da/dt, GN is the Newtonian gravitational
constant and E is the density of all forms of energy.
This relation is referred to as the Friedmann equation.
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The physical meaning of this equation can be un-
derstood by using prerelativistic physics. If we intro-
duce the mass M within the radius R = a,

4πEa3

3c2
= M,

the result obtained from the Friedmann equation is
identical to that in the Newtonian case under the
condition that the whole energy density is due to
nonrelativistic baryons—that is, to matter of pressure
P = 0.

Assuming that the mean matter density ρ is uni-
form at large scales (R > 10 Mpc in the present-day
Universe), we find that the mass within the radius
R is M = 4πρR3/3, and Newton’s laws lead to the
energy-conservation law

u2

2
− GNM

R
= −const,

which holds as long as u ≡ Ṙ � c, so that

(Ṙ)2

2
− 4πGNρR2

3
= −const.

This relation is equivalent to the Friedman equa-
tion (2), and this is good, since, on small scales, the
world (spacetime) is flat, so that the general theory
of relativity must reduce to nonrelativistic mechanics
according to the correspondence principle.

But in fact, matter in the Universe is likely to
involve, in addition to baryons, dark matter, which is
cold in all probability—that is, nonrelativistic. More-
over, the results of observations require introducing
a new substance, which was referred to, not quite
appropriately, as dark energy (DE). This may be either
a constant nonzero vacuum energy density or a new
field [1]. In order to explain observations, it is only
necessary that an equation of state of the form P =
wEDE be valid, with the coefficient w being nega-
tive (in the first approximation, it is close to −1)—
that is, in contrast to ordinary gases, which have a
positive pressure, this substance must be in a state
of tension, as stretched elastic rubber (but stretched
isotropically—that is, uniformly in all directions of 3D
space!).

In the Friedman equation (2), one can immediately
take into account a nonzero vacuum energy density
(dark energy) by assuming that the energy density E
involves two components, E = Em + EDE, where the
first component is the energy density of matter, while
the second component is the vacuum (dark) energy
density.

In the simplest form, the inclusion of a constant
vacuum energy density is equivalent to supplement-
ing the Einstein equations with a cosmological con-
stant Λ. The vacuum energy behaves as an ideal liquid

whose density is given by

Evac =
c4Λ

8πGN
.

We arrive at P = −Evac, provided that the thermo-
dynamic identity d (Evac/ρ) − Pdρ/ρ2 = 0, where ρ
is the baryon-number density, holds. Thus, we have
w = −1. Below, we will not distinguish between Evac
and EDE, but, in general, w �= −1 for the case of dark
energy. Since the matter energy density and the ra-
diation energy density both decrease as the Universe
expands, the vacuum energy, if any, may appear to be
dominant in the dynamics of expansion.

The velocity of expansion is measured by the Hub-
ble parameter

H =
ȧ

a
.

The value of the Hubble parameter in the present era
is referred to as the Hubble constant H0 (it is constant
in space rather than in time in uniform models featur-
ing a synchronized time t [7]). Since H0 = (ȧ/a)now,
we can see that the constant k in the Friedmann
equation is positive or negative, depending on the
ratio

Ω ≡ E
ρcc2

, where ρc ≡
3H2

0

8πGN
.

If Ω > 1, then k = 1. At Ω = 1, 3D space is flat: k =
0; for Ω < 1, we have k = −1.

For matter (that is, for ordinary and dark matter
taken together), we will write Ωm ≡ Em/ρcc

2. For the
vacuum or dark energy, we introduce the notation
ΩΛ ≡ EDE/ρcc

2.
Astronomers also introduce the dimensionless de-

celeration parameter

q = −aä

ȧ2
,

which measures the rate at which the velocity of
expansion changes. For historical reasons, this pa-
rameter was defined with a minus sign, since it was
believed that deceleration was natural, but, according
to present-day data, q < 0; that is, ä > 0, and the
expansion of the Universe is accelerated.

It can be shown that the photon frequency satisfies
the relation

ωa(t) = const. (3)

The simplest way to derive this relation is to go over
to the conformal time η specified by the equation dη =
cdt/a(t) (see, for example, [5]).

The metric ds2 = c2dt2 − a(t)2d�2 is nonstatic,
but, written in terms of the time coordinate η, it as-
sumes the form ds2 = a(η)2(dη2 − d�2). The spatial
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part d�2 is independent of η, so that zero geodesic
lines are ds = 0—that is, light rays in the coordinates
η and � are identical for different initial instants ηe of
the emission of light signals, and all intervals ∆η be-
tween the signals are constant. This means that, if the
interval of the physical time between the instants of
emission of two light signals at one point is ∆te, then
the interval between the instants of reception, ∆tr,
varies in proportion to a, since dt ∝ a(t)dη, whence
we obtain Eq. (3).

A photon emitted with a frequency ω1 will be ob-
served with a lower frequency ω0 if the scale factor
grows:

ω0

ω1
=

a1

a0
.

In cosmology, the subscript “0” is always reserved for
the modern era, so that a1 is an earlier (and smaller)
value of the scale factor than a0. The redshift mea-
sured by astronomers is then given by

z =
λ0 − λ1

λ1
=

a0

a1
− 1.

