
Mon. Not. R. Astron. Soc. 348, 421–434 (2004) doi:10.1111/j.1365-2966.2004.07393.x

Abundance of damped Lyman α absorbers in cosmological smoothed
particle hydrodynamics simulations

K. Nagamine,1� V. Springel2� and L. Hernquist1�
1Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
2Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85740 Garching bei München, Germany

Accepted 2003 November 3. Received 2003 August 25; in original form 2003 February 6

ABSTRACT
We use cosmological smoothed particle hydrodynamics (SPH) simulations of the � cold dark
matter (CDM) model to study the abundance of damped Lyman α absorbers (DLAs) in the
redshift range z = 0–4.5. We compute the cumulative DLA abundance by using the relation
between the DLA cross-section and the total halo mass inferred from the simulations. Our ap-
proach includes standard radiative cooling and heating with a uniform ultraviolet background,
star formation, supernova feedback and a phenomenological model for feedback by galactic
winds. The latter allows us to examine, in particular, the effect of galactic outflows on the
abundance of DLAs. We employ the ‘conservative entropy’ formulation of SPH developed by
Springel & Hernquist, which mitigates against the systematic overcooling that affected earlier
simulations. In addition, we utilize a series of simulations of varying box-size and particle
number to isolate the impact of numerical resolution on our results.

We show that the DLA abundance was overestimated in previous studies for three reasons:
(i) the overcooling of gas occurring with non-conservative formulations of SPH, (ii) a lack of
numerical resolution and (iii) an inadequate treatment of feedback. Our new results for the total
neutral hydrogen mass density, DLA abundance and column density distribution function all
agree reasonably well with observational estimates at redshift z = 3, indicating that DLAs arise
naturally from radiatively cooled gas in dark matter haloes that form in a �CDM universe.
Our simulations suggest a moderate decrease in DLA abundance by roughly a factor of 2 from
z = 4.5 to 3, consistent with observations. A significant decline in abundance from z = 3 to
1, followed by weak evolution from z = 1 to 0, is also indicated, but our low-redshift results
need to be interpreted with caution because they are based on coarser simulations than those
employed at high redshift. Our highest resolution simulation also suggests that the halo mass-
scale below which DLAs do not exist is slightly above 108 h−1 M� at z = 3–4, somewhat
lower than previously estimated.

Key words: methods: numerical – galaxies: evolution – galaxies: formation – cosmology:
theory.

1 I N T RO D U C T I O N

Damped Lyman α absorbers (DLAs), historically defined as quasar
absorption systems with neutral hydrogen column density N H I >

2 × 1020 cm−2 (Wolfe et al. 1986), are one of the best probes of
structure formation in the early universe. Since DLAs are dense
concentrations of gas often found at z � 3, it is natural to suppose
that they are closely linked to the formation of galaxies and stars
at high redshift. It has become clear in recent years from the study

�E-mail: knagamin@cfa.harvard.edu (KN); volker@mpa-garching.mpg.de
(VS); lars@cfa.harvard.edu (LH)

of Lyman-break galaxies at z ∼ 3–4 (e.g. Adelberger et al. 1998;
Steidel et al. 1999; Shapley et al. 2001) that the assembly of galaxies
is actively going on at z ∼ 3, consistent with hierarchical structure
formation in a cold dark matter (CDM) universe (e.g. Mo & Fukugita
1996; Baugh et al. 1998; Jing & Suto 1998; Katz, Hernquist &
Weinberg 1999; Kauffmann et al. 1999; Mo, Mao & White 1999;
Nagamine 2002; Weinberg, Hernquist & Katz 2002).

A picture of the history of cosmic star formation emerging from
both theory and observation is that it rises from the present to-
wards high redshift, even beyond z = 3 (e.g. Pascarelle, Lanzetta &
Fernández-Soto 1998; Blain et al. 1999; Nagamine et al. 2001a;
Lanzetta et al. 2002; Hernquist & Springel 2003; Springel &
Hernquist 2003b). The conversion of gas into stars is, therefore,
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taking place at a significant rate at z � 3. If DLAs dominate the
neutral hydrogen gas content of the Universe at z ∼ 3, they are thus
serving as an important reservoir of neutral gas for star formation.
Determining the physical nature and number density of DLAs may
hence be one of the most important keys for further constraining the
cosmic star formation history and theories of galaxy formation.

Although the current sample of observed DLAs at z � 1.5 is
not yet as large as that of Lyman-break galaxies (where ≈1000 are
known), the total number of DLAs that have been discovered is now
approaching ≈100 and the number density per unit redshift of high
column density systems appears to peak at around z ∼ 3 (Storrie-
Lombardi & Wolfe 2000). At lower redshift, the situation is rather
different. The identification of DLAs at z < 1.5 has been difficult
because they are rare and because of the need for ultraviolet (UV)
spectroscopy to detect Lyα absorption at these low redshifts. The
number of quasars studied in UV has been small until recently. To
overcome this difficulty, Rao & Turnshek (2000) searched for DLAs
in 87 Mg II absorbers, and uncovered 12 new systems. There are 23
DLAs at z < 1.65 listed by Rao & Turnshek (2000).

Despite the likely importance of DLAs and the accumulation of
observational data on them, their true nature remains controversial.
Historically, it has often been suggested that high-redshift DLAs
are large, rapidly rotating discs, because DLAs have properties sim-
ilar to local galactic discs, such as large neutral hydrogen column
densities together with low degrees of ionization and small veloc-
ity dispersions (Wolfe et al. 1986). More recently, Prochaska &
Wolfe (1997, 1998) argued that the observed distribution of veloc-
ity widths and the asymmetric absorption profiles of low-ionization
ionic species can be best described by massive, rapidly rotating cold
discs.

On the other hand, Haehnelt, Steinmetz & Rauch (1998) exam-
ined a small number of dark matter haloes in a high-resolution
(subkpc) smoothed particle hydrodynamics (SPH) simulation, and
showed that such observational signatures can also be explained
by a mixture of rotation, random motions, infall and mergers of
protogalactic clumps. There are some observational indications
(Le Brun et al. 1997; Rao & Turnshek 1998; Kulkarni et al. 2000,
2001) from direct imaging studies that luminous disc galaxies may
not represent the dominant population of DLA galaxies (i.e. galaxies
that host DLAs). Although the possibility of artefacts due to point
spread function effects cannot be fully excluded, these observations
suggest that some DLA galaxies could be compact, clumpy objects
or low surface brightness galaxies, rather than large, well-formed
protogalactic discs or spheroids.

Robust numerical estimates of DLA properties have been ham-
pered by the significant requirements on numerical resolution
needed to capture the full population of DLAs. Earlier studies by
Katz et al. (1996b) and Hernquist et al. (1996) showed that the ob-
served H I column density distribution can be reproduced within a
factor of a few in hydrodynamic simulations based on a cold dark
matter model over a wide range of column densities 1014 cm−2 �
N H I � 1022 cm−2. Their results demonstrated that the Ly α forest de-
velops naturally in the hierarchical clustering scenario of CDM uni-
verses, and that DLAs and Lyman-limit systems (N H I � 1017 cm−2)
arise in these models from radiatively cooled gas inside dark matter
haloes that host forming galaxies at high redshift. However, their
calculations were based on simulations of a critical-density uni-
verse with �m = 1, and could not resolve haloes with masses M <

1011 h−1 M�.
Subsequently, Gardner et al. (1997a,b, 2001) extended the ear-

lier results of Katz et al. (1996b) and Hernquist et al. (1996) by
developing a method to correct for the resolution limitations of the

simulations. They measured the relation between absorption cross-
section and halo circular velocity from hydrodynamic simulations,
and then convolved it with the analytic halo mass function (e.g.
Press & Schechter 1974; Sheth & Tormen 1999) to compute the
cumulative abundance of DLAs. Using this correction method, they
were able to reproduce the observed abundance of DLAs if they
required that haloes with circular velocity vc � 60 km s−1 (which
corresponds to M ≈ 2 × 1010 h−1 M�) did not harbour DLAs.
However, their simulations could not resolve haloes with masses
below 1010 h−1 M�, although such haloes may still host a signifi-
cant number of DLAs. If the absorption cross-section of haloes with
M < 1010 h−1 M� does not follow the same relation between the
cross-section and the halo mass as determined from higher-mass
haloes, the DLA abundance could be either over or underestimated.
Simulations of higher resolution are hence clearly needed to make
more robust predictions for the DLA abundance at redshift z = 3.

