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ABSTRACT

Most problems in gravitational lensing require numerical solutions. The most frequent types of problems are (1)
finding multiple images of a single source and classifying the images according to their properties like magnifica-
tion or distortion; (2) propagating light rays through large cosmological simulations; and (3) reconstructing mass
distributions from their tidal field. This lecture describes methods for solving such problems. Emphasis is put on
using adaptive-grid methods for finding images, issues of spatial resolution and reliability of statistics for weak
lensing by large-scale structures, and methodical questions related to shear-inversion techniques.

1. INTRODUCTION mann (1999), reviews of weak lensing are Mellier (1999) and
Bartelmann & Schneider (2001).

Only for very special lens models can numerical methods be

avoided in gravitational lensing studies. There are three essential

reasons for that. One is the non-linearity of gravitational lensing, 2. INDIVIDUAL LENSES
i.e. the fact thatimage and source positions are related to one an-
other in a non-linear fashion. This gives rise to the well-known
phenomena of mutiple imaging, strong image distortions, and
so forth. The second reason is that lenses exist which are the
selves best described by numerical models. Galaxy clusters
one example, lensing by large-scale structures is another.
though it is true that many aspects of gravitational lensing b
large-scale structures can be derived analytically, detailed si ; o
ula%ions require numerical techniques. Th)e/ thirdyreason is thighs system, both of constituents within the lenses and of the
the interpretation of gravitational lensing effects or events ofteff €S With respect to the rest frame of the microwave back-
require the application of sophisticated algorithms to ever grov’frou.nd’ be smaly < c. Third, the extent of the lenses along
ing amounts of data. One example is the reconstruction of tha€ lNe-of-sight be small compared to the other distances in the
projected mass density distribution of a galaxy cluster from th stem, which are usually cgfmolog|gal and t.hus comparable to
observed image distortions due to gravitational shear. the Hubble radius;/Ho = 3h™ Gpc, withHo being the Hubble

Needless to say, there are many more aspects of numeriég'stant anth = Ho/100kms *Mpc-*. _ o
methods related to gravitational lensing than | can cover in this It is worth noting how well these assumptions are satisfied in
review. An outstanding example are the highly elaborate metirdinary lensing situations. Consider a galaxy cluster with mass
ods that have been developed over recent years for determiniMg= 10*°h~M,. Assuming spherical symmetry, the Newto-
image shapes of faint background galaxies on CCD frames, anihn potential at a distande@= 1h~—1Mpc from its centre is
for extracting the gravitational shear signal from them. This is a
whole branch of data analysis on its own. Here, | can only deal GM
with numerical methods for relating mass distributions to their |®| ~ — ~ (2x 10°kms1)? | 1)
gravitational lensing effects. R

Consequently, the outline of this lecture is as follows: First, . :
| shall discuss methods for studying individual lenses, i.e. theiewdently much smaller than the speed of light squared. A

. . ; S . S/pical length scale for the radius of a galaxy cluster is 1
imaging properties, their critical curves and caustics. In pa%Sthpc, which is several hundred times smaller than typical

2.1. Assumptions

RA'brief reminder of the basic assumptions underlying the the-
r‘§/ of individual lenses may be in order. There are three main
ssumptions. First, the Newtonian gravitational potential of the
ns be small|®| < ¢?. Second, velocities in the gravitational

ticular, the use of adaptive grids and techniques for searchi . : . ; e
and characterising images will be discussed. Second, | shall stances in a cluster-lensing system. Finally, peculiar velocities

scribe how extended lenses can be treated numerically using alaxy clusters with respec_t to the Hgbble flow are Of, order

multiple-lens plane theory. This will lead to the basic equationgeveral hundred knts, and typical velocities of galaxies within

for tracing light rays through (simulated) cosmological volumesgalaxy clusters reach of order3ms *, but both velocities are

A large fraction of the discussion will be devoted to issues of regvay below the speed of light. The above assumptions hold even

olution and noise, and to spurious effects in simulated lensirgetter for lensing by galaxies, of course.

statistics. Finally, third, | shall describe inversion techniques, We can thus safely assume the above conditions to be satis-

i.e. methods for reconstructing the projected mass distribution &&d. It is then possible to project the lensing mass distribution

lenses whose distortion has been measured. The classic Kaisamto a plane perpendicular to the line-of-sight, the lens plane,

Squires method will be described, and also maximum-likelihoodnd describe it by its surface mass dengitySources are as-

techniques and maximum-entropy methods. sumed to be located on a corresponding plane, the source plane.
General lensing theory and the theory of weak lensing ar@ typical lens system is sketched in Fig. 1.

covered by Koenraad Kuijken’s and Peter Schneider’s lectures The three distanceBqsgs Shown in Fig. 1 and explained in

in this volume. Basic references on lensing include the textbodts caption are generally not additive because of space-time cur-

by Schneider et al. (1992) and the lecture by Narayan & Bartelature, thuDg # Dq + Dgs in contrast to flat space-time.