It should be emphasized that this redshift does not
reduce to the conventional Doppler effect, although
relation (3) can sometimes be deduced, under some
assumptions, from the Doppler effect for close ob-
servers. The relative velocity of close observers (oc-
curring at a small distance of cδt) is v = Hcδt =
ȧcδt/a = cδa/a. According to the Doppler effect, we
then have

δω

ω
= −v

c
= −δa

a
,

whence we obtain Eq. (3) upon integration. This
derivation is given by Zeldovich and Novikov in [8],
but the following comments are in order here: first,
this derivation does not work in all of the cases where
the above derivation in terms of the conformal time η
from [5] is valid; second, it is hazardous to apply the
Doppler interpretation of the cosmological redshift z
at large distances. This issue was discussed in detail
by Harrison [7, 9], predominantly from the philosoph-
ical point of view. I will give more physical arguments.

Let us consider the closed Friedmann universe
(k = +1), and let t0 correspond to the instant of
largest expansion: ȧ(t0) = 0. Suppose that an ob-
server who measures redshifts has the coordinate
r = 0. In the first order in r, neighboring objects
are immobile; however, the velocity of recession of
objects at a distance cδt = a(t0)r is nonzero in the
second order, and calculations reveal that the Doppler
redshift is zDop = r2. At the same time, the correct
result according to Eq. (3) is z = r2/2. This distinc-
tion is explained trivially by the difference in the ex-
pressions for the velocity δv = ẍδt and the coordinate

δx = ẍ(δt)2/2. The correct answer arises only upon
supplementing the Doppler effect with the Einstein
effect of violet shift, zEin = δφ/c2 = −r2/2 (here, δφ
is the change of the gravitational potential between
the objects). We then have z = zDop + zEin = r2/2, in
which case the derivation of the cosmological redshift
according to [8] is inapplicable, this being indicated
there. In the general case of a variable density, the
Einstein shift effect cannot be singled out in a pure
form, so that the equations of photon propagation
must be solved directly [10].

Despite a strong temptation to attribute the cos-
mological redshift to the relative motion of an ob-
server and an emitter, this is possible at large dis-
tances only in a flat world. In a curved space, this can
be done only at the instant when an observer and an
emitter occur at the same point, moving relative to
each other. The problem is that, in a curved spacetime
one cannot transport a vector (the velocity of a far
object here) to the observation point: the result of
a parallel transportation depends on the path along
which this is done. By way of illustration, we take an
arbitrary vector at the emission time t1 at the point r1

and transport it parallelly toward an observer at t0 at
the point r0. In doing this, we fix the angular coor-
dinates θ and ϕ and compare two possible “natural”
paths of the transportation of this vector:

(i) that which first goes from r1 to r0 at constant
t = t1 and then from t = t1 to t0 at constant r = r0;

(ii) that which first goes from t1 to t0 at constant
r = r1 and then from r1 to r0 at constant t = t0.

It is clear that the results will be different for the
different paths in a curved spacetime, the difference
being proportional to the area within the contour
formed by these two paths (that is, it increases with
increasing difference of t1 and t0 and with increasing
difference of r1 and r0). It should be emphasized that
a nonempty 4D world is curved even if k = 0 and
3D space is flat! Therefore, the interpretation of the
redshift in terms of the Doppler effect loses physical
meaning at cosmological distances, since the concept
of a relative velocity becomes meaningless. (Davis
and Lineweaver [11] discussed the inapplicability of
the formulas of the special theory of relativity in what
is concerned with the Doppler effect in cosmology, but
they did not even touch upon a greater danger—the
fact that the concept of a relative velocity loses phys-
ical meaning.) It is safe to say that, owing to the re-
lation ωa(t) = const, the redshift is a geometric effect
of the expansion of the Universe, but it is illegitimate
to associate the change in the photon frequency with
the relative velocity of the objects being considered.
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3. PHOTOMETRIC DISTANCE

The redshift can be measured: if we know the
laboratory wavelengths of various spectral lines in
the spectra of distant objects, we can say how their
wavelengths changed from the emission instant t1 to
the observation instant t0. From here and from (3),
we know the ratio of the scale factors at these two
instants:

a(t0)
a(t1)

= 1 + z.

How can we measure distances?
We can introduce a formal definition of a proper

distance:

d(t) = a(t)r; (4)

it would be measured (at k = 0) at the coordinate-
time instant t by a set of observers with rigid rulers
between the points having the radial coordinates 0
and r [10, 12]. (Recall that r is dimensionless!)

The definition of a comoving distance, dc = a(t)χ,
where χ is the Friedmann radial coordinate intro-
duced in Eq. (1) (see, for example, [13]), is of impor-
tance in theoretical cosmology.

We cannot measure directly the “distances” d and
dc to far objects in the expanding Universe with the
aid of rules or radio detection and ranging. Instead,
various definitions are introduced in cosmography
that depend on those measurements that can actu-
ally be performed (for example, the angular distance
determined by measuring the transverse angular size
of a standard ruler). Details are nicely explained by
Weinberg [12]. I also follow the text of Carroll [14],
but I would like to emphasize that it is not easy to
find, in standard textbooks, a complete derivation of
a formula that would relate distances to cosmological
parameters. Therefore, I give such a derivation in the
present article.

The so-called photometric distance

dL =
(

L

4πS

)1/2

,

where L is the absolute luminosity (light power) of
a source and S is the flux measured by an observer
(energy arriving within a unit time per unit area of the
receiver), is the most valuable for us. This definition
corresponds to the statement that, in flat space, the
flux at distance d from the source is S = L/(4πd2). In
the Friedmann universe, however, it would be incor-
rect to substitute here naively d = a0r from (4), where
a0 is the scale factor at the instant when photons were
observed at the comoving coordinate r measured from
the source.

