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ABSTRACT
Thermal conduction in the intracluster medium has been proposed as a possible heating mech-
anism for offsetting central cooling losses in rich clusters of galaxies. However, because of
the coupled non-linear dynamics of gas subject to radiative cooling and thermal conduction,
cosmological hydrodynamical simulations are required to predict reliably the effects of heat
conduction on structure formation. In this study, we introduce a new formalism to model
conduction in a diffuse ionized plasma using smoothed particle hydrodynamics (SPH), and
we implement it in the parallel TreePM/SPH-code GADGET-2. We consider only isotropic
conduction and assume that magnetic suppression can be described in terms of an effective
conductivity, taken as a fixed fraction of the temperature-dependent Spitzer rate. We also ac-
count for saturation effects in low-density gas. Our formulation manifestly conserves thermal
energy even for individual and adaptive time-steps, and is stable in the presence of small-scale
temperature noise. This allows us to evolve the thermal diffusion equation with an explicit
time integration scheme along with the ordinary hydrodynamics. We use a series of simple
test problems to demonstrate the robustness and accuracy of our method. We then apply our
code to spherically symmetric realizations of clusters, constructed under the assumptions of
hydrostatic equilibrium and a local balance between conduction and radiative cooling. While
we confirm that conduction can efficiently suppress cooling flows for an extended period of
time in these isolated systems, we do not find a similarly strong effect in a first set of clusters
formed in self-consistent cosmological simulations. However, their temperature profiles are
significantly altered by conduction, as is the X-ray luminosity.
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1 I N T RO D U C T I O N

Clusters of galaxies provide a unique laboratory to study structure
formation and the material content of the Universe, because they
are not only the largest virialized systems but are also believed to
contain a fair mixture of cosmic matter. Among the many interesting
aspects of cluster physics, their X-ray emission plays a particularly
prominent role. It provides direct information on the thermodynamic
state of the diffuse intracluster gas, which makes up for most of the
baryons in clusters.

While the bulk properties of this gas are well understood in terms
of the canonical �CDM model for structure formation, there are
a number of discrepancies between observations and the results of
present hydrodynamical simulations. For example, a long-standing
problem is to understand in detail the scaling relations of observed
clusters, which deviate significantly from simple self-similar pre-
dictions. In particular, poor clusters of galaxies seem to contain gas
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of higher entropy in their centres than expected (Ponman, Cannon
& Navarro 1999; Lloyd-Davies, Ponman & Cannon 2000). This has
been interpreted either to be evidence for an entropy injection due
to non-gravitational processes (Metzler & Evrard 1994; Wu, Fabian
& Nulsen 2000; Loewenstein 2000), or as a sign of the selective
removal of low-entropy gas by gas cooling (Voit et al. 2002; Wu &
Xue 2002). Both processes combined could influence the thermo-
dynamic properties of the intracluster medium (ICM) in a complex
interplay (Tornatore et al. 2003; Borgani et al. 2004).

Another interesting problem occurs for the radial temperature
profiles of clusters. Most observed clusters show a nearly isother-
mal temperature profile, often with a smooth decline in their central
parts (Allen, Schmidt & Fabian 2001; Ettori et al. 2002; Johnstone
et al. 2002). Nearly isothermal profiles are also obtained in adiabatic
simulations of cluster formation (e.g. Frenk et al. 1999). However,
clusters in simulations that include dissipation typically show tem-
perature profiles that increase towards the centre (e.g. Lewis et al.
2000), quite different from what is observed.

Perhaps the biggest puzzle is that spectroscopic X-ray obser-
vations of the centres of clusters of galaxies have revealed little
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evidence for cooling of substantial amounts of gas out of the intra-
cluster medium (e.g. David et al. 2001), even though this would be
expected based on their bolometric X-ray luminosity alone (Fabian
1994). The apparent absence of strong cooling flows in clusters
hence indicates the presence of some heating source for the central
intracluster medium. Among the proposed sources are active galac-
tic nuclei (AGN), buoyant radio bubbles (Churazov et al. 2001;
Enßlin & Heinz 2001), feedback processes from star formation
(Menci & Cavaliere 2000; Bower et al. 2001), or acoustic waves
(Fujita, Suzuki & Wada 2004).

Recently, Narayan & Medvedev (2001) have proposed that ther-
mal conduction may play an important role for the cooling processes
in clusters. The highly ionized hot plasma making up the ICM in
rich clusters of galaxies should be efficient in transporting thermal
energy, unless heat diffusion is inhibited by magnetic fields. If con-
duction is efficient, then cooling losses in the central part could be
offset by a conductive heat flow from hotter outer parts of clusters,
which forms the basis of the conduction idea.

Indeed, using simple hydrostatic cluster models where cooling
and conductive heating are assumed to be locally in equilibrium,
Zakamska & Narayan (2003, ZN henceforth) have shown that the
central temperature profiles of a number of clusters can be well
reproduced in models with conduction (see also Fabian, Voigt &
Morris 2002; Voigt et al. 2002; Brüggen 2003; Voigt & Fabian 2004).
The required conductivities are typically sub-Spitzer (Medvedev
et al. 2003). This suggests that thermal conduction may play an
important role for the thermodynamic properties of the ICM.

On the other hand, it has been frequently argued (Chandran &
Cowley 1998; Malyshkin & Kulsrud 2001) that magnetic fields in
clusters most likely suppress the effective conductivity to values
well below the Spitzer value for an unmagnetized gas. Note that
rotation measurements show that magnetic fields do exist in clus-
ters (e.g. Vogt & Enßlin 2003). However, little is known about the
small-scale field configuration, so that there is room for models with
chaotically tangled magnetic fields (Narayan & Medvedev 2001),
which may leave a substantial fraction of the Spitzer conductivity
intact. The survival of sharp temperature gradients along cold fronts,
as observed by Chandra in several clusters (Ettori & Fabian 2000;
Markevitch et al. 2000; Vikhlinin, Markevitch & Murray 2001),
may require an ordered magnetic field to suppress conduction. For
a more complete review of the effects of magnetic fields on galactic
clusters, see Carilli & Taylor (2002) and references therein.

It is clearly of substantial interest to understand in detail the ef-
fects conduction may have on the formation and structure of galaxy
clusters. In particular, it is far from clear whether the temperature
profile required for a local balance between cooling and conduc-
tion can naturally arise during hierarchical formation of clusters in
the �CDM cosmology. This question is best addressed with cos-
mological hydrodynamical simulations that fully account for the
coupled non-linear dynamics of the gas subject to radiative cooling
and thermal conduction.

