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ABSTRACT
In two recent papers, we developed a powerful technique to link the distribution of galaxies
to that of dark matter haloes by considering halo occupation numbers as a function of galaxy
luminosity and type. In this paper we use these distribution functions to populate dark matter
haloes in high-resolution N-body simulations of the standard �CDM cosmology with �m =
0.3, �� = 0.7 and σ 8 = 0.9. Stacking simulation boxes of 100 h−1 Mpc and 300 h−1 Mpc
with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z = 0.2
with a numerical resolution that guarantees completeness down to 0.01L∗. We use these mock
surveys to investigate various clustering statistics. The predicted two-dimensional correlation
function ξ (rp, π ) reveals clear signatures of redshift space distortions. The projected correlation
functions for galaxies with different luminosities and types, derived from ξ (rp, π ), match the
observations well on scales larger than ∼3 h−1 Mpc. On smaller scales, however, the model
overpredicts the clustering power by about a factor two. Modelling the ‘finger-of-God’ effect
on small scales reveals that the standard �CDM model predicts pairwise velocity dispersions
(PVD) that are ∼400 km s−1 too high at projected pair separations of ∼1 h−1 Mpc. A strong
velocity bias in massive haloes, with bvel ≡ σ gal/σ dm ∼ 0.6 (where σ gal and σ dm are the velocity
dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD
to the observed level, but does not help to resolve the overprediction of clustering power on
small scales. Consistent results can be obtained within the standard �CDM model only when
the average mass-to-light ratio of clusters is of the order of 1000 (M/L)� in the B-band.
Alternatively, as we show by a simple approximation, a �CDM model with σ 8 � 0.75 may
also reproduce the observational results. We discuss our results in light of the recent WMAP
results and the constraints on σ 8 obtained independently from other observations.

Key words: methods: statistical – galaxies: haloes – dark matter – large-scale structure of
Universe.

1 I N T RO D U C T I O N

The distribution of galaxies contains important information about
the large-scale structure of the matter distribution. On large, linear
scales the galaxy power spectrum is believed to be proportional to
the matter power spectrum, therewith providing useful information
regarding the initial conditions of structure formation, i.e. regarding
the power spectrum of primordial density fluctuations. On smaller,
non-linear scales the distribution and motion of galaxies is governed

�E-mail: xhyang@ustc.edu.cn (XY); hjmo@nova.astro.umass.edu (HJM)

by the local gravitational potential, which is cosmology-dependent.
One of the main goals of large galaxy redshift surveys is therefore
to map the distribution of galaxies as accurately as possible, over as
large a volume as possible. The Sloan Digital Sky Survey (SDSS;
York et al. 2000) and the 2 degree Field Galaxy Redshift Survey
(2dFGRS; Colless et al. 2001) are two of the prime examples. These
surveys, which are currently being completed, will greatly enhance
and improve our knowledge of large-scale structure and will become
the standard data sets against which to test our cosmological and
galaxy-formation models for the decade to come.

However, two effects complicate a straightforward interpretation
of the data. First of all, the distribution of galaxies is likely to be
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biased with respect to the underlying mass density distribution. This
bias is an imprint of various complicated physical processes related
to galaxy formation such as gas cooling, star formation, merging,
tidal stripping and heating, and a variety of feedback processes. In
fact, it is expected that the bias depends on scale, redshift, galaxy
type, galaxy luminosity, etc. (Kauffmann, Nusser & Steinmetz 1997;
Jing, Mo & Börner 1998; Somerville et al. 2001; van den Bosch,
Yang & Mo 2003a). Therefore, in order to translate the observed
clustering of galaxies into a measure for the clustering of (dark)
matter, one needs to either understand galaxy formation in detail,
or use an alternative method to describe the relationship between
galaxies and dark matter (haloes). One of the main goals of this paper
is to advocate one such method and to show its potential strength
for advancing our understanding of large-scale structure.

Secondly, because of the peculiar velocities of galaxies, the clus-
tering of galaxies observed in redshift space is distorted with re-
spect to the real-space clustering (e.g. Davis & Peebles 1983; Kaiser
1987; Regos & Geller 1991; Hamilton 1992; van de Weygaert & van
Kampen 1993). On small scales, the virialized motion of galaxies
within dark matter haloes smears out structure along the line-of-
sight (i.e. the so-called ‘finger-of-God’ effect). On large scales, co-
herent flows induced by the gravitational action of large-scale struc-
ture enhance structure along the line-of-sight. Both effects cause an
anisotropy in the two-dimensional, two-point correlation function
ξ (rp, π ), with rp and π the pair separations perpendicular and paral-
lel to the line-of-sight, respectively. The large-scale flows compress
the contours of ξ (rp, π ) in the π -direction by an amount that depends
on β ≡ �0.6

m /b. The small-scale peculiar motions imply that ξ (rp,
π ) is convolved in the π -direction by the distribution of pairwise
velocities, f (v12). Thus, the detailed structure of ξ (rp, π ) contains
information regarding the universal matter density �m, the (linear)
bias of galaxies b, and the pairwise velocity distribution f (v12).

From the above discussion it is obvious that understanding galaxy
bias is an integral part of understanding large-scale structure. One
way to address galaxy bias without a detailed theory of how galax-
ies form is to model halo occupation statistics. One simply specifies
halo occupation numbers, 〈N(M)〉, which describe how many galax-
ies on average occupy a halo of mass M. Many recent investigations
have used such halo occupation models to study various aspects
of galaxy clustering (Jing, Mo & Börner 1998; Peacock & Smith
2000; Seljak 2000; Scoccimarro et al. 2001; White 2001; Berlind
& Weinberg 2002; Bullock, Wechsler, & Somerville 2002; Jing,
Börner & Suto 2002; Kang et al. 2002; Marinoni & Hudson 2002;
Scranton 2002; Zheng et al. 2002; Kochanek et al. 2003). In two
recent papers, Yang, Mo & van den Bosch (2003, hereafter Paper I)
and van den Bosch et al. (2003a, hereafter Paper II) have taken this
halo occupation approach one step further by considering the occu-
pation as a function of galaxy luminosity and type. They introduced
the conditional luminosity function (hereafter CLF) 
(L | M) dL ,
which gives the number of galaxies with luminosities in the range
L ± dL/2 that reside in haloes of mass M. The advantage of this
CLF over the halo occupation function 〈N(M)〉 is that it allows one
to address the clustering properties of galaxies {as a function of
luminosity}. In addition, the CLF yields a direct link between the
halo mass function and the galaxy luminosity function, and allows
a straightforward computation of the average luminosity of galaxies
residing in a halo of given mass. Therefore, 
(L | M) is not only
constrained by the clustering properties of galaxies, as is the case
with 〈N(M)〉, but also by the observed luminosity functions (LFs)
and the halo mass-to-light ratios.

In Papers I and II we used the observed LFs and the luminosity-
and type-dependence of the galaxy two-point correlation function to

constrain the CLF in the standard �CDM cosmology. In this paper,
we use this CLF to populate dark matter haloes in high-resolution
N-body simulations. The ‘virtual universes’ thus obtained are used
to construct mock galaxy redshift surveys with volumes and appar-
ent magnitude limits similar to those in the 2dFGRS. This is the
first time that realistic mock surveys have been constructed that (i)
associate galaxies with dark matter haloes, (ii) are independent of a
model of how galaxies form, and (iii) automatically have the correct
galaxy abundances and correlation lengths as a function of galaxy
luminosity and type. In the past, mock galaxy redshift surveys were
constructed either by associating galaxies with dark matter particles
(rather than haloes) using a completely {ad hoc} bias scheme (Cole
et al. 1998), or by linking semi-analytical models for galaxy forma-
tion (with all their associated uncertainties) to the merger histories of
dark matter haloes derived from numerical simulations (Kauffmann
et al. 1999; Mathis et al. 2002).

We use our mock galaxy redshift survey to investigate a number
of statistical measures of the large-scale distribution of galaxies. In
particular, we focus on the two-point correlation function in red-
shift space, its distortions on small and large scales, and the galaxy
pairwise peculiar velocities. Where possible we compare our pre-
dictions with the 2dFGRS and we discuss the sensitivity of these
clustering statistics to several details regarding the halo occupation
statistics. We show that the halo occupation obtained analytically
can reliably be implemented in N-body simulations. We find that the
standard �CDM model, together with the halo occupation we have
obtained, can reproduce many of the observational results. However,
we find a significant discrepancy between the model predictions and
observations on small scales. We show that to get consistent results
on small scales, either the mass-to-light ratios for clusters of galax-
ies are significantly higher than normally assumed, or the linear
power spectrum has an amplitude that is significantly lower than its
‘concordance’ value.

This paper is organized as follows. In Section 2 we review the
CLF formalism developed in Papers I and II. Section 3 introduces
the N-body simulations and describes our method of populating
dark matter haloes in these simulations with galaxies of different
type and luminosity. Section 4 investigates several clustering statis-
tics in real space and focuses on the accuracy with which mock
galaxy distributions can be constructed using our CLF formalism.
In Section 5 we use these mock galaxy distributions to construct
mock galaxy redshift surveys that are comparable in size with the
2dFGRS. We extract the redshift-space two-point correlation func-
tion from this mock redshift survey, investigate its anisotropies in-
duced by the galaxy peculiar motions, and compare our results to
those obtained from the 2dFGRS by Hawkings et al. (2003). In
Section 6 we discuss possible ways to alleviate the discrepancy be-
tween model and observations on small scales, and we summarize
our results in Section 7.

2 T H E C O N D I T I O NA L
L U M I N O S I T Y F U N C T I O N

In Paper I we developed a formalism, based on the conditional lu-
minosity function 
(L | M), to link the distribution of galaxies to
that of dark matter haloes. We introduced a parametrized form for

(L | M) which we constrained using the LF and the correlation
lengths as a function of luminosity. In Paper II we extended this
formalism by constructing separate CLFs for early- and late-type
galaxies. In this paper we use these results to populate dark matter
haloes, obtained from large numerical simulations, with both early-
and late-type galaxies of different luminosities. For completeness,
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we briefly summarize here the main ingredients of the CLF formal-
ism, and refer the reader to Papers I and II for more details.

The conditional luminosity function is parametrized by a
Schechter function:


(L|M) dL = 
̃∗

L̃∗

(
L

L̃∗

)α̃

exp(−L/L̃∗) dL, (1)

where L̃∗ = L̃∗(M), α̃ = α̃(M) and 
̃∗ = 
̃∗(M) are all functions
of halo mass M.1 Following Papers I and II, we write the average
total mass-to-light ratio of a halo of mass M as〈
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which has four free parameters: a characteristic mass M1, for which
the mass-to-light ratio is equal to (M/L)0, and two slopes, γ 1 and
γ 2, that specify the behaviour of 〈M/L〉 at the low- and high-mass
ends, respectively. A similar parametrization is adopted for the char-
acteristic luminosity L̃∗(M):
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with

f (α̃) = �(α̃ + 2)

�(α̃ + 1, 1)
. (4)

Here �(x) is the gamma function and �(a, x) the incomplete gamma
function. This parametrization has two additional free parameters:
a characteristic mass M2 and a power-law slope γ 3. For α̃(M) we
adopt a simple linear function of log(M):

α̃(M) = α15 + η log(M15), (5)

with M15 the halo mass in units of 1015 h−1 M�, α15 = α̃(M15 = 1),
and η describes the change of the faint-end slope α̃ with halo mass.
Note that once α̃(M) and L̃∗(M) are given, the normalization of the
conditional LF, 
̃∗(M), is obtained through equations (1) and (2),
using the fact that the total (average) luminosity in a halo of mass
M is

〈L〉(M) =
∫ ∞

0


(L|M)L dL = 
̃∗ L̃∗�(α̃ + 2). (6)

Finally, we introduce the mass-scale Mmin below which we set the
CLF to zero; i.e. we assume that no stars form inside haloes with
M < M min. Motivated by reionization considerations (see Paper I
for details) we adopt M min = 109 h−1 M� throughout.