Recently, Springel & Hernquist (2002) developed a novel for-
mulation of SPH that is based on integrating the entropy as an
independent thermodynamic variable (e.g. Lucy 1977; Hernquist
1993) and which takes variations of the SPH smoothing lengths
self-consistently into account. They showed that this new version
maintains contact discontinuities (as they arise at the interface be-
tween cold and hot gas in haloes) much better than previous treat-
ments of SPH. Consequently, their formulation does not suffer from
the severe overcooling that was typically seen in previous SPH sim-
ulations.1 We hence use this new methodology for our studies of
DLAs.

Our simulations also include a novel method for treating star for-
mation and feedback, as proposed by Springel & Harnquist (2003a).
It is based on a subresolution multiphase description of the dense,
star-forming interstellar medium (ISM) and a phenomenological
model for strong feedback by galactic winds. The inclusion of winds
was motivated by the possibility that outflows from galaxies at high
redshift (Pettini et al. 2002) play a role in distributing metals into
the intergalactic medium (e.g. Aguirre et al. 2001a,b), and they may
also alter the distribution of neutral gas around galaxies (Adelberger
et al. 2002), although this process remains uncertain (e.g. Croft et al.
2002; Kollmeier et al. 2003). Together with the increase in numer-
ical resolution provided by our simulations, it is of interest to see
how refinements in physical modelling modify the predictions of
DLA properties in a CDM universe.

In this paper, we focus on the abundance of DLAs in the red-
shift range z = 0–4.5. The present work extends and complements
earlier numerical work by Katz et al. (1996b) and Gardner et al.
(2001). Physical properties of DLAs such as their star formation
rates, metallicities and their relation to galaxies will be presented
elsewhere.

The paper is organized as follows. In Section 2, we briefly describe
the numerical parameters of our simulation set. We then present the
evolution of the total neutral hydrogen mass density in the simula-
tions in Section 3. In Section 4, we describe how we compute the
H I column density and DLA cross-section as a function of total
halo mass. In Section 5, we determine the cumulative abundance of
DLAs, and discuss the evolution of DLA abundance from z = 4.5
to 0. The H I column density distribution function is presented in

1 The likelihood that earlier SPH studies were affected by overcooling due
to numerical effects is supported by comparisons between our new formu-
lation and simulations using an adaptive mesh refinement (AMR) algorithm
(M. Norman, private communication). This finding will be presented in due
course.
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Section 6. Finally, we summarize and discuss the implication of our
work in Section 7.

2 S I M U L AT I O N S

We analyse a large set of cosmological SPH simulations that differ
in box-size, mass resolution and feedback strength, as summarized
in Table 1. In particular, we consider box-sizes ranging from 3.375
to 100 h−1 Mpc on a side, with particle numbers between 2 × 1443

and 2 × 3243, allowing us to probe gaseous mass resolutions in the
range 4.2 × 104 to 1.1 × 109 h−1 M�. These simulations are partly
taken from a study of the cosmic star formation history by Springel
& Hernquist (2003b), supplemented by additional runs with weaker
or no galactic winds. The joint analysis of this series of simulations
allows us to significantly broaden the range of spatial and mass-
scales that we can probe compared with what is presently attainable
within a single simulation.

There are three main new features to our simulations. First, we
use a new ‘conservative entropy’ formulation of SPH (Springel &
Hernquist 2002) which explicitly conserves entropy (in regions
without shocks), as well as momentum and energy, even when one
allows for fully adaptive smoothing lengths. This formulation mod-
erates the overcooling problem present in earlier formulations of
SPH (see also Pearce et al. 1999; Croft et al. 2001; Yoshida et al.
2002).

Secondly, highly overdense gas particles are treated with an ef-
fective subresolution model for the ISM, as described by Springel
& Harnquist (2003a). In this model, the dense ISM is pictured to
be a two-phase fluid consisting of cold clouds in pressure equi-
librium with a hot ambient phase. Each gas particle represents a
statistical mixture of these phases. Cold clouds grow by radiative
cooling out of the hot medium, and this material forms the reservoir
of baryons available for star formation. Once star formation occurs,
the resulting supernova (SN) explosions deposit energy into the hot
gas, heating it, and also evaporate cold clouds, transferring cold gas
back into the ambient phase. This establishes a tight self-regulation
mechanism for star formation in the ISM.

Thirdly, we implemented a phenomenological model for galactic
winds in order to study the effect of outflows on DLAs, galaxies,

Table 1. Simulations employed in this study. The box-size is given in units
of h−1 Mpc, N p is the particle number of dark matter and gas (hence ×2),
mDM and mgas are the masses of dark matter and gas particles in units of
h−1 M�, respectively, ε is the comoving gravitational softening length in
units of h−1 kpc, and zend is the ending redshift of the simulation. The value
of ε is a measure of spatial resolution. From the top to the bottom row, we
refer to R3 and R4 collectively as ‘R-series’, the next five runs (O3–Q5) are
called ‘Q-series’, D4 and D5 are called ‘D-series’, and G4 and G5 are called
‘G-series’. The ‘strong-wind’ simulations form a subset of the runs analysed
by Springel & Hernquist (2003b).

Run Box-size N p mDM mgas ε zend Wind

R3 3.375 2 × 1443 9.29 × 105 1.43 × 105 0.94 4.00 strong
R4 3.375 2 × 2163 2.75 × 105 4.24 × 104 0.63 4.00 strong
O3 10.00 2 × 1443 2.42 × 107 3.72 × 106 2.78 2.75 none
P3 10.00 2 × 1443 2.42 × 107 3.72 × 106 2.78 2.75 weak
Q3 10.00 2 × 1443 2.42 × 107 3.72 × 106 2.78 2.75 strong
Q4 10.00 2 × 2163 7.16 × 106 1.10 × 106 1.85 2.75 strong
Q5 10.00 2 × 3243 2.12 × 106 3.26 × 105 1.23 2.75 strong
D4 33.75 2 × 2163 2.75 × 108 4.24 × 107 6.25 1.00 strong
D5 33.75 2 × 3243 8.15 × 107 1.26 × 107 4.17 1.00 strong
G4 100.0 2 × 2163 7.16 × 109 1.10 × 109 12.0 0.00 strong
G5 100.0 2 × 3243 2.12 × 109 3.26 × 108 8.00 0.00 strong

and the intergalactic medium (IGM). In this model, gas particles
are stochastically driven out of the dense star-forming medium by
assigning an extra momentum in random directions, with a rate and
magnitude chosen to reproduce mass-loads and wind speeds similar
to those observed. See Springel & Harnquist (2003a) for a detailed
discussion of this method.

