Gamma-Ray Telescope Design Principles & Abundance Targets

Vincenz Zimmer
Outline

I Why γ-rays?

II γ-Telescope Design Principles

III Astrophysical Targets
Outline

I Why γ-rays?

II γ-Telescope Design Principles

III Astrophysical Targets
Why are γ-rays of interest to astronomy?

Properties of cosmic rays:
- energies up to 10^{21} eV

How can we study such high energy physics? Cosmic rays?
- >99% charged particles
- 10^{-4} less γ-rays at same energy

Advantages of γ-rays:
- γ-rays are not deflected by magnetic fields like charged particles
 => contain information about sources
- γ-rays are highly penetrating
Which γ-rays are interesting for nuclear astrophysics?

γ-rays from radioactive isotopes:
- isotopes produced at sites of nucleosynthesis
- characteristic γ-ray lines
=> direct measurement of abundances
- stellar medium opaque for some time after an explosion
=> long enough lifetimes of the isotopes needed
Where to measure cosmic γ-rays?

- Earth’s atmosphere absorbs photons with different energies
- Also γ-rays of interest for nuclear physics are absorbed
 => need to measure above the atmosphere => in space
Outline

I. Why γ-rays?

II. γ-Telescope Design Principles

III. Astrophysical Targets
How do γ-rays interact with matter?

- photoelectric effect
- Compton effect
- pair production

\Rightarrow information for the selection of the detector design and materials
Compton Telescopes - Principles

upper detector:
- γ is Compton-scattered
- scattered electron deposits energy (E_1)

lower detector:
- γ is absorbed completely => energy (E_2)
=> total γ-energy is sum of both

Where did the γ-ray come from?
- deposited energies + positions of interactions + Compton scattering equation

$$\cos \theta = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1+E_2} \right)$$

=> Compton cone
- many events
=> γ-source on intersection of the Compton cones
COMPTEL on board the CGRO

energy range: 0.8-30MeV

assembly:
- upper detector: 7 modules with liquid scintillator
- lower detector: 14 NaI(Tl)-crystals
- anticoincidence shield: plastic scintillators surrounding the detectors

<table>
<thead>
<tr>
<th>characteristics</th>
<th>COMPTEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy resolution (FWHM)</td>
<td>5-8% (energy dependent)</td>
</tr>
<tr>
<td>Efficiency</td>
<td>ca. 1%</td>
</tr>
<tr>
<td>Effective area for gamma-rays</td>
<td>20-50cm²</td>
</tr>
<tr>
<td>Field-of-view</td>
<td>1sr or 8% of the sky</td>
</tr>
<tr>
<td>Angular resolution (FWHM)</td>
<td>1.7-4.4°</td>
</tr>
<tr>
<td>Line sensitivity (3σ, 2-week observation)</td>
<td>6×10^{-5} cm$^{-2}$ s$^{-1}$ at 1 MeV</td>
</tr>
<tr>
<td></td>
<td>1.5×10^{-5} cm$^{-2}$ s$^{-1}$ at 7 MeV</td>
</tr>
<tr>
<td>Accuracy of Source Position Determination</td>
<td>5-30arcmin (source dependent)</td>
</tr>
</tbody>
</table>
Coded Mask Telescopes - Principle

assembly:
• mask with opaque and transparent elements
• detector with spatial resolution better than size of mask elements

principle:
• photons from a certain direction
 => cast a shadow of the mask onto the detector
• direction of the source
 => defined by the position of the shadow on the detector

But, there is not just one source!

=> different shadows at the same time
=> reconstruction of the image by complicated algorithms
SPI aboard INTEGRAL

mission start: 17 Oktober 2002

INTErnational Gamma-Ray Astrophysics Laboratory

© MPE Garching/Roland Diehl
SPI - SPeectrometer onboard INTEGRAL

energy range: 20keV-8MeV

assembly:
- distance mask-detector: 1.71m
- mask: 127 hexagonal elements (opaque ones: W)
- camera: 19 hexagonale Ge-detectors (cooled to 85K)
- anticoincidence system:
 - 91 BGO-scintillators around camera/„tower“ (ACS)
 - plastic scintillator beneath mask (PSAC)

<table>
<thead>
<tr>
<th>characteristics</th>
<th>SPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy resolution (FWHM)</td>
<td>0,17% at 1,33MeV (each detector) 0,23% whole spectrometer</td>
</tr>
<tr>
<td>Line sensitivity (3σ, 10^6s)</td>
<td>3.3x10^{-5} ph cm^{-2}s^{-1} at 100keV 2.4x10^{-5} ph cm^{-2}s^{-1} at 1000keV</td>
</tr>
<tr>
<td>Mask dimensions</td>
<td>665 mm flat to flat, 30 mm thick Tungsten</td>
</tr>
<tr>
<td>Angular resolution</td>
<td>2,5° (point sources)</td>
</tr>
<tr>
<td>Point source positioning</td>
<td><1,3° (depending on point source intensity)</td>
</tr>
<tr>
<td>field-of-view</td>
<td>fully coded: 14°x16°, partially coded: 32°x35°</td>
</tr>
</tbody>
</table>
Outline