In this paper, we hence develop a new numerical implementation
of conduction and include it in a modern TreeSPH code for structure
formation. Smoothed particle hydrodynamics (SPH) (Lucy 1977;
Monaghan & Lattanzio 1985; Monaghan 1992) is a powerful numer-
ical tool to investigate gas dynamics, which has found widespread
application in astrophysics. In cosmological simulations, gas densi-
ties vary over many orders of magnitude, and can change rapidly as
functions of position and time. Classical mesh-based Euclidean ap-
proaches to hydrodynamics have difficulty adjusting to this high dy-
namic range unless sophisticated adaptive mesh refinements (AMR)
methods are used. In contrast, the Lagrangian approach of SPH,

thanks to its matter-tracing nature, guarantees good spatial reso-
lution in high-density regions, while spending little computational
time on low-density regions of space, where a coarser spatial reso-
lution is usually sufficient.

Another useful aspect of SPH is that the equations that describe
physical processes can often be translated into an SPH form rather
intuitively. Below we discuss this in detail for the conduction equa-
tion, highlighting in particular how a number of practical problems
with respect to stability can be overcome. The final formulation
we propose is robust and explicitly conserves thermal energy, even
when individual time-steps for each particle are used.

After examining idealized test problems to validate our imple-
mentation of conduction, we apply our code to realizations of the
static cluster models of ZN, investigating in particular, to what de-
gree conduction may balance cooling in these clusters, and for how
long this approximate equilibrium can be maintained. We also dis-
cuss results for a first set of cosmological simulations of cluster for-
mation. We here compare simulations that follow only adiabatic gas
dynamics, or only cooling and star formation, with corresponding
ones that also include conduction. As we will see, thermal conduc-
tion can lead to a substantial modification of the final thermodynamic
properties of rich clusters.

The outline of this paper is as follows. In Section 2, we discuss
the basics of the conduction equation, and our numerical approach
for discretizing it in SPH. In Section 3, we show first test runs of
conducting slabs, which we also use to illustrate various issues of
numerical stability. In Section 4, we consider isolated clusters, con-
structed with an initial equilibrium model, while in Section 5 we
present a comparison of results obtained in cosmological simula-
tions of cluster formation. Finally, we summarize and discuss our
findings in Section 6.

2 T H E R M A L C O N D U C T I O N I N S P H

2.1 The conduction equation

Heat conduction is a transport process for thermal energy, driven
by temperature gradients in the conducting medium. Provided the
mean free path of particles is small compared to the scalelength of
the temperature variation, the local heat flux can be described by

j = −κ∇T , (1)

where T(r) gives the temperature field, and κ is the heat conduction
coefficient, which may depend on local properties of the medium.
For example, in the case of an astrophysical plasma, we encounter
a strong dependence of κ on the temperature itself.

The rate of temperature change induced by conduction can simply
be obtained from conservation of energy, viz.

ρ
du

dt
= −∇· j, (2)

where u is the thermal energy per unit mass, and ρ denotes gas
density. Eliminating the heat flux, this can also be written directly
in terms of u, giving the heat conduction equation in the form

du

dt
= 1

ρ
∇·(κ∇T ). (3)

Note that the temperature is typically simply proportional to u, un-
less the mean particle weight changes in the relevant temperature
regime, for example as a result of a phase transition from neutral gas
to ionized plasma. In the thin astrophysical plasmas we are interested
in, the strong temperature dependence of the Spitzer conductivity
(see below) heavily suppresses conduction in low-temperature gas.
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For all practical purposes we can set u = kT/[(γ − 1)µ] = cvT ,
where µ = 0.588 m p is the mean molecular weight of a fully ionized
gas with the primordial mix of helium and hydrogen, and cv is the
heat capacity per unit mass.

2.2 Spitzer conductivity

Spitzer (1962) derived the classical result for the heat conductivity
due to electrons in an ionized plasma. It is given by

κsp = 1.31neλek

(
kTe

me

)1/2

, (4)

where n e is the electron density, and λe the electron mean free
path. Interestingly, the product n eλe depends only on the electron
temperature T e,

λene = 33/2(kTe)2

4
√

πe4 ln �
, (5)

provided we neglect the very weak logarithmic dependence of the
Coulomb logarithm � on electron density and temperature, which is
a good approximation for clusters. We will set ln �= 37.8, appropri-
ate for the plasma in clusters of galaxies (Sarazin 1988). The Spitzer
conductivity then shows only a strong temperature dependence, κ sp

∝ T 5/2, and has the value

κsp = 8.2 × 1020

(
kBT

10 keV

)5/2
erg

cm s keV
. (6)

Note that the presence of magnetic fields can in principle strongly
alter the conductivity. Depending on the field configuration, it can
be suppressed in certain directions, or even in all directions in cases
of certain tangled fields. The field configuration in clusters is not
well understood, and it is currently debated to what degree magnetic
fields suppress conduction. We will assume that the modification of
the conductivity can be expressed in terms of an effective conductiv-
ity, which we parametrize as a fraction of the Spitzer conductivity.

Even in the absence of magnetic fields, the Spitzer conductivity
cannot be expected to apply down to arbitrarily low plasma densities.
Eventually, the scalelength of the temperature gradient will become
comparable or smaller than the electron mean free path, at which
point the heat flux will saturate, with no further increase when the
temperature gradient is increased (Cowie & McKee 1977). This
maximum heat flux j sat is given by

jsat 	 0.4 nekBT

(
2kBT

πme

)1/2

. (7)

In order to have a smooth transition between the Spitzer regime and
the saturated regime, we limit the conductive heat flux by defining
an effective conductivity (Sarazin 1988) in the form

κeff = κsp

1 + 4.2λe/lT
. (8)

Here lT ≡ T /|∇T | is the characteristic length-scale of the temper-
ature gradient.

2.3 SPH formulation of conduction

At first sight, equation (3) appears to be comparatively easy to solve
numerically. After all, the time evolution generated by the diffusion
equation smoothes out initial temperature variations, suggesting that
it should be quite ‘forgiving’ to noise in the discretization scheme,
which should simply also be smoothed out.

In practice, however, there are two problems that make it surpris-
ingly difficult to obtain stable and robust implementations of the
conduction equation in cosmological codes. The first has to do with

the presence of second derivatives in equation (3), which in stan-
dard SPH kernel interpolants can be noisy and sensitive to particle
disorder. The second is that an explicit time integration method can
easily lead to an unstable integration if large local gradients arise
due to noise. We will discuss our approaches to solving these two
problems in turn.