2.3. The Lensing Potential

It will be convenient for the following discussion to introduce
the lensing potential as the basic physical quantity for lens-
ing studies. It is the scaled, projected Newtonian gravitational

potential of the lens,
source plane 2 DD
dUds
W = 5 === [ oo ©)
optical axis Dds ¢ &3Ds
The so-callededuced(i.e. appropriately scaled) deflection an-
gle is the gradient of the potential,
D, )
a(X) = Oxw(x) (6)
lens plane and the lensing convergence (i.e. the appropriately scaled
surface-mass density) is
Ds 1, 1
k(%) = 5 DRW(%) = 5 O G(%) . )
Finally, the gravitational tidal field is described by the two-
observer component shear,

1 1
o o ViX) =5 (W —W22) =5 (011 -022) . Ya(X) =P12=012,
FiG. 1.—Schematic view of a gravitational lens system. The lens is

: : / . 8)
projected onto the lens plane perpendicular to the line-of-sight, source . " L ( .
are located on the parallel source plane. There are three distances Je1ere the convention was used ttigfis the derivative of the

quired to describe the geometry of the system, i.e. the distahgggs  th component of with respect to the coordinasg. It is impor-
between the observer and the lens, the observer and the source, tant to note that the fact that all lensing quantities can be derived
between the lens and the source, respectively. Due to space-time curffgm the scalar lensing potential establishes relations between
ture, these distances are generally not additive. all of them. This will be exploited several times later.
Note that the lensing quantities must be rescaled in case the
. . coordinate scalé is changed. Suppogg is introduced instead

2.2. Coordinates and Notation of &. Since the physical surface-mass density of the lens must

and source planes, respectively. Alternatively, it is often convdlection angle must transform as

nient to introduce angular coordinatéandf&, which are obvi- g
ously related t& andrj through a(x) = ?g a(x), 9)

£=Dgb, f{=Dsp. (2)  and convergence and shear transform as

Dimensional coordinates are of course not suitable for numerical £ 2
calculations, which can only handle numbers. We thus have to [K(X), y(X)] = <0> KX, vi(X)] - (10)
introduce a length scafg), or alternatively an angular scég, €o
in the lens plane. This length scale is sodabitrary. It implies
a length or angular scale 2.4. Imaging
Ds no &o Suppose now we were given some description of the lensing po-
No= Hdio, or Po= D. Dy 8o (3) tential Y(X), or of the deflection anglé(X). This description

could be an analytical formula, or it could be in form of an ar-
in the source plane. Dimension-less coordinates are then defirf@y, i-. a set of numbers given at grid poifis ;). We wish to

by know how the given lens images its background.
i B ioB We introduce a coordinate grij; on the lens plane subject
=2=__ o J=—=— (4) tothe condition that it be sufficiently well resolved. This means
& 6o no 6o that the smallest features in the lens must be covered by at least

in the lens and source planes, respectively. The numerical coddeW grid points. Since we are given the deflection angle as
will have to deal with the dimension-less vectgmndy. It helps 2 function of position, we can compute a deflection-angle grid,
numerical accuracy greatly if these numbers are of order unitt%ij = U(Yijj- The mapped grid on the source plane is then simply
Thus, the first challenge in setting up a lensing simulation is tj = Xij —@ij. This mapped grid will appear as a distorted image
choose an appropriate length- or angular s€gler 8o, which of the regglar grid in the lens plane, as the example in the left
should both be adapted to the physical problem at hand, andRanel of Fig. 2 shows. _ _
the requirement that numerical codes work most accurately if the The mapping process must now be reversed in order to obtain
numbers they are dealing with are neither too large nor too smafiil image created by the lens. For doing so, sbarceplane
compared to machine accuracy. Choosing unappropriate lendghfirst covered with a regular grig;. Next, we loop over all
scales can, for instance, render image searches unsuccessfulgrid pointsx;; in thelensplane and find its mapped source point
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FiG. 4. —Left panel:Second-order numerical differentiation using cen-
FiG. 2.—Left panel: A regular grid in the lens plane (blue dots) is tred differencesRight panel:A simple method for finding points in the

mapped onto the source plane (red dots) using a numerical descriptigfis plane next to a critical curve uses sign changes of the Jacobian de-
of a deflection-angle field. Distortions are clearly visidRight panel:  terminant between the point considered and its four nearest neighbours.

For each point in the lens plane, those points of a regular grid in the

source plane (blue) are searched which surround its mapped point in

the source plane (red). must satisfyo1 2 = Y12 = P21 = 0z1. Itis thus usually prefer-
able to check that this relation is satisfied within numerical ac-
curacy, and to uséay >+ 021)/2 instead of eithea1» or a1

¥ij in the source plane, and search for the nearest neightjgursalone.

surroundingy;j in the source plane. Thisis illustrated in the right = Critical curves in the lens plane are defined by the condition

panel of Fig. 2. The surface brightness of the source, known #fat the Jacobian determinant of the lens mapping vanish there,

the positionsy,;, can then be interpolated # and the result det7(X) = 0. The elements of the Jacobian matrix &g =

assigned to the image poiXf. That way, the surface brightness&;; — a; j, thus the Jacobian determinant is

at all points in the lens plane can be determined, and thus the

lensed image be constructed. Fig. 3 shows an example. D=detd=(1—0ay1)(1—022)—02,. (12)

The left panel of the figure shows a simulated CMB tempera- " ' '

ture fluctuation field of 10x 10’ angular size. The temperature |t can be computed once the (numerical) derivatives of the both

increases from white to red. In essence, the temperature fluctygsfiection-angle components have been determined.

tion corresponds to a fairly smooth gradient across the field. The one method of identifying grid points in the lens plane next

right panel shows the gravitational lensing signature imprinteg the critical curve proceeds as follows. L$t sign(D), and

on the CMB at such angular scales by a galaxy cluster. The teynsider one particular grid poimo in the lens plane. The

perature visible at an angular positiron the sky,T’(8), isre-  point is next to the critical curve if, and only if, the sign of the

lated to the intrinsic temperatuTethroughT’(@) = T[é_a(é)]_ Jacobian determinant changes between it and one or more of its

Thus, the light deflection by the cluster causes the visible tenfiearest neighbours. Hence, if the condition

perature distribution to be rearranged, yielding a highly specific

pattern (Seljak & Zaldarriaga 2000). S0(S-10+S10+S-1+S01) < 4 (13)

N ) is satisfied, the grid poirfyg is next to a critical curve (cf. the
2.5. Critical Curves and Caustics right panel of Fig. 4). Of coursey is not itselfon the criti-

cal curve, but to the positional accuracy determined by the grid

As mentioned in the introduction, the deflection-angle field congs | tion, the position of the critical curve can be constrained

tains full information on the lensing mass distribution. All otherthat way. Points on the source plane next to the caustic curve are

quantities like convergence and shear, but also image magnifiqﬁén easily found via the lens equatioi; — Xaij — (i
1 - P I - j = Xcij — G(Xcij),
tions, follow from the deflection angle via dlffe_ren_t|at|0n. It IS\where theXc; are the grid points in the lens plane next to criti-
thus a common task to compute numerical derivatives. cal curves.