Most of our simulations employ a ‘strong’ wind of speed 484 km
s−1, but for the 10 h−1 Mpc box (runs O3, P3, Q3–Q5; collectively
called ‘Q-series’) we also varied the wind strength. Therefore, this
Q-series can be used to study both the effect of numerical resolution
and the consequences of feedback from galactic winds. The runs
in the other simulation series then allow the extension of the strong
wind results to smaller scales (‘R-Series’), or to larger box-sizes and
hence lower redshift (‘D-’ and ‘G-Series’). Our naming convention
is such that runs of the same model (box-size and included physics)
are designated with the same letter, with an additional number spec-
ifying the particle resolution.

Our calculations include a uniform UV background radiation field
of a modified Haardt & Madau (1996) spectrum, where reionization
takes place at z 	 6 (see Davé et al. 1999), as suggested by obser-
vations (e.g. Becker et al. 2001) and radiative transfer calculations
of the impact of the stellar sources in our simulations on the IGM
(e.g. Sokasian et al. 2003). The radiative cooling and heating rate
is computed as described by Katz, Weinberg & Hernquist (1996a)
assuming that the gas is optically thin and in ionization equilibrium.
The abundance of different ionic species, including H0, He0, H+,
He+ and He++, is computed by solving the network of equilibrium
equations self-consistently with a specified UV background radia-
tion. The results presented in this paper should not be affected by
the assumption of ionization equilibrium as we are dealing with
high-density regions where this assumption is satisfied well. The
adopted cosmological parameters of all runs are (�m, ��, �b, σ 8,
h) = (0.3, 0.7, 0.04, 0.9, 0.7). The simulations were performed on
the Athlon-MP cluster at the Centre for Parallel Astrophysical Com-
puting (CPAC) at the Harvard-Smithsonian Center for Astrophysics,
using a modified version of the parallel GADGET code (Springel,
Yoshida & White 2001).

3 N E U T R A L H Y D RO G E N M A S S D E N S I T Y

In our simulation methodology, gas is subject to a thermal instabil-
ity yielding a multiphase medium once the physical gas density lies
above a threshold density ρ th, which marks the onset of cold cloud
formation. If the physical density is lower than this threshold, a par-
ticle represents ordinary gas in a single phase. In this latter case, the
neutral hydrogen mass of the particle can be computed as follows:

mH I = Nh XHmgas (ρ < ρth), (1)

where XH = 0.76 is the primordial mass fraction of hydrogen, and
N h is the number density of neutral hydrogen atoms in units of
the total number density of hydrogen nuclei. The quantity N h is
computed by solving the ionization balance as a function of density
and current UV background flux.

If the gas density is higher than the threshold density, we identify
the mass of neutral gas with the mass of cold clouds contained in
the multiphase medium. The mass of neutral hydrogen of such a
multiphase particle is then given by

mH I = x XHmgas (ρ > ρth), (2)

where x is the mass fraction of cold clouds. In the multiphase model
of Springel & Harnquist (2003a), x can be computed as
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Figure 1. Evolution of the total neutral hydrogen mass density in each simulation box as a function of redshift. The plotted values are �H I × 103. We also show
observational data points from Storrie-Lombardi & Wolfe (2000) open squares, only for DLAs; Péroux et al. (2001) filled triangles, including the correction
for the neutral gas not included in DLAs; Rao & Turnshek (2000) open triangles; and Zwaan et al. (1997) open cross at z = 0. Left-hand panel: a comparison of
the Q-series (runs in 10 h−1 Mpc boxes) is shown. The decrease in �H I from O3 (no wind) to P3 (weak wind) and then to Q3 (strong wind), shows the effect
of feedback by galactic winds. The comparison between Q3, Q4 and Q5 shows the level of convergence achieved for runs with different resolution. For P3 (top
short-dashed line), we separately show �H I in regions of overdensity 1 + δ > 103 and 104 (middle and bottom short-dashed line, respectively). Right-hand
panel: results for the R-, D- and G-series are shown. Q5 is also included to ease comparison with the left-hand panel. Results for R3 and G4 are omitted for
clarity (see the text).

x ≡ ρc/ρ = 1 + 1

2y
−

√
1

y
+ 1

4y2
, (3)

where the quantities y and ρ th are defined by

y ≡ t∗�net(ρ, uh)

ρ[βuSN − (1 − β)uc]
(4)

and

ρth = xth

(1 − xth)2

βuSN − (1 − β)uc

t0∗�(uSN/A0)
, (5)

where �net(ρ, u) is the usual cooling function, and we have defined
�(ρ, u) ≡ �net(ρ, u)/ρ2. The parameter β gives the mass fraction
of short-lived stars that explode as supernovae, uSN describes the
energy released by the supernovae, uc is the assumed temperature
of the cold clouds, uh the temperature of the hot medium, A0 the
cloud evaporation parameter, and t0

∗ gives the star formation time-
scale. The quantity xth = (uh − u4)/(uh − uc) 	 1 − A0u4/uSN

is the mass fraction in cold clouds at the threshold density, where
u4 is the specific energy corresponding to T = 104 K. We refer to
Springel & Harnquist (2003a) for a more detailed explanation of
these parameters, and a derivation of equations (3)–(5).

In Fig. 1, we show the total neutral hydrogen mass density as a
function of redshift. The values plotted are given in terms of �H I ×
103. At redshifts above six, essentially all the hydrogen in the simu-
lation box is still neutral (�H I 	 XH�b = 0.0304). Once the ionizing
background sets in at z = 6, the neutral hydrogen starts to become
ionized and the neutral fraction decreases rapidly by a few orders of
magnitude; i.e. reionization takes place. Note that with the exception
of the R-Series, our earliest simulation output at z < 6 corresponds
to z = 5.5. This is why most of the models in Fig. 1 seem to show a
rapid rise of �H I already at z = 5.5, which simply arises by drawing
a line to the data point at z = 6 which lies a few orders of magnitude
higher in this linear plot.

We also include observational data points, for comparison. The
data points from Storrie-Lombardi & Wolfe (2000, open squares)
account only for DLAs, but those of Péroux et al. (2001, filled
triangles) include a correction for the neutral gas that is in subDLAs
(1019 < N H I < 1020 cm−2). Data points from Rao & Turnshek (2000,
solid triangles) at low-redshift and Zwaan et al. (1997, open cross)
at z = 0 are also shown.

In the left-hand panel of Fig. 1, we compare results only for the
Q-series (10 h−1 Mpc box), allowing us to assess convergence as a
function of mass resolution and to investigate the dependence of the
results on the strength of feedback from winds.

The comparison between Q3, Q4 and Q5 (strong wind) shows that
there is quite good agreement between runs with different numerical
resolution. In fact, the results for Q3–Q5 are essentially identical at
z 	 4.5, with Q5 being slightly higher for z � 4.5 than its lower
resolution counterparts, while for z � 4.5 the opposite trend is ob-
served. This mild effect can be understood as follows: in a higher
resolution run such as Q5, many more small dark matter haloes can
be resolved than in a lower resolution run (such as Q3), particularly
at early times, where gas can cool very efficiently. As a result, the
higher-resolution simulation develops a larger fraction of cold and
hence neutral gas at high redshift. However, an increased fraction
of cold gas will also trigger more intense star formation that both
consumes neutral gas and leads to gas ejection by winds from low-
mass haloes. Subsequently, the neutral fraction can then fall slightly
below the lower resolution runs.

Comparing the results for the models O3 (no wind), P3 (weak
wind) and Q3 (strong wind) shows the impact of feedback by galac-
tic winds. As the wind strength increases, the neutral density �H I

decreases. More neutral gas is then ejected out of the dense ISM
into the intergalactic medium, where it becomes highly ionized by
UV background radiation. Interestingly, O3 (no wind run) exceeds
all observed data points, so a feedback effect such as galactic winds
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appears necessary to make the �H I measurements of the simulations
consistent with observations. The results for our ‘strong-wind’ runs
(Q3–Q5) underpredict the observational estimates at z = 3 slightly,
but there is still marginal agreement within 1 σ , which is encourag-
ing. However, the best value for the galactic wind strength parameter
for our simulation seems to lie somewhere between that of P3 (weak
wind) and the Q-runs (strong wind).