The point is that the flux decreases because of two
effects: individual photons undergo a phase shift by

the factor (1 + z), and the frequency of photon arrival
also decreases by the factor (1 + z). Therefore, we
have

S =
L

4πa2
0r

2(1 + z)2

or

dL = a0r(1 + z) = d(t0)(1 + z). (5)

The photometric distance dL is a quantity acces-
sible to measurement if we have at our disposal an
astrophysical source whose absolute luminosity L is
known (cosmological standard candle). But r is not
observable, so that it is necessary to get rid of it. On
the zero geodesic line where dθ = dϕ = 0, we have

0 = ds2 = c2dt2 − a2

1 − kr2
1

dr2
1

or
t0∫

t1

cdt

a(t)
=

r∫
0

dr1

(1 − kr2
1)1/2

.

We now make the transformations
t0∫

t1

dt

a(t)
=

a0∫
a1

dt

da

da

a
= −

1∫
a0/a1

a

a0

dt

da
d

(a0

a

)

=

a0/a1∫
1

a

a0

dt

da
d

(a0

a

)
,

whence we obtain

a0

r∫
0

dr1

(1 − kr2
1)1/2

= c

z+1∫
1

d(z1 + 1)
H

= c

z∫
0

dz1

H
,

so that everything has reduced to observables like
1/H (equal a/ȧ), z (with the aid of the relation
a0/a1 = z + 1), and so on. In this way, we can get
rid of r in the expression for dL by expressing r in
terms of the elementary integral

∫ r
0 (1 − kr2

1)
−1/2dr1

and
∫ z
0 dz1/H .

In order to do this, we make use of the Fried-
man equation, taking simultaneously into account
the possibility of a nonzero vacuum energy.

We write the Friedmann equation (2) in the form

H2 =
8πGNE

3c2
− kc2

a2
,

which is equivalent to

H2 = H2
0 [Ωm(1 + z)3 + ΩΛ

+ (1 − Ωm − ΩΛ)(1 + z)2],
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where Ωm = Em/ρcc
2 and ΩΛ = EDE/ρcc

2 are the pa-
rameters that were introduced above to characterize,
respectively, the density of nonrelativistic matter [its
density Em varies in proportion to (1 + z)3 in accor-
dance with the variation of the comoving volume] and
the vacuum-energy density (this density is constant
in the simplest case of the Λ term). Substituting
H into the expression

∫ z
0 dz1/H and expressing r

in terms of
∫ r
0 (1 − kr2

1)
−1/2dr1 only for the case of

k = −1 (the cases of other k values are obtained
automatically by means of an analytic continuation),
we arrive at the required formula for the photometric
distance:

dL =
c

H0
(1 + z)

1√
Ωk

sinh

{√
Ωk

z∫
0

[
Ωm(1 + z)3

+ ΩΛ + Ωk(1 + z)2
]−1/2

dz

}
.

Here, Ωk ≡ 1 − Ωm − ΩΛ; for Ωk < 0, the hyperbolic
sine (sinh) goes over to the trigonometric sine (sin),
while

√
Ωk goes over to

√
|Ωk|. For Ωk → 0, the

limit can easily be evaluated, sinh disappearing from
the expression for dL, where there only remains the
integral

∫ z
0 [. . .]−1/2dz.

The dependence dL(z) can now be expressed in
terms of cosmological parameters. We can see from
Eq. (5) that dL is very simply related both to d from
Eq. (4) and to the Friedmann radial coordinate χ from
Eq. (1).

For some important particular cases, we can write
simple analytic expressions for the proper distance
d = d(z), which, according to Eq. (5), differs from
dL only by the factor (1 + z). By way of example,
we indicate that, for the vacuum-dominated de Sitter
universe (ΩΛ = 1, Ωm = 0), the result is

H0d = cz.

For an empty universe (ΩΛ = 0, Ωm = 0), we have

H0d =
c

2

[
(1 + z) − 1

1 + z

]
.

In the case of a flat (parabolic) Friedmann universe
(ΩΛ = 0), Ωm = 1:

H0d = 2c
(

1 − 1√
1 + z

)
.

In all of the above cases, these formulas reduce to
the Hubble law H0d = cz at small z, but they differ
significantly at large value of the redshift z.

Intermediate values of ΩΛ ≈ 0.7 and Ωm ≈ 0.3
correspond to the modern standard model of the Uni-
verse (“concordance model”). These values were first

obtained from observations of distant supernovae. We
will now proceed to consider these extremely interest-
ing objects.

4. SUPERNOVAE OF VARIOUS TYPES

Supernovae (Supernova = SN, Supernovae =
SNe) are explosive bursts of stars whose luminosity
(that is, radiation power) is L ∼ 1010L� or higher
for a few weeks. Here, L� ≈ 4 × 1033 erg/s is the
luminosity of the Sun—that is, one supernova devel-
ops, within some time interval, the same light power
as a mean galaxy consisting of billions of stars. It is
this power that makes it possible to use supernovae
in cosmography. A larger part of the star mass is
disintegrated and ejected. Supernovae are among
the strongest explosions in the Universe: the ejected
kinetic energy is E ∼ 1051 erg.

The energy of an explosion is estimated as follows.
From the widths of spectral lines, it can be found
that the speed in the atmosphere is v ∼ 104 km/s
or higher. On the basis of a simulation of the light
curves—that is, the dependences L(t)—the mass Mej
is estimated at about 1M� to a few tens of M�.

From here, one obtains estimates for the kinetic
energy of supernova ejection for all types of supernova
outbursts [the Ia, Ib/c, and II types are introduced
in accordance with the special features of respective
spectra (for details, see below)]: on average, E ∼
1051 erg ≡ 1FOE [10 raised to the power of 51 or
Fifty-One Ergs (FOE)], although there occur devi-
ations of an order of magnitude above and below this
value. Within a few ten thousand years, this energy
dissipates in the circumstellar medium, heating it
and generating x rays and cosmic rays—that is, it
generates a gaseous remnant of a supernova.