Suppose a functiori (%) is tabulated on a grid, so that \?ve As an example, consider a lens model for a spiral galaxy, con-
are given the value; at the grid pointss;. The derivative of gigting of a spherical halo and a flat disk seen almost edge-on
f(X) at a particular poinKyg in the first coordinate direction is (Bartelmann & Loeb 1998). The deflection-angle field of such

approximated by a lens can be given analytically (cf. Keeton & Kochanek 1998).
3 (%) 1 Convergence and total she@i +Y2)"/2 as determined by nu-
== (fi10—f_10)+ o(hz) (11) merical differentiation are shown together with the modulus of
X1 g, 2h the deflection angle in Fig. 5.

The critical curves and caustics of that lens model as deter-

whereh is the separation of the grid points in the chosen direanined with the method described above are shown in Fig. 6.
tion; cf. the left panel of Fig. 4. This centred difference has the
advantage compared to the more straightforward one-sided dif- 2.6. Adaptive Source Grids
ferencesf19— foo or foo— f_10 Of being second-order in the grid
separatiorin. There are higher-order differencing schemes usin@ne of the most prominent goals of gravitational lensing studies
function values at more than two grid points, but the secondvith individual strong lenses is to determine the imaging statis-
order scheme is usually sufficient. No lensing quantity shoultics of a given lens model, for example the abundance of highly
vary strongly between two adjacent grid points because othanagnified events, the occurrence of multiple imaging with the
wise the resolution of the grid would be grossly insufficient.  images satisfying certain conditions, and the like. This is done in

We will typically need derivatives of the deflection angle principle by distributing many sources across the source plane,
Sinced is itself the gradient of a scalar potential, its derivativesmaging them as described before, and determining the image



Fic. 3.—Left panel: A simulated CMB temperature fluctuation field of’ 2010’ size. Right panel: The same field, lensed by a galaxy cluster,
which imprints a characteristic pattern on the temperature fluctuations.

LRI covered with a coarse grid. This grid should obviously be fine

1 enough for the caustics to be properly resolved; for instance,
it must not be so coarse that the typically two types of caustic
‘ curve, the radial and the tangential one, are closer than a few
oA ¢ 1 times the grid separation.

: Next, those points on that coarse grid are identified and saved
which are next to a caustic curve. This can, for instance, be
done by masking, i.e. by attaching a logical variable to all grid
1 points and setting it to eithérue or falsedepending on whether
r 1 oer T 1 itis oris not next to a critical curve. One can then cover the
ST s o s o T2 o a2 oa source plane with a grid whose resolution is doubled in both

) dimensions, and keep only those points which are identical with,
. o ) or surrounded by, points of the coarse grid which were masked
Fic. 6.—Critical curves (left) and caustics (right) of the spiral-galaxyin the preceding step. This procedure can be repeated as often
lens model illustrated in Fig. 5. as desired, i.e. until the finest grid level reaches the ultimately
required resolution. Note that it is not the grids and their masks
) which need to be saved, but only the coordinates of those grid
properties. However, such events are rare. If one were to covgints which are either part of the coarse initial grid, or whose
the entire source plane with a regular grid of sources, this gridgical mask values areue. That way, lists of source positions
would have to have a very high resolution for rare events to hgan be constructed which are to be probed later for the images
reliably found. In turn, most of the sources probed would prothey give rise to.
duce images failing the criteria imposed, so by far the largest Naturally, this can only be a basic recipe which needs to be
fraction of the CPU time used would be wasted. adapted to the situation at hand. For instance, the condition that
This situation calls for adaptive grids. We know in advanceyrid points need to be next to a caustic can be replaced by the
that any strongly lensed image will occur near a critical curvegondition that the absolute value of the Jacobian determinant be
or any strongly lensed source near a caustic. It is those sourg¢ess than a given threshold which can be lowered at each step
that we need to treat in detail, while those far from caustic curvest grid refinement. Such a criterion would naturally increase
are usually only required to normalise the statistics properly. the grid resolution near such grid positions where sources are
One approach for defining an adaptive grid, and there may leertain to be highly magnified.
others more suitable for a particular lensing situation, proceedsOf course, if statistics is the ultimate goal, one has to take
as follows. Again, we assume that we know the deflection amnto account that sources near caustic curves were positioned
gle of the lens, either because it was provided numerically &uch as to have an unfair advantage over sources far from caus-
because it is described by a known analytic formula. Then, wics. Since we have chosen to double the grid resolution at each
saw in the preceding subsection how grid points can easily pefinement step, each source on a refined grid represents only a
identified which are close to a critical curve in the lens plane, auarter of the area on the source plane represented by a source
a caustic curve in the source plane. on the next coarser grid. Assigning a statistical weight of unity
In order to save computational time, the source plane is firth the sources on the finest grid, the weight must quadruple for

0.5 N 0.2 - . i
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Fic. 5.—A lens model for an almost edge-on spiral galaxy: shown are the modulus of the deflection angle (left), the convergence (centre), and t
absolute value of the shear (right).

each coarser level. If the grid was refinddimes, the weight
of sources on the coarsest grid is thys= 22N Each source is
assigned a statistical weight in that way, and counts; times
in the final statistical evaluation.

source position

The left panel in Fig. 7 shows the source locations chosen for _
evaluating image statistics of the spiral lens model illustrated in
Fig. 6. Q

