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A unified characterization of the energy-level structure of quasi-one-dimensional quan-
tum dots is presented based on accurate computational results for the eigenenergies and
wave functions, as obtained in previous studies for the case of two and three electrons,
and in the present study also for four electrons. In each case the quantum chemical full
configuration interaction method is adopted employing Cartesian anisotropic Gaussian
basis sets. The energy-level structure is shown to be strongly dependent on the confine-
ment strength ω and can be exemplified by the three qualitatively distinct regimes for
large, medium, and small confinement strengths. To characterize the energy-level struc-
ture in the large or medium ω and the small ω regimes, the polyad quantum number, as
well as its extended version, the extended polyad quantum number have been introduced.
The degeneracy of energy levels for different spin states in the small ω regime is shown
to be caused by the potential walls of the electron-electron interaction potential within
the internal space. A systematic way of obtaining the degeneracy pattern of the energy
levels in the small ω regime is also presented. Finally, qualitative differences between the
energy-level structure of quasi-one-dimensional and quasi-two-dimensional quantum dots
in the small ω regime are briefly discussed by referring to the different structure of their
internal spaces.

1. INTRODUCTION

Confined quantum systems of a finite number of electrons bound in a fabricated nano-
scale potential, typically of the order of 1 ∼ 100 nm, are referred to as quantum dots or
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artificial atoms [1–4] since they have a discrete energy-level structure following Hund’s
rules [5,6]. The properties quantum dots can be controlled by changing the size and/or
the shape of the fabricated potential [7–9]. Quantum dots are known to show features in
their energy-level structure and their optical properties qualitatively different from atoms
[10,11]. The differences between quantum dots and atoms are due to the harmonic nature
of the confining potential of quantum dots as compared to the Coulomb potential of atoms
[4,12,13] as well as to the larger size and the lower dimensionality of quantum dots [14,15].

Computational techniques based on the quantum chemical molecular orbital theory
make it possible to calculate the properties of not only the ground state but also of
the low-lying excited states of multi-electron quantum dots for a specific value of the
strength of confinement. As the calculated results vary strongly for different strengths of
confinement due to a strong variation of the relative importance of the electron-electron
interaction with respect to the change of the strength of confinement [4,12,16–18], it
is necessary to develop a unified method for interpreting the complicated energy-level
structure of quantum dots for the whole range of the strength of confinement.

In previous studies of this series it was found that the polyad quantum number [19]
defined by the total number of nodes in the leading configuration of the configuration
interaction (CI) wave function is approximately conserved for harmonic-oscillator quan-
tum dots. The polyad quantum number and its extension can be used to characterize the
energy spectra of quasi-one-dimensional quantum dots of two and three electrons for the
whole range of the strength of confinement [20,21]. Energy levels belonging to different
polyad quantum numbers and having different spin multiplicities are converging to nearly
degenerate levels as the strength of confinement becomes smaller. This convergence is
caused by increasingly stronger potential walls of the electron-electron interaction poten-
tials that modify significantly the nodal pattern of the wave function of lower spin states
while affecting little the wave function of the highest spin states [20,21].

In the present contribution the interpretation of the energy-level structure of quasi-one-
dimensional quantum dots of two and three electrons is reviewed in detail by examining the
polyad structure of the energy levels and the symmetry of the spatial part of the CI wave
functions due to the Pauli principle. The interpretation based on the polyad quantum
number is applied to the four electron case and is shown to be applicable to general
multi-electron cases. The qualitative differences in the energy-level structure between
quasi-one-dimensional and quasi-two-dimensional quantum dots are briefly discussed by
referring to their differences in the structure of the internal space.

2. COMPUTATIONAL METHODOLOGY

2.1. Theoretical model

The Hamiltonian operator for a confined quantum system is written as

H =
N
∑

i=1

[

−1

2
∇2

i

]

+
N
∑

i=1

w(ri) +
N
∑

i>j

1

|ri − rj|
, (1)

where N denotes the number of electrons and w denotes the one-electron confining po-
tential [16,22]. In the present study the one-electron confining potential w for the quasi-
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one-dimensional quantum dots is given by

wq1D(r) = 1

2
ω2

xy

(

x2 + y2
)

− Dexp

[

− ω2
z

2D
z2

]

, (2)

and for the quasi-two-dimensional quantum dots it is given by

wq2D(r) = −Dexp

[

−ω2
xy

2D
(x2 + y2)

]

+ 1

2
ω2

zz
2. (3)

The potentials of Eqs. (2) and (3) represent the sum of harmonic-oscillator and attractive
Gaussian potentials. For a sufficiently large value of ωxy in Eq. (2) the electrons bound by
this potential are strongly compressed along the x and y directions and have degrees of
freedom only along the z direction. Therefore, the one-electron potential wq1D of Eq. (2)
represents the confining potential of quasi-one-dimensional quantum dots with a shape
like a ’pipe’. Similarly, for a sufficiently large value of ωz in Eq. (3) the electrons in this
potential are strongly compressed along the z direction and have degrees of freedom only
in the xy plane. Therefore, the potential wq2D of Eq. (3) represents the confining potential
of quasi-two-dimensional quantum dots having a shape like a ’disk’. A Gaussian potential
has been chosen as the confining potential, among others, because it is approximated
in the low energy region by a harmonic-oscillator potential typically used for modeling
semiconductor quantum dots [13,12,4]. The value of the parameters ωxy and ωz is set to
20 a.u. for all results presented in this contribution and this is not indicated explicitly
hereafter.