For the P3 run, we also show separate measurements of �H I

restricted to regions of overdensity 1 + δ > 103 and 104, respectively
(red short-dashed lines). The fact that the lines for 1 + δ > 104 and
103 have converged by z 	 3 shows that most of the neutral hydrogen
mass in the Universe is already in a highly concentrated form by
this epoch.

In the right-hand panel of Fig. 1, we show our results for simula-
tions of the R-, D- and G-series, together with Q5 for reference to
the left-hand panel. The results for D4 and D5 are consistent with
one another at z = 3. R3 is not shown because it is almost identical
to R4 and G4 is omitted because it underpredicts �H I significantly
due to lack of resolution at z � 3. By comparing to the simulations
of the Q- and D-series, we see that the resolution of the G-series is
not sufficient to correctly describe the neutral fraction at z = 3. This
is because even the 2 × 3243 run G5 misses the neutral gas content
in large numbers of small dark matter haloes that are present in the
higher resolution runs at z = 3, such as those of the Q-series. There-
fore, we consider Q5 to be the most reliable run at z = 3 among our
simulation set. We also see that �H I of R4 is lower than that of Q5,
despite the fact that the R-series has higher mass resolution than
the Q-series. This is likely due to the rather small box-size of the
R-series compared with the Q-series, which leads to an insufficient
sampling of rare, massive objects, and compromises the use of R4
as a truly representative sample of the Universe.

The effect of the multiphase model adopted in the current simula-
tions can be assessed by setting the value of cold gas mass fraction
to x = 1 for the multiphase gas particles (see equation 3). We find
that the value of �H I becomes larger by approximately 15 per cent
in such a case. This suggests that previous formulations of hydrody-
namic simulations without a consideration for the multiphase nature
of the gas would have overestimated the cold gas fraction by a sim-
ilar amount.

4 H I C O L U M N D E N S I T Y
A N D D L A C RO S S - S E C T I O N

We now describe how we compute the H I column density N H I and
the DLA cross-section σ DLA for each dark matter halo. First, we
identify dark matter haloes by applying a conventional friends-of-
friends algorithm to the dark matter particles in each simulation. We
set the minimum number of dark matter particles for a halo to 32; i.e.
haloes with fewer particles are not included in the group catalogue.
We have confirmed that the dark matter halo mass functions agree
well with the analytic mass function of Sheth & Tormen (1999).
After dark matter haloes are identified, we associate each gas and
star particle with their nearest dark matter particle, including them
in the particle list of the corresponding haloes, when appropriate.

Then, for each halo, a uniform grid covering the entire halo and
where the grid-size is equal to the gravitational softening length, is
placed at the centre-of-mass of the halo. We then project the neutral
gas in the halo on to a plane, and obtain the column density of
each grid-cell in this plane. The neutral mass of each gas particle
is smoothed over a spherical region of grid-cells, weighted by the
SPH kernel. To check the robustness of the result, we also tried a
cloud-in-cell assignment scheme where the neutral mass of each

gas particle is uniformly distributed over a cubic region of size
� = ( 4π

3 )1/3s and 1
2 ( 4π

3 )1/3 s centred on the particle. Here s is the
SPH smoothing length. Differences in the smoothing method can
lead to slight differences in the H I column density distribution, as
we will discuss later in Fig. 7. In the following, we adopt the SPH
smoothing method for our primary results unless explicitly stated
otherwise.

Once the comoving neutral mass density ρi,H I in each grid-cell
of volume ε3 is known, it is straightforward to project the density
distribution along the direction perpendicular to the plane to obtain
the column density as

NH I =
∑

i

ρi,H Iε/mp(1 + z)2, (6)

where ε is the comoving gravitational softening length, mp is the
proton mass, and z is the redshift.

Note that in the present study, we do not apply a self-shielding
correction when computing the neutral hydrogen fraction. As Katz
et al. (1996b) have shown, damped systems with column densities
above N H I 	 1020 cm−2 are essentially fully neutral and are not
affected by self-shielding. The correction is, however, expected to
be large for systems with 1017 � N H I � 1020 cm−2. A full three-
dimensional treatment of self-shielding is beyond the scope of the
present study, but it is clearly an interesting and important issue in its
own right. The results presented in this paper for very high column
density systems should, however, be robust against self-shielding
corrections.

Once the column density of each cell in the projected plane is
obtained, we estimate the comoving DLA cross-section of each halo
by simply counting the number of grid-cells that exceed N H I = 2 ×
1020 cm−2 and multiplying this number by the comoving unit area
ε2 of the grid-cells.

4.1 DLA cross-section at redshift 3

In Fig. 2, we show the comoving DLA cross-section σ DLA as a
function of total halo mass M tot at redshift z = 3. All panels are for
runs that include ‘strong winds’, except where explicitly labelled
otherwise. The data points are binned in terms of log M tot, and
the median value in each bin is shown by the open triangles. The
quartiles in each mass bin are shown as error bars. For plotting
purposes only, we assign an arbitrary value of log σ DLA = 0.3 to
all haloes with no DLAs, and they are shown by the crosses at
the bottom of each panel. We included these ‘no-DLA haloes’ in
computing the median cross-section, therefore the error bars in the
lowest mass-bins sometimes extend to the bottom of the figure.

We then fit the median points to a power law, σ DLA ∝ Mα
tot, as-

suming a functional form of

log σDLA = α(log Mtot − 12) + β (7)

and determine the values of the slope ‘α’ and the normalization ‘β’
by least-squares fitting. The value of β hence gives the value of
log σ DLA at M tot = 1012 h−1 M�. We chose this reference mass-
scale because it is well covered by most of the simulations used in
this paper.

Unlike the analysis of Gardner et al. (1997a), we do not invoke a
limiting halo mass below which a dark matter halo does not harbour
a DLA. As can be seen in all the panels of Fig. 2, such a clear cut-off
does not really exist, and DLAs continue to be found in haloes with
masses down to M tot 	 108.3 h−1 M� in Q5. We will come back to
this point later.
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Figure 2. Comoving DLA cross-section σ DLA as a function of total halo mass at z = 3 for the Q-, D- and G-series. All panels are for runs with ‘strong winds’,
except where labelled otherwise. We show median values for logarithmic mass bins as open triangles, and the quartiles in each bin are indicated in the form of
error bars. The horizontal concentration of crosses at log σ DLA = 0.3 indicates haloes without DLAs. The solid lines are power-law fits to the median points
as described in the text.

We summarize the results of our power-law fitting in Table 2. It
is satisfying that the values of the normalization ‘β’ agree very well
among different runs. This demonstrates that our results for runs
with widely varying resolution are numerically well-converged at
the mass-scale of M tot = 1012 h−1 M�. It is seen that the slope ‘α’
becomes steeper as the galactic wind strength increases from O3
to P3 and further to Q3. This is because gas in low-mass haloes
is lost at a higher rate in runs with stronger winds, making the
DLA cross-sections decrease for small haloes. Another trend seen in
Table 2 is that the slope becomes somewhat steeper as the resolution
of the simulation increases from Q3 to Q4 and then to Q5. This
can be explained by the fact that higher-resolution simulations can
resolve star formation in small haloes, leading to ejection of gas out
of them, lowering their content of neutral gas. On the other hand,
a lower-resolution simulation misses this star formation, resulting
in an overestimate of the baryon and neutral fraction in the first
generation of haloes that is ‘seen’ in the simulation.