In order to split the galaxy population into early and late types,
we follow Paper II and introduce the function f late(L, M), which
specifies the fraction of galaxies with luminosity L in haloes of
mass M that are late type. The CLFs of late- and early-type galaxies
are then given by


late(L | M) dL = flate(L, M)
(L | M) dL (7)

and


early(L | M) dL = [1 − flate(L, M)] 
(L | M) dL. (8)

As with the CLF for the entire population of galaxies, 
late(L | M)
and 
early(L | M) are constrained by 2dFGRS measurements of the
LFs and the correlation lengths as a function of luminosity. We
assume that f late(L, M) has a quasi-separable form

flate(L, M) = g(L)h(M)q(L, M). (9)

1 Halo masses are defined as the masses within the radius r180 inside of
which the average overdensity is 180.

Here

q(L, M) =




1 if g(L)h(M) � 1
1

g(L)h(M)
if g(L)h(M) > 1

(10)

is to ensure that f late(L , M) � 1. We adopt

g(L) = 
̂late(L)


̂(L)

∫ ∞
0


(L | M)n(M) dM∫ ∞
0


(L | M)h(M)n(M) dM
(11)

where n(M) is the halo mass function (Sheth & Tormen 1999; Sheth,
Mo & Tormen 2001), 
̂late(L) and 
̂(L) correspond to the observed
LFs of the late-type and entire galaxy samples, respectively, and

h(M) = max

{
0, min

[
1,

(
log(M/Ma)

log(Mb/Ma)

)]}
(12)

with Ma and Mb two additional free parameters, defined as the
masses at which h(M) takes on the values 0 and 1, respectively.
As shown in Paper II, this parametrization allows the population of
galaxies to be split into early and late types such that their respective
LFs and clustering properties are well fitted.

In Papers I and II we presented a number of different CLFs for
different cosmologies and different assumptions regarding the free
parameters. In what follows we focus on the flat �CDM cosmology
with �m = 0.3, �� = 0.7 and h = H 0/(100 km s−1 Mpc−1) = 0.7
and with initial density fluctuations described by a scale-invariant
power spectrum with normalization σ 8 = 0.9. These cosmological
parameters are in good agreement with a wide range of observa-
tions, including the recent Wilkinson Microwave Anisotropy Probe
(WMAP) results (Spergel et al. 2003), and in what follows we refer
to it as the ‘concordance’ cosmology. Finally, we adopt the CLF with
the following parameters: M 1 = 1010.94 h−1 M�, M 2 = 1012.04 h−1

M�, Ma = 1017.26 h−1 M�, Mb = 1010.86 h−1 M�, (M/L)0 = 124 h
(M/L)�, γ 1 = 2.02, γ 2 = 0.30, γ 3 = 0.72, η = −0.22 and α15 =
−1.10. This model (referred to as model D in Paper II) yields ex-
cellent fits to the observed LFs and the observed correlation lengths
as a function of both luminosity and type.2

3 P O P U L AT I N G H A L O E S W I T H G A L A X I E S

3.1 Numerical simulations

The main goal of this paper is to use the CLF described in the previ-
ous section to construct mock galaxy redshift surveys, and to study
a number of statistical properties of these distributions that can be
compared with observations from existing or forthcoming redshift
surveys. The distribution of dark matter haloes is obtained from a
set of large N-body simulations (dark matter only). The set con-
sists of a total of six simulations with N = 5123 particles each, that

2 Note that the parameters listed here are slightly different from those given
in the original version of Paper II, as they are based on a corrected version of
the galaxy luminosity function. As shown in Paper I, a change in the overall
amplitude of the luminosity function in the fitting has some effect on the
best-fitting values of the correlation lengths. This is due to the combination
of the following two effects. First, our model assumes a fixed mass-to-light
ratio for massive haloes and so a change in the amplitude of the luminosity
function leads to a change in the relative number of galaxies in small/large
haloes. Second, although the correlation length as a function of luminosity
was used as input in our fitting of the conditional luminosity function, there
is some freedom for the ‘best-fitting’ values of the correlation lengths to
change in the fitting, because the error bars on the observed correlation
lengths are quite large.
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Figure 1. The left-hand panel plots the halo mass functions of the numerical simulations discussed in the text (histograms). The mass function with a low
mass cut at about 2 × 1011 h−1 M� corresponds to a simulation with L box = 300 h−1 Mpc, while the other corresponds to a L100 simulation with L box =
100 h−1 Mpc. The solid curve is the Sheth et al. (2001) mass function which is shown for comparison. Note the excellent agreement, both between the two
simulations and between the simulation results and the theoretical prediction. The right-hand panel plots the conditional probability distributions P(M | L) for
four different luminosities as indicated. L∗ = 1.1 × 1010 h−2 L� is the characteristic luminosity of the Schechter fit to the 2dFGRS LF of Madgwick et al.
(2002). Combining these conditional probability distributions with the halo mass functions shown in the left-hand panel gives an indication of the completeness
level that can be obtained with both the L100 and L300 simulations (see text).

have been carried out on the VPP5000 Fujitsu supercomputer of the
National Astronomical Observatory of Japan with the vectorized-
parallel P3M code (Jing & Suto 2002). Each simulation evolves the
distribution of the dark matter from an initial redshift of z = 72
down to z = 0 in a �CDM ‘concordance’ cosmology. All simu-
lations consider boxes with periodic boundary conditions; in two
cases L box = 100 h−1 Mpc while the other four simulations all have
L box = 300 h−1 Mpc. Different simulations with the same box size
are completely independent realizations and are used to estimate
errors due to cosmic variance. The particle masses are 6.2 × 108

h−1 M� and 1.7 × 1010 h−1 M� for the small- and large-box sim-
ulations, respectively. One of the simulations with L box = 100 h−1

Mpc has previously been used by Jing & Suto (2002) to derive a
triaxial model for density profiles of CDM haloes, and we refer the
reader to that paper for complementary information about the sim-
ulations. In what follows we refer to simulations with L box = 100
h−1 Mpc and L box = 300 h−1 Mpc as L100 and L300 simulations,
respectively.

Dark matter haloes are identified using the standard friends-of-
friends (FOF) algorithm (Davis et al. 1985) with a linking length of
0.2 times the mean interparticle separation. Haloes obtained with
this linking length have a mean overdensity of ∼180 (Porciani,
Dekel & Hoffman 2002), in good agreement with the definition
of halo masses used in our CLF analysis. For each individual simu-
lation we construct a catalogue of haloes with 10 particles or more,
for which we store the mass (number of particles), the position of the
most bound particle, and the mean velocity of the halo and velocity
dispersion. Note that the FOF algorithm can sometimes select poor
systems (those with a small number of particles) that are spurious
and have abnormally large velocity dispersions. We have therefore
made a check to make sure that the particles assigned to a system
according to the FOF algorithm are gravitationally bound. Our test
showed that this correction is important only for low-mass haloes,
and that it has almost no effect on our results. The left panel of
Fig. 1 plots the z = 0 halo mass functions for one of the L100 sim-
ulations and for one of the L300 simulations (histograms), with all
spurious haloes erased. For comparison, we also plot (solid line)
the analytical halo mass function given in Sheth & Tormen (1999)

and Sheth et al. (2001).3 The agreement is remarkably good, both
between the two simulations and between the simulation results and
the theoretical prediction.

Note that our choice for box sizes of 100 h−1 Mpc and 300 h−1

Mpc is a compromise between high mass resolution and a suffi-
ciently large volume to study the large-scale structure. The impact of
mass resolution is apparent from considering the conditional prob-
ability function

P(M | L) dM = 
(L | M)


(L)
n(M) dM, (13)

(see Paper I), which gives the probability that a galaxy of luminosity
L resides in a halo with mass in the range M ± dM/2. The right
panel of Fig. 1 plots this probability distribution obtained from the
CLF given in Section 2 for four different luminosities: L = L∗/100,
L = L∗/10, L = L∗ and L = 10L∗. Whereas 10 L∗ galaxies are typ-
ically found in haloes with 1013 h−1 � M � 1015 h−1 M�, galaxies
with L = L∗/100 ∼ 108 h−2 L� typically reside in haloes of M � 5
× 1010 h−1 M�. Comparing these probability distributions with the
halo mass functions in the left panel, we see that the L300 simulations
can only yield a complete galaxy distribution down to L ∼ 0.4L∗.
The L100 simulation, however, resolves dark matter haloes down to
masses of 1010 h−1 M�, which is sufficient to model the galaxy pop-
ulation down to L ∼ 0.01L∗. On the other hand, luminous galaxies
may be underrepresented in this small-box simulation, because it
contains fewer massive haloes than expected. Combining these two
sets of simulations, however, will enable us to study the clustering
properties of galaxies covering a sufficiently large volume and a
sufficiently large range of luminosities.

3.2 Halo occupation numbers

When populating haloes with galaxies based on the CLF one first
needs to choose a minimum luminosity. Based on the mass resolu-
tion of the simulations we adopt L min = 107 h−2 L� throughout.
The mean occupation number of galaxies with L � L min for a halo

3 This same mass function is used in the CLF analysis described in Section 2.
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with mass M then follows from the CLF according to:

〈N (M)〉 =
∫ ∞

Lmin


(L | M) dL. (14)

In order to Monte Carlo sample occupation numbers for individual
haloes one requires the full probability distribution P(N | M) (with
N an integer) of which 〈N(M)〉 gives the mean, i.e.

〈N (M)〉 =
∞∑

N=0

N P(N | M). (15)

As a simple model we adopt

P(N | M) =




N ′ + 1 − 〈N (M)〉 if N = N ′

〈N (M)〉 − N ′ if N = N ′ + 1

0 otherwise.

(16)

Here N ′ is the largest integer smaller than 〈N(M)〉. Thus, the actual
number of galaxies in a halo of mass M is either N ′ or N ′ + 1. This
particular model for the distribution of halo occupation numbers is
supported by semi-analytical models and hydrodynamical simula-
tions of structure formation (Benson et al. 2000; Berlind et al. 2003)
which indicate that the halo occupation probability distribution is
narrower than a Poisson distribution with the same mean. In addi-
tion, distribution (16) is successful in yielding power-law correlation
functions, much more so than, for example, a Poisson distribution
(Benson et al. 2000; Berlind & Weinberg 2002).