The anharmonicity of the confining potential can be controlled by changing the ’depth’
of the Gaussian potential D with respect to ωz and ωxy, respectively. The parameters
ωz and ωxy represent the frequency of the harmonic-oscillator potential characterizing
the strength of confinement of the Gaussian potential. They are obtained by a quadratic
approximation to the Gaussian potential in Eqs. (2) and (3), respectively. When D is much
larger than the harmonic frequency the Gaussian potential closely follows the harmonic-
oscillator potential in the low energy region. This indicates that the anharmonicity is
small. On the other hand, when D is only slightly larger than the harmonic frequency
the Gaussian potential deviates strongly from the harmonic-oscillator potential even in
the low energy region. This indicates that the anharmonicity is large. The extent of
anharmonicity may be specified by the parameter α [20] which is defined for the quasi-
one-dimensional quantum dots by

αq1D = ωz/D, (4)

and for the quasi-two-dimensional quantum dots by

αq2D = ωxy/D. (5)

Introducing anharmonicity is important for simulating realistic confining potentials [23,
24].

The total energies and wavefunctions of the Hamiltonian (1) have been calculated as
the eigenvalues and eigenvectors of a CI matrix. Full CI has been used for all calculations
of quasi-one-dimensional quantum dots and for quasi-two-dimensional quantum dots with
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Figure 1. (Color online) Energy spectrum of the low-lying states of four electrons confined
in a quasi-one-dimensional Gaussian potential with (D,ωz, ωxy) = (4.0, 0.1, 20.0) for
different-size basis sets. Energy levels of different spin multiplicities are indicated by
different colors (See the caption to Fig. 2). The number in the round brackets specifies
the total number of basis functions and the parameter v∗

p specifies the extended polyad
quantum number (See the text for details).

N = 2 while multi-reference CI has been used for quasi-two-dimensional quantum dots
with N = 3 and 4. The results are presented in atomic units. They can be scaled by the
effective Bohr radius of 9.79 nm and the effective Hartree energy of 11.9 meV for GaAs
semiconductor quantum dots [25,26].

2.2. Basis sets employed

In order to properly describe the wave function of electrons confined in a strongly
anisotropic potential given by Eqs. (2) and (3) a set of properly chosen Cartesian anisotropic

Gaussian-type orbitals (c-aniGTO) [16,17,22] have been adopted as basis set spanning
the one-electron orbital space. The general form of an unnormalized c-aniGTO function
placed at (bx, by, bz) is given by

χ~a,~ζ
ani(~r;~b) = xax

bx
y

ay

by
zaz

bz
exp

(

−ζxx
2
bx
− ζyy

2
by
− ζzz

2
bz

)

, (6)

where the shorthand notation xbx
is used for (x− bx), etc. Unlike standard Gaussian-type

orbitals the c-aniGTO functions can be easily fitted to properly describe the wavefunction
of electrons in an anisotropic confining potential by adjusting the three exponents ζx, ζy

and ζz independently. In principle, a Gaussian basis set of floating standard Gaussian
functions could be used for this purpose but this would require an extremely large number
of functions at different points in space in order to properly describe the distribution of
the electrons. A c-aniGTO basis set can be transformed into a set of eigenfunctions of the
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corresponding three-dimensional anisotropic harmonic oscillator [17]. Consequently, such
a basis set is also useful in high-accuracy calculations of eigenvalues and eigenfunctions
of atoms in strong magnetic fields [27–30] and of semiconductor quantum dots [31,32].

In the present study a c-aniGTO basis set has been placed at the center of the confining
potential, i.e. at the origin of the Cartesian coordinate system. The orbital exponents
for the harmonic-oscillator potential in the Eqs. (2) and (3) have been chosen as one half
of the strength of the confinement, ωxy and ωz, respectively, while the exponents for the
Gaussian potentials have been determined in the same way as described in a previous
study [19]. Since the strength of the confinement for the harmonic-oscillator potential is
much larger than that for the Gaussian potential, only functions without nodes along the
direction of the harmonic-oscillator potential have been selected and used in the basis sets
[18–20]. The size of the basis set required for calculating a reliable energy spectrum has
been determined by following the convergence of the energies while stepwise increasing its
size. The pattern of convergence for the case of four electrons with (D,ωz) = (4.0, 0.1)
is displayed in Fig. 1. The number of basis functions, indicated by the number enclosed
in parentheses, was increased stepwise by adding in each step a new function with an
additional node. The energy spectrum calculated with 10 basis functions displayed on
the left-hand side of Fig. 1 differs for E ≥ 66.1 significantly from the spectrum calculated
by using the next larger basis with 11 functions, indicating the inadequacy of the former
basis. It is noted that the basis set with 10 functions already includes a function with
the angular momentum quantum number l = 9. Thus, a basis set with very high angular
momentum functions is clearly required for a reliable description of strongly anisotropic
quantum dots. As shown in Fig. 1 the energy-level structure becomes stabilized as the
number of basis functions increases. The maximum deviation between the energy levels up
to the fifth band with v∗

p = 10 calculated by using the basis sets with 14 and 15 functions,
respectively, is smaller than 5.7×10−4. In the calculations involving four electrons that
are presented in this study a basis set consisting of 16 functions has been used. The
convergence characteristic for the case of two electrons was given already in Ref. [20] and
for the case of three electrons in Ref. [21].

3. QUASI-ONE-DIMENSIONAL QUANTUM DOTS

3.1. Energy spectrum: general outlook

The confinement strength ωz of quasi-one-dimensional quantum dots can be classified
according to the relative size of the one-electron energy E1 and the two-electron energy E2.
The one-electron energy of the one-dimensional harmonic oscillator is given by ωz(n+ 1

2
),

with n denoting the harmonic-oscillator quantum number. Thus, it scales linearly with ωz,
i.e., E1 ∼ ωz. The two-electron energy can be estimated by considering lz of the system
along the z direction [33]. The characteristic length is related to ωz by lz ∼ 1/

√
ωz since

the probability distribution of the one-dimensional harmonic-oscillator ground state with
the frequency ωz is proportional to exp

[

−1

2
ωzz

2
]