The aforementioned ejecta enrich the medium in
heavy elements. Shock waves gather the circumstel-
lar medium into dense clouds, and this leads to the
formation of young stars. The history of investigations
devoted to supernovae is outlined in the monograph of
Shklovsky [15] and in the review articles [16, 17].

Owing to the use of state-of-the-art astrophysical
methods, a vast body of observational data on super-
novae has been obtained over all ranges of electro-
magnetic radiation—from the radio-wave to the x-ray
range. Also, the first nonelectromagnetic signals—
neutrinos from the SN 1987А—have been recorded.
Despite all this, the mechanisms of supernova ex-
plosions have yet to be clarified conclusively. In re-
cent years, there have appeared indications that some
cosmic gamma-ray bursts are related to supernovae.
Possibly, the origin of gamma-ray bursts is also re-
lated to the origin of supernova explosions.
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Cosmic gamma-ray bursts are irregular pulses of
photons whose energies range between about 0.1 and
1 MeV or take even higher values, the pulse duration
being a few tenths of a second to a few minutes.
The exposure corresponding to the weakest of such
pulses is S ∼ 10−7 erg/cm2 ∼1 photon/cm2, but
many of them are much stronger. Gamma-ray bursts
are surveyed in [18, 19]. However, any surveys are
always behind the latest advances in the vigorously
developing science that explores powerful explosions
in the Universe, this especially concerning the most
recent discoveries in the realms of gamma-ray bursts.

Theory proposes various explanations for the ori-
gin of the supernova energy and seeks mechanisms
underlying supernova explosions. In thermonuclear
scenarios, an explosion begins because of the devel-
opment of a thermal instability in the degenerate stel-
lar core upon the ignition a carbon–oxygen mixture
(helium in some scenarios).

The gravitational collapse of a star into a neutron
star or a black hole—this seems a more efficient
mechanism of a star explosion—was described long
ago. Theoretically, the energy released in this case
may be an order of magnitude higher than the ther-
monuclear energy—specifically, it must be about 10%
of the star-core mass. For a core of mass 1M�, this
energy is about 1053 erg; for a more massive core, it
is naturally still higher. But in the case of supernova
explosions, the bulk of energy is carried away by
the neutrino flux. In gamma-ray bursts, gamma-ray
photons alone carry up to about 1054 erg! This value
is obtained from the observed flux S by the formula
Egamma-ray burst = 4πSd2

L, where dL is the photomet-
ric distance to the gamma-ray burst under study. It is
of course clear that, in this formula, the flux S must
be multiplied by some small solid angle rather than by
4π. The energy will then be lower, but it is necessary
to reveal concurrently the reasons behind the release
of energy in the form of a narrow beam or jet within
this small angle. Possibly, the asymmetry of explo-
sions is related to some phenomena in supernovae.

The traditional astronomical classification par-
titions supernovae into two classes: type-I (SN I,
whose spectrum does not contain hydrogen lines in
the vicinity of the maximum light) and type-II (SN II,
whose spectrum features hydrogen lines there) super-
novae. Later, this classification was refined. The first
class was divided into subclasses: SN Ia and SN Ib/c.
The spectra of SN Ib/c in the vicinity of the maximum
light do not exhibit a silicon line, which is pronounced
in SN Ia. The spectra of SN Ia and SN Ib/c show the
most glaring distinctions within a late era, t � 250
days after the explosion, where the spectra of SN Ia
are formed largely by the lines of ionized iron, while
the spectra of SN Ib/c are dominated by an extremely

powerful emission from oxygen. Nonthermal radia-
tion from SN Ib/c was discovered, and these objects
are likely to be correlated with the regions of active
star formation. In all probability, these supernovae
explode through the collapse of cores of massive stars
(in just the same way as SN II), whereas SN Ia are
thermonuclear explosions of white dwarfs in binary
systems that have lost hydrogen by the instant of the
explosion (no neutron stars or black holes arise in this
case). Thus, the classical astronomical classification
of supernovae does not take fully into account the
special features of the mechanism governing the
explosion, which occurs in the interior of the star—
it is more adequate to the structure of the outer layers
of a supernova.

The SN II phenomenon can arise at the end of
the lifetime of a single massive star that preserved
hydrogen in its envelope. The outbursts of SN Ib/c
can occur in the collapse of the core of a single mas-
sive star that lost hydrogen. If the SN Ic subtype can
actually be distinguished from SN Ib, this means that
SN Ic massive presupernovae lost not only hydrogen
but also helium. In SN Ia, approximately half the
ejected mass is due to elements of the iron peak,
while, in SN Ib/c, the bulk of these elements went into
the collapse. Therefore, SN Ib/c ejection is dominated
by elements like oxygen, whereby the distinction be-
tween the spectra of supernovae belonging to different
types is explained.

The affiliation of a star with a binary system plays a
crucial role in the evolution of type Ia presupernovae.
Binarity effects seem responsible for the properties
of some peculiar type II supernovae as well. The
possibility of a gamma-ray burst in a binary system
leads to interesting effects—this is one of the possible
models for the afterglow of a gamma-ray burst [20].
Moreover, the idea that gamma-ray bursts can be
generated at cosmological distances in the merger of
a neutron-star binary was put forth long ago [21].