Gardner et al. (2001) reported a slightly shallower slope even
compared with O3 (no-wind run): σ DLA ∝ v1.57

c ∝ M0.52 (see table
2 of their paper). Here, vc is the circular velocity of a halo, related
to the halo mass by vc ∝ M1/3. A shallower slope in general implies
a higher abundance of DLAs. A number of effects are responsi-
ble for this difference. (i) Their resolution was slightly lower (N =
1283) than that of our O3/P3/Q3-runs. (ii) The overcooling prob-

Table 2. The parameters obtained by least-
square fitting the power-law of equation (7) to
the median points shown in Fig. 2.

Redshift 3
Run slope α β

O3 0.72 3.94
P3 0.79 3.99
Q3 0.84 3.98
Q4 0.93 4.03
Q5 1.02 4.18
D4 0.68 3.93
D5 0.81 3.96
G4 0.64 3.88
G5 0.62 3.89

lem in previous formulations of SPH may have caused the slope to
be shallower owing to an overestimate of the neutral gas fraction,
particularly in small haloes. With our new ‘conservative entropy’
formulation of SPH, the cold gas fraction in haloes is expected to
be lower, although the magnitude of this effect as a function of
halo mass is not fully clear. (iii) Their treatment of feedback is
known to be inefficient, because thermal energy injected into the
gas is radiated away very rapidly. However, given that our O3-run
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Figure 3. Same as in Fig. 2, but for z = 4.5. Here, instead of G4 and G5, we show results for R3 and R4. The solid slanted lines are the best-fits to the median
points (indicated by the open triangles) with a power-law (equation 7) and the short-dashed lines are the fits we obtained at z = 3, for comparison. The horizontal
concentration of crosses at log σ DLA = 0.3 indicates haloes that do not harbour a DLA. Note that the range along the x-axis is different from that of Fig. 2.

overpredicts �H I (Fig. 1) at z = 3, some form of strong feedback
seems necessary to provide agreement with the observations. Not-
ing that the slope of the power-law fit steepens as the wind strength
and resolution increase, we hence conclude that the slope of Gard-
ner et al. (2001) was probably too shallow. This conclusion will be
strengthened when we discuss the abundance of DLAs in Section 5
and the column-density distribution function in Section 6.

4.2 DLA cross-section at redshift 4.5

In Fig. 3, we show the DLA cross-section at z = 4.5 as a function
of total halo mass. As before, the solid lines show power-law fits
that were obtained as described in the previous subsection, while
the short-dashed lines are the fits at redshift z = 3, for comparison.
Note that we do not plot results for the G-series but instead show
the R-series, which has much higher resolution, but was evolved
only to z = 4 due to its small box-size. The results of the power-law
fitting are summarized in Table 3. Similar to z = 3, the values of
the normalization ‘β’ agree very well with each other between runs
of differing resolution. The generic trends in the slope as a function
of wind strength and resolution are also similar to what we saw for
z = 3.

At the low-mass end of runs R3 and R4, we see that the DLA cross-
section is dropping prominently at M tot ∼ 108.3 h−1 M�, strongly

Table 3. The parameters obtained by least-
squares fitting the power-law of equation (7)
to the median points shown in Fig. 3.

Redshift 4.5
Run slope α β

R3 0.79 4.29
R4 0.86 4.46
O3 0.64 4.21
P3 0.67 4.24
Q3 0.71 4.31
Q4 0.79 4.44
Q5 0.87 4.59
D4 0.68 4.34
D5 0.74 4.42
G4 0.56 4.31
G5 0.65 4.30

departing from the fitted power-law. To avoid being affected by this
turn-down, we do not use the median points below log σ DLA = 1.0
for our power-law fitting. A similar feature is seen in Q4 and Q5
at the same mass-scale. Note that the resolution of the R-series is
sufficient to resolve haloes with M tot = 108 h−1 M� quite well, so
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Figure 4. Same as in Fig. 3, but for z = 1 and 0. The short-dashed lines are
the fits we obtained at z = 3, for comparison.

this downturn in DLA cross-section is unlikely to be a resolution
artefact. Instead, it is probably due to the physical effect that the
gas in these haloes is easily photoevaporated by the ionizing back-
ground, and/or ejected from haloes due to supernovae feedback. At
z = 3, the mass-scale of 108 −108.5 h−1 M� corresponds to a circu-
lar velocity of 10–15km s−1, or a virial temperature slightly below
104 K. Note that this is a smaller mass-scale than was suggested by
Quinn, Katz & Efstathiou (1996) and Thoul & Weinberg (1996),
who argued that haloes with circular velocities less than 40 km s−1

are unlikely to harbour DLAs. We will discuss this point further in
Section 7.

4.3 DLA cross-section at lower redshift

In Fig. 4, we show DLA cross-sections as a function of total halo
mass for z = 1 and 0, and the parameters of the fitted power laws are
summarized in Table 4. A similar trend in the slope as a function of
resolution exists at z = 1 as we saw at z = 3. It is clear that the slope
cannot be determined reliably for G4 and G5 at z = 0 (and possibly
at z = 1) due to limited resolution, as is evident from the ‘stripes’
seen at low cross-sections in the bottom two panels of Fig. 4.

5 C U M U L AT I V E A BU N DA N C E O F D L A S

Dark matter haloes with masses below the resolution limit of a sim-
ulation cannot be resolved. This is a serious problem when one tries
to compute the number density of DLAs based on a cosmological
simulation that does not resolve all small-mass haloes that may host
a DLA. Note in particular that the number density of dark matter
haloes is known to increase strongly towards lower masses. Even

Table 4. The parameters obtained by least-
square fitting the power-law of equation (7) to
the median points shown in Fig. 4.

Lower Redshifts
Run slope α β

z = 1
D4 0.74 2.82
D5 0.82 2.75
G4 0.61 2.93
G5 0.67 2.89
z = 0
G4 0.54 2.73
G5 0.56 2.62

a small incompleteness at low masses will hence prevent a reliable
estimate of the DLA abundance if only a simple number count of
DLAs found in a cosmological simulation is used.

To overcome this limitation, Gardner et al. (1997a,b, 2001) con-
volved a theoretical fit to the dark matter halo mass function with the
measured relationship between DLA cross-section and halo mass. In
this way, they were able to correct for incompleteness in the resolved
halo abundance of the simulations. The cumulative abundance (or
equivalently the rate of incidence) of DLAs per unit redshift as a
function of halo mass in this approach can be expressed as

dNDLA

dz
(> M, z) = dr

dz

∫ ∞

M

ndm(M ′, z)σDLA(M ′, z) dM ′, (8)

where ndm(M, z) is the dark matter halo mass function (for which we
use the Sheth & Tormen (1999) parametrization) and dr/dz = c/H(z)
with H (z) = H0 E(z) = H0

√
�m(1 + z)3 + �� for a flat universe.

In order to carry out this integral, the power-law fits obtained in
Section 4 can be used to represent σ DLA(M, z) which give the mean
relation between the halo mass and the DLA cross-section. Note
that the dependence on the Hubble constant disappears on the right-
hand-side of equation (8) because dr/dz scales as h−1, while ndm

dM depends on h3 and σ DLA scales as h−2 in the simulation.

5.1 DLA abundance at redshift 3

In Fig. 5, we show the cumulative abundance of DLAs per unit
redshift at z = 3 as a function of total halo mass. The horizontal
shaded region in the left-hand panel indicates the observed DLA
abundance of Péroux et al. (2001). We note that the data set analysed
by Péroux et al. (2001) includes that of Storrie-Lombardi & Wolfe
(2000), and a similar value for the DLA abundance was also reported
by Storrie-Lombardi & Wolfe (2000). It is encouraging that the DLA
abundances found in our simulations agree well with the observed
range.