. Thus, the two-electron energy which is

related to lz by E2 ∼ 1/lz is scaled by ωz as E2 ∼ √
ωz. Consequently, the one-electron

energy E1 dominates the total energy for wz ≫ 1.0 (large ωz). Its contribution to the total
energy becomes similar to that of E2 for wz ∼ 1.0 (medium ωz), while the two-electron
energy E2 dominates the total energy for wz ≪ 1.0 (small ωz) [21].
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Figure 2. (Color online) Energy spectrum of N electrons confined by a quasi-one-
dimensional Gaussian potential with different strength of confinement ωz for N = 2 (a),
3 (b), and 4 (c), respectively, represented as relative energies from the ground state. The
anharmonicity parameter α of the Gaussian potential is 0.025 in all cases. Energy levels
for different spin multiplicities are indicated by different colors: in (a), the singlets and
triplets are colored by green and red, respectively, in (b), the doublets and quartets by
green and red, respectively, and in (c), the singlets, triplets, and quintets by green, blue,
and red, respectively.
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The energy spectra of N electrons confined by the quasi-one-dimensional Gaussian
potentials with (D,ωz) = (200.0, 5.0), (40.0, 1.0), and (4.0, 0.1) are displayed in Figs. 2 (a),
(b), and (c) for N = 2, 3, and 4, respectively. The ωz values of 5.0, 1.0, and 0.1, correspond
to the three regimes of confinement strength defined above, namely, large, medium, and
small. Energy levels with different spin multiplicities are displayed in different colors:
for N = 2 (Fig. 2(a)) the singlets and triplets are displayed in green and red, for N =
3 (Fig. 2(b)) the doublets and quartets are displayed also in green and red, and for N
= 4 (Fig. 2(c)) the singlets, triplets, and quintets are displayed in green, blue, and red.
The anharmonicity parameter α is equal to 0.025 in all cases. This corresponds to an
approximately harmonic Gaussian potential. The vertical axis of each of the three energy
diagrams for different confinement strengths is scaled by ωz so that the energy of the
ground state and the excitation energy of 4 quanta of ωz appear on the vertical axis at
the same level [20,21]. Therefore in the absence of electron-electron interaction all three
energy spectra would look identical in this representation.

As shown in Fig. 2 the energy level structure changes dramatically for the three regimes
of confinement strength ωz: The energy spectrum for the large confinement regime dis-
played on the left-hand side of Fig. 2 shows a harmonic band structure with a band gap
close to ωz. The energy spectrum for the medium confinement regime displayed in the
middle of the figure shows a broader distribution of energy levels. On the other hand,
the energy spectrum in the small confinement regime displayed on the right-hand side of
the figure shows again a harmonic band structure with a band gap close to to ωz. But
this energy spectrum is characterized by a different number of levels with different spin
multiplicities in each band as compared to the case of the large confinement regime. These
observations apply to all cases of N = 2, 3, and 4. In the next section the changes in the
energy spectrum due to different confinement strength are interpreted by exploiting the
concept of the polyad quantum number .

3.2. Polyad structure

The polyad quantum number is defined as the sum of the number of nodes of the
one-electron orbitals in the leading configuration of the CI wave function [19]. The name
polyad originates from molecular vibrational spectroscopy, where such a quantum number
is used to characterize a group of vibrational states for which the individual states cannot
be assigned by a set of normal-mode quantum numbers due to a mixing of different
vibrational modes [19]. In the present case of quasi-one-dimensional quantum dots the
polyad quantum number can be defined as the sum of the one-dimensional harmonic-
oscillator quantum numbers for all electrons.

The harmonic-band structure of the energy spectrum of quasi-one-dimensional quan-
tum dots for the large ωz regime can be understood by exploiting the polyad quantum
number. In the large ωz regime the one-electron energy E1 dominates the total energy
and the electron-electron interaction represents only a small perturbation. Therefore, in
a zeroth-order approximation, the Hamiltonian of the system can be written as a sum of
N harmonic-oscillator Hamiltonians

H0 =
N
∑

i=1



−1

2

(

∂

∂zi

)2

+ 1

2
ω2

zz
2
i



 , (7)
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where the x and y degrees of freedom are ignored and the Gaussian potential along the
z direction is approximated by a harmonic oscillator with the frequency ωz. The energy
of the Hamiltonian (7) can then be expressed in terms of the polyad quantum number,
denoted hereafter by vp, as follows

E~n = ωz

[

vp + N
2

]

, (8)

with

vp =
N
∑

i=1

ni, (9)

where ~n =(n1, n2, ..., nN) represents the harmonic-oscillator quantum numbers for the
electron 1, 2, .., N , respectively. Equation (8) shows that energy levels having the same
value of vp are degenerate and that those having different values of vp are separated by a
multiple of ωz. This explains why the energy-level structure for the large ωz regime has a
harmonic-band structure with a spacing of ωz as observed on the left-hand side of Fig. 2.

It is noted, however, that not all possible combinations of (n1, n2, ..., nN ) can be realized
as quantum states. Because of the Pauli principle the total wave function involving both
the spatial and spin parts must be antisymmetric with respect to the interchange of
any two electron coordinates. In order to construct electronic quantum states for the
Hamiltonian (7) satisfying the Pauli principle it is convenient to impose a restriction on
the set (n1, n2, ..., nN ) by requiring that n1 ≤ n2 ≤ ... ≤ nN , where the same value
of ni cannot appear more than twice. In order to satisfy the Pauli principle a chosen
~n, representing a spatial orbital configuration should be coupled with the appropriate
spin functions. In the case of two electrons the configuration (na, nb) (na 6= nb) can be
coupled to the singlet and the triplet spin functions. On the other hand the configuration
(na, na) can be coupled only to the singlet spin function since the latter configuration is
symmetric with respect to the interchange of the electron coordinates 1 and 2 and thus
must be coupled with an antisymmetric spin function. For example in case of the polyad
manifold vp = 2 there are two configurations, (0,2) and (1,1). The (0,2) configuration
is coupled both to the singlet and triplet spin functions while the (1,1) configuration is
coupled only to the singlet spin function resulting in a total of three electronic states.
Similar arguments can be applied to all vp manifolds and it can be shown that for the
two-electron case the number of levels in each vp manifold amounts to (vp + 1) as may be
seen in Fig. 2(a).