A simple discretization of the conduction equation in SPH can
be obtained by first estimating the heat flux for each particle apply-
ing standard kernel interpolation methods, and then estimating the
divergence in a second step. However, this method has been shown
to be quite sensitive to particle disorder (Brookshaw 1985), which
can be traced to the effective double differentiation of the SPH ker-
nel. In addition, this method has the practical disadvantage that an
intermediate result, the heat flux vectors, need to be computed and
stored in a separate SPH loop.

It is hence advantageous to use a simpler SPH discretization of
the Laplace operator, which should ideally involve only first-order
derivatives of the smoothing kernel. Such a discretization has been
proposed before (Brookshaw 1985; Monaghan 1992), and we here
give a brief derivation of it in three dimensions.

For a well-behaved field Y(x), we can consider a Taylor series
approximation for Y (x j ) in the proximity of Y (x i ), e.g.

Y (x j ) − Y (xi ) = ∇Y

∣∣∣∣
xi

· (x j − xi )

+ 1

2

∂2Y

∂xs∂xk

∣∣∣∣
xi

(x j − xi )s(x j − xi )k

+O(x j − xi )3. (9)

Neglecting terms of third and higher orders, we multiply this with

(x j − xi )∇i W (x j − xi )

|x j − xi |2 , (10)

where W (x) = W (| x|) is the SPH smoothing kernel. Note that we
choose this kernel to be spherically symmetric and normalized to
unity. The expression in equation (10) is well behaved for x j → x i

under these conditions. Introducing the notation x i j = x j − x i and
Wij = W (x j − x i ), we integrate over all x j and note that∫

xi j
xi j∇i Wi j

|xi j |2 d3x j = 0, (11)

∫
(xi j )s(xi j )k

xi j∇i Wi j

|xi j |2 d3x j = δsk . (12)

So the term linear in ∇Y drops out, and the terms involving off-
diagonal elements of the Hessian matrix of Y vanish, so that the sum
over the second-order term simply reduces to ∇2Y . We hence end
up with

∇2Y

∣∣∣∣
xi

= −2

∫
Y (x j ) − Y (xi )

|xi j |2 xi j∇i Wi j d3x j . (13)

This analytical approximation of the Laplacian can now be easily
translated into an SPH kernel interpolant. To this end, we can replace
the integral by a sum over all particles indexed by j, and replace the
volume element d3xj by its discrete SPH analogue mj/ρ j . The values
of the field Y(x) at the particle coordinates can be either taken as the
value of the intrinsic particle property that is evolved, Y (x i ) = Yi,
or as a kernel interpolant of these values, Y (x i ) = 〈Yi〉, where for
example

〈Yi 〉 =
∑

j

Y j
m j

ρ j
W (xi j ). (14)
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We then end up with a discrete SPH approximation of the Laplace
operator in the form

∇2Y

∣∣∣∣
i

= −2
∑

j

m j

ρ j

Y j − Yi

|xi j |2 xi j∇i Wi j . (15)

We now consider how this can be applied to the thermal con-
duction problem, where the conductivity may also show a spatial
variation. Using the identity

∇ (κ∇T ) = 1

2
[∇2(κT ) − T ∇2κ + κ∇2T ], (16)

we can use our result from equation (15) to write down a discretized
form of equation (3):

dui

dt
=
∑

j

m j

ρiρ j

(κ j + κi )(Tj − Ti )

|xi j |2 xi j∇i Wi j . (17)

This form is antisymmetric in the particles i and j, and the energy
exchange is always balanced on a pairwise basis, i.e. conservation
of thermal energy is manifest. Also, it is easy to see that the total
entropy can only increase, and that heat always flows from higher
to lower temperature.

The conductivities κ i and κ j in equation (17) are effectively arith-
metically averaged. Cleary & Monaghan (1999) proposed to make
the replacement

s
κi + κ j

2
�→ κi j = 2κiκ j

κi + κ j
. (18)

They showed that this ensures a continuous heat flux even in cases
when the heat conductivity exhibits a discontinuity, as for example
along the interface between different phases. It is clear then that
this modification should also behave better when the conductivity
changes extremely rapidly on small scales, as it can happen for ex-
ample in ICM gas when cool particles get into direct contact with
comparatively hot neighbours. Indeed, we found this symmetriza-
tion to give numerically more robust behaviour, particularly in sim-
ulations that in addition to heat conduction also followed radiative
cooling. Note that since we have min(κi , κ j ) � 2κi κ j/(κi + κ j ) �
2 min(κi , κ j ), the Cleary & Monaghan average always stays close
to the smaller of the two conductivities involved, to within a factor
of two.

2.4 Details of the numerical implementation

We have implemented heat conduction in a new version of the mas-
sively parallel TreeSPH code GADGET (Springel, Yoshida & White
2001b), which is a general-purpose code for cosmological structure
formation. Unlike earlier public releases of the code, the present
version, GADGET-2, uses the ‘entropy formulation’ of SPH proposed
by Springel & Hernquist (2002) which conserves both energy and
entropy (in regions without shocks) for fully adaptive smoothing
lengths. In this formulation, an entropic function

A = (γ − 1)
u

ργ−1
(19)

is evolved as an independent variable for each particle, instead of the
thermal energy per unit mass. Note that A = A(s) is only a function
of the thermodynamic entropy s per unit mass.

For consistency with this formalism, we need to express the heat
conduction equation in terms of entropy. This is easily accomplished
in an isochoric approximation, noting that the temperature can be

expressed as T = µ/k B(A/ργ−1), where µ is the mean molecular
weight. This results in

dAi

dt
= 2µ

kB

γ − 1

ρ
γ−1
i

∑
j

m jκi j

ρiρ j

(
A j

ρ
γ−1
j

− Ai

ρ
γ−1
i

)
xi j∇i Wi j

|xi j |2 . (20)

One problematic aspect of the heat conduction equation is that
small-scale numerical noise in the temperature field can generate
comparatively large heat flows, simply because this noise can in-
volve small-scale gradients of sizeable magnitude. Since we are
using an explicit time integration scheme for the hydrodynamical
evolution, this immediately raises the danger of instabilities in the
integration. Unless extremely small time-steps or an implicit inte-
gration scheme are used, the energy exchange between two particles
due to a small-scale temperature difference can become so large that
the explicit time integration ‘overshoots’, thereby potentially revers-
ing the sign of the temperature difference between the two particles
in conductive contact. This is not only incorrect, but makes it possi-
ble for the temperature differences to grow quickly in an oscillatory
fashion, causing unstable behaviour of the integration.