As we discussed in Section 4.2, the DLA cross-section is falling
off rapidly at M tot ∼ 108 h−1 M�. Consequently, the DLA abun-
dance per unit redshift can be read off from the cumulative abun-
dance plot at M tot = 108 h−1 M�, provided that the underlying
simulation can resolve this mass-scale well. For our highest resolu-
tion run at z = 3 (Q5), this is, in fact, the case. Here, the cumulative
abundance has already flattened out at M tot = 108 h−1 M�, so that
a correction with equation (8) for a missed contribution by haloes
on smaller mass-scales becomes unnecessary.

In the left-hand panel of Fig. 5, it is seen that the DLA abundance
decreases as the wind strength increases from O3 to P3 and to Q3,
and as the resolution of the simulation increases from Q3 to Q4
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Figure 5. Cumulative abundance (or equivalently rate of incidence) of DLAs per unit redshift as a function of total halo mass. {Left-hand panel:} comparison
of the results for the Q-series. The runs with a strong wind (Q3–Q5) have fewer DLAs than those with weak (P3) and no winds (O3). The transition from Q3 to
Q4 and then to Q5, shows that higher numerical resolution tends to lead to fewer DLAs. The shaded region indicates the observed DLA abundance of Péroux
et al. (2001). The solid slanted line shows the simulation result obtained by Gardner et al. (2001). Right-hand panel: same as the left-hand panel, but for the
D- and the G-series, which all have strong winds. We also include the Q5 run as a thick solid line to ease comparison with the left-hand panel.

and to Q5. This is due to the increasing slope of the power-law
fits that we obtained in Section 4. As the slope of the power-law
fit increases, the contribution from massive haloes becomes larger,
while that from low-mass haloes becomes smaller. As a result, the
cumulative abundance at the high-mass end of Fig. 5 is largest for
Q5, but when summed over all masses, Q5 exhibits the smallest total
DLA abundance.

We also show the result from Gardner et al. (2001) as a solid
slanted line in the left-hand panel of Fig. 5. They argued that their
result would be consistent with the observations if the observed
DLAs originate only from haloes with circular velocities larger than
vc ∼ 60 km s−1 (which corresponds to M tot ≈ 2 × 1010 h−1 M�).
However, the good agreement between our improved simulations
and the observational determinations suggests that Gardner et al.
(2001) probably overpredicted the DLA abundance due to the shal-
lower slope they estimated for the relation between the halo mass
and the DLA cross-section (see Section 4.1).

In the right-hand panel of Fig. 5, the results for the D- and G-
series are shown, with the values for Q5 included as a reference to
ease comparison with the left-hand panel. As the box-size increases
from the Q- to the D-series, and then to the G-series, the resolution of
the simulations severely degrades, causing an overprediction for the
abundance, for the reasons discussed above. Therefore, we believe
that Q5 represents our most reliable estimate at z = 3 (leaving aside
the question whether the feedback strength of the galactic wind
adopted for the Q-runs is appropriate or not).

5.2 Redshift evolution of DLA abundance

In Fig. 6, we show the evolution of DLA abundance from z = 4.5
to 0. In the left-hand panel, the cumulative abundances of DLAs are
shown as a function of total halo mass for redshifts z = 4.5, 3, 1 and
0. One can see that the contribution from massive haloes to the DLA
population progressively increases from high- to low-redshift as a
result of the merging of haloes. In the right-hand panel, we give the
DLA abundance per unit redshift as a function of epoch, with values

here read off at M tot = 108 h−1 M� in the left-hand panel. Observed
data points from Péroux et al. (2001) and Rao & Turnshek (2000) are
also shown with error bars. Some of the exact simulation results are
shown by the symbols, labelled with the names of the corresponding
runs. The shaded region is our best-guess for a confidence region
based on combining all of our simulation results. For reference, we
show a power law dN/dz = N 0 (1 + z)γ with N 0 = 0.005 and γ =
2.5 as a long-dashed line, which describes the rate of evolution seen
in the simulations well. It is encouraging that the above value of γ

is in good agreement with the observed evolution of Lyman-limit
systems of Péroux et al. (2001), where they report γ = 2.45+0.75

−0.04.
From z = 4.5 to 3, we see a decrease in the abundance by a factor

of ∼2 in both simulations and the observations, and the agreement
between the two is very good, although the simulation points tend to
fall slightly below the observations. From z = 3 to 1, the simulation
(D5) suggests a further rapid decrease in DLA abundance by a factor
of ∼ 6, which is not seen at this level in the existing observations.
However, the observational data at low redshift are still relatively
uncertain, as indicated by the large error bars. The rapid decline is
also reflected in the fact that �H I decreases from 0.66 (z = 3) to
0.14 (z = 1) in D5 over this redshift range, a reduction of nearly a
factor of 5 (see Fig. 1). If this significant decrease in the number of
DLAs from z = 3 to 1 is real, it would partly explain why it is so
difficult to find DLAs at z � 1.

On the other hand, not much evolution is seen from z = 1 to 0 in
the G5 simulation. This is related to the fact that �H I in G5 does not
decrease very much from z = 1 (�H I = 0.19) to z = 0 (�H I = 0.16).
However, as discussed earlier, our power-law fits to the σ DLA − M tot

relation are not well constrained for z = 0 (and possibly for z = 1 as
well), so the results at z � 2 should be interpreted with caution. At
z � 3, we saw that lower resolution runs tend to predict a larger
abundance due to a shallower slope in the relation between the DLA
cross-section and the halo mass, but it is not clear if other forms
of systematic bias dominate at very low redshift for simulations
with poor resolution. We will need yet higher-resolution simulations
with large box-sizes to make a more robust prediction of the DLA
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Figure 6. Evolution of the DLA abundance from z = 4.5 to 0. Left-hand panel: cumulative DLA abundance as a function of total halo mass at redshifts z =
4.5, 3, 1 and 0. Right-hand panel: DLA abundance per unit redshift as a function of redshift. The data points with error bars are the observational data from
Péroux et al. (2001) (crosses) and Rao & Turnshek (2000) (open triangles at z < 1.5). The exact simulation results from some of the runs are indicated by the
symbols with run-names. The shaded region is our best-guess for a confidence region based on combining all of our simulations. For reference, we show the
power-law of dN/dz = N 0 (1 + z)γ with N 0 = 0.005 and γ = 2.5 as a long-dashed line.

abundance at z � 2, and until then, it is not clear whether the current
results for DLA abundance at z � 2, which tend to fall below the
observational data, are trustworthy. This is why we have widened
the shaded confidence region in Fig. 6 significantly for z � 2.

6 H I C O L U M N D E N S I T Y
D I S T R I BU T I O N F U N C T I O N

The column density distribution function f (N, X(z)) is defined such
that f (N, X) dN dX is the number of absorbers per sight line with
H I column densities in the interval [N, N + dN], and absorption
distances in the interval [X, X + dX]. The absorption distance X(z)
is given by

X (z) =
∫ z

0

(1 + z′)2 H0

H (z′)
dz′. (9)

This definition is based on an argument by Bahcall & Peebles (1969),
who pointed out that the probability of absorption for a quasar sight-
line in the redshift interval [z, z + dz] is dP ∝ (1 + z)2 dr ∝ (1 +
z)2 [H0/H(z)] dz ≡ dX. In practice, if the comoving box-size of the
simulation is �L, then the corresponding absorption distance per
sight-line is �X = (H0/c)(1 + z)2 �L. For example, for �L = 10
h−1 Mpc and 3, we have �X = 0.0534.