2.7. Finding Images

The principle of finding the images of a given source is simple:
Given a source at positioys, find those grid points;; on the ) ) o ) )
lens plane which are mapped sufficiently closgdd.e. whose FiG. 8.—Illqstrat|or! of the technique for flnd!ng images described in
mapped pointg;; are within a specified distance froyga the text. Grid cells in the lens plane are split into triangles (left panel),
The problemIJWith this approach is that a square-shaped @/ ich have a well-defined interior after being mapped back onto the

| id cell he i | : d d urce plane (right panel). This would not necessarily be the case for
rectangular grid cell from the image plane is mapped onto a digs tangular grid cells. A source is contained by a triangle if all mixed

torted figure in the source plane. In most cases, this figure Wlé oss productsf x d; for the shown vectord; are positive,
be a parallelogram, but in rare cases, opposing corners of the

original rectangle may even be interchanged on the source plane.
How can it then be decided whether a given point in the source
plane is inside or outside the mapped grid cell, or in other words, This algorithm for finding images works well as long as the
whether the image of the given source falls within that particulageparation between images is larger than the size of the grid cells
grid cell on the lens plane? in the lens plane. Very close images can be contained within the
The solution is to split each grid cell in the lens plane intgsame grid cell, in which case the algorithm would find only one.
two triangles, because a mapped triangle always remains a @f course, this potential problem can be remedied by increasing
angle, which always has a well-defined interiour (cf. Schneiddhe grid resolution, but then a very large number of grid cells
etal. 1992). would have to be checked in vain for containing an image.
Consider Fig. 8. The three grid points marked on the lens Again, a viable solution uses adaptive grids. One can start
plane in the left panel of the figure are mapped to the distortegith a coarse grid on the lens plane. Searching for images on
triangle shown on the right panel, which contains the source pthat coarse grid will almost certainly not yield all images of a

sition. Calldy 23 the three vectors from the mapped triangle’gnultiply imaged source, but those missed will be closer than the
corners towards the source position. It can be shown that tiid separation to those found. Then, those grid cells containing

source is inside the mapped triangle if the three vector product&ages can individually be covered with a highly resolved grid,
and the image search repeated on those sub-grids. Hence, the

dixdy, dyx ds, dp x da (14) first step represents a coarse scan of the lens plane for grid cells
containing at least one image, and the second step scans only

are all positive, with the vector product in two dimensions beind?0S€ regions on the lens plane in detail where images are sure
defined as 0 be found. If needed, further sub-grids can be similarly nested.

Axb=aby —ab; . (15) Of course, even though this procedure is highly adaptive and

) ] ) o efficient, it always has a remaining resolution limit, and images

_One straightforward way to verify this condition is to con-closer than that will not be resolved. It is then important to adapt

vince one’s self that the source point is inside the triangle ihe resolution of the finest sub-grid to the situation at hand, for
all vectorsd; point within the angles spanned by the adjaceninstance such that remaining unresolved images would neither

sides of the triangle, and that this condition translates to Eq. (18§ resolved by observations. The right panel in Fig. 7 illus-
above. trates the result of an adaptive image search for all sources at the
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FiG. 7.—Left panel:source positions placed on a multiply refined grid in the source plane. Caustic points are black. Obviously, the source plan
is best sampled near causti€ight panel:Number of images found for sources placed at the positions shown in the left panel.

positions shown in the figure’s left panel. Colours denote i
age numbers: Black means one image, blue three, and red fi
while green shows source positions for which an even number
images has been found, in contradiction to the necessarily o
image number produced by non-singular lenses. Such events
rare, but they do occur because of the finite resolution limit g
the algorithm applied.

Figure 9 gives an example for possible results of that adapti
technique for finding images. Colour-coded is the total magn
fication of point sources in the source plane behind the almo
edge-on spiral lensing galaxy introduced above. The increa
ing spatial resolution towards the caustic curves is evident. T
panel inserted into the figure shows caustics (blue) and critical
curves (red) of the lens, the source position as a blue dot jusic. 9.—The colour encodes the total magnification of a point source
inside the right-hand “naked” cusp, and the three images as riethsed by an almost edge-on spiral galaxy; blue means a magnification
hexagons whose size logarithmically encodes the image magnear unity, yellow means very high magnification. The adaptive reso-
fication. lution of grid cells on the source plane is clearly visible. The size of

the grid cells decreases substantially towards regions of high magni-
fication. The inserted panel shows caustics and critical curves of the
2.8. Asymmetric Lenses same lens (blue and red, respectively), a source position close to the
right-hand “naked” cusp, and the three images as red hexagons, whose
So far, we have used a model for a spiral galaxy as an examize logarithmically encodes their magnification.
ple for a complex lens whose properties need to be determined
numerically. Despite its complexity, the model is still highly
symmetric; and what is more, its deflection angle is given as af the source plane with the dots marking source positions, and
analytic formula. Sources were so far assumed to be point-likeheir colour illustrating the image number. Black, blue and red

Let us now increase the level of complexity and use a numermeans one, three, or five images, respectively. The caustic struc-
ically simulated galaxy cluster to gravitationally lens extendetlres can clearly be identified as the boundaries between black
sources. Again, we assume the deflection angle to be given asod blue and between blue and red, respectively.
postpone the question as to how it can be determined from an
N-body simulation. 29

All techniques described above for computing convergence e
and shear from the deflection angle, for finding critical curveg&xtended sources can be described in a variety of ways. What
and caustics, for placing sources on an adaptive grid, and ffwllows is a simple description for elliptical sources, but alterna-
finding images within grid cells split into triangles remain validtive source models can easily be constructed along similar lines.
unchanged. Figure 10 shows an example. We assume that source positiofishave already been found,