We have found that a good method to avoid this problem is to
use a kernel interpolant for the temperature field (or entropy field)
in the discretization of the heat conduction equation (20), instead
of the individual particle temperature values themselves. The inter-
polant represents a smoothed version of the noisy sampling of the
temperature field provided by the particle values, so that on the scale
of the SPH smoothing length, small-scale noise in the heat flux is
strongly suppressed. Particles will still try to equilibrate their tem-
peratures even within the smoothing radius of each particle, but this
will happen at a damped rate. Heat conduction due to temperature
gradients on larger scales is unaffected, however. In a later section
of this work, we will explicitly demonstrate how this improves the
stability of the time integration, particularly when individual and
adaptive time-steps are used.

For definiteness, the interpolant we use is a smoothed version Ai

of the entropy, defined by

ρ
γ

i Ai =
∑

j

m jρ
(γ−1)
j A j Wi j . (21)

We then replace Ai and/or Aj on the right-hand side of equation (20)
with the interpolants Ai and A j . Note that the weighting by ρ(γ−1)

ensures that we obtain a value of A that corresponds to a smoothed
temperature field, as required since conduction is driven by gra-
dients in temperature and not entropy. However, since the density
values need to be already known to evaluate this interpolant, this
unfortunately requires an additional SPH loop, which causes quite
a bit of computational overhead. This can in principle be avoided
if the weighting with densities in equation (21) is dropped, which
according to our tests appears to be sufficiently accurate in most
situations.

Note that although we use the SPH interpolant for the entropy
values in equation (20), we still compute the values for the particle
conductivity κ based on the intrinsic particle temperature and not
on its smoothed counterpart.

While the above formulation manifestly conserves thermal en-
ergy, this property may get lost when individual and adaptive time-
steps are used, where for a given system step only a subset of the
particles is evolved. There can then be particle pairs where only one
particle is active in the current system step, while the other is not,
so that ‘one-sided’ heat conduction may occur that causes a (brief)
violation of energy conservation during the step. While most of the
resulting energy imbalance will only be a temporary fluctuation that

C© 2004 RAS, MNRAS 351, 423–435



Thermal conduction in cosmological SPH simulations 427

will be compensated as soon as the ‘inactive’ particle in the pair is
evolved, the very strong temperature dependence of the conductiv-
ity may produce sizeable errors in this situation, particularly when
coarse time-stepping is used. We therefore decided to implement
an explicitly conservative scheme for the heat exchange, even when
adaptive and individual time-steps are used.

To this end, we define a pairwise exchange of heat energy as

Ei j ≡ 2µ

kB

mi m jκi j

ρiρ j

(
A j

ρ
γ−1
j

− Ai

ρ
γ−1
i

)
xi j∇i Wi j

|xi j |2 . (22)

A simple translation into a finite difference scheme for the time
evolution would then be

mi u
′
i = mi ui + �ti

∑
j

Ei j , (23)

where u′
i and ui can also be expressed in terms of the corresponding

entropy values A′
i and Ai. However, for individual and variable time-

steps, only a subfraction of particles will be ‘active’ in the current
system time-step. These particles have individual time-steps �ti,
while the ‘inactive’ particles can be formally assigned �ti = 0 for
the step. Equation (23) then clearly does not guarantee detailed
energy conservation in each system step.

We recover this property in the following way. We update the
energy of particles according to

mi u
′
i = mi ui + 1

2

∑
jk

�t j (δi j − δik)E jk (24)

in each system step. In practice, the double-sum on the right-hand
side can be simply computed using the usual SPH loop for active
particles. Each interacting pair found in the neighbour search for
active particle i is simply used to change the thermal energy of
particle i by �tiEij/2, and that of the neighbouring particle j by
−�tiEij/2 as well. Note that if particle j is active, it carries out a
neighbour search itself and will find i itself, so that the total energy
change of i due to the presence of j is given by (�ti + �tj)Eij/2.
Energy is conserved by construction in this scheme, independent of
the values if individual time-steps of particles. If all particles have
equal steps, equation (24) is identical to the form of (23). As before,
in our SPH implementation we convert the final thermal energy
change to a corresponding entropy change. These entropy changes
are applied instantaneously for all particles at the end of one system
step, so that even particles that are inactive at the current system step
may have their entropy changed by conduction. The resulting low
order of the time integration scheme is sufficient for the diffusion
equation.

If conduction is so strong that the time-scale of conductive redis-
tribution of thermal energy is short compared to relevant dynamical
time-scales of the gas, the usual hydrodynamic time-step selected
by the code based on the Courant criterion may become too coarse to
follow conduction accurately. We therefore introduce an additional
time-step criterion in simulations that follow thermal conduction.
To this end, we limit the maximum allowed time-step to some pre-
scribed fraction of the conduction time-scale, A/| Ȧcond|, namely

�tcond = α × A

| Ȧcond|
, (25)

where α is a dimensionless accuracy parameter. In our simulations,
we typically employed a value of α = 0.25, which has provided
good enough accuracy at a moderate cost of CPU time.

Finally, in order to account for a possible limitation of conduction
by saturation, we compute the gradient of the (smoothed) temper-

ature field in the usual SPH fashion, and then use it to compute lT

and the saturation-limited conductivity based on equation (8).

3 I L L U S T R AT I V E T E S T P RO B L E M S

In this section, we verify our numerical implementation of thermal
conduction with a number of simple test problems that have known
analytic solutions. We will also investigate the robustness of our
formulation with respect to particle disorder, and (initial) noise in
the temperature field.

3.1 Conduction in a one-dimensional problem

We first consider two solid slabs with different initial temperatures,
brought into contact with each other at time t = 0. The slabs were
realized as a lattice of SPH particles, with dimensions 100×10×10,
and an equidistant particle spacing of 1 cm. To avoid perturbations
of the 1D symmetry, the simulation volume was taken to be periodic
along the two short axes, while kept non-periodic along the long axis,
allowing us to study surface effects, if present, on the sides of the
slabs that are not in contact. Note that the test was carried out with
our 3D code. All particle velocities were set to zero initially, and
kept at this value to mimic a solid body. The thermal conductivity
was set to a value of κcv = 1 cm2 s−1 throughout both materials,
independent of temperature.

In Fig. 1, we compare the time evolution of our numerical results
for this test with the analytical solution of the same problem, which
is given by

u(z, t) = u0 + �u

2
erf

(
z − zm√

αt

)
, (26)

where α = κcv/ρ, zm gives the position of the initial difference of
size �u in thermal energy, and u0 is the mean thermal energy. We
see that the numerical solution tracks the analytic result very nicely.