Assuming that DLAs do not overlap along a sight-line through
the simulation volume (which is a very good approximation given
the small size of the simulation box, where the expected number of
DLAs per sight-line at z = 3 for a 10 h−1 Mpc path is ≈10−3), we can
compute the N H I distribution function by counting the number of
grid-cells with column densities in the range [N, N + dN]. In doing
so, we are treating each grid-cell element as one line-of-sight.

6.1 H I column density distribution at z = 3

In Fig. 7, we show the H I column density distribution function at
z = 3. The solid triangles are the points directly measured from
the simulations. The open squares are the observational data of (for

2.7 < z < 3.5 data Péroux et al. (2001, for 2.7 < z < 3.5 data),
and the dashed curve is the fit to the same data based on a gamma-
distribution:

f (N ) = f∗
N∗

(
N

N∗

)−β

exp

(
− N

N∗

)
. (10)

The parameters of the fit are ( f ∗, log N ∗, β) = (0.0406, 21.18,
1.10) (for 2.7 < z < 3.5 data Péroux et al. (2001, for 2.7 < z < 3.5
data). We note that all data by Storrie-Lombardi & Wolfe (2000) are
included in that of Péroux et al.’s.

In the panel for Q3 (upper right-hand corner), we also show the re-
sult of different smoothing methods, using crosses [uniform cloud-
in-cell distribution with � = (4π/3)1/3s] and open triangles [uni-
form clouds-in-cell distribution with � = 1

2 (4π/3)1/3s]. The former
method (crosses) results in higher values of f (N) at lower column
densities because it smooths the gas mass into broader regions. The
SPH smoothing method agrees with the latter calculation method
(open triangles) better.

The agreement between the observations and the simulations Q3–
Q5 and D5 at log N H I > 21 is generally very good. Results from
runs of increasing resolution (Q3–Q5) are consistent with each other
to a high degree. The run with no wind (O3) somewhat overpredicts
the distribution function at large N H I values, but as the galactic
wind strength increases from O3 to P3 and then to Q3, the high
column density systems become less abundant and the agreement
between the simulation and observations improves. At intermediate
column densities (20 < log N H I < 21), it seems that the simu-
lated distribution function falls short of the observational estimate.
Given the consistent behaviour in Q3–Q5, our result appears not to
be affected by resolution, although this cannot be completely ex-
cluded. We will discuss this point further in the next subsection,
when we consider the data at z = 4.5. It is clear, however, that
G4 and G5 do not have sufficient resolution at z = 3 to resolve
DLAs.
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Figure 7. H I column density distribution function at z = 3. The solid triangles are the points measured directly from the simulations. The open squares are
the observational data of Péroux et al. (2001) for 2.7 < z < 3.5 data, and the dashed line is the fit to the same data based on a gamma-distribution. In the panel
for Q3, the results with different smoothing methods are shown in crosses and open triangles. See the text for details.

6.2 H I column density distribution at z = 4.5

In Fig. 8, we show the H I column density distribution function at
z = 4.5. As before, the solid triangles are the points measured in the
simulations, and the open squares are the observational data of (for
3.5 < z < 4.99 data Péroux et al. (2001, for 3.5 < z < 4.99 data).
The long-dashed line is the gamma fit to the same observational data
of 3.5 < z < 4.5, and the short-dashed line is the fit to the data for
2.7 < z < 3.5 for reference. The values of the fit parameters for the
3.5 < z < 4.5 data are ( f ∗, log N ∗, β) = (0.2506, 20.46, 0.80).

Observational studies (Storrie-Lombardi & Wolfe 2000; Péroux
et al. 2001) indicate that there are fewer high N H I systems (log N H I

>21) at z>3.5 compared with 2.7< z<3.5, and that the distribution
function becomes steeper at z > 3.5. However, we do not see such
a reduction of high N H I systems in our simulations from z = 3 to 4.
In fact, the highest resolution simulation in our series (Q5) suggests
that f (N) is slightly higher (but steeper at the same time) at z = 4.5
compared with z = 3. Note that the agreement between runs with
different resolution (Q3–Q5, R3 and R4) is impressive, showing
that the results are well-converged. The degree of the increase in
f (N) from z = 3 to 4.5 is somewhat larger for the intermediate NH I

systems (20 < log N H I < 21), leading to a slight steepening of the
overall f (N). One interpretation is that observational studies have not
yet discovered sufficient numbers of DLAs with very high column
density (log N H I > 21) to accurately estimate the evolution of f (N)

at z > 3, because such high N H I systems are intrinsically rare and
therefore difficult to find.

The evolution from z = 4.5 to 3 is presumably driven by the com-
bined effect of the depletion of the abundance of small haloes by
merging, the accumulation of feedback by galactic winds, and the
reduction of cooling efficiency. Small haloes of comparatively low
column densities (log N H I < 20.5) merge into larger systems from
z = 4.5 to 3, forming more massive systems with higher column
densities, as the hierarchical structure formation scenario suggests.
However, strong feedback by galactic winds ejects neutral gas from
the star-forming regions, thereby acting to reduce the column den-
sities of all systems. In addition, the efficiency of cooling rapidly
decreases towards lower redshift, reducing the rate at which gas can
cool out of haloes and become neutral.

6.3 H I column density distribution at lower redshift

In Fig. 9, we show the H I column density distribution function at
z = 1 and 0. Again, solid triangles give the points measured in the
simulations, and the open squares are the observational data of (for
0.008 < z < 2.0 data Péroux et al. (2001, for 0.008 < z < 2.0
data). The dashed curve is the gamma-distribution fit to the same
observational data with parameters ( f ∗, log N ∗,β)= (0.0870, 20.76,
0.74). For comparison, we also show the observational gamma fit
for 2.7 < z < 3.5 data as dotted lines.
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Figure 8. H I column density distribution function at z = 4.5. The solid triangles are the points measured in the simulations, and the open squares are the
observational data of Péroux et al. (2001) for 3.5 < z < 4.99 data. The long-dashed line is the gamma fit to the same observational data of 3.5 < z < 4.5. For
comparison, the short-dashed line is the fit to the 2.7 < z < 3.5 data.

As we pointed out earlier, the results of the G-series are substan-
tially affected by resolution, causing an underestimate of the DLA
abundance if it is not corrected using equation (8). (If the abun-
dance is corrected with an ill-determined relation between the DLA
cross-section and the halo mass, then low resolution can also lead
to an overestimate of the abundance, as we discussed in Section 5.)
With the mass resolution of the G-series, haloes with M tot < 1010

h−1 M� are not resolved, and a significant fraction of the DLA
population is therefore missed. Curiously, it is seen that the column
density distribution function in fact rises from z = 1 to 0 in the
G-series. This is probably because haloes with masses above the
mass resolution limit are only beginning to form at these low red-
shifts as the non-linear mass-scale increases with decreasing red-
shift, and the simulation is finally ‘catching up’ to reproduce the
neutral gas content in these haloes.

7 D I S C U S S I O N

We have used state-of-the-art hydrodynamic simulations of struc-
ture formation to investigate the abundance of DLAs in a �CDM
universe. Our study represents a first attempt to apply a large se-
ries of simulations to this problem, probing an unprecedented range
in both mass and spatial scales, enabling us to quantify systematic
effects due to numerical resolution. Furthermore, we improved the

simulation methodology by adopting a novel formulation of SPH
(see Springel & Hernquist 2002) that minimizes systematic inaccu-
racies in simulations with cooling, and by using an improved model
for the treatment of the multiphase structure of the ISM in the context
of star formation and feedback (Springel & Harnquist 2003a).