3.3 Assigning galaxies their luminosity and type

Since the CLF only gives the average number of galaxies with lu-
minosities in the range L ± dL/2 in a halo of mass M, there are
many different ways in which one can assign luminosities to the Ni

galaxies of halo i, and yet be consistent with the CLF. The simplest
approach would be simply to draw Ni luminosities (with L > L min)
randomly from 
(L | M). Alternatively, one could use a more de-
terministic approach, and, for instance, always demand that the j th
brightest galaxy has a luminosity in the range [Lj, Lj−1]. Here Lj is
defined such that a halo has on average j galaxies with L > Lj, i.e.∫ ∞

L j


(L | M) dL = j . (17)

We adopt an intermediate approach in most of our discussion, giving
special treatment only to the one brightest galaxy per halo. The
luminosity of this so-called ‘central’ galaxy, Lc, is drawn from 
(L|
M) with the restriction L > L 1 and thus has an expectation value of

〈Lc(M)〉 =
∫ ∞

L1


(L | M)L dL = 
̃∗ L̃∗�
(
α̃ + 2, L1/L̃∗). (18)

The remaining Ni − 1 galaxies are referred to as ‘satellite’ galaxies
and are assigned luminosities in the range L min < L < L 1, again
drawn from the distribution function 
(L | M). In Section 4.2,
we test the effect of luminosity sampling by comparing the results
obtained from all the three approaches.

Finally, the galaxies are assigned morphological types as follows.
For each galaxy with luminosity L in a halo of mass M we draw a
random number R in the range [0, 1]. If R < flate(L, M) then the
galaxy is a late type, otherwise an early type.

3.4 Assigning galaxies their phase-space coordinates

Once the population of galaxies has been assigned luminosities and
types, they need to be assigned a position within their halo as well

as a peculiar velocity. The central galaxy is assumed to be located at
the ‘centre’ of the corresponding dark halo, which we associate with
the position of the most-bound particle, and its peculiar velocity is
set equal to the mean halo velocity (cf. Yoshikawa, Jing & Börner
2003). For the satellite galaxies we follow two different approaches.
In the first, we assign the Ni − 1 satellites the positions and peculiar
velocities of Ni − 1 randomly selected dark matter particles that
are part of the FOF halo under consideration. This thus corresponds
to a scenario in which satellite galaxies are completely unbiased
with respect to the density and velocity distribution of dark matter
particles in FOF haloes. We refer to satellite galaxies populated this
way as ‘FOF satellites’.

We also consider a more analytical model for the satellite distribu-
tion. This allows us first of all to assess whether a simple analytical
description can be found to describe the population of satellite galax-
ies, and secondly, provides us with a simple framework to investigate
the sensitivity of various clustering statistics to details regarding the
density and velocity bias of satellite galaxies. We assume that the
number density distribution of satellite galaxies follows a NFW
density distribution (Navarro, Frenk & White 1997):

ρ(r ) = δ̄ρ̄

(r/rs)(1 + r/rs)2
, (19)

where rs is a characteristic radius, ρ̄ is the average density of the
Universe, and δ̄ is a dimensionless amplitude which can be expressed
in terms of the halo concentration parameter c = r 180/r s as

δ̄ = 180

3

c3

ln(1 + c) − c/(1 + c)
. (20)

Here r180 is the radius inside of which the halo has an average over-
density of 180. Numerical simulations show that halo concentration
depends on halo mass, and we use the relation given by Bullock
et al. (2001), converted to the c appropriate for our definition of
halo mass. The radial number density distribution of satellite galax-
ies is assumed to follow equation (19) with a concentration cg = c,
and the angular position is assumed to be random over the 4π solid
angle. Peculiar velocities are assumed to be the sum of the peculiar
(mean) velocity of the host halo plus a random velocity which is
assumed to be distributed isotropically and to follow a Gaussian,
one-dimensional velocity distribution:

f (v j ) = 1√
2πσgal

exp

(
− v2

j

2σ 2
gal

)
. (21)

Here vj is the velocity relative to that of the central galaxy along
the j-axis, and σ gal is the one-dimensional velocity dispersion of
the galaxies, which we set equal to that of the dark matter particles,
σ dm, in the halo under consideration. We refer to satellite galaxies
populated this way as ‘NFW satellites’.

4 R E S U LT S I N R E A L S PAC E

Figs 2 and 3 show slices of mock galaxy distributions (hereafter
MGDs) constructed from L100 and L300 simulations, respectively.
Satellite galaxies are assigned positions and velocities using the
NFW scheme outlined above. Results are shown for all galaxies (up-
per right panels), and separately for early types (lower-right panels)
and late types (lower-left panels). For comparison, we also show the
distribution of dark matter particles in the upper-left panels. Note
how the large-scale structure in the dark matter distribution is de-
lineated by the distribution of galaxies, and that early-type galaxies
are more strongly clustered than late-type galaxies.
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Early–Type Galaxies

All Galaxies

LateType–Galaxies

Dark Matter

Figure 2. Projected dark matter/galaxy distributions of a 100 × 100 × 10 h−1 Mpc slice in one of the L100 mock galaxy distributions. The panels show
(clockwise from top-left) the dark matter particles, all galaxies (early plus late), early-type galaxies, and late-type galaxies. Galaxies are weighted by their
luminosities. Note how the galaxies trace the large-scale structure of the dark matter, and how early-type galaxies are more strongly clustered than late-type
galaxies.

In this section we discuss the general, real-space properties of
these MGDs. In Section 5 below we construct mock galaxy red-
shift surveys to investigate the impact of redshift distortions. The
main goal of this section, however, is to investigate with what accu-
racy the combination of numerical simulations and our CLF anal-
ysis can be used to construct self-consistent mock galaxy distribu-
tions. In particular, we want to examine to what accuracy these
MGDs can recover the input used to constrain the CLFs. Note
that this is not a trivial question. The CLF modelling is based on
the halo model, which only yields an approximate description of
the dark matter distribution in the non-linear regime (see the dis-
cussions in Cooray & Sheth 2002; Huffenberger & Seljak 2003).
In addition, as described in Section 3, the CLF alone does not
yield sufficient information to construct MGDs, and we had to
make additional assumptions regarding the distribution of galaxies
within individual haloes. A further goal of this section, therefore,
is to investigate how these assumptions impact on the clustering
statistics.

4.1 The luminosity function

The CLFs used to construct the MGDs shown in Fig. 2 and 3 are
constrained by the 2dFGRS luminosity functions for early- and late-
type galaxies obtained by Madgwick et al. (2002). Therefore, as long
as the halo mass function is well sampled by the simulations, the
LFs of our MGDs should match those of Madgwick et al. (2002).
Fig. 4 shows a comparison between the 2dFGRS LFs (symbols
with error bars) and those recovered from the MGDs (solid lines).
To emphasize the level of agreement between the recovered LFs and
the input LFs, Fig. 5 plots the ratio between the two. Over a large
range of luminosities, the recovered LFs match the observational
input extremely well. In the L300 simulation, however, the LFs are
underestimated for L � 3 × 109 h−2 L� (M bJ − 5 log h � −18.4).
This is due to the absence of haloes with M � 2 × 1011 h−1 M� (see
Fig. 1). Note how this discrepancy sets in at higher L for the late-type
galaxies than for the early-types, because the latter are preferentially
located in more massive haloes. For the early-types the L300 mock
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Figure 3. Same as Fig. 2, but for a 300 × 300 × 20 h−1 Mpc slice taken from one of the L300 mock galaxy distributions.

is virtually complete down to M bJ − 5 log h −17 (see fig. 10 of
Paper II), reflecting the fact that only a very small fraction of the
early-type galaxies brighter than this magnitude reside in haloes
below the mass resolution limit. In the L100 simulations, on the
other hand, the LFs accurately match the data down to the faintest
luminosities, but here the MGD underestimates the LFs at the bright
end (M bJ − 5 log h �−22). This is due to the limited box size, which
causes the number of massive haloes (the main hosts of the brightest
galaxies) to be underestimated (cf. Fig. 1). Note that even the LFs of
the L300 simulations underestimate the observed number of bright
galaxies. This reflects a small inaccuracy of our CLF to match the
observed bright end of the LFs accurately (see Paper II).

4.2 The real-space correlation function

In addition to the LFs of early- and late-type galaxies, the CLFs used
here to construct our MGDs are also constrained by the luminosity
and type dependence of the correlation lengths as measured from the
2dFGRS by Norberg et al. (2002a). Here we check to what degree
this ‘input’ is recovered from the MGDs.

The left panel of Fig. 6 plots the real-space two-point correlation
functions (2PCFs) for dark matter particles in the L100 (dashed line)
and L300 (dotted line) simulations. The solid line corresponds to
the evolved, non-linear dark matter correlation function of Smith
et al. (2003) and is shown for comparison.4 As one can see, on large
scales (r � 6 h−1 Mpc) the correlation amplitude obtained from
the L100 simulations is systematically lower than both that obtained
from the L300 simulations and that obtained from the fitting formula
of Smith et al., suggesting that the box-size effect is non-negligible
in the L100 simulations. Note also that the large-scale correlation
amplitude given by the L300 simulations is slightly higher than the
model of Smith et al. It is unclear if this discrepancy is due to
the inaccuracy of the fitting formula, or due to cosmic variance
in the present simulations. As we will see below, this discrepancy
limits the accuracy of model predictions.

The right-hand panel of Fig. 6 plots the 2PCFs for the galaxies
in the L100 (dashed line) and L300 (dotted line) MGDs. Note how

4 In fitting the CLF we have used this function to compute the correlation
length of the dark matter (see Paper II).
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Figure 4. The luminosity functions of the mock galaxies constructed from the L100 (left) and L300 (right) halo catalogues (solid lines). For comparison, we
also plot the LFs obtained by Madgwick et al. (2002) for all galaxies (circles), for late-type galaxies (triangles) and for early-type galaxies (stars). For clarity,
the latter two LFs have been shifted down by one and two orders of magnitude in the y-direction, respectively. Except for incompleteness effects due to the
sampling of the halo mass function (see text for details), the mock galaxy distributions have LFs that are in excellent agreement with the data.

Figure 5. The ratio of the luminosity function of mock galaxies, 
mock(L),
to that of the 2dFGRS, 
2dFGRS(L) (taken from Madgwick et al. 2002). The
thin error bars indicate the errors on 
2dFGRS(L). The thick solid (dashed)
lines correspond to the LFs obtained from the L100 (L300) simulations. The
error bars for the mock galaxies are obtained from the 1σ variance of the
two L100 and the four L300 simulations, respectively. See text for discussion.

the galaxies reveal the same trend on large scales as the dark matter
particles, with larger correlations in the L300 than in the L100 MGD.

Fig. 7 shows the correlation lengths r0 as a function of luminosity
for all (upper panel), early-type (middle panel) and late-type (lower
panel) galaxies. These have been obtained by fitting ξ (r) with a
power-law relation of the form ξ (r ) = (r/r 0)−γ over the same range
of scales as used by Norberg et al. (2002a). Solid squares and open
stars correspond to correlation lengths obtained from the L300 and
L100 MGDs, respectively. Note that the error bars on the predicted
correlation lengths are based on the scatter among independent sim-
ulations boxes. They are significantly smaller than the error bars on
the observational data, because the model predictions are based on
real-space correlation functions, while the observational results are
based on projected correlation functions in redshift space. The agree-
ment with the data (open circles) is reasonable, even though several
systematic trends are apparent. In particular, the correlation lengths
obtained from the L300 simulation are slightly higher than the ob-
servations while the opposite applies to the L100 simulation. These
discrepancies are due to two effects. First of all, as shown in Fig. 6
the dark matter on large scales is more strongly clustered in the L300

simulations than in the L100 simulations. That this can account for
most of the differences between the scalelengths obtained from the
L300 and L100 simulations, is illustrated by the dotted and solid hori-
zontal lines, which indicate the correlation lengths of the dark mat-
ter particles in the L300 and L100 simulations, respectively. Secondly,
the measured correlation lengths correspond to a non-zero, median
redshift which is larger for the more luminous galaxies. In deter-
mining the best-fitting parameters for the CLF this redshift effect is
taken into account (see Papers I and II). However, in the construc-
tion of our MGDs, we only use the dark matter distribution at z = 0.
As discussed in Paper I, this can overestimate the correlation length
by about 10 per cent. Given these sources of systematic errors, one
should be careful not to overinterpret any discrepancy between the
correlation lengths in the mock survey and those obtained from real
redshift distributions.