The modulus of the cluster’s deflection angle is shown as th@eferentially on an adaptive grid as described before. Also, we
colour plot in the left panel. The right panel shows a sectioneed to be sure that the grid resolution in the source plane is suf-

Imaging Extended Sources
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FIG. 10.—The colour plot in the left panel shows the modulus of the deflection-angle field in the lens plane of a numerically simulated galax
cluster. The right panel shows how sources are adaptively placed on the source plane (dots), and how many images these sources have; one (b
three (blue) or five (red). The boundaries between the colours mark the caustic structure.

ficiently high as to resolve the smallest sources to be considerembnnected. The first step is therefore to group the image points
Elliptical sources are described by three more parameteiiafo images. This can be done with a variant of the classical
viz. their size, their ellipticity, and their position angpeLet us  friends-of-friends algorithm: Pick one arbitrary point out of any
describe the ellipticity by = b/a, with a andb being the semi- given set of image points and search for another image point
major and semi-minor axes of the ellipse, respectively. Finallyvhich is at most/2h grid units away from the first point is
we introduce an effective radiusby demanding that a circle the grid size in the lens plane. If there is such a point, it is called
of radiusr have the same area as the ellipse, haneevab. a “friend” and grouped into the same image as the first point.
By rotating by an angle an ellipse centred on the coordinateNow take the “friend” and repeat until no further “friends” can
origin whose axes are aligned with the coordinate axes, it cdre found and the image is complete. If more image points are
straightforwardly be shown that a grid poi is enclosed by left on the lens plane, pick one of those and repeat the process

the ellipse if the condition until all image points have been grouped. If the image is large
52 52 enough, and the grid resolution on the lens plane is high enough

Y1 ; Y5 for the image to consist of many points, the image magnification
co§(p<e + eéy%) + sm2(p<e + eéyf) is simply the ratio between the numbers of pixels covered by an

1 image and the number of pixels covered by the source.
+ 26y16yzsin(pcos(p< - e> <(P6) Once all image points belonging to a single image have been
€ identified, it is often useful to determine the boundary points
. . . . N of that image, e.g. by identifying those points inside an image
IS SatIS_er(th wherey :Iy” — Y tt.h]? gr'lg poTéxjihwhose which have a neighbour outside the image. By suitably order-
image in the source plane ¥, satisfies Eq. (16), the image j'the houndary points, a boundary line can be found whose

point;; is part of the source, and the image can be constructggh i "can be measured and used in further steps of the auto-
by assigning the source’s surface brightnesg;ab the image a4 image classification. Next, the curvature of the image
pointx;;. By mapping the entire lens plane onto the source plang, , e found by first identifying the image point which of the
and checking Eq. (16) for each individual imaged grid peint  <q;rce centre, then search for the boundary point most distant
all image points belonging to the given source can be identifie m the so-defined image centre, and finally searching for the

It is often desired for statistical purposes to automatically, ,,qary point most distant from the first boundary point. These
characterise a large number of images. An example is the

ree points uniquely define a circle whose radius can be used as

alarge number of sources need to be imaged and the image Pray, qary curves have been determined, images can be classified
erties automatically quantified to search for the rare “giant” arc

Most of the methods described here have been introduced a’f‘r%adaptmg elementary geometrical figures to them.

used extensively e.g. by Bartelmann & Weiss (1994), Bartel-
mann et al. (1995, 1998), Meneghetti et al. (2000, 2001); see 2.10. Deflection Angles of Asymmetric Lenses
also the contribution by Massimo Meneghetti to this volume.
A source may have multiple images, thus the point sets iBo far we have assumed to be given the deflection angle either
the lens plane found by imaging extended sources need not && an analytic expression or as two two-dimensional arrays of



numbers giving its two components as a function of position ir
the lens plane. We now need to describe methods for obtaining
the deflection angle of a numerically simulated lens.
The first issue to be discussed is the spatial resolution. Since
the simulated lens is composed of discrete particles which rept
resent a smooth mass distribution in reality, the deflection angle
must not be computed by simply summing up the deflection an-
gles of the individual particles: The result would be a collectior
of microlenses rather than a single macrolens, having many spu
rious and undesired imaging features. S R
Rather, the collection of particles has to be projected onto g ’ ’ |
lens plane, on which it needs to be smoothed in some way. We - —w_ _w_ _
will return later to the issue of how particles should be sorted ) .
into grid cells. An important point to be addressed before i§!G- 11.—The “cloud-in-cell” (left panel) and *triangular shaped
how large the grid cells should be chosen. They should Hgoud” (right panel) interpolation schemes are illustrated here. The
small enough for important features of the lens to remain idenﬁprojeded) particle position is marked red, the grid points to which the

. . : rticle mass is assigned are marked blue and green. The CIC and TSC
flabI“e, th_ey Sho,l,"d be Iar_ge en_ough forthe surfage (_1e_n5|ty to Io_g emes assign the particle mass to the eight and 27 nearest neighbours,
the “graininess” due to its being composed of individual partiz

, respectively (in three dimensions).
cles, and they should be large enough so that Poisson errors areIO v )

smaller than a certain threshold. If the number of particles per

grid cell isnt?, its Poisson fluctuation ig'nk?, thus the discrete- The CIC and TSC interpolation schemes are illustrated for two

ness of the particles gives rise to fluctuations in the surface-ma@§nensions in Fig. 11. For all schemes, the kernel has to be

density. Demanding that the relative fluctuations of the densifjormalised such that all particle mass fractions add up to unity.

should be smaller than< 1, the cell sizeh has to be chosen ~ Suppose now we have obtained the surface mass density on a

such as to satisfynh?)~1/2 < e. It is impossible to give a gen- 9ridKij = K(Xj), then the deflection angle can most straightfor-

eral rule applicable to the majority of lensing situations, but iwardly be determined by direct summation as

is clear that resolution, smoothing and particle noise have to be 1 % — R

carefully balanced by choosing the grid cell size appropriately. dij = = ; Kkl ’72 . (21)
Assigning particle masses to grid points in order to obtain a n \Yij —Ym]