We have also repeated the test for a particle configuration corre-
sponding to a ‘glass’ (White 1996), with equally good results. For a
Poisson distribution of particles, we noted however a small reduc-
tion in the speed of conduction when a small number of neighbours
of 32 is used. Apparently, here the large density fluctuations due to
the Poisson process combined with the smallness of the number of
neighbours leads to somewhat poor coupling between the particles.
This effect goes away for larger numbers of neighbours, as expected.
Note, however, that in practice, due to the pressure forces in a gas,
the typical configuration of tracer particles is much more akin to a
glass than to a Poisson distribution.

Next, we examine how robust our formulation is with respect to
small-scale noise in the temperature field. To this end, we repeat the
above test using the glass configuration, but we perturb the initial
thermal energies randomly with fluctuations at an rms level of σ =
80 erg g−1. Further, we increase the maximum time-step allowed
for particles to �t = 1.0 s.

We discussed previously that we can either use the particle val-
ues of the temperatures (or entropy) in the right-hand side of equa-
tion (22), or kernel interpolants thereof. Here we compare the fol-
lowing different choices with each other:

(A) Basic formulation: use particle values Ai and Aj.
(B) Smoothed formulation: use Ai and A j .
(C) Mixed formulation: use Ai and A j .

The mixed formulation (C) may at first seem problematic, because
its pairwise antisymmetry is not manifest. However, since we use
equation (24) to exchange heat between particles, conservation of
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Figure 1. Time evolution of the temperature profile of two slabs of solid material, brought into contact with each other at t = 0 along the z = 50 cm plane,
with an initial difference of thermal energy per unit mass of � u = 1000 erg g−1. Crosses mark numerical results, and the solid line is the analytic solution of
the heat conduction equation.

thermal energy is ensured also in this case. When all particles have
equal time-steps, formulation (C) would correspond to an arithmetic
average of (A) and (B).

In Fig. 2, we compare the result obtained for these three formula-
tions after a simulation time of 5 s. The artificially perturbed initial
conditions are shown in the top left panel. Interestingly, while all
three different formulations are able to recover the analytic solu-
tion in the mean, they show qualitatively different behaviour with
respect to the imprinted noise. When the intrinsic particle values
for the temperatures are used (top right panel), very large pairwise
gradients on small scales occur that induce large heat exchanges.
As a result, the particles oscillate around the mean, maintaining a
certain rms scatter which does not reduce with time, i.e. an efficient
relaxation to the medium temperature does not occur. Note that the
absolute size of the scatter is larger in the hot part of the slab. This
is a result of the time-step criterion (25), which manages to hedge
the rms noise to something of order ∼αT . Reducing the time-step
parameter α can thus improve the behaviour, while simultaneously
increasing the computational cost significantly. For coarse time-
stepping (or high conductivities) the integration with this method
can easily become unstable.

Formulation (B), which uses the smoothed kernel-interpolated
temperature field for both particles in each pair, does significantly
better in this respect (bottom left panel). However, the particle tem-
peratures only very slowly approach the local mean value and hence
the analytical solution in this case. This is because the smoothing
here is quite efficient in eliminating the small-scale noise, meaning
that a deviation of the temperature of an individual particle from the
local mean is decaying only very slowly.

The mixed formulation (C), shown in the bottom right, obviously
shows the best behaviour in this test. It suppresses noise quickly,
matches the analytical solution very well, and allows the largest
time-steps of all schemes we tested. In this formulation, particles
which have a large deviation from the local average temperature try

to equalize this difference quickly, while a particle that is already
close to the mean is not ‘pulled away’ by neighbours that have
large deviations. Apparently, this leads to better behaviour than for
schemes (A) and (B), particularly when individual time-steps are
used. We hence choose formulation (C) as our default method.

3.2 Conduction in a three-dimensional problem

As a simple test of conduction in an intrinsically three-dimensional
problem, we consider the temporal evolution of a point-like thermal
energy perturbation. The time evolution of an initial δ-function is
given by the three-dimensional Green’s function for the conduction
problem,

G(x, y, z, t) = 1

(4πcvκt)3/2
exp

(
− x2 + y2 + z2

4cvκt

)
, (27)

where cv = u/T is the heat capacity. We again consider a solid
material, realized with a glass configuration of 503 simulation par-
ticles with a mass of 1 g each and a mean particle spacing of 1 cm.
We choose a conductivity of κ cv = 1 cm2 s−1, as before. We give
the material a specific energy per unit mass of u0 = 1000 erg g−1,
and add a perturbation of 10 000.0 erg g−1 × G(x , y, z, t 0 = 10 s).
These initial conditions correspond to a δ-function perturbation that
has already evolved for a brief period; this should largely eliminate
timing offsets that would arise in the later evolution if we let the
intrinsic SPH smoothing wash out a true initial δ-function.

Fig. 3 shows the specific energy profile after evolving the con-
duction problem for an additional 10 or 20 s, respectively. In the
two bottom panels, we show the relative deviation from the analytic
solution. Given that quite coarse time-stepping was used for this
problem (about ∼32 time-steps for 20 s), the match between the
theoretical and numerical solutions is quite good. Even at a radial
distance of 20 cm, where the Gaussian profile has dropped to less
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Figure 2. Comparison of the numerical stability of the SPH discretization scheme when different formulations for the conduction equation (22) are used. The
top left panel shows the initial conditions for the simple conduction problem considered in Fig. 1, but perturbed with artificial Gaussian noise in the temperature
field. The top right panel shows the evolved state after 5 s when formulation (A) is employed, where the individual particle temperatures are used directly.
The lower left panel compares this with formulation (B), where the temperatures on the right-hand side of equation (22) are taken to be kernel interpolants
of the temperature field. Finally, the bottom right panel gives the result for formulation (C), which represents a mixed scheme that uses both the individual
temperatures of particles, and the smoothed temperature field. This scheme proves to be the most robust against local noise, which is quickly damped away.

Figure 3. Time evolution of the temperature field in an elementary three-dimensional conduction problem, displayed at two different times. We here consider
the spreading of a narrow Gaussian temperature profile, which corresponds to the Green’s function of the conduction problem for constant conductivity. Dots
show the specific energies of individual simulation particles, while the solid line marks the analytical result. Relative deviations are shown in the lower panels.
The numerical result maintains the Gaussian profile very well at all times. At early times, when the profile is sampled with few particles, a small reduction in
the effective speed of conduction is seen, which however becomes increasingly unimportant at later times.
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than one hundredth of its central amplitude, relative deviations are
at around 10 per cent for t = 20 s and below 3 per cent at t = 30 s.
Note, however, that at all times the numerical solution maintains a
nice Gaussian shape so that the deviations can be interpreted as a
small modification in the effective conductivity. We then see that
at late times, when the temperature gradients are resolved by more
particles, the SPH estimate of the conductivity becomes ever more
accurate.