In order to investigate the sensitivity of the 2PCF in the MGDs to
the way we assign luminosities and phase-space coordinates to the

C© 2004 RAS, MNRAS 350, 1153–1173



Populating dark matter haloes with galaxies 1161

Figure 6. Two-point correlation functions for dark matter particles (left panel) and mock galaxies (right panel). The dotted and dashed lines correspond to
results from the L300 and L100 simulations, respectively. The solid line in the left panel corresponds to the evolved, non-linear correlation function for the dark
matter obtained by Smith et al. (2003), and is shown for comparison. Due to the limited box sizes, the L300 (L100) simulations slightly over (under) predict the
correlation power on large scales with respect to the model of Smith et al. The 2PCFs in the right panel are calculated for galaxies with absolute magnitudes
M bJ − 5 log h < −18.4, which corresponds to the completeness limit of the L300 MGDs. Note that the box size also affects the 2PCFs of the mock galaxies
on large scales. Error bars are the variance among the two (L100) and four (L300) independent realizations.

galaxies within the dark matter haloes, we construct MGDs using
one of the L300 simulations with different models for the luminos-
ity assignment and spatial distribution of satellite galaxies within
haloes. We have confirmed that using one of the L100 simulations in-
stead yields the same results. We first test the impact of the luminos-
ity assignment. Here, instead of the fiducial model for the luminosity
assignment (the intermediate approach discussed in Section 3.3), we
use both the deterministic and random assignments (see Section 3.3
for definitions) to construct the MGDs. In Fig. 8 we shown the ratios
between the correlation functions obtained from these MGDs and
those obtained from the fiducial MGD. For bright galaxies, the de-
terministic model gives the lowest amplitudes on small scales (r �
1 h−1 Mpc), while the random model gives the highest amplitudes.
This is expected. The mean number of bright galaxies in a typical
halo is not much larger than 1 and so not many close pairs of bright
galaxies are expected in the deterministic model. More such pairs
are expected in the random model because more than one galaxy
in a typical halo can be assigned a large luminosity due to random
fluctuations. The dashed lines in Fig. 8 correspond to a MGD with
FOF satellites (see Section 3.4). The agreement of the 2PCFs be-
tween this MGD with FOF satellites and our fiducial MGD indicate
that the spherical NFW model is a good approximation of the aver-
age density distribution of dark matter haloes. We have also tested
the impact of changing the concentration of galaxies, cg; increasing
(decreasing) cg with respect to the dark matter halo concentration,
c, increases (decreases) the 2PCFs on small scales (r � 1 h−1 Mpc).
However, even when changing the ratio cg/c by a factor of 2, the
amplitude of this change is smaller than the differences resulting
from changing the luminosity assignment.

All in all, changes in the way we assign luminosities and phase-
space coordinates to the galaxies only have a mild impact on the
2PCFs, and only at small scales �1 h−1 Mpc. This is in good agree-
ment with Berlind & Weinberg (2002) who have shown that these
effects are much smaller than changes in the second moment of the
halo occupation distributions. For example, assuming a Poissonian
P(N | M), rather than equation (16) has a much larger impact on

the 2PCFs than any of the changes investigated above. As we show
in Section 5 below, with the P(N | M) of equation (16) we obtain
correlation functions that are in better agreement with observations,
providing empirical support for this particular occupation number
distribution.

It is interesting to note that although small changes in the way
we assign luminosities and phase-space coordinate do not have a
big impact on the statistical measurements we are considering here,
such changes can lead to quite different results for other statistical
measures. As shown in van den Bosch et al. (in preparation), various
statistics of satellite galaxies around bright galaxies can be used to
distinguish models that make similar predictions about the clustering
on large scales.

4.3 Pairwise velocities

The peculiar velocities of galaxies are determined by the action of
the gravitational field, and so are directly related to the matter dis-
tribution in the Universe. Observationally, the properties of galaxy
peculiar velocities are inferred from distortions in the correlation
function. We defer this discussion to Section 5. Here we derive sta-
tistical quantities directly from the simulated peculiar velocities of
galaxies.

We define the pairwise peculiar velocity of a galaxy pair as

v12(r ) ≡ [v(x + r ) − v(x)] · r̂ , (22)

with v(x) the peculiar velocity of a galaxy at x. The mean pair-
wise peculiar velocity and the pairwise peculiar velocity dispersion
(PVD) are

〈v12(r )〉 and σ12(r ) ≡ 〈
[v12(r ) − 〈v12(r )〉]2

〉1/2
, (23)

where 〈· · ·〉 denotes an average over all pairs of separation r.
In order to gain insight, we compute 〈v12(r)〉 and σ 12(r) from the

L300 simulations for both dark matter particles and for galaxies with
M bJ − 5 log h � −18.4 (which corresponds to the completeness
limit of these simulations, see Fig. 4).
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Figure 7. The real-space correlation length, r0, as a function of galaxy lumi-
nosity and type. The top panel shows the results for the combined sample of
early- plus late-type galaxies, while the middle (bottom) panel shows results
for the early- (late-) type galaxies only. Solid squares and stars correspond
to the correlation lengths obtained from the L300 and L100 simulations, re-
spectively. The error bars correspond to the 1σ variance from the two (four)
independent realizations for L100 (L300). We also indicate (open circles with
error bars) the correlation lengths obtained from the 2dFGRS by Norberg
et al. (2002a). In the upper panel, we also plot the correlation lengths for dark
matter particles for L100 (solid line) and L300 (dotted line) simulations. Al-
though the agreement between data and MGDs is reasonable there are small
but significant differences. The reason for these discrepancies is discussed
in the text.

Results are shown in Fig. 9. The upper-left panel compares the
mean pairwise peculiar velocities of the dark matter particles (solid
circles) with those of two realizations of the galaxies: one with
‘NFW satellites’ (open circles) and the other with ‘FOF satellites’
(stars). At sufficiently small separations, one probes the virialized
regions of dark matter haloes, and one thus finds 〈v12〉 = 0. At
larger separations, one starts to probe the infall regions around the
virialized haloes, yielding negative values for 〈v12(r)〉. Finally, at
sufficiently large separations 〈v12(r )〉 → 0 due to the large-scale
homogeneity and isotropy of the Universe.

Both the dark matter particles and the galaxies from our MGDs
indeed reveal such behaviour, with 〈v12(r)〉 peaking at ∼3 h−1 Mpc.
However, there is a markedly strong difference between the 〈v12(r)〉
of galaxies in the MGD with NFW satellites and that of the dark
matter. In this particular MGD, the galaxies experience significantly

Figure 8. The ratio of the 2PCF ξ (r) in three MGDs compared to that of
our fiducial MGD. The only difference among these various MGDs is the
way that we assign luminosities and phase-space coordinates to the galaxies.
Solid (dotted) lines correspond to a MGD in which we use a deterministic
(random) method to assign galaxies their luminosities (see Section 3.3 for
definitions). In the MGD corresponding to the dashed line we use the in-
termediate, fiducial method to assign luminosities, but here we use ‘FOF
satellites’ rather than ‘NFW satellites’ (see Section 3.4 for definitions). Re-
sults are shown for galaxies in three different magnitude bins (as indicated)
in one of the L300 simulations. However, results for the L100 simulations
look virtually identical.

smaller infall velocities than the dark matter particles. However, this
difference between dark matter and galaxies is almost absent in the
MGD with FOF satellites. This is due to the fact that in the NFW
model, we populate satellites with isotropic velocity dispersions
within a sphere of radius r180. We are thus assuming that the entire
region out to r180 is virialized in that there is no net infall. However,
simple collapse models predict that for our concordance cosmology
only the region out to r340 (i.e. the radius inside of which the average
overdensity is 340) is virialized (Bryan & Norman 1998). The dif-
ference between the MGDs with NFW satellites and FOF satellites
indicates that the regions between r340 and r180 are still infalling,
resulting in non-zero 〈v12〉.

In the lower-left panel, we compare the PVDs for galaxies and
dark matter particles. Here the MGDs with FOF satellites and NFW
satellites are fairly similar, and significantly lower than for the dark
matter. This can be understood as follows. At small separations, the
PVD is a pair-weighted measure for the potential well in which dark
matter particles (galaxies) reside. For the galaxies in our MGDs the
halo occupation number per unit mass, N/M, decreases with the
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Figure 9. The mean pairwise velocities (upper panels) and pairwise velocity dispersions (lower panels) estimated from the three-dimensional (real-space)
velocities of the mock galaxies and dark matter particles. All results correspond to the L300 simulations only. Left-hand panels compare dark matter particles
(solid circles) with galaxies either with NFW satellites (open circles) or with FOF satellites (open stars). Right-hand panels display the galaxy-type dependence
for a model with NFW satellites (error bars indicate the rms scatter among the four independent L300 simulations). See text for detailed discussion.

mass of dark matter haloes (see Paper II). Therefore, the massive
haloes (with larger velocity dispersions) contribute relatively less to
the PVDs of galaxies. Although the difference between the σ 12(r)
of the MGDs with FOF and NFW satellites shows that the PVDs
have some dependence on the details regarding the infall regions
around virialized haloes, these effects are typically small.

The upper-right and lower-right panels of Fig. 9 show how
〈v12(r)〉 and σ 12(r) depend on galaxy type. Results are shown for
the MGD based on NFW satellites. The mean velocities for early-
type galaxies are larger than those for late-type galaxies on large
scales, but smaller on small scales. In addition, the PVD of early-
type galaxies is higher than that of late-type galaxies on all scales.
All these differences are easily understood as a reflection of the fact
that early-type galaxies are preferentially located in the larger, more
massive haloes which have larger velocity dispersions and larger
infall velocities.

Fig. 10 shows the pairwise velocity distributions for four differ-
ent separations r, within a logarithmic interval of �log r = 0.125.
On small scales, the distribution is well-fitted by an exponential
for both dark matter particles and galaxies. This validates the as-
sumption made in earlier analyses about this distribution (Davis &
Peebles 1983; Mo, Jing & Börner 1993; Fisher et al. 1994; Marzke
et al. 1995). It is also consistent with earlier results obtained from
theoretical models and numerical simulations based on dark mat-
ter particles (Efstathiou et al. 1988; Diaferio & Geller 1996; Sheth
1996; Mo, Jing & Börner 1997; Seto & Yokoyama 1998; Magira,
Jing & Suto 2000). For larger separations f (v12) is skewed towards
negative values of v12, because galaxies tend to approach each other
due to gravitational infall. Clearly, a single exponential function is
no longer a good approximation to the pairwise peculiar velocity
distribution at large separations. Although for v12 < 0 (infall) the
exponential remains remarkably accurate, for v12 > 0 the pairwise
velocity distribution reveals a more Gaussian behaviour. This may

have important implications for the derivation of PVDs (especially
at large separations), which typically is based on the assumption of
a purely exponential f (v12). We shall return to this issue in more
detail in Section 5.2.

