EXPLOSIVE NUCLEOSYNTHESIS
IN
CORE-COLLAPSE-SUPERNOVAE

Else PLLUMBI
(MPA-IMPRS-PhD)

Supervised by:

Thomas JANKA

Max-Planck-Institut
für Astrophysik
OUTLINE

INTRODUCTION

CORE-COLLAPSE-SUPERNova NUCLEOSYNTHESIS

EXPLOSIVE NUCLEOSYNTHESIS
 Si burning
 O burning
 Ne & C burning

νp-PROCESS

r-PROCESS

CONCLUSIONS
WHERE DO THE ELEMENTS (OR WE!) COME FROM?

“ONION-SKIN” STRUCTURE IN MASSIVE STARS (M>8 Msol)

Magic numbers:
N or Z=2,8,20,28,50,82,126
SUPERNOVAE EXPLOSIONS

CRAB NEBULA

CASSIOPEIA A
CORE-COLLAPSE AND SUPERNOVAE EXPLOSIONS

\[M_{\text{cor}} = M_{\text{Ch}} \simeq 1.4 M_{\text{sol}} \]

- gravitational instability
- e-capture into nuclei
- photodisintegration of Fe-peak nuclei

\[\rho_{\text{cor}} \simeq \rho_{\text{sat}} \simeq 10^{14} \text{ g/cm}^3 \]

- Inner-core bounces
- shock wave

\(\nu \)-driven wind = flow of neutrons and protons from the region near to the surface of the Proto Neutron Star (PNS) driven by the strong \(\nu_e \) and \(\bar{\nu}_e \) fluxes.
EXPLOSIVE NUCLEOSYNTHESIS

creation of elements by the explosion itself, that is by the high T associated with the passage of the shock

\[aT_p \frac{4\pi r_0^3}{3} = E \]

explosion energy

peak-temperature due to the shock

necessary condition for explosive modification of the pre-explosive composition is:

\[\tau_{\text{nucl}} \ll \tau_{\text{HD}} \]

typical time for the density to e-fold

burning life-time at \(T_p \)

\[\tau_{\text{nucl}} = \frac{q_{\text{nucl}}}{S_{\text{nucl}}} \]

nuclear energy generation rate

nuclear energy

\[\tau_{\text{HD}} \approx \frac{446}{\rho^{1/2}} s \]
EXPLOSIVE SILICON BURNING

\[T > 5 \, \text{GK}, \quad \rho \sim 10^8 \, \text{g/cm}^3 \quad \rightarrow \quad \text{complete Si burning in NSE} \]

The abundance of any nucleide in NSE is determined by:

- temperature,
- density and neutron excess \(\eta \)

\[\eta \equiv \sum (N_i - Z_i) \frac{X_i}{M_i} = 1 - 2Y_e \]

\[e.g. \quad M = 25M_{sol}, \quad \eta \approx 0.003 \quad \rightarrow \quad ^{56}Ni \quad \text{main product among the Fe peak elements} \]

N.B: exactly the same products would be obtained if, at the same \(T \), the burning nuclear fuel is not \(^{28}Si\) but instead any other species with \(\eta = 0.003 \)

expansion \(\rightarrow \) \(T \) decreases \(\rightarrow \) nuclear reactions fall out of equilibrium at a certain \(T \) freeze-out:

1) if \(\rho \) and \(\tau_{HD} \) are “sufficiently large” \(\rightarrow \) few \(p, n, \alpha \) and composition made mainly of Fe peak nuclei

2) if \(\rho \) and \(\tau_{HD} \) are “sufficiently small” \(\rightarrow \alpha \) rich freeze-out

observed \(\gamma \) ray emitter \(\leftarrow \quad ^{44}Ti, \tau_{1/2} \approx 60 \text{yr}!! \)

N.B \(T = (4-5) \text{GK} \quad \rightarrow \quad ^{28}Si \quad \text{burns in quasi-NSE (QSE)} \)

expansion causes freeze-out where a lot of \(^{28}Si\) remains incomplete Si burning
EXPLOSIVE OXYGEN BURNING

$T = (3-4) \text{ GK}$

The fuel ^{16}O is dissociated giving rise to two QSE clusters in the mass region of Si and Fe-peak nuclei.

$T \text{ "low"}$

More material remains locked in the Si region than is converted to the Fe-peak elements.

Driving reactions:

$^{16}O(^{16}O, \alpha)^{28}\text{Si}$

$^{16}O(^{16}O, p)^{31}\text{P}$

$^{16}O(^{16}O, n)^{31}\text{S}$

$^{16}O(^{16}O, d)^{30}\text{P}$

Higher T and lower ρ favors:

$^{16}O(\gamma, \alpha)^{12}\text{C}$

After freeze-out the most abundant elements are:

${^{28}\text{Si}}, {^{32}\text{S}}, {^{36}\text{Ar}}, {^{40}\text{Ca}}$
EXPLOSIVE NEON & CARBON BURNING

$T = (2-3) \text{ GK}$

- T and ρ too small for QSE
- Nuclear reactions operate far from equilibrium
- The abundance of the produced elements depends on: T, ρ, η, Y_0 and thermonuclear reaction rates