The situation becomes slightly complicated for systems with more than two electrons
due to the spin degeneracy . In the case of three electrons, for example, one can construct
doublet (S = 1

2
) and quartet (S = 3

2
) spin states denoted by

∣

∣

∣

1

2
,M

〉

(M = −1

2
, 1

2
)

and
∣

∣

∣

3

2
,M

〉

(M = −3

2
, −1

2
, 1

2
, 3

2
), respectively. States with different magnetic quantum

numbers M are degenerate in the absence of spin-dependent interactions, such as spin-
orbit interaction. It should be noted, however, that for a given |S,M〉 state there is only
one quartet state while there are two doublet states. These two doublet spin states are
linearly independent and, in general, have different energies. Therefore three spin states
will participate in forming the energy-level structure for three electron quantum dots. The
three spin functions with the highest M value, namely,

∣

∣

∣

3

2
, 3

2

〉

and
∣

∣

∣

1

2
, 1

2

〉

for the quartet and
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Table 1
Orbital configuration, number of levels derived from the configuration, and the total
number of levels belonging to each vp manifold for three electrons.

vp Np
1 config. n2

1 1 (1,0,0) 1

2 2 (2,0,0) 1
(0,1,1) 1

3 4 (3,0,0) 1
(0,1,2) 3

4 6 (4,0,0) 1
(0,1,3) 3
(2,1,1) 1
(0,2,2) 1

5 9 (5,0,0) 1
(0,1,4) 3
(3,1,1) 1
(0,2,3) 3
(1,2,2) 1

1Number of levels belonging to each vp manifold.
2Number of levels derived by each configuration.
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the doublet states, respectively, may be written as α(1)α(2)α(3) for the quartet state, and
1√
2
α(1)[α(2)β(3)−β(2)α(3)] and 1√

6
[2β(1)α(2)α(3)−α(1)α(2)β(3)−α(1)β(2)α(3)] for the

two doublet states. In constructing the two doublet spin functions it has been assumed
that the first function 1√

2
α(1)[α(2)β(3) − β(2)α(3)] (denoted hereafter by

∣

∣

∣

1

2
, 1

2

〉

a
) forms

a two-electron singlet for the electron pair 2 and 3. The second doublet spin function
1√
6
[2β(1)α(2)α(3)−α(1)α(2)β(3)−α(1)β(2)α(3)] (denoted hereafter by

∣

∣

∣

1

2
, 1

2

〉

b
) has been

obtained by requiring it be orthogonal to
∣

∣

∣

1

2
, 1

2

〉

a
. The spatial orbital configurations for the

three electrons have one of the following forms: (na, nb, nc), (na, na, nb), and (na, nb, nb)
with na 6= nb 6= nc. The latter two configurations have a doubly occupied orbital for the
electron pairs (1,2) and (2,3). Thus the spin function which forms a two-electron singlet
for the electron pairs (1,2) and (2,3) should be coupled with configurations of the type
(na, na, nb) and (na, nb, nb) since it has to be antisymmetric with respect to the exchange
of the electron pairs (1,2) and (2,3). It is convenient to impose on the orbital configuration
(n1, n2, ..., nN ) the restriction that the singly occupied orbitals always precede the doubly
occupied [34]. With this restriction the latter two three-electron configurations can be
represented by the configuration (na, nb, nb). The three electron ground state has then the

configuration (1,0,0) and has to be coupled with the spin function
∣

∣

∣

1

2
, 1

2

〉

a
giving rise to one

level as shown in Fig. 2 (b). In the case of vp = 2 the two configurations (0,1,1) and (2,0,0)

are possible. Both of these configurations have to be coupled with the spin function
∣

∣

∣

1

2
, 1

2

〉

a

giving rise to two levels. In the case of vp = 3 the configuration (0,1,2) with three distinct
orbitals will appear in addition to the configuration (3,0,0). The configuration (0,1,2) can
be coupled with all three spin functions giving rise to three levels resulting in four levels
in total associated with the polyad manifold of vp = 3. A summary of the number of
levels and orbital configurations of low-lying polyad manifolds of three electrons has been
displayed in Table 1.

The situation becomes more complicated for a system with four electrons but similar
arguments as in the three electron case can be applied. The total spin S in the four electron
case can take three distinct values, namely, S = 0 (singlet), 1 (triplet), and 2 (quintet).
According to the spin branching diagram the degree of degeneracy that is associated with
the singlet, triplet and quintet states is 2, 3 and 1, respectively [35]. The ground state
of the four electron case has the configuration (0,0,1,1). This configuration belongs to
the polyad manifold of vp = 2 and gives rise to one level since it can only be coupled
with the singlet spin function consisting of the two-electron singlets for the electron pairs
(1,2) and (3,4). The next polyad manifolds of vp = 3 also involves only one configuration,
namely (1,2,0,0), which can be coupled with one singlet and one triplet spin function
forming a two-electron singlet for the electron pair (1,2) giving rise of a total of two levels
as shown in Fig. 2 (c). The same procedure can be applied to the polyad manifold of vp

=4 and 5 giving rise to a total of 5 and 8 levels, respectively. In the case of the polyad
manifold of vp = 6 there are five possible configurations: (1,5,0,0), (2,4,0,0), (0,4,1,1),
(0,0,3,3), and (0,1,2,3). The first three configurations form a two-electron singlet for the
electron pair (3,4) giving rise to one singlet and one triplet level. The fourth configuration
forms two-electron singlets for the electron pairs (1,2) and (3,4) giving rise to only one
singlet level as in the case of vp = 2 and 3. In the fifth configuration (0,1,2,3) all four
orbitals are different and 6 linearly independent spin functions can be coupled with this
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Table 2
Orbital configuration, number of levels derived from the configuration, and the total
number of levels belonging to each vp manifold for four electrons.

vp Np
1 config. n2

2 1 (0,0,1,1) 1

3 2 (1,2,0,0) 2

4 5 (1,3,0,0) 2
(0,0,2,2) 1
(0,2,1,1) 2

5 8 (1,4,0,0) 2
(2,3,0,0) 2
(0,3,1,1) 2
(0,1,2,2) 2

6 13 (1,5,0,0) 2
(2,4,0,0) 2
(0,4,1,1) 2
(0,0,3,3) 1
(0,1,2,3) 6

1Number of levels belonging to each vp manifold.
2Number of levels derived from each configuration.
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configuration giving rise to 6 levels. Thus, a total of 13 levels is associated with this
polyad manifold. The number of levels and orbital configurations for the low-lying polyad
manifolds of four electrons are summarized in Table 2. The number of levels calculated
for each polyad manifold listed in the table agrees with the results displayed in Fig. 2 (c)
for all vp manifolds.