Zméngst?wgggs%f;dsl)s. mlkr)]ugﬁrq Clii)lgntl’?g[ :;rggl g %naégf'cglﬂgkgﬁ/pepend ing on the number of grid cells, the direct summation can

ply be attributed to the single érid point next to its position,be prohibitively slow. In many circumstances of astrophysical

This “nearest grid point” (NGP) method is appropriate for par1nterest, fast-Fourier techniques can then be applied. In order to

ticles near the centre of a cell, but particles near cell boundari% e how thl's \_NOI‘k?, ROte that the deflecyﬁn akngle lcan be written
should be attributed to the cell and its neighbour(s) in order t a convolution of the convergenci) with a kerne

avoid boundary effects like density discontinuities. Numerous _ 1 X
schemes for interpolating particles across cells have been pro- (X = T2
posed. They are generally of the form %]

[ ._I
_oil rse

[ N N
I

|

r

[

|

(22)

This allows the Fourier convolution theorem to be applied,
QX) = W(X=%)Q(X) , (17)  which holds that the Fourier transform of a convolution is the
! product of the Fourier transforms of the functions to be con-

whereQ is the quantity to be interpolated onto a poine.g. the  Volved, hence . oA

particle mass, the sum extends over all particles sufficiently d(k) = k(KK(K) . (23)
close to the point of intere®t, andW(X— ;) is a smoothing
or interpolation kernel depending on the separation vector b
tween the particle positiog andX. The kernel is decomposed

he Fourier transform of the kern&l can be determined and
abulated once. Using fast-Fourier techniques to determine the

into three factors directions Fourier transform of the convergengék) requires the conver-
’ gence to be periodic on the lens plane. In many cases, this
W (OX) = w(dx1)W(Ox2)W(dX3) , (18) can be safely assumed or arranged. Often, lens planes are con-

) ) _ _ structed from large-scald-body simulations which have peri-
one for each dimension, theh of which depends only on the odic boundary conditions by design, or the lens is an isolated
i-component _o_f the separation vector. Interpolation methoc_js C@Bject like a galaxy cluster, which can be surrounded by a suf-
now be classified according to the kernel facto(dx) and their  ficiently large field for the convergence to drop near zero every-
width. . , ., where around the edges of the field. Fast-Fourier methods speed

The “cloud-in-cell” (CIC) scheme uses the kernel factors  yp the computation of the deflection angle considerably.
If necessary, derivatives of the deflection angle field can also

weic(8X) = { é_ [3x//h fOtL ‘6).(| <h , (19) be determined in Fourier space. Once the convergence has been
otherwise Fourier transformed, one can employ the two-dimensional Pois-
which implies that the particle is distributed over the four neareﬁ?eﬁggla“on to compute the Fourier transform of the lensing
grid points. A more elaborate scheme is the “triangular shap ' >
cloud” (TSC) method, which uses the kernel factors Q= 2 K, (24)
3/4—8x2/h? for |dx| <h/2 from which the Fourier transforms of the deflection angle and
wrsc(X) = ¢ (3/2—|dx|/h)?/2 for h/2<|dx| < 3h/2 . the shear components can easily be determined,

0 otherwise - . . 1,5 s .
(20) 0 =ik, V1=—§(k1—kz)¢7 Vo= —kike Q. (25)



Relations like those and the exploitation of fast-Fourier methodactors. Poisson fluctuations in the particle number thus cause
are particularly relevant for simulating gravitational lensing byconvergence fluctuations whose variance is
large-scale structures.

Zs
5%k D/ dz D%4(z,z5)AN(2) . (28)
3. LENSING BY LARGE-SCALE STRUCTURES 0

These fluctuations need to be compared with, and smaller than,
3.1. Resolution Issues the convergence fluctuations due to large-scale structure, which

; 21/2 i
Obviously, the thin-lens approximation that we have been usir;%e typically of orderk®)™* ~ 5% for sources near redshift

- ; ;
so far breaks down if one wishes to study gravitational lensin ity and angular scales O_f orozler.l}ﬁ\ccordmg to %/%S (26)
by large-scale structures. The solution then is to cover the coriifough (28), themsshot noise6°k) '~ scales likedQ™/<, thus
plete cosmic volume whose lensing effects one wants to sirff?€ requirement that the signal-to-noise ratio
ulate with simulation boxes stacked along the line-of-sight, to o\ 1/2
project suitable slices on individual lens planes, and to use mul- § _ [ (K9 (29)
tiple lens-plane theory for describing light propagation. N\ (&%)

The multiplicity of lens planes, and the general weakness of
lensing by large-scale structures, make questions of angular a@xteed a specified threshold translates into a lower limit to the
mass resolution particularly relevant for cosmic lensing. For insolid angledQ which can reasonably be resolved by the sim-
stance, lens planes close to the observer are typically poorly tgation. The smallness of thens cosmic convergencems =
solved because even small grid cells span a large solid angle néa#) /2 implies that many particles need to be enclosed by the
the observer, and making grid cells smaller is not generally deone” spanned byQ for the simulation to be reliable. The
acceptable solution because then the number of particles per gright panel of Fig. 12 shows an example. Tings cosmic con-
cell becomes small, and the shot noise possibly unacceptalsyrgence in per cent and teise-to-signatatio are plotted as
large. However, lens planes near the observer are less efficiémhctions of angular scale. The noise level was adapted M»an
than lens planes approximately half-way to the source becausgdy simulation with particle masg, = 6.8 x 10°%h~1M,. The
the lensing efficiency function is zero at the observer and soure@rves show that the noise-to-signal ratio drops below unity for
redshifts and peaks in between. Yet, structures grow over timggurces at redshift = 1 only if the angular resolution is lowered
thus the lensing efficiency function is skewed towards lower redg > 5, while an angular resolution gf 0.8’ can be achieved for
shifts because structures are geometrically less efficient lensgss= 1000 (i.e. for weak lensing of the CMB; Pfrommer 2002).
but their density contrast keeps growing. By a related argument,
sources at very high redshifts do not require the entire cosmo-
logical volume between them and the observer to be filled with
lens planes because lens planes at very high redshift are geomgéak lensing by large-scale structures requires the cosmic vol-
rically inefficient and have a low density contrast. The left panaime to be split into multiple lens planes rather than a single one
of Fig. 12 shows two examples for the lensing efficiency func(for general reference on multiple lens-plane theory, see Schnei-
tion times the linear growth factor, which is the relevant quantityier et al. 1992). The lens plane closest to the observer is the
combining structure growth with geometrical efficiency. image plane which represents the observer’s sky. A light ray