4 S P H E R I C A L M O D E L S F O R
C L U S T E R S O F G A L A X I E S

Observed temperature profiles of clusters of galaxies are often char-
acterized by a central decline of temperature, while otherwise ap-
pearing fairly isothermal over the measurable radial range. Provided
the conductivity is non-negligible, there should hence be a conduc-
tive heat flux into the inner parts, which would then counteract
central cooling losses. Motivated by this observation, Zakamska &
Narayan (2003) (ZN henceforth) have constructed simple analytic
models for the structure of clusters, invoking as a key assumption
local equilibrium between conduction and cooling. Combined with
the assumption of hydrostatic equilibrium and spherical symme-
try, they were able to reproduce quite successfully the temperature
profiles of a number of observed clusters.

We here use the model of ZN as a test-bed to check the validity
of our conduction modelling in a realistic cosmological situation. In
addition, the question of how long the ZN solution can be maintained
is of immediate interest, and we address this with our simulations
of spherical clusters as well.

For definiteness, we briefly summarize the method of ZN for
constructing a cluster equilibrium model. The cluster is assumed to
be spherically symmetric, with the gas of density ρ(r) and pressure
P(r) being in hydrostatic equilibrium, i.e.

1

ρ

dP

dr
= −d�

dr
, (28)

where the gravitational potential � is given by

1

r 2

d

dr

(
r 2 d�

dr

)
= 4πG(ρDM + ρ). (29)

The dark matter density ρDM(r ) is described by a standard NFW
(Navarro, Frenk & White 1996) halo, optionally modified by ZN
with the introduction of a small softened dark matter core. The
structure of the dark halo can then be fully specified by the virial
radius r 200, defined as the radius enclosing a mean overdensity of
200 with respect to the critical density, and a scalelength r s.

The radial heat flux F due to electron conduction is given by

F = −κ
dT

dr
, (30)

where the conductivity κ is taken to be a constant fraction of the
Spitzer value. In order to balance local cooling losses, we require

1

r 2

d

dr
(r 2 F) = − j, (31)

where j describes the local gas cooling rate. If cooling is dominated
by thermal bremsstrahlung, j can be approximated as

j = 2.1 × 10−27n2
e T 1/2 erg cm−3 s−1. (32)

The electron number density n e herein correlates with the gas density
ρ and depends on the hydrogen mass fraction X we assume for the
primordial matter. With a proton mass of m p, it equals n e = ρ(X +

1)/(2m p). Following ZN, we use this simplification in setting up our
cluster models.

Equations (28)–(32) form a system of differential equations that
can be integrated from inside out once appropriate boundary condi-
tions are specified. We adopt the values for central gas density and
temperature, total dark matter mass, and scale radius determined by
ZN for the cluster A2390 such that the resulting temperature profile
matches the observed one well in the range 0 � r � Rout, where
Rout was taken to be 2 r s.

Integrating the system of equations out to Rout, we obtain a result
that very well matches that reported by ZN. However, we also need
to specify the structure of the cluster in its outer parts in order to
be able to simulate it as an isolated system. ZN simply assumed
this part to be isothermal at the temperature T out = T (Rout), thereby
implicitly assuming that the equilibrium condition between cooling
and conduction invoked for the inner parts is no longer valid. It is
a bit unclear why such a sudden transition should occur, but the
alternative assumption, that equation (31) holds out to the virial
radius, clearly leads to an unrealistic global temperature profile. In
this case, the temperature would have to increase monotonically out
to the outermost radius. Also, since the cumulative radiative losses
out to a radius r have to be balanced by a conductive heat flux
of equal magnitude at that radius, the heat flux also monotonically
increases, such that all the energy radiated by the cluster would have
to be supplied to the cluster at the virial radius.

We nevertheless examined both approaches, i.e. we construct
cluster models where we solve equations (28)–(32) for the whole
cluster out to a radius of r 200, and secondly, we construct initial
conditions where we follow ZN by truncating the solution at 2r s,
continuing into the outer parts with an isothermal solution that is ob-
tained by dropping equations (30) and (31). Since conduction may
still be important at radii somewhat larger than 2r s, these two mod-
els may hence be viewed as bracketing the expected real behaviour
of the cluster in a model where cooling is balanced by conduction.

For the plasma conductivity, we assumed a value of 0.3κ sp, as
proposed by ZN in their best-fitting solution for A2390. Note that
this value implies that a certain degree of suppression of conduction
by magnetic fields is present, but that this effect is (perhaps opti-
mistically) weak, corresponding to what is expected for chaotically
tangled magnetic fields (Narayan & Medvedev 2001).

Having obtained a solution for the static cluster model, we real-
ized it as 3D initial conditions for GADGET. We used 2 × 105 gas
particles with a total baryonic mass of around 8.6 × 1014 M�. For
simplicity, we described the NFW dark matter halo of mass 2.4 ×
1015 M� as a static potential. We then simulated the evolution of
the gas subject to self-gravity (with a gravitational softening length
of 3 kpc), radiative cooling, and thermal conduction, but without
allowing for star formation and associated feedback processes.

By construction, we expect that thermal conduction will be able
to offset radiative cooling for these initial conditions, at least for
some time. This can be verified in Fig. 4, where we plot the local
cooling rate and conductive heating rate as a function of radius.
Indeed, at time 0.15 Gyr, after a brief initial relaxation period, the
two energy transfer rates exhibit the same magnitude and cancel
each other with good accuracy. This represents a nice validation
of our numerical implementation of thermal conduction with the
temperature-dependent Spitzer rate.

As the simulation continues, we see that the core temperature of
the cluster slowly drifts to somewhat higher temperature. A secular
evolution of some kind is probably unavoidable, since the balance
between cooling and conductive heating cannot be perfectly static.
The cluster of course still loses all the energy it radiates, which

C© 2004 RAS, MNRAS 351, 423–435



Thermal conduction in cosmological SPH simulations 431

0.01 0.10 1.00
R [ Mpc ]

104

105

106

107
du

/d
t [

 c
od

e 
in

te
rn

al
 u

ni
ts

 ]

cooling energy loss
conductive energy gain

Figure 4. Local cooling (solid line) and conductive heating rates (dotted
line) as a function of radius in our model for the cluster A2390, after a time
of t = 0.15 Gyr. It is seen that both energy transfer rates cancel each other
with reasonable accuracy.

eventually must give rise to a slow quasi-static inflow of gas, and a
corresponding change of the inner structure of the cluster. Because
of the different temperature dependences of cooling and conduc-
tive heating, it is also not clear that the balance between cooling
and conductive heating represents a stable dynamical state. While a
stability analysis by ZN and Kim & Narayan (2003) suggests that
thermal instability is sufficiently suppressed in models with con-
duction, Soker (2003) argues that local perturbations in the cooling
flow region will grow to the non-linear regime rather quickly and
that a steady solution with constant heat conduction may therefore
not exist.