5. TYPE Ia SUPERNOVAE:
STANDARDIZATION OF A CANDLE

Owing to a number of factors, type Ia supernovae
(SN Ia) are convenient for measuring distances and
for determining the geometry of the Universe. First,
these are very bright objects, so that we can obtain
rich information about them even if they explode in
very distant galaxies characterized by large redshifts
z. Second, the spectra of SN Ia and the shapes of their
light curves seem to suggest, at first glance, that they
form quite a uniform class. Formerly, it was assumed
that they are cosmological standard candles in the
sense that the maxima of the absolute luminosity are
identical for different SN Ia.
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However, this is not so! A closer inspection of
SN Ia revealed distinctions within this class of ob-
jects.

Long ago, Pskovskiı̆ showed [22] that the flux
maxima in the SN I spectra are not identical, and his
colleagues revealed clear-cut distinctions even within
the subclass of thermonuclear SN Ia [23].

Pskovskiı̆ [22] also found the interplay between the
maximum luminosity of SN Ia and the rate of the sub-
sequent weakening of flux. The flux of more powerful
bursts decreases more slowly than the flux of their less
powerful counterparts. Later on, this dependence was
vigorously studied by many astronomers interested in
SN Ia—especially meticulous studies on the subject
were performed by Phillips and his colleagues [24,
25] on the basis of observations of close supernovae
characterized by moderately small z.

When astronomers discover a supernova char-
acterized by a large redshift z, they determine the
rate of the decrease in its flux after the maximum;
only after the application of the Pskovskiı̆–Phillips
dependence, which provides the only way to perform
the “standardization of a candle”, can one estimate
the luminosity of the supernova and, hence, the pho-
tometric distance dL to it. However, the Pskovskiı̆–
Phillips dependence is of a correlation rather than a
functional character; therefore, each individual mea-
surement may involve large errors.

An unexpected result was obtained in the studies
of two groups [26, 27]: from observational data on
distant supernovae, it follows quite reliably that ΩΛ >
0; that is, the expansion of the Universe accelerates.

A vast body of observational data has been accu-
mulated since then. The table presents the cosmo-
logical parameters obtained in one of the recent stud-
ies [28] on SN Ia. The authors of [28] show that the
observed distribution of dL(z) can be explained only
by assuming a nonzero vacuum energy or a rather
artificial systematic effect: the emergence of dust in
a recent era.

It should be noted that, in all of the studies
devoted to high-z supernovae, use was made of
relations of the Pskovskiı̆–Phillips type (maximum
luminosity–rate of the decrease in flux relation),
which were obtained from an analysis of close objects.
But even for close SN Ia, deviations from such depen-
dences for individual objects cannot be explained by
the errors of the observations exclusively.

From the theoretical point of view, the flux de-
creases more slowly with increasing maximum lumi-
nosity because both these quantities are controlled
primarily by the amount of 56Ni formed in the ex-
plosion. The maximum of the luminosity of SN Ia
is determined by the amount of 56Ni since the light
curve is formed predominantly by the contribution

Values of χ2 in comparing data on 157 SN Ia with various
models

Model χ2

Ωm = 0.27, ΩΛ = 0.73 171

Ωm = 1.00, ΩΛ = 0.00 497

Ωm = 0.00, ΩΛ = 0.00 196

Gray dust (at Ωm = 1.00, ΩΛ = 0.00) 293

Recent dust (at Ωm = 1.00, ΩΛ = 0.00) 168

Weakening in proportion to z
(at Ωm = 1.00, ΩΛ = 0.00) 241

of its radioactive decay. On the other hand, a large
amount of nickel is expected to increase the nontrans-
parency of matter greatly. The diffusion of radiation
through a stellar medium takes a longer time, and the
light curve becomes more gently sloping. However,
the decrease on the light curve depends not only on
the amount of nickel but also on its distribution (and
on the distribution of other heavy elements as well)
within the expanding star and on the velocity of the
expansion of matter. In turn, this distribution and this
velocity depend on how burning propagated through
the star.

The theory of burning in supernovae has actively
developed since the studies of Arnett [29], Ivanova
et al. [30], and Nomoto et al. [31], but many problems
in it have yet to be solved (see, for example, [32, 33]).

A great number of models have been proposed
to describe the explosion of SN Ia characterized by
various masses, various regimes of burning (det-
onation, deflagration, and various combinations of
these mechanisms), various energies of the explosion,
and various velocities of matter expansion. In these
theoretical models, chemical elements originate from
burning in markedly different proportions, their dis-
tributions over the star also being different. This leads
to different theoretical light curves. By comparing the
resulting light curves with their observed counter-
parts, one can find out which explosion models are
more realistic.

By considering the possibility of employing SN Ia
in cosmology, it was concluded in [34] that, at the
present time, the statistics of distant supernovae are
insufficient for drawing definitive conclusions on the
geometry of the Universe. Terrestrial experiments re-
vealed that the regime of burning in an explosion can-
not always be predicted in advance. For supernovae,
the situation is similar: it is quite feasible that the
distinction between initial conditions only changes
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the probabilities of various scenarios of burning, but
that this does not pinpoint a specific scenario. Since
the regime of burning affects strongly the shape of
the light curve, the rate of the decrease cannot be
reliably predicted if only initial conditions are known.
The probability of one value of the rate of the de-
crease in flux or another—recall that this quantity
plays a significant role in determining cosmological
parameters—can be established only upon collecting
sufficiently vast observational statistics of SN Ia at
various values of z.