Similarly, the effective angular resolution of the simulation 'Z)iercing the image plane at a physical coordir%tds mutiply

?homlna':(e_d ?ﬁ/ the atr;gulgr ;fE:'SQIUt'O? of tt.hOS? 'e?ﬁ plandes ? flected orN lens planes and finally reaches the source plane
e peak in the combined efficiency function, i.e. the product 6f yno"shysical coordinate

geometrical efficiency and linear growth factor.

3.2. Multiple Lens-Plane Theory

The shot noise caused by the discretisation of mass into par- . Dee N
ticles is particularly important for studies of weak lensing by A1) = =814 S Disa (&), (30)
large-scale structures. Even in absence of density inhomo- D1 i=

geneities, shot noise leads to density fluctuations. They neeqri1

to be sufficiently smaller than the signal, i.e. the convergend@b ere theD; andD;s are the angular diameter distances from the
fluctuations which cause weak lensing. observer to thé-the lens plane, and from theth lens plane to

In essence, this requirement also imposes a resolution limitie source, respectively. The light ray passes-tiheplane ag;,

Suppose we wish to quantify the weak-lensing signal within ghere it is deflected by (€;). Similarly, the; are determined
solid angledQ. The volume spanned BQ within redshiftsz by

andz+dzis o o Di- 121 .
&j(&1) = L&+ 5 DjaE), 31)
2, | 9Dprop Dy &
dv(z) =6QD*(z) | ——| dz, (26)
dz whereD;; is the angular diameter distance from ke to the

j-th lens plane.

whereD(z) and Dprop(2) are the angular diameter and proper Introducing angular coordinat@s = Ei/Di yields

distances to redshift In absence of density inhomogeneities,
this volume element containdNdz) particles, with

. I DijDs ., =
p(2) 0j(81) =61+ DD a(6i) ., (32)
dN(z) = dv(2) B2 | @7) S
M where we have introduced threduceddeflection angled =
wherep(z) is the mean matter density at redskifandm, is the  (Dis/Ds)d. We now define the matrices
mass of arN-body particle in the simulation. The contribution . .
to the lensing convergence by these particles has to be weighted 2 — L& U — a4 (33)
by the effective lensing distancBef(z,25), and by numerical - 06, ’ P a6
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FiG. 12.—Left panel The product of lensing efficiency function times the linear growth factor for density perturbations is shown for two different
source redshiftsgs = 3 andzs = 1000, respectively, the latter being relevant for gravitational lensing of the cosmic microwave background. The
growth factor skews the geometrical lensing efficiency towards lower redshifts. At redshift 5, the combined efficiency function drops to 10% of it
peak value fors = 1000, implying that by far not the complete redshift range up tteeds to be covered with lens planBgght panel The solid

curves show themscosmic convergence for sources at three different redshifts in per cent, the dashed curves the noise-to-signal ratio obtained

anN-body experiment with particle mags, = 6.8 x 101%h~1 M. Both types of curve are plotted as functions of angular scale.

Clearly, 4; is the Jacobian matrix of the lens mapping between 4. INVERSION TECHNIQUES

thei-th lens plane and the image plane, thjgis the Jacobian

matrix of the mapping between the source and image plandsst us conclude with a brief discussion of inversion techniques.
The goal is thus to determin@y in order to obtain convergence, They are typically less demanding numerically, but the methods
shear, and magnification for a light ray starting out into directiogvhich have been developed for this purpose are interesting in
6. The ray-tracing equation (32) implies the recursion relatiortheir own right.

4.1. Shear Deconvolution

i-1p.
Di; Ds U, (34) We have seen before in Egs. (24) and (25) that convergence and

& DjDis shear are related because they are both linear combinations of
second derivatives of the scalar lensing potenpialn Fourier
space, the relations are algebraic and can easily be combined to

starting with 24, = 1, the identity matrix. In summary, the eliminate the Fourie_rtransforri]ofthe potential. Transforming

deflection-angle fieldsi; on theN lens planes can be used toPack into configuration space, the convergence turns out to be a

construct the matricegl according to Eq. (33), then Eq. (34) convolution of the shear with a well-known kernel,

can be used to determine the lensing experienced by a light ray 1

starting out into any direction on the image plane. The left panek(e) == /d29/ [@1(9 —0)y1(8) + (6 9’)y2(e’)} , (35)

Aj=1-

in Fig. 13 shows the total convergence experienced by sources n
atz; =5 on a lens plane with a side length aP8°, obtained
from anN-body simulation (Pfrommer 2002). with 5
- 02 — 63 - 2616,
The right panel in Fig. 13 shows numerically determined D1(8) = - |§|4 v Do8) =— |§|4 : (36)

power spectra for the effective convergence as functions of wave

numberl, which is the Fourier conjugate variable to the angularhis is the classic Kaiser & Squires (1993) shear inversion equa-
scale. The lines in this figure show the theoretically expectegbn. Its limitations have been discussed in detail and removed to
power spectra. The agreement between the numerical and thegtisfaction by modifying e.g. the kernel componeftg they
retical results is very good over a limited range of wave numbergre not of interest for the discussion here (cf. Peter Schneider’s
Once the wave numbers increase beyond the limit set by the gacture in this volume).