As the confinement strength ωz decreases the electron-electron interaction, which rep-
resents only a small perturbation for large ωz, starts to influence the energy spectrum. As
a result the splitting of the energy levels belonging to a polyad manifold becomes so large
that the energy levels of neighboring polyad manifolds start to overlap as is apparent
from Fig. 2 for the medium confinement regime of ωz = 1.0. When ωz decreases even
further the overlap of the energy levels belonging to different polyad manifolds becomes
even larger. Since the polyad quantum number represents an approximately conserved
quantity it may be expected that the breakdown of this constant of motion will lead to an
irregular energy-level pattern known as quantum chaos. On the other hand, the energy
spectra shown in Fig. 2 for the small confinement regime of ωz = 0.1 show for all cases
of N = 2, 3, and 4 again a band structure as in the case of the large confinement regime.
The reason for the reappearance of such a regular band structure in the energy spectrum
for the small confinement regime is examined in detail in the next section.

3.3. Extended polyad structure

The energy spectrum for the small confinement regime (ωz = 0.1) is displayed on the
right hand side of Fig. 2. It shows a band structure similar to that of the strong con-
finement regime with ωz = 5.0 characterized by an energy gap close to ωz. It should
be noticed, however, that the energy spectrum for the weak confinement regime differs
from that of strong confinement regime by the fact that in the weak confinement regime
the energy spectrum consists of groups of nearly degenerate levels having different spin
multiplicities. In the case of N = 2, 3, and 4 the number of nearly degenerate levels is 2
(singlet and triplet), 3 (two doublets and one quartet), and 6 (two singlets, three triplets,
and one quintet), respectively. Therefore, in the weak confinement regime all linearly
independent spin states become degenerate. A similar multiplet structure was reported
previously for a small number of electrons confined in a large quasi-one-dimensional rect-
angular potential well [33,36] that may be considered as an indication of the formation of
the Wigner lattice [37]. It is also noted that the number of levels belonging to each band
of the energy spectrum is different for the small and large ωz regimes. In the case of N
= 2, for example, the number of levels belonging to each band, counted from below, is 2,
2, 4, 4, · · · for ωz = 0.1, and 1, 2, 3, 4, · · · for ωz = 5.0.

In order to explain the band structure for the small confinement regime the nature of
the potential energy function in the Hamiltonian has been examined in the internal space.
Since for quasi-one-dimensional quantum dots the electrons can only move along the z
coordinate their x and y dependence is neglected in the analysis. The internal space is
defined by a unitary transformation from the independent electron coordinates (z1, z2, · · ·,
zN) into the correlated electron coordinates (zα, zβ, · · ·). The coordinate zα represents
the totally symmetric center -of -mass coordinate zα = 1√

N
(z1 + z2 + · · · + zN) and the

remaining correlated electron coordinates zβ, · · ·, zN represent the internal degrees of
freedom of the N electrons [20,21]. In the case of two electrons the correlated coordinates
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Figure 3. (Color online) One-dimensional plot of the sum of the harmonic-oscillator
and of the electron-repulsion potentials V for two electrons as function of the internal
coordinate za for ωz = 5.0 (a), 1.0 (b), and 0.1 (c). The solid red line represents the sum
of the harmonic-oscillator and the electron repulsion potentials, while the dotted grey
line represents only the harmonic-oscillator potential. The maximum potential height

Vmax and the domain of the za coordinate displayed are Vmax = ωz×10 and |za| ≤
√

20
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respectively, for all cases.
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are defined by

zs =
1√
2
[z1 + z2],

za =
1√
2
[z1 − z2]. (10)

The symmetric zs coordinate describes the center-of-mass degree of freedom for the two
electrons while the antisymmetric za coordinate describes the internal degree of freedom.
In the case of three electrons the correlated coordinates may be defined by

za =
1√
3
[z1 + z2 + z3],

zb =
1√
6
[2z1 − z2 − z3],

zc =
1√
2
[z2 − z3]. (11)

The totally symmetric za coordinate describes the center-of-mass degree of freedom and
the remaining zb and zc coordinates span the internal space [21]. It is noted that the same
set of coefficients used to define the internal space, namely, 1√

6
(2,−1,−1) and 1√

2
(1,−1)

for the zb and zc coordinates also appear as coefficients in the two doublet spin functions
of
∣

∣

∣

1

2
, 1

2

〉

b
and

∣

∣

∣

1

2
, 1

2

〉

a
, respectively. The internal space for the four electron case can be

similarly defined. In the following the internal space for two electrons is analyzed it in
detail.