Upon an increase in statistics, it would be possible
to reveal subtler effects—in particular, to answer the
question of whether the dark-energy density is con-
stant and to establish the relevant equation of state.
For example, there are even presently attempts [35]
at extracting, from observations of SN Ia, the z de-
pendence of the coefficient w in the equation P =
wEDE. These attempts are as yet premature, since
they take no account of the fact that the properties of
supernovae themselves or the regimes of burning in
them and their light curves can evolve with the age
of the Universe. Moreover, there are also problems
in the very procedure for extracting the dependence
w = w(z) from observations (see, for example, the
article of Jonsson et al. [36], who criticize the re-
sults reported in [35]). In addition, it should be noted
that no significant evolution of dark energy can be
revealed [37] by combining data on supernovae with
data on cosmic microwave background radiation and
x-ray radiation from galaxy clusters.

6. CORE-COLLAPSE SUPERNOVAE

Let us now briefly touch upon the as-yet-unresolved
problem of explaining the explosion in the core col-
lapse and indicate what may be here in common with
the problem of gamma-ray bursts.

At the end of the lifetime of massive stars, a core
collapse must develop upon the depletion of the nu-
clear fuel.

As far back as the 1930s, Baade and Zwicky [38]
put forth the idea that there is a relationship between
supernovae outbursts and the formation of neutron
stars; however, the quantitative theory of the ex-
plosion mechanism in the collapse is still far from
completion. From a simple estimate of the gravita-
tional energy Eg = −GN

∫
mdm/r ∼ −GNM2/R, it

follows that an energy of about |Eg| ∼ 1053 erg is re-
leased in the formation of a neutron star of mass M ≈
1M� and radius R ≈ 106 cm. However, this energy
is released predominantly in the form of neutrinos
rather than in the form of cosmic rays or photons,
as was hypothesized by Baade and Zwicky. It is not
easy to estimate the energy that is transferred to the
envelope around the emerging neutron star and which

is responsible for a supernova outburst. Even detailed
computer calculations yield contradictory results be-
cause of uncertainties in the equation of state for
superdense matter, in the rates of weak-interaction
reactions, and in the fundamental properties of the
neutrinos (for example, their oscillations), as well as
because of difficulties in describing neutrino transport
and because of the emergence of convection.

If, in the main sequence, a star had a mass in the
range 8M� � M � 20M�, then, at the end of its evo-
lution, there arises a partly degenerate core of mass
close to the Chandrasekhar limit. At the same time,
the density becomes so high (109−1010 g/cm3) that,
owing to a large chemical potential (Fermi energy) of
electrons, the neutronization reactions

e− + (A,Z) → (A,Z − 1) + νe (6)

begin to proceed actively even at zero temperature.
As a matter of fact, the temperature at these stages
reaches of few tens of kiloelectronvolts, this enhanc-
ing electron-capture reactions. Since electrons are
relativistic at such densities, the adiabatic exponent
is close to the critical value of 4/3. With increas-
ing density, the number of electrons per baryon, Ye,
decreases, and the pressure begins, at some instant,
growing more slowly than in proportion to ρ4/3; this
means that the gravitational force grows faster than
the pressure force, with the result that a catastrophic
compression (collapse) develops [16]. At the initial
mass of a star in the region M > 20M�, the mass
and temperature are substantially higher, and a col-
lapse begins owing to the photon-induced splitting
of nuclei. At a still higher mass, M � 60M�, the
production of e+e− pairs begins contributing to the
reduction of the elasticity of matter and to the loss
of stability. It should be borne in mind that the above
mass values are very rough because the modern the-
ory takes very roughly into account a number of im-
portant phenomena, including a continuous loss of
star mass, the rotation of stars, and the fact that they
form binary systems.

As the collapse reaches the dynamical stage, the
central regions of the star are compressed, within a
hydrodynamic time of thyd ∼ (GNρ)−1/2, which is a
few tenths of a second, to nuclear-matter densities.
Within so short a time, photon diffusion and the elec-
tron thermal conductivity are unable to remove heat
efficiently; therefore, temperature grows almost adia-
batically at first. The majority of the nucleons remain
bound in nuclei up to densities at which nuclei begin
touching one another. Only at such densities does
the elasticity of matter increase sharply, and there can
occur the termination of the collapse if the mass does
not exceed some limit. The reverse motion (bounce)
of matter generates a shock wave at a distance of
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about 50 km from the center, and this shock wave
heats matter strongly. There then appear many free
nucleons (because of the disintegration of nuclei). As
a result, processes like

e− + p → n + νe, (7)

e+ + n → p + ν̄e, (8)

and the annihilation of electron–positron pairs into
neutrionos,

e− + e+ → ν + ν̄ (9)

(this is one the most important processes at later
stages of the evolution of massive stars), come into
play.

An order of magnitude estimate of weak-interaction
cross sections is σ ∼ G̃2

FE2, where E is the charac-

teristic energy of a given process and G̃F = GF/(�c)3,
with GF being the Fermi constant. If one measures
the particle energy in megaelectronvolts, it is con-
venient to write G̃2

F = 5.3 × 10−44 cm2/MeV2. At
temperatures of a few tens of MeV, which are attained
in the case of collapse, an estimate of the cross section
shows that neutrinos are vigorously produced, and
it seems that they can readily transfer energy to the
envelope. In the formation of a neutron star, neutrinos
carry away more than 1053 erg—that is, about 10%
of the mass of the Sun! If one percent of this energy
were captured by the envelope of a star, the problem of
the core-collapse mechanism of supernova explosion
would be solved.

From the estimate of σ, it can be seen that, at den-
sities above a value of about 1012 g/cm3, the neutrino
mean free path is indeed short—it may become five to
six orders of magnitude smaller than the dimensions
of a hot neutron star. In deep layers, the mean free
path is determined primarily by the reactions that are
inverse to the processes in (7) and (8). In the vicinity
of the neutrinosphere and above it, coherent neu-
trino scattering on surviving nuclei is more important.
Because of short mean free paths, neutrinos diffuse
slowly, lose energy, and cannot eject its envelope.