By comparing our results for DLA abundance in a series of runs
as a function of resolution and feedback strength, we were able to
demonstrate that insufficient resolution, or a lack of a proper treat-
ment of effective feedback processes, leads to an incorrect estimate
of the relation between the DLA cross-section and the halo mass.
This likely led to an overestimate of the DLA abundance in earlier
studies, for the reasons we discussed in detail in Section 4.1.

Prochaska & Wolfe (2001) pointed out that the observed velocity
width distribution cannot be reproduced if the relation between the
DLA cross-section and the halo mass derived from these earlier
SPH simulations is used. They also suggested that one possibility
to remedy this inconsistency was to suppose that the relationship
between the DLA cross-section and the halo mass was incorrectly
determined. This is exactly what we find in our current study. If we
use the new relation found in our highest resolution simulation, we
obtain a DLA abundance that is consistent with observations, which
is very encouraging. The slope of the relation that we infer from our
simulations at z = 3 is in the range of 0.7–1.0, which coincides
with the range that Haehnelt, Steinmetz & Rauch (2000) derived
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Figure 9. H I column density distribution function at z = 1 and 0. The solid
triangles are the points measured in the simulations, and the open squares
are the observational data of Péroux et al. (2001) for 0.008 < z < 2.0 data.
The dashed curve is the gamma-distribution fit to the same observational
data. For comparison, we also show the observational gamma fit for 2.7 < z
< 3.5 data as dotted lines.

by requiring their model prediction of velocity width distribution to
match the observed one.

However, while our simulations reproduce the DLA abundance at
z = 3 very well, our predictions at z � 2 are not equally reliable be-
cause they are based on simulations with larger box-sizes and lower
resolution. This is also evident from the poor agreement between the
simulated and the observed H I column density distribution function
at low redshift. To make the predictions at low-redshift more robust
will require large box-size simulations with yet more particles.

The fact that we were able to reproduce the observed DLA abun-
dance very well at redshift z = 3 has significant implications for
the cold dark matter model. This result suggests that DLAs arise
naturally in a �CDM universe from radiatively cooled gas in dark
matter haloes with correct abundance. This is related to the ‘sub-
structure problem’ that is posed against the CDM model, based on
the notion that the number of satellite galaxies observed around the
Milky Way seems to be much smaller than, and hence in contradic-
tion to, the large number of dark matter substructures predicted by
high-resolution N-body simulations (Moore et al. 1999).

Stoehr et al. (2002) have shown that the seriousness of this dis-
crepancy was overstated initially, but the high abundance of low-
mass haloes and dark satellites in CDM models remains puzzling,
given for example the shallow faint-end slope of the galaxy lumi-
nosity function. Therefore, many models have been invoked to sup-
press the formation of dwarf satellite galaxies, including supernova
feedback that ejects gas (Dekel & Silk 1986), reheating of the in-
tergalactic medium which suppresses gas infall (Bullock, Kravtsov
& Weinberg 2001), and photoionization of gas by UV background

radiation (Quinn et al. 1996; Thoul & Weinberg 1996). Full cosmo-
logical hydro-simulations have also been used to argue that feedback
effects by UV background radiation and supernovae may account
for the suppression of the formation of low-mass galaxies relative
to the steeply rising dark matter halo mass function (Chiu, Ostriker
& Gnedin 2001; Nagamine et al. 2001b). While we cannot make
a strong statement on this problem at low-redshift, our results sug-
gest that the CDM model does not have difficulty at z = 3 with
respect to the number of neutral gas clumps from which stars form.
Considering that there is in general good agreement between ob-
servations and theoretical studies of Lyman-break galaxies at z = 3
(e.g. Mo & Fukugita 1996; Baugh et al. 1998; Jing & Suto 1998;
Katz et al. 1999; Kauffmann et al. 1999; Mo et al. 1999; Nagamine
2002; Weinberg et al. 2002), the �CDM model seems to be in a
very good shape at z = 3.

Another interesting result of our study is that the break in the
relation between DLA cross-section and halo mass seems to occur
at a mass-scale of M tot ≈ 108–108.5 h−1 M�. DLAs do not exist in
haloes below this mass-scale at z = 3 and 4.5. Because we measured
this effect consistently in both the Q5 and R4 runs, which have
sufficient resolution to describe haloes with M tot = 108 h−1 M�
well, it is clear that this is not caused by a resolution effect. Note
that this mass-scale, which corresponds to circular velocities of 10–
15 km s−1 and virial temperatures of ∼104 K or even slightly lower,
is smaller than suggested by the earlier studies of Quinn et al. (1996)
and Thoul & Weinberg (1996) (see also Weinberg, Hernquist & Katz
1997). The physical origin of the break could lie in both the radiative
processes of cooling and UV-heating, and in supernovae feedback,
but we expect that the former effects dominate. This is because
feedback will proceed only if at least some neutral gas is built up,
so that star formation can occur at some (low) level. Only after that
can feedback quench the further accumulation of neutral gas, and
possibly also affect neighbouring haloes. Therefore, while one can
easily understand why supernovae feedback reduces the amount of
neutral gas in small haloes, it is not clear how it could lead to the
complete absence of neutral gas below a certain mass-scale. On
the other hand, a relatively sharp break can be expected from the
properties of the cooling function, and the heating of the gas due to
the UV background. Both processes depend very sensitively on the
virial temperature of haloes in the range 104–105 K. Further studies
will be needed to disentangle the relative importance of the various
physical effects in this regime more precisely.

Assuming that feedback effects due to star formation nevertheless
influence the mass-scale of the break, we might have underestimated
it if the feedback we employed in our simulations was not strong
enough. However, we saw in our results of Fig. 1 that the current
simulations with the ‘strong wind’ model already seem to under-
predict �H I slightly, therefore even stronger feedback would make
the neutral gas fraction in the Q-series even smaller and exacer-
bate the discrepancy with the observational estimate of �H I at z
= 3. Also, there is only very limited room to increase the strength
of the UV background flux, because for our chosen normalization
the mean opacity of the Lyman α forest is in good agreement with
observations. Another way of constraining the feedback strength is
to compare the simulated galaxy luminosity function with the ob-
served one, to see if the flatness of the faint-end of the luminosity
function can be reproduced. A preliminary analysis suggests that
our present simulations do not yet yield a luminosity function with
a faint-end as flat as observed at low-redshift; therefore the feedback
model in our current simulation might not be adequate to correctly
account for the galaxy population at z = 0. The results of this analy-
sis will be presented elsewhere. A solution to this problem will help
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to further constrain the physical processes that suppress the DLA
cross-section in low-mass haloes.

In the present paper, we focused on the abundance of DLAs,
without carrying out a detailed study of their internal structure.
Therefore, we are not able to completely rule out the possibility that
the DLAs we find in our simulations are in fact originating from very
small discs at the centre of dark matter haloes. Our present work
is complementary to that of Haehnelt et al. (1998), in the sense
that we are able to sample a large statistical ensemble of absorbers
in comoving volume of � (10 h−1 Mpc)3, while they studied a
smaller number of objects in greater detail. Nevertheless, our highest
resolution run (Q5) with 10 h−1 Mpc box has a spatial resolution of
1.2 h−1 kpc which is comparable to that of Haehnelt et al. (1998),
and the results from varying resolution runs (Q3–Q5) agree with
each other well. Therefore, given that our simulations are based
on the CDM model, our results support the idea that DLAs arise
from radiatively cooled protogalactic gas clumps embedded in dark
matter haloes. While our spatial resolution is approaching comoving
subkpc scales at z = 3, it is probably not yet sufficient to accurately
resolve the disc structures embedded in the central few kpc regions
of dark matter haloes. Kinematical studies of the internal structure
of DLAs will require yet higher-resolution simulations than those
used in the present paper, and possibly a more sophisticated physical
model for the ISM and star formation.
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