The Hamiltonian (1) for quasi-one-dimensional two-electron quantum dots is simplified
by neglecting the x and y degrees of freedom and by approximating the confining Gaussian
potential by a harmonic-oscillator potential with ωz

Hharm
1D = −1

2

∂2

∂z2
1

− 1

2

∂2

∂z2
2

+
1

2
ω2

zz
2
1 +

1

2
ω2

zz
2
2 +

1

|z1 − z2|
. (12)

By introducing the correlated coordinates of Eq. (10) this Hamiltonian takes the form

Hharm
1D = −1

2

∂2

∂z2
s

+
1

2
ω2

zz
2
s −

1

2

∂2

∂z2
a

+
1

2
ω2

zz
2
a +

1√
2|za|

. (13)

The first two terms on the right-hand side of Eq. (13) represent a harmonic-oscillator
Hamiltonian for the zs coordinate. They contribute the eigenenergy of a one-dimensional
harmonic oscillator with frequency ωz to the total energy. The remaining terms on the
right-hand side of Eq. (13) represent a harmonic-oscillator Hamiltonian for the za coor-
dinate with an additional Coulomb-type potential originating from the electron-electron
interaction potential. These za-dependent terms account for the variation of the energy
spectrum for different confinement strengths ωz as has been observed in Fig. 2 (a). The
potential energy function of these xa-dependent terms, i.e., the sum of the harmonic-
oscillator potential and the Coulomb-type potential, has been plotted in Fig. 3 for dif-
ferent strengths ωz. In this figure the maximum potential height Vmax and the domain

of the za coordinate are Vmax = ωz×10 and |za| ≤
√

20

ωz

, respectively, for all ωz. The
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harmonic-oscillator part of the potential function is indicated by dotted lines in order
that the role of the electron-electron interaction can be clearly seen. It appears to be
identical for all ωz values. The sharp increase at the origin of the solid line represent-
ing the diverging contribution of the electron-electron interaction potential divides the
region into the two parts separated by a wall. This potential wall becomes stronger as
ωz decreases from (a) to (c). In case (a), corresponding to ωz = 5.0, the potential wall
is rather thin and only acts as a small perturbation to the harmonic-oscillator potential.
Consequently, in this case the eigenenergy of the Schrödinger equation is basically that of
the harmonic-oscillator potential modified by a small energy shift. As ωz becomes smaller
the potential wall becomes thicker as displayed in Fig. 3 (b), corresponding to ωz = 1.0,
and the energy shift due to the potential wall becomes larger. This observation agrees
with the large splitting of the energy levels within each of the vp manifolds as displayed
in Fig. 2 (a) for the medium confinement regime.

It is noted that the eigenstates χ of the one-dimensional harmonic-oscillator with an
even quantum number, χeven, are affected more strongly by the potential wall than those
with an odd quantum number, χodd, since the states with an even quantum number have
a finite amplitude at the origin while the states with an odd quantum number have a node
at the origin. Since χeven and χodd are symmetric and antisymmetric with respect to the
inversion of the za coordinate, respectively, they are symmetric and antisymmetric with
respect to the interchange of electrons 1 and 2. This means that χeven and χodd must be
coupled to the singlet and triplet spin functions, respectively. Therefore, as ωz decreases
the triplet states become more stabilized relative to the singlet states. This effect can be
clearly seen in the energy spectrum of Fig. 2 (a) where the triplet levels (colored in red)
become lowered as ωz decreases from 5.0 to 1.0.

When ωz becomes even smaller and reaches the small confinement regime corresponding
to ωz = 0.1 the potential wall becomes so thick that the wave function can hardly penetrate
it. As a result the amplitude of singlet wave functions in the vicinity of the origin becomes
extremely small. Therefore, except for the phase along the za coordinate, the nodal
pattern of singlet wave functions becomes almost identical with that of the corresponding
triplet wave functions having the same number of nodes as the singlet wave functions
except for the node at the origin. This rationalizes the singlet-triplet doublet structure
of the energy spectrum of Fig. 2 (a) for ωz = 0.1. Another nonrigorous, yet simple,
explanation of the doublet structure is given by considering the average distance between
the two electrons. In the limit of small confinements the relative distance between the
two electrons becomes very large. Therefore the total energy does hardly depend on the
mutual orientation of the electron spins implying the degeneracy of the singlet and triplet
states.

Another observation that needs to be explained is the recovering of the harmonic band
structure in the small ωz regime. As the potential energy function of Fig. 3 (c) indicates,
the potential wall due to the electron-electron interaction is so thick that it divides the
internal space into the two regions, i.e., za < 0 and za > 0. Using the eigenfunctions
χ of a particle bound in either of these two regions, χ− and χ+, for za < 0 and za >
0, respectively, the solution in the entire region of the potential of Fig. 3 (c) can be
approximated by the sum and the difference of the functions χ− and χ+, respectively,
because the wave function should be localized in both regions and has to satisfy the
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symmetry condition. The symmetric 1√
2
(χ− + χ+) and the antisymmetric 1√

2
(χ− − χ+)

functions describe the singlet and the triplet states, respectively, as explained earlier. On
the other hand, since at |za| → ∞ both functions χ± satisfy the same boundary condition
as the harmonic oscillator and vanish at the origin, the functions χ± can be approximated
by eigenfunctions of the harmonic oscillator with odd quantum numbers that have a
node at the origin. Consequently, the eigenenergies associated with the symmetric and
the antisymmetric solutions are given by the harmonic oscillator energies and produce a
harmonic-oscillator type energy spectrum.

Finally, the number of levels in each band displayed in Fig. 2 (a) for the small ωz regime
can be rationalized by the following considerations. Since in the small ωz regime the singlet
and triplet levels always appear as degenerate doublets the pattern of the triplet states
determines the number of levels. As shown in the previous paragraph the potential wall of
the electron-electron interaction does not strongly affect the nodal pattern of the triplet
wave functions. Therefore the polyad quantum numbers can still be used to classify the
triplet levels for small ωz. On the other hand, the singlet wave functions are affected more
strongly by the potential wall for smaller ωz and in the limit of weak confinements result
in a ‘node’ at the origin but keep the phase of a singlet. Therefore it is convenient to
extend the definition of the polyad quantum number for singlet levels by including the
node at the origin. For two electrons the extended polyad quantum number v∗

p is defined
to be identical with vp for the triplet levels but to be (vp + 1) for the singlet levels. Using
this definition the doublet pair of singlet and triplet levels has the same v∗

p value. Starting
from the smallest v∗

p value of 1 for the lowest configuration of (0,1) the possible triplet
configurations are (0,2) for v∗

p = 2, (0,3) and (1,2) for v∗
p = 3, and, (0,4) and (1,3) for v∗

p

= 4. Therefore the number of levels belonging to each v∗
p manifold is calculated by using

these numbers multiplied by two for a singlet and a triplet state, i.e., as 2, 2, 4, 4 for v∗
p =