For heating and ejecting outer layers of a collaps-
ing stellar core, the process

ν + ν̄ → e− + e+ → γ,

which is inverse to that in (9), may also be of im-
portance. Neutrino–antineutrino pairs of all neutrino
flavors must be copiously produced in the collapse.
The detailed neutrino spectra were first calculated
by Nadyozhin [39]. Unfortunately, the neutrinos are
overly soft for this process to be of importance for
supernovae. But if hard neutrinos escape into a vac-
uum, it can produce many photons there! In fact, the

process νν̄ → e− + e+ was proposed by Berezinskii
and Prilutskii [40] for explaining gamma-ray bursts
before the commencement of its applications in the
physics of supernovae.

7. ASYMMETRY OF THE EXPLOSION

Since spherically symmetric model calculations
of collapsing presupernovae have not yet provided
a successful pattern of explosions, it is necessary
to seek mechanisms that do not feature symmetry.
These mechanisms may be operative in gamma-ray
bursts as well. If they produce a radiation flux into
a solid angle Ω, the requirements on the energy of
gamma-ray bursts are relaxed by the factor Ω/(4π).
Observations have given many indications that su-
pernova explosions are asymmetric:

(i) Radiation from collapsing supernovae is polar-
ized to a considerable extent. The degree of this polar-
ization grows with decreasing mass of the hydrogen
envelope, reaching a maximum for SN Ib/c, which are
deprived of hydrogen. A spectacular example is pro-
vided by a record polarization of the type Ic SN 1997X
(in all probability, such supernovae are deprived of not
only the hydrogen but also the helium envelope, and
this means that the ejected mass must be especially
small and that the asymmetry of the explosion must
be the most pronounced in such objects).

(ii) In many cases (maybe even always), the ex-
plosion of a collapsing supernova is followed by the
formation of a neutron star (known examples are pro-
vided by pulsars in the Crab nebula and in the Vela
remnant). Many radio pulsars are observed to have
velocities of up to 1000 km/s. A high momentum cor-
responding to such velocities is possibly associated
with an asymmetry of the respective explosion.

(iii) Observations of SN 1987A revealed that
(a) in the course of the explosion, radioactive mat-

ter was very fast transferred to outer layers (also, a
considerable mixing of 56Ni is required for explaining
the SN 1987A light curves);

(b) the infrared lines of oxygen, iron, nickel, and
hydrogen exhibit a considerable asymmetry of the
profiles;

(c) light was polarized;
(d) photographs from the Hubble cosmic telescope

show a manifest asymmetry of ejecta, and the Chan-
dra x-ray observatory recorded jets.

(iv) In the vicinity of the young remnant of the
supernova ∼1680 Cassiopeia А (Cas A), there are
quickly moving lumps of matter rich in oxygen beyond
the main envelope of the remnant (maybe, there are
also two oppositely directed jets).
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Three-dimensional images of the Cas A remnant
show that the flocculent distribution of calcium, sul-
fur, and oxygen is not symmetric in the direction to-
ward an observer. No simple spherical envelopes can
be seen. This and other remnants have a systematic
velocity of up to 900 km/s with respect to a local
circumstellar medium. All of these asymmetries are
expected to be associated with asymmetric flows of
type Ib/c presupernovae leading to explosions that
produce remnants like Cas A—that is, stars of the
Wolf–Rayet type.

The latest x-ray observations of Cas A from the
Chandra satellite show that ejected lumps rich in iron
are farther from the center than layers rich in silicon.

(v) X-ray observations of ROSAT revealed lumps
(“bullets”) beyond the main envelope of the Vela rem-
nant, radio-wave-emitting shock waves associated
with them being indicative of a high speed of ejection
of these lumps in a supernove explosion.

7.1. Mechanisms of the Asymmetry of a Collapse

Searches for the mechanism of a supernova ex-
plosion in the collapse of the stellar core have been
a challenge for the theory for several decades. I would
like to indicate three possible ways of an explosion:

(i) explosion under the effect of a neutrino flux,
(ii) magnetorotational mechanism of a supernova

outburst (see [41] and § 36 in [42]; see also [43] for the
latest results on the subject),

(iii) merger and explosions of neutron stars.
All of these mechanisms involve asymmetry in

some degree and have some bearing on the generation
of gamma-ray bursts. We will briefly dwell upon the
last idea exclusively.

7.2. Exploding Neutron Stars in Binary Systems

For a neutron-star binary (NS + NS), an evolu-
tion scenario that leads to the explosion of one of the
components and to a possible gamma-ray burst was
proposed in [21]. The evolution of such a binary sys-
tem is determined by gravitational radiation, which
leads to the merger of the components. A similar
process of the merger of white dwarfs may be one of
the possible ways toward the explosion of SN Ia. It is
then natural to address the question of how frequently
such events may occur in the Milky Way Galaxy.
This question was explored in [44], and it was shown
there that the frequency of the (NS + NS) mergers
of neutron-star binaries, RNS, is approximately equal
to unity per about 3000 years if there is no recoil in
the formation of neutron stars. This frequency falls
to unity per about 10 000 years at a recoil velocity of
400 km/s.