In any case, it is clear that the inclusion of conduction strongly
reduces central mass drop-out due to cooling. This is demonstrated
explicitly in Fig. 5, where we show the temperature and cumula-
tive baryonic mass profiles of the cluster after a time of 0.6 Gyr. We
compare these profiles also to an identical simulation where conduc-
tion was not included. Unlike the conduction run, this cooling-only
simulation shows a very substantial modification of its temperature
profile in the inner parts, where the core region inside ∼0.1 Mpc
becomes much colder than the initial state. We can also see that the
cooling-only simulation has seen substantial baryonic inflow as a
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Figure 5. Temperature profile (left) and cumulative mass profile (right) of our model for the cluster A2390, after a simulated time of 0.6 Gyr. We compare
simulations with (triangles) and without (diamonds) thermal conduction using a conductivity of 0.3κ sp. It is seen that without conduction, the inner regions of
the cluster cool down significantly, causing mass to sink towards the centre as central pressure support is partially lost. If thermal conduction is included, the
central cooling losses are offset by conductive heating from outer regions, preventing any significant change of the baryonic mass profile. In fact, in this case
we even observe a slow secular evolution towards higher temperature in the inner parts.

result of central mass drop-out. Within 0.6 Gyr, the baryonic mass
enclosed in a sphere with radius 50 kpc has increased by 86 per
cent in this simulation, clearly forming a cooling flow. This con-
trasts strongly with the run that includes conduction, where beyond
a cental distance of ∼0.02 Mpc, there is no significant difference in
the cumulative mass profile between t = 0 and t = 0.6 Gyr.

We also checked that runs with a reduced conductivity show a
similar reduced effect, suppressing the core cooling and matter in-
flow to a lesser extent than with our default model with 0.3κ sp.

Finally, we note that the results discussed here are quite insensitive
to whether we set up the initial conditions with an isothermal outer
part, or whether we continue the equilibrium solution to the virial
radius. There is only a small difference in the long-term evolution
of the solution.

The model presented here helps us to verify the robustness of our
conduction implementation when a temperature-dependent conduc-
tivity is used, but it does not account for the time dependence of con-
duction expected in the cosmological context. The static, spherically
symmetric construction does not reflect the hierarchical growth of
clusters that is a central element of currently favoured cosmologies.
To be able to make reliable statements about the effects of thermal
conduction on galaxy clusters, one therefore has to trace their evo-
lution from high redshift to the present, which is best done in full
cosmological simulations. Here, the hierarchical growth of clusters
implies that the conductivity is becoming low early on, when the
ICM temperature is low, and becomes only large at late times when
the cluster forms.

5 C O S M O L O G I C A L C L U S T E R S I M U L AT I O N S

In this section, we apply our new numerical scheme for the treat-
ment of thermal conduction in fully self-consistent cosmological
simulations of cluster formation. We will in particular compare the
results of simulations with and without conduction, both for runs
that follow only adiabatic gas dynamics, and runs that also include
radiative cooling of gas. While it is beyond the scope of this work
to present a comprehensive analysis of the effects of conduction in
cosmological simulations, we here want to investigate a set of small
fiducial runs in order to validate further the stability of our method
for real-world applications, and secondly, to give a first flavour of
the expected effects of conduction in simulated clusters. A more
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detailed analysis of cosmological implications of conduction is pre-
sented in a companion paper (Dolag et al. 2004).

We focus on a single cluster, extracted from the ‘GIF’ simula-
tion (Kauffmann et al. 1999) of the �CDM model, and resimulated
using the ‘zoomed initial conditions’ technique (Tormen, Bouchet
& White 1997). To this end, the particles that make up the cluster
at the present time are traced back to their original coordinates in
the initial conditions. The Lagrangian region of the cluster identi-
fied in this way is then resampled with particles of smaller mass,
and additional small-scale perturbations from the CDM power spec-
trum are added appropriately. Far away from the cluster, the reso-
lution is progressively degraded by using particles of ever larger
mass.

The cluster we selected has a virial mass of 1.1 × 1015 M�. It is
the same cluster considered in the high-resolution study of Springel
et al. (2001a), with our mass resolution corresponding to their S1
simulation, except that we split each of the∼450 000 high-resolution
dark matter particles into a gas and a dark matter particle (assuming
�b = 0.04), yielding a gas mass resolution of 8.4 × 109 M�. The
boundary region was sampled with an additional 3 million dark
matter particles. We then evolved the cluster forward in time from
a starting redshift z = 30 to the present, z = 0, using a comoving
gravitational softening length of 20 kpc.

We consider four different simulations of the cluster, each with
different physical models for the gas: (1) adiabatic gas dynamics
only, (2) adiabatic gas and conduction, (3) radiative cooling and
star formation without conduction, and finally (4) radiative cooling,
star formation and conduction. The simulations with cooling and
star formation use the subresolution model of Springel & Hernquist
(2003) for the multiphase structure of the ISM (without including
the optional feedback by galactic winds offered by the model). In
the two runs with conduction, we adopt the full Spitzer rate for the
conductivity. While this value is unrealistically large for magnetized
clusters, it serves our purpose here in highlighting the effects of
conduction, given also that our cluster is not particularly hot, so that
effects of conductivity can be expected to be weaker than in very
rich clusters.

In Fig. 6, we show projections of the mass-weighted temperature,
X-ray emissivity, and gas mass density for all four simulations. Each
panel displays the gas contained in a box of side-length 8.6 Mpc
centred on the cluster. Comparing the simulations with and without
conduction, it is nicely seen how conduction tends to wipe out small-
scale temperature fluctuations. It is also seen that the outer parts of
the cluster become hotter when conduction is included.

These trends are also borne out quantitatively when studying ra-
dial profiles of cluster properties in more detail. In Fig. 7, we com-
pare the cumulative baryonic mass profile, the temperature profile,
and the radial profile of X-ray emission for all four simulations.
Note that the innermost bins, for R < 30 kpc, may be affected by
numerical resolution effects. Interestingly, the temperature profiles
of the runs with conduction are close to being perfectly isothermal
in the inner parts of the cluster. While this does not represent a large
change for the adiabatic simulation, which is close to isothermal any-
way, the simulation with radiative cooling is changed significantly.
Without conduction, the radiative run actually shows a pronounced
rise in the temperature profile in the range 100–200 kpc, as a result
of compressional heating when gas flows in to replace gas that is
cooling out of the ICM in a cooling flow. Only in the innermost
regions, where cooling becomes rapid, do we see a distinct drop of
the temperature. Interestingly, conduction eliminates this feature in
the temperature profile, by transporting the corresponding heat en-
ergy from the maximum both to parts of the cluster further out and

to the innermost parts. The latter effect is probably small, however,
because a smooth decline in the temperature profile in the inner parts
of the cluster, as present in the ZN model, does not appear in the
simulation. As a consequence, a strong conductive heat flow from
outside to inside cannot develop.