1, 2, 3, 4, respectively. The results agree with the number of levels displayed in Fig. 2 (a).
The case of three and four electrons is more complicated but the two characteristic

features of the energy spectra observed for small ωz, i.e., the nearly-degenerate multiplet
structure of the energy levels of different spin multiplicities and the harmonic band struc-
ture of these levels, can be rationalized in a similar way. In the case of three electrons,
for example, the internal space can be defined by the two correlated coordinates zb and
zc defined by Eq. (11). The potential function becomes a sum of two harmonic-oscillator
Hamiltonians for the zb and zc coordinates plus three Coulomb-type potentials originating
from the three electron-electron interaction potentials 1

|z1−z2| ,
1

|z2−z3| and 1

|z3−z1| . As ωz be-
comes smaller these three potential walls become thicker and divide the two-dimensional
internal space spanned by zb and zc into the six regions [21]. The quartet wave functions
for three electrons are not strongly affected by the potential walls since they have nodal

lines along the three potential walls in order to satisfy the Pauli principle as in the case of
triplet wave functions for two electrons. The doublet wave functions, on the other hand,
have a finite amplitude along the lines of the potential walls since they do not change the
sign with respect to the exchange of any two of the three electron coordinates. Therefore
they are affected more strongly by the potential walls for smaller ωz like in the case of the
singlet wave functions for the two electrons. In the limit of very weak confinement they
have almost no amplitude along the lines of the potential walls and their nodal pattern
and energy become almost identical with those of the corresponding quartet states except
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Table 3
Orbital configuration for the highest spin state of two, three and four electrons belonging
to each vp manifold.

vp 2e 3e 4e
1 (0,1)

2 (0,2)

3 (0,3) (0,1,2)
(1,2)

4 (0,4) (0,1,3)
(1,3)

5 (0,5) (0,1,4)
(1,4) (0,2,3)
(2,3)

6 (0,1,5) (0,1,2,3)
(0,2,4)
(1,2,3)

7 (0,1,6) (0,1,2,4)
(0,2,5)
(0,3,4)
(1,2,4)

8 (0,1,2,5)
(0,1,3,4)

9 (0,1,2,6)
(0,1,3,5)
(0,2,3,4)

10 (0,1,2,7)
(0,1,3,6)
(0,1,4,5)
(0,2,3,5)
(1,2,3,4)
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Figure 4. (Color online) Energy spectrum of the low-lying states of two electrons confined
in a quasi-two-dimensional Gaussian potential for different strength of confinement. En-
ergy levels are colored by green for singlet states and red for triplet states, respectively.
The parameter vp specifies the polyad quantum number (See the text for details).

for the phase of the wave functions. For the four electron case the situation is similar
except that the internal space is three dimensional which is divided by six potential walls.

For three and four electrons the number of levels belonging to each v∗
p band in the weak

confinement regime can be calculated by examining the level pattern for the highest spin
states, namely, quartet and quintet, respectively. Since the spin function of the highest
spin state is totally symmetric with respect to the interchange of any two electrons it
can only be coupled with orbital configurations involving distinct orbitals. The orbital
configurations that may be coupled to the triplet, quartet, and quintet spin states of
respectively, two, three, and four electrons, are listed in Table 3 for the range of v∗

p values
that appear in the energy spectra of Fig. 2. The number of levels belonging to each v∗

p

manifold can be calculated from this table by counting the number of orbital configurations
for each v∗

p and by multiplying this number by the factor of 2, 3, and 6 for two, three,
and four electrons, respectively. In the case of four electrons the number of configurations
equals to 1, 1, 2, 3, and 5 for v∗

p = 6, 7, 8, 9, and 10, respectively. Multiplying by the
factor of 6 the number of possible levels becomes equal to 6, 6, 12, 18, and 30 for v∗

p = 6,
7, 8, 9, and 10, respectively. These results agree with the number of levels appearing in
the energy spectrum displayed in Fig. 2 (c) for ωz = 0.1.
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Figure 5. (Color online) Energy spectrum of the low-lying states of two electrons confined
in a quasi-two-dimensional Gaussian potential for (D,ωxy) = (0.4, 0.01). Energy levels
are colored by green for singlets and by red for triplets.

4. QUASI-TWO-DIMENSIONAL QUANTUM DOTS

The energy spectrum of two electrons confined in a quasi -two-dimensional Gaussian
potential defined by Eq. (3) is presented in Fig. 4 for different confinement strengths in a
similar form as in Fig. 2 (a) for quasi-one-dimensional quantum dots. The displayed energy
spectrum for the large and medium confinement regime of ωxy = 5.0 and 1.0 shows a polyad
structure which is similar to that found for quasi-one-dimensional quantum dots shown in
Fig. 2 (a) except that it involves a larger number of levels in each polyad manifold due to
the increased dimensionality. For the small confinement regime of ωxy = 0.1, on the other
hand, the energy spectrum is qualitatively different from that found in the corresponding
quasi-one-dimensional case. In the first place, for quasi-two-dimensional quantum dots
(cf. Fig. 4) the doublet structure consisting of a pair of singlet and triplet levels a typical
feature found in the case of quasi-one-dimensional quantum dots indicating the formation
of a Wigner lattice is absent. Moreover, the energy levels of a quasi-two-dimensional
quantum dot with ωxy = 0.1 do not seem to form in the high energy region E > 0.25 a
clearly defined band structure like in the case of quasi-one-dimensional quantum dots.

It may be argued that the energy spectrum in the smal confinement regime correspond-
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ing to ωxy = 0.1 displayed in Fig. 4 shows a tendency to form a Wigner lattice for even
smaller values of ωxy. In order to check this a quasi-one-dimensional quantum dot for
confinement strength as small as ωxy = 0.01 has been studied. The resulting energy
spectrum is presented in Fig. 5. Again, the displayed spectrum shows no singlet-triplet
doublet structure. Quite to the contrary, it becomes more difficult to recognize a band
structure in the spectrum. Thus, the energy spectrum of quasi-two-dimensional quan-
tum dots in the weak confinement regime seems to be essentially different from that of
quasi-one-dimensional quantum dots.