The evolution of a neutron-star binary has not yet
been calculated in detail. In just the same way as in
some models of gamma-ray bursts, there can occur a
direct merger involving the formation of a black hole
and jets induced by the accretion disk. An alternative
possibility was considered in [21]. When the major
half-axis a of the orbit of a binary star becomes signif-
icantly smaller than its initial value, the less massive
component (whose radius is larger) will fill its Roche
lobe. This may lead to a significant flow to a massive
satellite [21]. A neutron star of mass satisfying the
condition M < Mcr 
 0.1M� is dynamically unsta-
ble. Therefore, the low-mass satellite must explode at
some stage. A numerical simulation revealed that the
explosion results in an energy release of Ekin 
 8.8 ×
1050 erg (∼4.8 MeV/nucleon). Upon taking into ac-
count more accurately physical processes accompa-
nying the explosion, this value becomes somewhat
smaller—neutrino carry away a considerable part of
the energy.

If, at the center of a quickly rotating collaps-
ing presupernova, a neutron-star binary is formed
(owing to the disintegration of the core), this must
lead to an asymmetric explosion, which may serve
as a trigger for a full-scale supernova explosion and
to a strong mixing. This scenario was proposed by
Imshennik [45]. It should be noted that, in contrast
to what we have in the magnetorotational mecha-
nism [42, 43], the magnetic field does not play a
crucial role in the scenario considered in [45]. If the
stability of flow is lost prior to reaching the minimum
mass, there occurs the merger of neutron stars, in
which case the energy is released predominantly in
the form of neutrinos. Concurrently, there can occur
jet formation [46]. In any case, the explosion is asym-
metric.

7.3. Prospects of Verifying the Mechanisms
of the Explosion of Collapsing Supernovae

and Possible Relation to Gamma-Ray Bursts

Per average galaxy, the outbursts of core-collapse
supernovae are severalfold more frequent than the
outbursts of thermonuclear supernovae; however, the
understanding of the former has not yet reached the
level of understanding of the latter. The reasons for
this are the following: the physics of matter at densi-
ties in excess of the nuclear-matter density is more
uncertain, it is necessary to take into account all
interactions (including relativistic gravity) at such
densities, hydrodynamic flows are multidimensional
in a collapse, and so on.

We will briefly indicate the main difficulties for em-
ploying the aforementioned promising mechanisms of
the explosion of core-collapse supernovae.
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(i) An explosion under the effect of neutrino radi-
ation in a collapse requires developing an elaborate
formalism that would describe neutrino transport in
a three-dimensional convective flow for all neutrino
flavors. It is necessary to take into account rotation
and magnetic fields; possibly, it is also necessary to
allow for the emission of gravitational waves. For an
overview of the current state of this sector of super-
novae theory, the interested reader is referred to [47],
for example.

(ii) At the present time, the magnetorotational
mechanism of a supernova outburst [41, 43] is the
most successful. Here, the theory takes fully into
account rotation and magnetic fields, which form the
basis of the mechanism; however, other physics—
for example, neutrino transport—has so far been de-
scribed quite roughly. An insufficiently fast rotation of
the cores of the majority of stars may be one of the
difficulties in this model [48]—there is still no clarity
in this issue.

(iii) Imshennik’s mechanism [45, 49] also depends
on the value of the angular momentum of central
star regions before the collapse, and the emerging
neutron star cannot disintegrate if this value is overly
small. Here, there has remained one more as-yet-
unexplored issue. The merger of a neutron-star bi-
nary [21] must inevitably proceed under the effect of
gravitational radiation (we know this from observa-
tions of binary pulsars in the Milky Way Galaxy), but
it is unclear at the present time whether the same
radiation of gravitational waves (which efficiently car-
ries away the angular momentum) may in princi-
ple cause the disintegration of a hot neutron proto-
star [50].

Per average galaxy, the frequency of gamma-ray
bursts is two or three orders of magnitude less than
the frequency of supernova outbursts; however, we
cannot rule out the possibility that gamma-ray bursts
accompany the collapse of massive stars if some spe-
cial, quite exotic, conditions hold simultaneously (see,
for example, [51, 52]). Since the mechanism of su-
pernova explosion in the collapse has yet to be clar-
ified, the theory of gamma-ray burst has to overcome
more significant difficulties. We cannot rule out the
possibility that the exoticism in a collapse does not
concern the prevalent conditions exclusively: possi-
bly, unknown exotic particles emerge under special
conditions of a collapse, and it is these exotic particles
that generate bursts [19]. If, for example, axion-like
particles whose decay involves photon emission off
the stellar core were formed in a collapse, then we
would observe a supernova outburst in the presence
of a massive envelope [53] or a powerful gamma-
ray burst in the rare case of the absence of an en-
velope [54]. Such particles cannot be “conventional”
hypothetical axions, since their properties must be

substantially different from the properties of the lat-
ter; however, the constraints that were obtained from
astrophysical data [55] should be respected. There is
yet another exotic possibility, that which is associated
with the process involving the formation of quark
cores of neutron stars in a collapse. This process was
proposed long ago in [56] (for relevant references and
new ideas, see [57]).

In the near future, there will arise the possibility
of recording the spectra of neutrinos and gravita-
tional waves from star collapses. Together with ter-
restrial astronomical observations of supernovae and
gamma-ray bursts and their observations performed
beyond the atmosphere over all ranges of the electro-
magnetic spectrum, this will contribute to solving the
most challenging problems of modern astrophysics
and the physics of fundamental interactions.

8. CONCLUSION

I have tried to show how supernovae aid funda-
mental physics. On one hand, they demonstrate that
the properties of a cosmological vacuum are non-
trivial. On the other hand, problems associated with
explaining the mechanism of the explosion of core-
collapse supernovae require performing a thorough
analysis of the properties of matter at supernuclear
densities and taking into account effects of all known
interactions. Possibly, resort to new exotic particles is
also necessary here.
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