5 R E S U LT S I N R E D S H I F T S PAC E

The statistical quantities of galaxy clustering discussed in the pre-
vious section are based on real distances between galaxies in our
MGDs. However, because of the peculiar velocities of galaxies, such
quantities cannot be obtained directly from a galaxy redshift survey.
On small scales the virialized motion of galaxies within dark matter
haloes cause a reduction of the correlation power, while on larger
scales the correlations are boosted due to the infall motion of galax-
ies towards overdensity regions (Kaiser 1987; Hamilton 1992). As
discussed in the introduction, these distortions contain useful infor-
mation about the universal density parameter, the bias of galaxies
on large (linear) scales, and the pairwise velocities of galaxies.

In this section, we use the MGDs presented above to construct
large mock galaxy redshift surveys (hereafter MGRSs). The main
goals are to compare various clustering statistics from these mock
surveys with observational data from the 2dFGRS, and to investigate
how the details about the CLF and the distribution of galaxies within
haloes impact on these statistics. For the model–data comparison we
use the large-scale structure analysis of Hawkins et al. (2003, here-
after H03), which is based on a subsample of the 2dFGRS consisting
of all galaxies located in the North Galactic Pole (NGP) and South
Galactic Pole (SGP) survey strips with redshift 0.01 � z � 0.20 and
apparent magnitude bJ < 19.3. This sample consists of ∼166 000
galaxies covering an area on the sky of ∼1090 deg2.

In order to carry out a proper comparison between model and ob-
servation, we aim to construct MGRSs that have the same selections
as the 2dFGRS. First of all, the survey depth of zmax = 0.2 implies
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Figure 10. Distribution of pairwise velocities, f (v12), for dark matter particles (solid curves), and for mock galaxies in the L300 simulation. Results are shown
for four separations r as indicated, and for all galaxies (dot-dashed lines), early-type galaxies (dotted lines) and late-type galaxies (dashed lines). On small
scales (r < 1 h−1 Mpc) the pairwise velocity distributions are symmetric and reveal an obvious exponential form. On larger scales, however, f (v12) reveals
clear asymmetries: for v12 < 0 the distribution is still close to an exponential, while for v12 > 0 the distribution more resembles a normal distribution.

that we need to cover a volume with a depth of 600 h−1 Mpc, i.e.
twice that of our big L300 simulations. In principle, we could stack
4 × 4 × 4 identical L300 boxes (which have periodic boundary con-
ditions), so that a depth of 600 h−1 Mpc can be achieved in all
directions for an observer located at the centre of the stack. How-
ever, there is one problem with this set-up; as we have shown in Figs
1 and 4 the L300 MGD is only complete down to M bJ − 5 log h �
−18.4. Taking account of the apparent magnitude limit of the sur-
vey, this implies that our MGRSs would be incomplete out to a
distance of ∼350 h−1 Mpc. We can overcome this problem by using
the higher-resolution L100 simulation, which is complete down to
M bJ − 5 log h � −14. We therefore replace the central 2 × 2 × 2
L 300 boxes with a stack of 6 × 6 × 6 L 100 boxes. The final lay-out
of our virtual universe is illustrated in Fig. 11. Unless stated other-
wise, satellite galaxies are assigned to dark matter haloes based on
our standard NFW method described in Section 3.4.

Observational selection effects, which are modelled according to
the final public data release of the 2dFGRS (see also Norberg et al.
2002b), are taken into account using the following steps.

(i) We place a virtual observer at the centre of the stack of boxes
(the solid dot in Fig. 11), define a (α, δ)-coordinate frame, and
remove all galaxies that are not located in the areas equivalent to the
NGP and SGP regions of the 2dFGRS.

(ii) Next, for each galaxy we compute the redshift as ‘seen’ by
the virtual observer. We take the observational velocity uncertainties
into account by adding a random velocity drawn from a Gaussian
distribution with dispersion 85 km s−1 (Colless et al. 2001).

(iii) We compute the apparent magnitude of each galaxy accord-
ing to its luminosity and distance. Since galaxies in the 2dFGRS
were pruned by apparent magnitude before a k-correction was ap-
plied, we proceed as follows. We first apply a negative k-correction,
then select galaxies according to the position-dependent magnitude

Figure 11. The stacking geometry of the L100 and L300 simulation boxes
used to construct the MSB mock galaxy redshift surveys. The virtual observer
is located at the centre of the stack, indicated by a thick solid dot. Note that
for MGRSs in the MB set, the stack of 6 × 6 × 6 L 100 boxes is replaced by
a stack of 2 × 2 × 2 L 300 boxes.

limit (obtained using the apparent magnitude limit masks provided
by the 2dFGRS team), and finally k-correct the magnitudes back
to their rest-frame bJ-band. Throughout we use the type-dependent
k-corrections given in Madgwick et al. (2002).
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(iv) To mimic the position- and magnitude-dependent complete-
ness of the 2dFGRS, we randomly sample each galaxy using the
completeness masks provided by the 2dFGRS team. The incom-
pleteness of the 2dFGRS parent sample is taking into account by
randomly discarding 9 per cent of all mock galaxies (Norberg et al.
2002b).

(v) Finally, we mimic the actual selection criteria of the 2dFGRS
sample used in H03 by restricting the sample to galaxies within the
redshift range 0.01 � z � 0.20 and with completeness � 0.7.

Each MGRS thus constructed contains, on average, 169 000
galaxies, with a dispersion of ∼5000 due to cosmic variance. The
number of galaxies in our mock catalogues are consistent with the
observations at the 1σ level. Note that the correlation functions pre-
sented by H03 have been corrected for the observational bias due to
fibre collisions, and we therefore do not mimic these effects in our
MGRSs.

Since we have two L100 simulations and four L300 simulations, we
construct 2 × 4 = 8 mock catalogues with different combinations of
small- and big-box simulations. In what follows, we refer to this set
of mock catalogues as MSBs (for Mock Small/Big). As an example,
Fig. 12 shows the distribution of a subset of galaxies in one of these
mock catalogues. Although each of our MSB catalogues covers an
extremely large volume, and thus should not be very sensitive to
cosmic variance, it is constructed using simulations with box sizes
of 100 and 300 h−1 Mpc only. If, for instance, the L100 simulation
contains a big cluster, the 6 × 6 × 6 reproduction of this box in our
MGRSs might introduce some unrealistic features. Furthermore,
as shown in Section 4.2, the L100 box underestimates the amount
of clustering on large scales. Therefore, this set of MGRSs, which
replicates this box 27 times, might underestimate the clustering on
large scales as well. In order to test the sensitivity of our results to
these potential problems, and to have a better handle on the impact of
cosmic variance in our mock surveys, we construct four alternative

Figure 12. The distribution of a subset of galaxies in one of the MSB mock samples. For clarity, we plot galaxies only in two 3◦ slices, one in the ‘North
Galactic Pole’ region (NGP) and the other in the ‘South Galactic Pole’ region (SGP). Only galaxies with redshifts in the range 0.01 < z < 0.2 are plotted.

MGRSs. Each consists of a 4 × 4 × 4 stack of one of the four L300

simulations (i.e. we replace the 6 × 6 × 6 stack of L100 boxes by a
2 × 2 × 2 stack of L300 boxes). In what follows we refer to this set of
mock catalogues as MBs (for Mock Big). These MGRSs, although
incomplete for M bJ − 5 log h > −18.4, should not suffer from
the lack of clustering power on large scales. The MSB set, on the
other hand, does not suffer from incompleteness, but instead lacks
some large-scale power. As we will see below, both the MSB and
MB mocks give similar results on large scales, suggesting that the
box-size effect does not have a significant influence on our results.

5.1 Two-point correlation functions

From our MGRSs we compute ξ (rp, π ) using the estimator
(Hamilton 1993)

ξ (rp, π ) = 〈R R〉〈DD〉
〈DR〉2

− 1 (24)

with 〈DD〉, 〈RR〉, and 〈DR〉 the number of galaxy–galaxy, random–
random, and galaxy–random pairs with separation (rp, π ). Here
rp and π are the pair separations perpendicular and parallel to
the line-of-sight, respectively. Explicitly, for a pair (s1, s2), with
si = czi r̂ i/H0, we define

π = s · l
|l| , rp =

√
s · s − π 2 (25)

Here l = 1
2 (s1 + s2) is the line-of-sight intersecting the pair, and

s = s 1 − s 2. Random samples are constructed using two different
methods. The first uses the mean galaxy number density at redshift z
calculated from the 2dFGRS LF. The second randomizes the coordi-
nates of all mock galaxies within the simulation box. Both methods
yield indistinguishable estimates of ξ (rp, π ) and in what follows
we only use the former. Following H03 each galaxy in a pair with
redshift separation s is weighted by the factor
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Figure 13. The upper panels show the projected 2PCFs wp(rp)/rp for galaxies of different luminosity and type. The error bars correspond to the 1σ variance
among distinct MGRSs (i.e. among the eight MSBs for the faintest subsamples, and among the four MBs for the brightest subsamples). For clarity, the error
bars are only plotted for the brightest and faintest subsamples. The lower panels plot the ratios of these wp(rp) to that of a reference sample. The reference
sample contains all galaxies within the magnitude range −19.5 > M ′

bJ
> −20.5 (with M ′

bJ
= M bJ − 5 log h). Note that the faintest subsamples, which are

impacted by the box-size effect of the L100 simulation, reveal a ‘break’ at rp � 10 h−1 Mpc.

wi = 1

1 + 4πn(zi )J3(s)
(26)

with n(z) the number density distribution as a function of redshift
and J3(s) = ∫ s

0
ξ (s ′)s ′2 ds ′. Hence each galaxy–galaxy, random–

random, and galaxy–random pair is given a weight w iw j . We re-
place ξ (s′) with a power law using the same parameters as in H03.
This redshift-dependent weighting scheme is designed to minimize
the variance on the estimated correlation function (Davis & Huchra
1982; Hamilton 1993).

Since the redshift-space distortions only affect π , the projection
of ξ (rp, π ) along the π -axis can get rid of these distortions and give
a function that is more closely related to the real-space correlation
function. In fact, this projected 2PCF is related to the real-space
2PCF through a simple Abel transform

wp(rp) =
∫ ∞

−∞
ξ (rp, π ) dπ = 2

∫ ∞

r p

ξ (r )
r dr√
r 2 − r 2

p

(27)

(Davis & Peebles 1983). Therefore, if the real-space 2PCF is a power
law, ξ (r ) = (r 0/r )γ , the projected 2PCF w(rp) can be written as

wp(rp) = √
π

�(γ /2 − 1/2)

�(γ /2)

(
r0

rp

)γ

rp. (28)

We start our investigation of the redshift-space clustering prop-
erties by computing wp(rp) for a number of luminosity bins and for
early- and late-type galaxies separately. To compare these projected
correlation functions with the 2dFGRS results from Norberg et al.
(2002a), we estimate wp(rp) using volume-limited samples with the
same redshift and magnitude selection criteria as those adopted by
Norberg et al. (2002a). For the MSB mocks (which use a stack of
6 × 6 × 6 L 100 boxes), however, these wp(rp) reveal a systematic
‘break’ at rp ∼ 10 h−1 Mpc. As we have shown in Section 4.2, this
is due to the fact that, because of the small box size of the L100

simulation, the 2PCF is too small on large scales (see Figs 6 and 7).
We can circumvent this problem by using MGRSs from the MB set,
in which the stack of 6 × 6 × 6 L 100 boxes is replaced by a stack of
2 × 2 × 2 L 300 boxes. However, these MGRSs are only complete
down to M bJ − 5 log h � −18.4 and can therefore only be used for
galaxies brighter than this.