Ne burning creates similar products to C burning

Main reactions:

$$^{20}\text{Ne} (\gamma, \alpha)^{16}\text{O} \rightarrow (\alpha, n) \quad \text{and} \quad (\alpha, p)$$

p and n are captured leading to the production of many rare (or neutron rich) isotopes with $A = (36-38)$

$$^{12}\text{C} + ^{12}\text{C} \quad \rightarrow \quad n^{23}\text{Mg} \quad \alpha^{20}\text{Ne} \quad \quad p^{23}\text{Na}$$

N.B. the outer layers of the star are heated at $T_p < 2\text{ GK}$

No explosive nucleosynthesis for them!
Early ν-wind is proton-rich ($Y_e>0.5$) and is ejected at $T>10$ GK

νp nucleosynthesis in “4 steps“:

1) Expansion and cooling ($T=(10-5)$ GK):
 $n+p$ give α (and residual p)

2) $T=(5-3)$ GK:
 α combine to heavier nuclei with $N=Z$ e.g. ^{64}Ge

3) $T=(3-1)$ GK:
 \[p + \nu_e \rightarrow n + e^+ \]
 important for fast (n,p) reactions:
 \[n + ^{64}Ge \rightarrow ^{64}Ga + p \]
 \[^{64}Ga + p \rightarrow ^{65}Ge + \gamma \]
 N.B.

4) $T=1.5$ GK:
 (p,γ) freeze-out and (n,p) reactions and β decays convert the heavy nuclei to stable n-deficient daughters giving rise to the νp-process
the νp-process accounts for the solar abundance of some elements e.g. Mo, Ru which are significantly underproduced in other scenarios.

...but the νp-process is sensitive to:
1) details of explosion mechanism;
2) the mass of the PNS;
3) Y_e;
4) ν luminosity and energy;
5) nuclear physics uncertainties:
 a) slow 3α reaction rate (bottleneck for the seed nuclei);
 b) (n,p) reaction rates on the waiting point nuclei;

based on the theory of Hauser-Feshbach

sensitivity of the element production to the nuclear reaction rates
NUCLEOSYNTHESIS OF THE ELEMENTS BEYOND Fe: THE r-PROCESS

neutron capture nucleosynthesis:

- s(low)-process: $N_n = 10^7 - 10^{10} \text{ cm}^{-3} \left(\tau_{n-capt} \gg \tau_{\beta-decay} \right)$
- r(apid)-process: $N_n = 10^{20} - 10^{30} \text{ cm}^{-3} \left(\tau_{n-capt} \ll \tau_{\beta-decay} \right)$

production of the n-rich nuclei in very n-rich environment

neutrons accumulate to the magic N and when the intense neutron flux terminates the nuclei β decay

nuclei approach the valley of stability from the neutron rich side
NUCLEOSYNTHESIS OF THE ELEMENTS BEYOND Fe: THE r-PROCESS

r-process is sensitive to:

1) nuclear masses ;
2) β-decay half-lives;
3) n-capture reaction rates; but experimental data do not exist for very n-rich or exotic nuclei...

r-process sites? SNe ?

r-process abundances for different nuclear mass models unlikely...

recent long-term simulations
proton-rich neutrino driven wind

Neutron star mergers ?

they are attractive r-process sites...but the time-scale for the mergers to develop is inconsistent with the data
CONCLUSIONS

We gave an overview of the core-collapse-Supernovae (ccSNe) explosions;

We saw how elements can be produced thanks to the propagation of the shock-wave to the different layers of the star (explosive nucleosynthesis)

We discussed the $^\nu$p-process and the r-process which account for the production of the p-rich and the n-rich nuclei respectively

a lot of questions still are open, such as the site of the r-process, and a lot of uncertainties concerning the element abundance constrains are due to the lack of nuclear experimental data

A lot of work has still to be done from both the astrophysical, and nuclear physics point of view to better understand from where do we come!
REFERENCES:

1) “Theory of core-collapse supernovae”,

2) “The evolution and explosion of massive stars”,

3) “Nucleosynthesis in neutrino-driven winds.
I. The physical conditions”,
Y.-Z. Qian and S.E. Woosley, APJ, 471, 1996

4) “Nuclear astrophysics: the unfinished quest for the origin of the elements”,

5) “Uncertainties in the νp-process: supernova dynamics versus nuclear physics”,

6) “Impact of supernova dynamics on the νp-process”,

7) “Astrophysically important reactions and nucleosynthesis processes”,

8) “The r-, p-, and the νp-Process”,

9) “The role of neutrinos in explosive nucleosynthesis in core Collapse supernova models with neutrino transport”,
Doktorarbeit von C. Froehlich, Basel University, 2009.

10) “Neutrino cooling evolution of the newly formed neutron stars from electron capture supernovae”,

11) “Astrofisica Stellare”,
V. Castellani, Zanichelli editore, 1985

12) “Explosive nucleosynthesis: nuclear physics impact using neutrino-driven wind simulations”,
A. Arcones and G. Martínez-Pinedo, 2010.

13) “The hydrodynamic behavior of supernovae explosions”,
THANK YOU VERY MUCH FOR YOUR ATTENTION!