Conduction may also induce changes in the X-ray emission of
the clusters, which we show in the bottom panel of Fig. 7. Interest-
ingly, the inclusion of conduction in the adiabatic simulation has a
negligible effect on the X-ray luminosity. This is because in con-
trast to previous suggestions (Loeb 2002), the cluster does not lose
a significant fraction of its thermal energy content to the outside
intergalactic medium, and the changes in the relevant part of the
gas and temperature profile are rather modest. We do note, however,
that the redistribution of thermal energy within the cluster leads to
a substantial increase of the temperature of the outer parts of the
cluster.

For the simulations with cooling, the changes of the X-ray prop-
erties are more significant. Interestingly, we find that allowing for
thermal conduction leads to a net increase of the bolometric lu-
minosity of our simulated cluster. The panel with the cumulative
baryon mass profile reveals that conduction is also ineffective in
significantly suppressing the condensation of mass in the core re-
gions of the cluster. In fact, it may even lead to the opposite effect.
We think this behaviour simply occurs because a temperature profile
with a smooth decline towards the centre, which would allow the
conductive heating of this part of the cluster, is not forming in the
simulation. Instead, the conductive heat flux is pointing primarily
from the inside to the outside, which may then be viewed as an
additional ‘cooling’ process for the inner cluster regions.

It is interesting to note that in spite of the structural effects that
thermal conduction has on the ICM of the cluster, it does not affect
its star-formation history significantly. In the two simulations that
include cooling and star formation, the stellar component of the
mass profile (Fig. 7) does not show any sizeable difference between
the run including thermal conduction and the one without it. This
does not come as a surprise as 90 per cent of the stellar content of
the cluster has formed before a redshift of z = 0.85. At these early
times, the temperature of the gas in the protocluster was much lower,
such that conduction was unimportant. In fact, for that reason, the
stellar mass profiles for both simulation runs coincide.

In summary, our initial results for this cluster suggest that conduc-
tion can be important for the ICM, provided the effective conductiv-
ity is a sizeable fraction of the Spitzer value. However, the interplay
between radiative cooling and conduction is clearly complex, and
it is presently unclear whether temperature profiles like those ob-
served can arise in self-consistent cosmological simulations. We
caution that one should not infer too much from the single object
we examined here. A much larger set of cluster simulations will be
required to understand this topic better.

6 C O N C L U S I O N S

Hot plasmas like those found in clusters of galaxies efficiently con-
duct heat, unless electron thermal conduction is heavily suppressed
by magnetic fields. Provided the latter is not the case, heat conduc-
tion should therefore be included in hydrodynamical cosmological
simulations, given, in particular, that conduction could play a deci-
sive role in moderating cooling flows in clusters of galaxies. Such
simulations are then an ideal tool to make reliable predictions of the
complex interplay between the nonlinear processes of cooling and
conduction during structure formation.
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Figure 6. Projections of mass-weighted temperature (left column), X-ray emissivity (middle column), and gas mass density (right column) for our cluster
simulations at z = 0.13. From the top to the bottom row, we show the same cluster but simulated with different physics: adiabatic gas dynamics only, adiabatic
plus thermal conduction, radiative cooling and star formation, and, finally, cooling, star formation and conduction. Each panel displays the gas contained in a
box of side-length 8.6 Mpc centred on the cluster. Full Spitzer conductivity was assumed.

In this paper, we have presented a detailed numerical method-
ology for the treatment of conduction in cosmological SPH simu-
lations. By construction, our method manifestly conserves thermal
energy, and we have formulated it such that it is robust against the
presence of small-scale temperature noise. We have implemented

this method in a modern parallel code, capable of carrying out large,
high-resolution cosmological simulations.

Using various test problems, we have demonstrated the accuracy
and robustness of our numerical scheme for conduction. We then
applied our code to a first set of cosmological cluster formation
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Figure 7. Cumulative baryonic mass profile (top), temperature profile (mid-
dle) and X-ray emissivity profile (bottom) of the simulated cluster at z =
0.13. In each panel, we compare the same cluster simulation run with dif-
ferent physical models for the gas: adiabatic gas dynamics only, adiabatic
plus thermal conduction, radiative cooling and star formation without con-
duction, and finally, cooling, star formation and conduction. For the models
including conduction, full Spitzer conductivity was assumed. Note that the
X-ray emissivity is plotted such that the area under the curve is proportional
to the total bolometric X-ray luminosity.

simulations, comparing in particular simulations with and without
conduction. While these results are preliminary, they already hint
that the phenomenology of the coupled dynamics of radiative cool-
ing and conduction is complex, and may give rise to results that
were perhaps not anticipated by earlier analytic modelling of static
cluster configurations.

For example, we found that conduction does not necessarily re-
duce a central cooling flow in our simulations; the required smoothly
declining temperature profile in the inner cluster regions does not
readily form in our cosmological simulations. Instead, the profiles
we find are either flat, or have a tendency to rise slightly towards
the centre, akin to what is seen in the cooling-only simulations. In
this situation, conduction may in fact lead to additional cooling in
certain situations, by either transporting thermal energy to the outer
parts, or by modifying the temperature and density structure in the
relevant parts of the cluster such that cooling is enhanced. This can
then manifest itself in an increase of the bolometric X-ray luminos-
ity at certain times, which is actually the case for our model cluster
at z = 0. Interestingly, we do not find that our cluster loses a sig-
nificant fraction of its thermal heat content by conducting it to the
external intergalactic medium.

In a companion paper (Dolag et al. 2004), we analyse a larger set
of cosmological cluster simulations, computed with much higher
resolution and with more realistic sub-Spitzer conductivities. This
set of cluster allows us to investigate, e.g. conduction effects as a
function of cluster temperature and the influence of conduction on
cluster scaling relations. While our first results of this work suggest
that conduction by itself may not resolve the cooling-flow puzzle,
it also shows that conduction has a very strong influence on the
thermodynamic state of rich clusters if the effective conductivity
is a small fraction of the Spitzer value or more. In future work, it
will hence be very interesting and important to understand the rich
phenomenology of conduction in clusters in more detail.
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