The upper panels of Fig. 13 plot wp(rp) for different magnitude
bins and for early- and late-type galaxies separately. Except for
the faintest magnitude bin, these projected correlation functions are
obtained from MGRS in the MB set. Results for the magnitude bin
with −17.5 > M bJ − 5 log h > −18.5 (solid lines) are obtained from
the MSB set. As discussed in Paper II, the projection significantly
washes out the features in the real-space 2PCFs at ∼2 h−1 Mpc, and
the projected 2PCFs better resemble a power law. The exception is
the wp(rp) for the faintest subsample of galaxies, where the ‘break’
mentioned above is clearly visible. To highlight the luminosity and
type dependence of wp(rp), the lower panels of Fig. 13 plot the
ratios of wp(rp) to that of a reference sample defined as all (early-
type plus late-type) galaxies with −19.5 > M bJ − 5 log h > − 20.5.
For a given luminosity, the correlation amplitude is higher, and the
slope is steeper for early-type galaxies than for late-type galaxies.
Significant changes in the slope (and thus deviations from a perfect
power law) occur at separations rp ∼ 2 h−1 Mpc, which is at least
qualitatively in agreement with recent results from the SDSS (Zehavi
et al. 2003).

In order to facilitate a more direct comparison with the 2dF-
GRS data, we fit a single power-law relation of the form (28) to
these wp(rp) over the range 2 h−1 Mpc < rp < 15 h−1 Mpc. This
range is also adopted by Norberg et al. (2002a) when fitting the
projected 2PCFs obtained from the 2dFGRS. Fig. 14 plots the
real-space correlation lengths r0 and the slopes γ thus obtained
as a function of luminosity and galaxy type. The agreement be-
tween our MGRSs and the 2dFGRS is acceptable. The slight but
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Figure 14. The correlation lengths, r0, and slopes, γ , of the power laws that best fit the projected correlation functions over the range 2 � rp � 15 h−1 Mpc
(solid squares). The results for the two faintest luminosity bins are based on the mean and variance of the sample of eight MSB mocks, while results for the
other bins are based on the mean and variance of the sample of four MB mocks. Open circles with error bars correspond to the 2dFGRS data of Norberg et al.
(2002a), and are shown for comparison. Except for a systematic overestimate of the correlation lengths, the cause of which has been discussed in Section 4.2,
there is good agreement between our MGRSs and the 2dFGRS.

systematic overestimate of r0 is due to the effects discussed in
Section 4.2.

We now turn to a comparison of the projected correlation function
for the entire, flux limited surveys. The upper-left panel of Fig. 15
compares the wp(rp) obtained from our eight MSB and four MB
MGRSs with that of the 2dFGRS obtained by H03. The projected
correlation functions from our MSBs and MBs agree well with each
other (i.e. the 1σ error bars overlap), and, at rp � 3 h−1 Mpc, with the
2dFGRS results. Note that at rp � 10 h−1 Mpc the w p(r p) obtained
from the MB mocks is slightly larger than that obtained from the
MSB mocks, again due to the effects discussed in Section 4.2.

At large scales, wp(rp) is predominantly sensitive to the halo oc-
cupation numbers 〈N(M)〉 and virtually independent of the second
moment of P(N | M) or of details regarding the spatial distribution of
satellite galaxies. The good agreement at large scales among differ-
ent MGRSs and with the observations therefore strongly supports
our CLF and it shows that any ‘cosmic variance’ among the dif-
ferent MGRSs has only a relatively small impact on wp(rp). On
small scales, however, the MGRSs reveal more correlation power
(by about a factor 2) than observed. On such scales, wp(rp) is sensi-
tive to our assumptions about the second moment of P(N | M) and, to
a lesser degree, the spatial distribution of satellite galaxies. We shall
return to this small-scale mismatch and its implications in Section 6
below.

Rather than projecting ξ (rp, π ), one may also average ξ (rp, π )
along constant s = √

r 2
p + π 2, yielding the redshift-space 2PCFs

ξ (s). The upper-right panel of Fig. 15 plots ξ (s) obtained from our
MGRSs, compared to the 2dFGRS results from H03. We find sim-
ilar behaviour as with the projected correlation function; the eight
MSBs and four MBs agree quite well with each other and with
the observations at s � 6 h−1 Mpc. At smaller redshift-space sep-
arations, however, the MGRSs slightly overpredict the correlation

power. Note that the MB samples predict higher ξ (s) on small scales
than the MSB samples. This difference comes from the fact that the
MB samples are incomplete for galaxies fainter than M bJ− 5 log h =
−18.4. To test this we construct a mock survey from the MSB sam-
ple, but only accepting galaxies brighter than this. This yields a ξ (s)
in excellent agreement with that of the MB samples over all scales.
Thus, although the use of only large-box simulations can result in
systematic errors on small scale, the use of small-box simulations in
the MSB samples does not cause any significant, systematic errors
on large scale.

5.2 Redshift-space distortions

We now turn to a comparison of the detailed shape of ξ (rp, π ).
In particular, we focus on the distortions with respect to the real-
space correlation function ξ (r) induced by the peculiar velocities of
galaxies.

The two-dimensional correlation function ξ (rp, π ) is often mod-
elled as a convolution of the real-space 2PCF ξ (r) and the conditional
distribution function f (v12 | r):

1 + ξ (rp, π )

=
∫ ∞

−∞

[
1 + ξ

(√
r 2

p + (π − v12/H0)2
)]

f (v12 | r ) dv12 (29)

(Peebles 1980). Here v12 corresponds to the pairwise peculiar ve-
locity along the line-of-sight and r corresponds to the real-space
separation. It is standard practice to assume an exponential form for
f (v12| r) and to ignore its dependence on separation r (cf. Davis &
Peebles 1983; Mo et al. 1993, 1997; Fisher et al. 1994; Marzke et al.
1995; Guzzo et al. 1997; Jing et al. 2002; Zehavi et al. 2002). How-
ever, as we have shown in Section 4, the exponential form is only
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Figure 15. The projected correlation function wp(rp) (top-left panel), the redshift-space correlation function ξ (s) (top-right), the quadrupole-to-monopole
ratio q(s) (bottom-left), and the PVDs (bottom-right) for the samples of MSB (solid lines) and MB (dashed lines) surveys. Error bars, which are similar for MB
and MSB results, are only shown for the MSB results for clarity. These error bars are based on the variance of the eight MSB surveys. The open circles with
error bars correspond to the 2dFGRS results obtained by Hawkins et al. (2003), and are shown for comparison. Note that the MSBs and MBs give approximately
the same results, but that there are marked differences between model predictions and observations. Note also that the model error bars are in general larger
than the difference in the mean between MB and MSB results, implying that these error bars are statistical.

adequate at small separations, and the PVD varies quite strongly with
separation. Furthermore, equation (29) is only valid for an isotropic
velocity field in the limit where the probability of a real-space pair
separation r is independent of the probability of an associated rel-
ative velocity v12. Although perhaps a reasonable approximation
on small, highly non-linear, scales, it is certainly not valid in lin-
ear theory where the velocity and density fields are tightly coupled.
In an attempt to partially correct for this, one often assumes that
f (v12) is the probability distribution for the relative velocity about
the mean. Using the self-similar infall model, this mean pairwise
peculiar velocity, 〈v12〉, is modelled as

〈v12〉(r ) = −H0 F

(
y

1 + (r/r0)2

)
(30)

(Davis & Peebles 1977) with y = |π − v12/H 0| the separation in
real-space along the line-of-sight. F = 0 corresponds to a universe
without any flow other than the Hubble expansion, while F = 1
corresponds to stable clustering. Given the fairly ad hoc nature of
this model, and the strong sensitivity to the uncertain value of F
(Davis & Peebles 1983), great care is required when interpreting
any results based on this model.

A more robust model is based on linear theory and directly mod-
elling the infall velocities around density perturbations. Following
Kaiser (1987) and Hamilton (1992) one can write the observed cor-
relation function on linear scales as

ξlin(rp, π ) = ξ0(s)P0(µ) + ξ2(s)P2(µ) + ξ4(s)P4(µ). (31)

Here Pl (µ) is the lth Legendre polynomial, and µ is the cosine of
the angle between the line-of-sight and the redshift-space separation
s. According to linear perturbation theory the angular moments can
be written as

ξ0(s) =
(

1 + 2β

3
+ β2

5

)
ξ (r ), (32)

ξ2(s) =
(

4β

3
+ 4β2

7

)[
ξ (r ) − ξ (r )

]
, (33)

ξ4(s) = 8β2

35

[
ξ (r ) + 5

2
ξ (r ) − 7

2
ξ̂ (r )

]
, (34)

with

ξ (r ) = 3

r 3

∫ r

0

ξ (r ′)r ′2 dr ′, (35)
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and

ξ̂ (r ) = 5

r 5

∫ r

0

ξ (r ′)r ′4 dr ′. (36)

Given a value for β and the real-space correlation function, which
can be obtained from ξ (rp, π ) via the projected correlation function
w p(r p), equation (31) yields a model for ξ (rp, π ) on linear scales
that takes proper account of the coupling between the density and
velocity fields. To model the non-linear virialized motions of galax-
ies within dark matter haloes, one convolves this ξ lin(rp, π ) with the
distribution function of pairwise peculiar velocities f (v12 | r).

1 + ξ (rp, π ) =
∫ ∞

−∞
[1 + ξlin(rp, π − v12/H0)] f (v12 | r ) dv12. (37)

Thus, by modelling ξ (rp, π ) one can hope to get both an es-
timate of β as well as information regarding the pairwise peculiar
velocity distribution. We follow H03, and assume that the real-space
2PCF is a pure power law, ξ (r ) = (r/r 0)−γ , and that f (v12 | r) is an
exponential that is independent of the real-space separation r:

f (v12 | r ) = f (v12) = 1√
2σ12

exp

(
−

√
2|v12|
σ12

)
. (38)

Using a simple χ 2 minimization technique, we fit these models,
described by the four parameters β, σ 12, r 0, and γ , to the ξ (rp, π )
in each of our eight MSB and four MB MGRSs. The χ 2 is defined
as

χ 2 =
∑(

log[1 + ξ ]model − log[1 + ξ ]data

log[1 + ξ + �ξ ]data − log[1 + ξ − �ξ ]data

)2

, (39)

where the summation is over the ξ (rp, π ) data grid with the restric-
tion 8 h−1 Mpc < s < 20 h−1 Mpc (see H03) and �ξ (rp, π ) is the
rms of ξ (rp, π ) determined from each of our eight MSB MGRSs
(or of our four MB MGRSs). The averages (over the eight or the
four MGRSs) of the best-fitting values for β, σ 12, r 0, and γ , along
with the variances among different samples, are listed in the first
two lines of Table 1. These should be compared with the values
listed in the last line, which correspond to the best-fitting values
obtained from the 2dFGRS by H03 using exactly the same method.
As one can see, the best-fitting values for β and correlation lengths
of the MSB and the MB sample agree with each other and with the
2dFGRS value at better than the 1σ level. On the other hand, the
discrepancies regarding γ and σ 12 are significant, both of which are
significantly higher in our MGRSs than in the 2dFGRS.