gular resolution, the simulated convergence fields lack power ao syitable practical approximation of (35) using measured
and the numerical results fall below the theoretical ones. Th?alaxy ellipticities; (i = 1,2) is

happens at lowdrfor smaller source redshifts, because a fixe

angular scale, and thus wave numbecorresponds to smaller 1 N
physical scales at lower distances. On the loend, i.e. for K(0) ~ — Z[Q)lglii + Dol s (37)
large structures, the errors on the numerically determined power nrt & '

spectra increase because the number of independent modes in

the simulated convergence field decreases as the modes increadeeren is the number density of lensed galaxies on the sky. In
This example should suffice to demonstrate that numerical sirpractice, however, it turns out that an approximation like (37)
ulations of gravitational lensing by large-scale structures shouiglould have infinite noise because of the random sampling of
be carefully designed to match their final purpose. the shear componenys by N galaxy ellipticitiesg;. This can
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FiG. 13.—Left panel Effective convergence on a field 0f25° side length for sources at redshift= 5, obtained using multiple lens plane theory

on anN-body simulation.Right panel Effective-convergence power spectra measured with the same set of simulations (crosses), compared witl
theoretical expectations (lines), for different source redshifts. The numerical results follow the theoretical curves very well within an intermediat
range of wave numbets At largerl, i.e. for small structures, the resolution limit of the simulation is reached and the power spectra fall rather
steeply. At the lowk end, the noise increases because the number of modes in the simulation decreases as the modes increase. The nume
power spectra for low-redshift sources fall below the theroretical expectation atlldiem for high-redshift sources because a given angle, and
thus wave numbdr, corresponds to a larger physical scale at smaller distances from the observer (from Pfrommer 2002).

be remedied by introducing a smoothed kerféinstead ofD, The goal of the lens inversion is then to find a two-dimensional

e.g. array jx of lensing potential values such that the ellipticities
, 02 02 and inverse magnifications caused by that potential at the posi-
D= 1-{1+ 02 exp 82 D, (38) tions 6; of the real galaxies optimally reproduce the measured

ellipticities and inverse magnifications. In other words, the po-

where 8s is the angular smoothing scale (Seitz & Schneidefential valuespsx have to be determined such as to minimise the

1995). The noise convariance matrix between the convergence ) >

values at two different grid poing and8; is then mean-square difference between the data vetéord the model
) data vectod [k (%)],

S 2 *i _B.)2
<K(ei)K(ej)> = 4,f§2n exp [(9292’)] . (39) ) N [di —di(wiK))?
5 5 X (lIij)Z.Zl{c,z} ,

(41)

whereagg is the scatter of the intrinsic galaxy ellipticities (van
Waerbeke 2000). This expression demonstrates that smoothifgere the errors; can be estimated from the data themselves.
introduces correlations on the convergence map on the angug{e minimisation ofx? with respect to the potential values

scalebs, but the variance ok can become very high Bsis . can be done with any minimisation algorithm like, e.g. the
chosen too small. A careful balance between the local varianggnhill simplex method. For large fields, the number of po-

and non-local correlations is necessary in order to arrive attgntial values can become very large. In that case, conjugate-

convergence map with the required properties. gradient methods are preferred, which make use of the fact that
the derivatives ok? with respect to the jk are known analyti-
4.2. Maximum-Likelihood Lens Inversion cally. Such methods can speed up the minimisation sufficiently

An entirely different approach to lens inversion uses th(g?_rfggg)r_ it feasible even for large potential arrays (cf. Press et

maximum-likelihood technique (Bartelmann et al. 1996). Eac

lensed background galaxyprovides a measurement of two el-

lipticity componentgey,€2;) and its angular size. Comparing

the size of a galaxy behind a galaxy cluster to the average size of 4.3. Maximum-Entropy Methods

unlensed galaxies of the same surface brightness, an estimate

of the inverse magnification of the lensed galaxy can be derivethe minimisation ofx? is a special case of the maximum-

ThusN galaxies provide al8-dimensional data vector likelihood technique for assumed Gaussian deviations of the
~ measured data around the model values. Improvements of the
d=(€11,821,r1,...,€1N,E2N,IN) - (40) maximum-likelihood technique can be derived starting from
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wherem is a model vector for the potential which can encod
expectations on the potential, or simply be chosen to be uniform
for all i. The potential array is then determined by maximising
exp(—x?/2+as), or equivalently by minimising

F= %xz -as (45)
instead of the simplg? in Eq. (41). The parameter can be
included into the minimisation. Bayesian theory implies that a
good approximation to the optimal choice foris determined
such that ~ 3N/2 at the potential minimur. The error co-
variance matrix for the potentigl is given by the inverse curva-
ture matrix ofF,

2 -1
@-Dw-0)~ (o) - @)

Maximum-entropy methods have been suggested and used for
regularising shear-inversion techniques such that their spatial
resolution is adapted to the strength of the lensing signal (Bridle

et al. 1998; Seitz et al. 1998).

5. CONCLUDING REMARKS

Many numerical methods have been used for gravitational lens-
ing studies which | was not able to cover during the limited time
of the lecture. Among them are the hierarchical tree-code meth-
ods introduced into microlensing by Wambsganss et al. (1990)
and the methods for constraining cluster mass distributions from
multiple arc systems (e.g. Kneib et al. 1993; see also Jean-Paul
Kneib's presentation in this volume). Despite this unavoidable
incompleteness, | hope to have given a flavour of how numeri-
cal methods can be used for lensing, and what the main problem
areas are.
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