In order to analyze the origin of this difference between the energy spectra of quasi one-
and two-dimensional quantum dots in the small confinement regime the internal space for
two electrons is considered like in the quasi-one-dimensional cases. Using a harmonic
approximation to the Gaussian confining potential and neglecting the dependence on the
z coordinate the Hamiltonian of Eq. (1) for two electrons takes the form

Hharm
2D = −1

2

[

∂2

∂x2
1

+
∂2

∂y2
1

]

− 1

2

[

∂2

∂x2
2

+
∂2

∂y2
2

]

+
1

2
ω2

xy

[

x2
1 + y2

1

]

+
1

2
ω2

xy

[

x2
2 + y2

2

]

+
1

√

(x1 − x2)2 + (y1 − y2)2
. (14)

Performing the unitary transformation of the independent electron coordinates (x1,y1,x2,y2)
into the correlated coordinates (xs,ys,xa,ya),

xs =
1√
2
[x1 + x2],

ys =
1√
2
[y1 + y2],

xa =
1√
2
[x1 − x2],

ya =
1√
2
[y1 − y2], (15)

the Hamiltonian of Eq. (14) separates into a sum of two contributions, depending either
on the coordinates (xs, ys) or (xa, ya), i.e.,

Hharm
2D = Hc.o.m(xs, ys) + Hint(xa, ya), (16)

where

Hc.o.m = −1

2

[

∂2

∂x2
s

+
∂2

∂y2
s

]

+
1

2
ω2

xy

[

x2
s + y2

s

]

, (17)

and

Hint = −1

2

[

∂2

∂x2
a

+
∂2

∂y2
a

]

+
1

2
ω2

xy

[

x2
a + y2

a

]

+
1

√

2(x2
a + y2

a)
. (18)

The first part of the Hamiltonian (16), Hc.o.m, describes the center-of-mass contribution as
in the quasi-one-dimensional cases and contributes the eigenenergy of a two-dimensional
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Figure 6. (Color online) Two-dimensional contour plot of the sum of the harmonic-
oscillator and of the electron-repulsion potentials for two electrons in the internal space
(xa, ya) for ωxy = 5.0 (a), 1.0 (b), and 0.1 (c). The maximum potential height Vmax and
the domain of the xa and ya coordinates displayed are the same as used in Fig. 3. The red
spot at the origin of the contours represents the potential pole of the electron repulsion
potential.
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isotropic harmonic oscillator to the total energy. The second part of the Hamiltonian, Hint,
depends on the antisymmetric coordinates xa and ya and represents the contribution to
the total energy due to the internal degrees of freedom.

In order to explain the characteristic feature of the energy spectrum that distinguishes it
from the quasi-one-dimensional case the potential energy function has been plotted for the
internal Hamiltonian of Eq. (18) for different ωxy values in Fig. 6. The maximum height
of the potential Vmax and the domain of the xa and ya coordinates are the same as for the
quasi-one-dimensional potential presented in Fig. 3. Implying that the harmonic-oscillator
part of the potential looks identical for different ωxy values the effect of the electron-
electron interaction becomes apparent. The small red spot at the center of the potential
represents a sharp increase due to the electron-electron interaction. It increases in size
as ωxy becomes smaller. This indicates that the electron-electron interaction perturbs
the harmonic-oscillator potential more strongly for smaller confinement like in the quasi-
one-dimensional case. It is noted, however, that the potential energy function has a pole
rather than a potential wall like in the quasi-one-dimensional case where the wall separates
the internal space into two regions. As a consequence, the electron-electron interaction
potential in the quasi-two-dimensional case will not strongly modify the nodal pattern of
singlet wave functions since they can avoid the pole. Therefore there seems to be little
reason for the singlet and triplet levels of quasi-two-dimensional quantum dots to form in
the weak confinement regime degenerate pairs unlike in the case of quasi-one-dimensional
quantum dots.

5. SUMMARY

In the present study the energy-level structure of two, three and four electrons con-
fined in a quasi-one-dimensional Gaussian potential for different strength of confinement
has been examined in detail by using the accurate computational results of eigenenergies
and wave functions obtained in previous studies for two and three electrons and in the
present study for four electrons, respectively. The eigenenergies and wave functions have
been calculated by using the quantum chemical full configuration interaction method and
by employing Cartesian anisotropic Gaussian basis sets with high angular momentum
functions. The energy-level structure changes qualitatively for different strength of con-
finement and is classified by three regimes of the strength of confinement ωz, namely,
large, medium and small. The polyad quantum number vp has been used to characterize
the energy-level structure for large and medium ωz while the extended polyad quantum
number v∗

p has been used for small ωz. The energy levels at the small ωz regime form
nearly-degenerate multiplets consisting of a set of energy levels having different spin mul-
tiplicities. To analyze the effect of the electron-electron interaction on the formation of the
degenerate multiplets the potential energy function defined by the sum of the one-electron
potentials and the two-electron potentials has been introduced and displayed as function
of the internal space for different strengths of ωz. The plots of the potential energy func-
tion for different ωz clearly show that for small ωz the degeneracy of the energy levels
among different spin states is caused by the potential walls of the electron-electron inter-
action potentials within the internal space. A systematic way of obtaining the degeneracy
pattern of energy levels for small ωz is given.
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The energy spectrum of two electrons confined in a quasi-two-dimensional Gaussian
potential has also been studied for the same set of the strengths of confinement as the
corresponding quasi-one-dimensional cases and are compared to them. The energy spec-
trum of the quasi-two-dimensional quantum dot is qualitatively different from that of the
quasi-one-dimensional quantum dot in the small confinement regime. The origin of the
differences is due to the difference in the structure of the internal space.
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