In order to investigate these discrepancies in more detail we com-
pute two statistics of the redshift space distortions which we com-
pare to the 2dFGRS. As above, we take great care in using exactly
the same method and assumptions as H03. Therefore, even if some
aspects of the model are questionable, this allows a meaningful com-
parison of our results with those obtained by H03. First of all, we
compute the modified quadrupole-to-monopole ratio

q(s) ≡ ξ2(s)
3
s3

∫ s

0
ξ0(s ′)s ′2 ds ′ − ξ0(s)

. (40)

where ξ l(s) is given by

ξl (s) = 2l + 1

2

∫ 1

−1

ξ (rp, π )Pl (µ) dµ. (41)

The lower-left panel of Fig. 15 plots q(s) for MSBs and MBs together
with the 2dFGRS results (open circles with error bars). Although
the MGRSs reveal the same overall behaviour as the 2dFGRS data,
and are mutually consistent, they systematically overpredict q(s).

Table 1. Best-fitting parameters.

Survey β r0 γ σ 12

(1) (2) (3) (4) (5)

MSBs 0.52 ± 0.05 5.78 ± 0.23 1.99 ± 0.03 687 ± 37
MBs 0.56 ± 0.06 5.93 ± 0.27 1.95 ± 0.03 732 ± 33
(M/L)cl 0.52 ± 0.08 4.96 ± 0.21 1.88 ± 0.05 487 ± 44
bvel 0.47 ± 0.06 5.99 ± 0.19 2.00 ± 0.06 497 ± 47
σ 8 0.51 ± 0.06 5.19 ± 0.17 1.91 ± 0.05 505 ± 25
2dFGRS 0.49 ± 0.09 5.80 ± 0.25 1.78 ± 0.06 514 ± 31

The values of β, r0 (in h−1 Mpc), γ and σ 12 (in km s−1) that best fit
the ξ (rp, π ) for 8 h−1 Mpc < s < 20 h−1 Mpc for a number of different
MGRSs. Note that four MGRSs are used for MBs, while eight MGRSs are
used for all other cases. The quoted values are the mean and 1σ variance of
these MGRSs. The MGRSs denoted by ‘(M/L)cl’ are similar to the MGRSs
in the MSB set, except that here the CLF is constrained to mass-to-light
ratios for clusters of (M/L)cl = 1000 h (M/L)�, rather than (M/L)cl

= 500 h (M/L)� as in MSB (see Section 6.3). The MGRSs denoted by
‘bvel’ are similar except for a velocity bias of bvel = σ gal/σ DM = 0.6 (see
Section 6.2). The MGRSs denoted by ‘σ 8’ are also similar except that they
adopt a flat �CDM cosmology with σ 8 = 0.75 rather than 0.9 (see Section
6.4). The final line lists the best-fitting parameters obtained by Hawkins
et al. (2003) by fitting the ξ (rp, π ) obtained from the 2dFGRS. Note that the
errors in Hawkins et al. are estimated from the spread of 22 Mock samples.

On small scales, where random peculiar velocities cause a rapid
increase of q(s), this indicates that the virialized motions in our
mock surveys are larger than observed (see also below). On large
scales, where q(s) is asymptotic to the linear theory value of

q(s) = − 4
3 β − 4

7 β2

1 + 2
3 β + 1

5 β2
, (42)

this might indicate that the value of β inherent to our MGRSs is
too small compared to the real Universe. On the other hand, Cole,
Fisher & Weinberg (1994) have shown that non-linear, small-scale
power can affect q(s) out to fairly large separations. Therefore the
systematic overestimate of q at large s may simply be a reflection
of the random peculiar velocities being too large, rather than an
inconsistency regarding the value of β.

The second statistic that we use to compare the redshift-space
distortions in our MGRSs with those of the 2dFGRS are the PVDs,
σ 12(rp), as a function of projected radius, rp. Following H03, we
keep r 0, γ and β fixed at the ‘global’ values listed in Table 1 and
determine σ 12(rp) by minimizing χ2 in a number of independent
rp bins.5 The results are shown in the lower-right panel of Fig. 15.
Whereas the 2dFGRS reveals a σ 12(rp) that is almost constant with
radius at about 500–600 km s−1, our MGRSs reveal a strong increase
from σ 12 ∼ 600 km s−1 at rp = 0.1 h−1 Mpc to σ 12 ∼ 900 km s−1 at
rp = 1.0 h−1 Mpc, followed by a decrease to σ 12 ∼ 500 km s−1 at
rp = 10 h−1 Mpc. Thus, at around 1 h−1 Mpc, our MGRSs dra-
matically overestimate the PVD. Although there is a non-negligible
amount of scatter among the different mock surveys, reflecting the
extreme sensitivity of the PVDs to the few richest systems in the sur-
vey, the variance among the eight (four) MGRSs is small compared
to the discrepancy.

As shown by Peacock et al. (2001) the best-fitting values of σ 12

and β are highly degenerate. We have tested the impact of this

5 Note that the PVDs thus obtained are a kind of average of the true PVD
along the line-of-sight. Therefore, these PVDs should not be compared
directly to the true PVD shown in Fig. 9.
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degeneracy on our σ 12(rp) by repeating the same exercise using a
value for β that is 0.1 larger (smaller) than the values listed in Table
1. This leads to an increase (decrease) of σ 12(rp) of the order of
5 per cent (20 per cent) at projected radii of 1 h−1 Mpc (10 h−1

Mpc). Given that our MGRSs overpredict the PVD at rp = 1 h−1

Mpc by about 70 per cent, it is clear that this discrepancy is not
a reflection of the β–σ 12 degeneracy. Thus, the standard �CDM
model seems to have a severe problem in matching the observed
PVDs on intermediate scales.

6 TOWA R D S A S E L F - C O N S I S T E N T M O D E L
F O R L A R G E - S C A L E S T RU C T U R E

Our MGRSs, based on a flat �CDM concordance cosmology with
�m = 0.3 and σ 8 = 0.9, and on a CLF that is required to yield cluster
mass-to-light ratios of (M/L)cl = 500 h (M/L)�, reveal clustering
statistics that are overall in reasonable agreement with the data from
the 2dFGRS. Nevertheless, two discrepancies have come to light:
the MGRSs predict too much power on small scales and PVDs that
are too high. We now investigate possible ways to alleviate these
discrepancies.

6.1 Halo occupation models

The discrepancies between our MGRS and the 2dFGRS results
might indicate a problem with our halo occupation models. Al-
though the CLF is fairly well constrained by the observed luminosity
function and the observed luminosity dependence of the correlation
lengths (see Papers I and II), we have made additional assumptions
regarding the second moments of the halo occupation number distri-
butions and regarding the distribution of galaxies within individual
dark matter haloes.

As we have shown in Section 4.2 the real space correlation func-
tion depends only very weakly on our method of distributing satellite
galaxies within dark matter haloes (cf. Fig. 8). We have verified, us-
ing a number of tests, that modifications of the spatial distribution
of satellite galaxies within dark matter haloes have no significant
influence on wp(rp) or on σ 12(rp). Therefore, none of the discrep-
ancies mentioned above can be attributed to errors in our satellite
model.

Our results are more susceptible to changes in the second moment
of the halo occupation number distributions. On small scales, ξ (r)
scales with the average number of galaxy pairs in individual haloes
〈 1

2 N (N −1)〉. Therefore, one can decrease the power on small scales,
to bring our wp(rp) into better agreement with observations, by
lowering the second moments of our halo occupation distributions.
However, our distribution (16) is already the narrowest distribution
possible, and modifying the second moment of the halo occupation
distributions can therefore only aggravate the discrepancies on small
scales.

6.2 Velocity bias

A seemingly obvious explanation for the too-high PVDs is that the
peculiar velocities of galaxies are biased with respect to the dark
matter. We define the velocity bias (sometimes called ‘dynamical’
bias) as bvel = σ gal/σ DM, with σ gal and σ DM the peculiar velocity
dispersions of (satellite) galaxies and dark matter particles in a given
halo, respectively. Note that in our fiducial MGRSs we adopt bvel = 1
(i.e. no velocity bias). Fig. 16 shows w p(r p), ξ (s), q(s) and σ 12(rp)
for MGRSs (with the MSB configuration of simulation boxes) in
which bvel = 0.6; i.e. the velocity dispersion of satellite galaxies is

only 60 per cent of that of the dark matter particles in the same halo
(dashed lines). With such a pronounced velocity bias, both q(s) and
the PVDs, as well as β and the global value of σ 12 listed in Table 1,
are all consistent with the 2dFGRS results.

In two recent papers, Berlind et al. (2003) and Yoshikawa et al.
(2003) measured the velocity bias of ‘galaxies’ in a smoothed parti-
cle hydrodynamics (SPH) simulation and found that bvel decreases
from bvel ∼ 0.9–1.0 for haloes with M ∼ 3 × 1014 h−1 M� to bvel

∼ 0.6–0.8 for haloes with M ∼ 3 × 1012 h−1 M�. Thus, although
simulations predict that low-mass haloes might have values for the
velocity bias as low as bvel � 0.6, required here to bring our PVDs
in agreement with observations, the PVD is dominated by galax-
ies in massive haloes for which these same simulations apparently
predict close to bvel = 1 (i.e. no velocity bias). Furthermore, the in-
troduction of velocity bias cannot solve the excess power on small
scales. After all, the real-space correlation function is independent
of bvel such that the discrepancies regarding wp(rp) on small scales
remain (see upper-left panel of Fig. 16). To make matters worse, re-
ducing the peculiar velocities of galaxies inside dark matter haloes,
increases the small-scale power in redshift space. This means that
the redshift-space correlation function ξ (s) actually becomes more
discrepant with the 2dFGRS data (see upper-right panel of Fig. 16).
Therefore, although a certain amount of velocity bias might be ex-
pected, we do not consider it a viable solution for the problems
mentioned above.

6.3 Cluster mass-to-light ratios

Because the PVD is a pair-weighted statistic it is extremely sensitive
to the few richest systems in the sample (i.e. Mo, Jing & Börner 1993,
1997; Zurek et al. 1994; Marzke et al. 1995; Somerville, Primack
& Nolthenius 1997). The fact that the PVDs in our MGRSs are
too large compared with observations therefore might indicate that
either there are too many clusters of galaxies in our mock surveys
(see Section 6.4 below), or that these clusters contain too many
galaxies.

Our CLF was constructed under the constraint that the average
mass-to-light ratio of haloes with M � 1014 h−1 M� is equal to
(M/L)cl = 500 h (M/L)� (in the photometric bJ band). This value
is motivated by the average mass-to-light ratio of clusters obtained
by Fukugita, Hogan & Peebles (1998). To reduce the number of
galaxies per cluster we now set (M/L)cl = 1000 h (M/L)� and
repeat the entire exercise: we first use the method described in Sec-
tion 2 to compute the parameters of the new conditional luminosity
function. This CLF is used to construct new MGRSs (using the
same configuration of simulation boxes as in MSB), from which we
determine the same statistics as before.

The results are listed in Table 1 and shown as dotted lines in
Fig. 16. Clearly, increasing the mass-to-light ratio of clusters low-
ers q(s) and σ 12(rp), bringing them into better agreement with the
2dFGRS results. Although the PVDs are still somewhat too high,
especially at around ∼0.4 h−1 Mpc, the extent of this discrepancy
is similar to its 1σ variance of the eight MGRSs, indicating that
this remaining difference is consistent with ‘cosmic variance’. As
can be seen from Table 1, both β and γ are now in much better
agreement with the 2dFGRS. In addition, the reduction of the num-
ber of galaxies in clusters significantly reduces wp(rp) at small pro-
jected separations (see Fig. 16), bringing it into good agreement with
the observations.6 A similar reduction of small-scale power is also

6 Note that the correlation amplitude predicted with (M/L)cl = 1000
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Figure 16. Same as Fig. 15 except that here we compare the results for the MSB sample with those of three alternative MGRSs in which we have modified
the CLF to yield cluster mass-to-light ratios of (M/L)cl = 1000 h (M/L)� (dotted lines), in which we adopt a velocity bias of bvel = 0.6 (dashed lines), and
in which we adopt a cosmology with σ 8 = 0.75 (dot-dashed lines). All results correspond to the mean of the entire sample of eight MSB mock surveys. For
clarity, no error bars are plotted here, but they are similar to those shown in Fig. 15. Note that both the (M/L)cl = 1000 h (M/L)� model and the σ 8 = 0.75
model are in good agreement with the observational data.

evident in ξ (s). Thus, these particular MGRSs have clustering char-
acteristics that are overall in good agreement with the 2dFGRS re-
sults. The question is therefore whether or not such a high mass-to-
light ratio for clusters of galaxies is compatible with observations.

The cluster mass-to-light ratios quoted by Fukugita et al. (1998)
are (450 ± 100) h (M/L)� in the B-band based on X-ray and
velocity-dispersion data. Taking these numbers at face value, a
cluster mass-to-light ratio of (M/L)cl = 1000 h (M/L)� is ruled
out at the 5σ level. Using a variety of methods to estimate clus-
ter masses, Bahcall et al. (2000) obtained (M/L)B = (330 ± 77)
h (M/L)�, which is consistent with the results of Carlberg et al.
(1996), (M/L)B = (363 ± 65) h (M/L)�, based on galaxy kine-
matics in clusters. Taking the average of these two measurements
yields 〈M/LB〉cl = (350 ± 70) h (M/L)�, which rules out the cluster
mass-to-light ratio required to match the clustering power on small
scales at more than 7σ . Thus, unless the cluster mass-to-light ratios

h(M/L)� is slightly lower than the observed amplitude, because in this
model more galaxies are assigned to small haloes in order to match the ob-
served luminosity function. Since the error bars on the observed correlation
lengths are relatively large, the model tends to compromise the accuracy of
the fit to the correlation lengths.

obtained from current observations are seriously in error, increasing
the average cluster mass-to-light ratio to (M/L)cl � 1000 h (M/L)�
does not seem a viable solution for the problems at hand.

6.4 Power-spectrum normalization

Rather than lowering the average number of galaxies per cluster, we
may also hope to lower the PVDs by reducing the actual number of
clusters. As we have shown in Section 5.2, our results, and thus the
number density of rich clusters, is robust against cosmic variance.
Therefore, a lower number density of clusters implies a different
cosmological model. It is well known that the abundance of (rich)
clusters is extremely sensitive to the power-spectrum normalization
parameter σ 8. The too-high PVDs could thus be indicative of a
too-high value for σ 8.

We therefore wish to compute the PVDs in a �CDM cosmol-
ogy with identical cosmological parameters as before, except that
σ 8 = 0.75 rather than 0.9. Note that the choice of σ 8 = 0.75 is
somewhat arbitrary, but it does represent a compromise between the
constraints on the value of σ 8 from various observations and the low
value required by our results on the PVDs (see below). In principle,
constructing new MGRSs for a different cosmology requires new
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N-body simulations of the dark matter distribution. This, however, is
computationally too expensive, which is why we use an approximate
method instead. First, we compute the new best-fitting parameters
of the CLF for this cosmology, again demanding that (M/L)cl =
500 h (M/L)�. Next we populate the dark matter haloes in our
σ 8 = 0.9 simulation boxes with galaxies according to this new CLF.
Finally, we construct a new sample of eight MSB MGRSs, in which
we weigh each galaxy in a halo of mass M by

w = n(M | σ8 = 0.75)

n(M | σ8 = 0.9)
(43)

with n(M) the number density of dark matter haloes of mass M. This,
to first order, mimics the effect of lowering σ 8 on the halo mass
function, and so should be a reasonable approximation on small
scales where the clustering properties are determined by the galaxy
distribution in individual haloes.7 The results for these MGRSs are
shown as dot-dashed lines in Fig. 16. As one can see, the agreement
with observational results in this model is much better than in the
standard �CDM model. These results suggest that a �CDM model
with σ 8 ∼ 0.75 may match all the observational results obtained
from the 2dFGRS. Unfortunately, in the absence of proper N-body
simulations for this model, it is impossible to make a more detailed
comparison with observation.

The question is, of course, whether such a low σ 8 is compatible
with other independent observations. Currently, the value of σ 8 is
constrained mainly by three types of observations: weak lensing
surveys, cluster mass functions, and anisotropy in the cosmic mi-
crowave background. Recent cluster abundance analyses give values
of σ 8 (assuming �m = 0.3) in a wide range, from 0.6 to 1 (e.g. Fan &
Bahcall 1998; Pen 1998; Borgani et al. 2001; Reiprich & Böhringer
2002; Seljak 2002; Viana, Nichol & Liddle 2002). Results from
weak-lensing surveys are equally uncertain, with σ 8 spanning the
range 0.7 to ∼1 (e.g. Hoekstra, Yee & Gladders 2002; Refregier,
Rhodes & Groth 2002; Bacon et al. 2003; Jarvis et al. 2003). Thus,
our preferred value, σ 8 = 0.75, is consistent with these observations.
At the moment, the most stringent constraint on the value of σ 8 is
from WMAP (Spergel et al. 2003): σ 8 = 0.84 ± 0.04 (1σ error).
Even taking this result at face value, one cannot rule out σ 8 = 0.75
with any high confidence. Thus, there is no strong observational
evidence to argue against a �CDM model with σ 8 = 0.75. Further-
more, as discussed by van den Bosch, Mo & Yang (2003b), a value
of σ 8 as low as 0.75 can also help to alleviate several problems
in current models of galaxy formation, such as those in connec-
tion with the Tully–Fisher relation and to the rotation curve shapes
of low-surface-brightness galaxies. Our results presented here give
additional support for a relatively low value of σ 8.

7 C O N C L U S I O N S

In this paper, we have used realistic halo occupation distributions,
obtained using the conditional luminosity function technique in-
troduced by Yang et al. (2003), to populate dark matter haloes in
high-resolution simulations of the �CDM ‘concordance’ cosmol-
ogy. The simulations follow the evolution of 5123 dark matter par-
ticles in periodic boxes of 100 h−1 Mpc and 300 h−1 Mpc on a side.
Subsequently, the dark matter haloes identified in these simulations

7 Note that for haloes with a given mass, the concentration parameters are
smaller in the σ 8 = 0.75 model than they are in the standard �CDM model.
This change of concentration is taken into account in our analyses, even
though its effect is almost negligible.

are populated with galaxies of different luminosity and different
morphological type.

We have shown that the luminosity functions and the correlation
lengths as a function of luminosity, both for early- and late-type
galaxies, are in good agreement with observations. Since these same
observations were used to constrain the conditional luminosity func-
tions, which in turn were used to populate the dark matter haloes, this
agreement shows that the halo occupation statistics obtained ana-
lytically can be implemented reliably in N-body simulations to con-
struct realistic, self-consistent, mock galaxy distributions. We have
demonstrated that the details of the spatial distribution of galaxies
within individual dark matter haloes have only a very mild effect
on the two-point correlation function, and only at real-space sepa-
rations r � 0.3 h−1 Mpc.

The mean pairwise peculiar velocities, 〈v12〉, however, depend
rather strongly on whether satellite galaxies (any galaxy in a dark
matter halo other than the most luminous, central galaxy) are asso-
ciated with random dark matter particles of the friends-of-friends
(FOF) group, or whether they are assigned peculiar velocities as-
suming a spherical, isotropic velocity distribution around the central
galaxy. In the former case, 〈v12〉, which indicates the amount of in-
fall around overdensity regions, is similar to that of the dark matter.
In the latter case, 〈v12〉 is significantly suppressed with respect to
the dark matter. This difference indicates that the outer parts of the
FOF-groups are not yet virialized.

The pairwise velocity dispersions (PVDs) of the galaxies are
found to be significantly smaller than those of dark matter parti-
cles. Since the PVD is a pair-weighted measure for the potential
well in which dark matter particles (galaxies) reside, this can be
understood as long as the average number of galaxies per unit halo
mass, N/M, decreases with M (Jing et al. 1998). Indeed, the halo oc-
cupation numbers inferred from our conditional luminosity function
indicate that N/M ∝ Ma with a ∼ −0.2.

Stacking a number of 100 h−1 Mpc and 300 h−1 Mpc simulation
boxes allows us to construct mock galaxy redshift surveys (MGRSs)
that are comparable to the 2dFGRS in terms of sky coverage, depth
and magnitude limit. For each of these MGRSs we estimate the
two-point correlation functions ξ (rp, π ). These are used to derive
a number of statistics about the large-scale distribution of galaxies,
which we compare directly with the 2dFGRS results. In particular,
we calculate the projected 2PCFs wp(rp) as a function of luminosity
and type. The best-fitting power-law slope and correlation lengths of
these projected correlation functions are found in good agreement
with the 2dFGRS results obtained by Norberg et al. (2002a). In
addition, we also compute wp(rp) and the redshift space correlation
function ξ (s) for the entire MGRSs. These are compared to the
2dFGRS results obtained by Hawkins et al. (2003).

Although the agreement with the 2dFGRS data is excellent on
scales larger than ∼3 h−1 Mpc, on smaller scales wp(rp) is about
a factor of 2 larger than observed. To investigate this in more de-
tail, we analysed the redshift-space distortions present in ξ (rp, π )
by computing the quadrupole-to-monopole ratios q(s) and the pair-
wise velocity dispersions σ 12(rp). A comparison with the results of
Hawkins et al. (2003) shows that the standard �CDM model over-
predicts the clustering power on small scales by a factor of about 2,
and the PVDs by about 350 km s−1. After examining a variety of
possibilities, we find that the only viable solution to these problems
is to reduce the power-spectrum amplitude, σ 8, from 0.9 to ∼0.75.

No doubt, in the coming years, new results from the 2dFGRS
and the SDSS will significantly improve the data on the large-scale
distribution of galaxies. The analysis presented here, based on the
conditional luminosity function, will hopefully prove a useful tool
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to further constrain both galaxy formation and cosmology. In this
respect, our results regarding constraints on σ 8 are an important
illustration of the potential power of this approach.
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