I. Why γ-rays?

II. γ-Telescope Design Principles

III. Astrophysical Targets
Radioactive Isotopes of Interest

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Mean Lifetime</th>
<th>Decay Chain</th>
<th>γ-Ray Energy (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^7Be</td>
<td>77 d</td>
<td>$^7\text{Be} \rightarrow ^7\text{Li}^*$</td>
<td>478</td>
</tr>
<tr>
<td>^{56}Ni</td>
<td>111 d</td>
<td>$^{56}\text{Ni} \rightarrow ^{56}\text{Co}^* \rightarrow ^{56}\text{Fe}^* + e^+$</td>
<td>158, 812; 847, 1238</td>
</tr>
<tr>
<td>^{57}Ni</td>
<td>390 d</td>
<td>$^{57}\text{Co} \rightarrow ^{57}\text{Fe}^*$</td>
<td>122</td>
</tr>
<tr>
<td>^{22}Na</td>
<td>3.8 y</td>
<td>$^{22}\text{Na} \rightarrow ^{22}\text{Ne}^* + e^+$</td>
<td>1275</td>
</tr>
<tr>
<td>^{44}Ti</td>
<td>89 y</td>
<td>$^{44}\text{Ti} \rightarrow ^{44}\text{Sc}^* \rightarrow ^{44}\text{Ca}^* + e^+$</td>
<td>78, 68; 1157</td>
</tr>
<tr>
<td>^{26}Al</td>
<td>1.04×10^6 y</td>
<td>$^{26}\text{Al} \rightarrow ^{26}\text{Mg}^* + e^+$</td>
<td>1809</td>
</tr>
<tr>
<td>^{60}Fe</td>
<td>2.0×10^6 y</td>
<td>$^{60}\text{Fe} \rightarrow ^{60}\text{Co}^* \rightarrow ^{60}\text{Ni}^*$</td>
<td>59, 1173, 1332</td>
</tr>
<tr>
<td>e^*</td>
<td>$\ldots \times 10^5$ y</td>
<td>$e^* + e^- \rightarrow \text{Ps} \rightarrow \gamma\gamma\ldots$</td>
<td>511, <511</td>
</tr>
</tbody>
</table>

© MPE Garching/Roland Diehl
44Ti - Puzzling Astrophysicists

Production:
- only in ccSNe
- lifetime: ≈85yrs
- decays by EC to 44Sc
- 44Sc decays by β^+-decay or EC to 44Ca
- γ-energies: 68, 78 and 1157keV

Observations:
- seen in Cas A SN remnant (340yrs old)
- measured flux: $\approx 2,5 \times 10^{-5}$ ph cm$^{-2}$ s$^{-1}$
- no other SN seen in 44Ti γ-rays
- estimated ccSN rate: \approx 2 per century
 => there should be other detectable SN

![SNR Cas A in X-rays](image-url)
^{26}Al - COMPTEL Sky Map

- nucleosynthesis occurs in the present Galaxy
- patchy distribution argues for:
 \Rightarrow massive stars main source of ^{26}Al
$^{26}\text{Al} - \text{Galactic Rotation}$

- Ge-detectors of SPI => good energy resolution => spectroscopy possible
- results:
 - could see Doppler shifts
 - shows Galactic rotation
^{26}Al - Doppler Broadening

- ^{26}Al is ejected with high velocities ($\geq 1000\text{km/s}$)
 => Doppler broadening expected
- former experiment measured 5.4 keV broadening
 => correspond to a mean velocity of $\approx 500\text{km/s}$
 => implausibly large
- also measured by SPI:
 => upper limit for mean velocity: 150 km/s
production:
• successive neutron captures on stable Fe isotopes
• in the hot interior of massive stars
=> only revealed by final SN
decay:
• β^--decays via 60Co to 60Ni
• γ-rays at 1173 and 1332keV
• lifetime: ≈3.8Myrs
flux ratio:
• 26Al produced in same massive stars, but at different periods
=> comparison of 60Fe and 26Al fluxes good test on models

=> flux ratio 60Fe/26Al: (14.8±6)%
$^{60}\text{Fe} - \text{Observations and Models}$

- Latest model: Woosley et al. 2007 (stellar evolution & nucleosynthesis & IMF)
- Latest FRANEC model: Limongi & Chieffi 2006 (stellar evolution & nucleosynthesis & IMF)
- Timmes et al. 1995
- Latest measurement (SPI): Wang et al. 2007

TUM

13.05.2009
Gamma-Ray Telescope Design Principles & Abundance Targets – Vincenz Zimmer
e^+e^--Annihilation

observations: a bright and dominating emission from the bulge
=> was not expected
e+e--Annihilation

- in addition to the bright bulge a hint of disk emission
- hint for an asymmetry of the disk
- at negative longitudes brighter than at positive longitudes
- might lead to candidate sources:
 - might correspond to hard LMXBs (low-mass x-ray binaries)
 - another explanation might be dark matter
• γ-rays from radioactive isotopes provide information about sites of nucleosynthesis in a quite direct way.

• The instruments targeting these isotopes have or had limited sensitivities (≈10^{-5} phcm^{-2}s^{-1}), but were able to obtain remarkable results.

• Several expected characteristic γ-ray lines could still not be seen, i.e. the lines from the short-lived isotopes (^7Be, ^22Na, ^56,^57Ni).

• Others, like ^26Al and the e^+e^--annihilation, help us to learn something about the interstellar medium around nucleosynthesis sites and about massive star interiors.

• They left us puzzling questions, e.g. the e^+e^--annihilation with it’s dominating bulge and asymmetric disk emission.
The End

Thank you for your attention!
References

- Wang, W., Harris, M.J., Diehl, R., SPI observations of the diffuse ^{60}Fe emission in the Galaxy, 2007
- C. Sánchez-Fernández, SPI Observer's Manual, INT/OAG/08-0295/Dc, 10.3.2008
- F. Wirner: Gammaastronomie (particle.astro.kun.nl/hs0607/Gamma.pdf)
 - http://integral.esac.esa.int/
 - http://heasarc.gsfc.nasa.gov/
 - http://www.mpe.mpg.de/~rod/rod.html
 - https://segue.atlas.uiuc.edu
 - http://www.wissenschaft-online.de/artikel/868484
Backup
44Ti – 57Co

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Number</th>
<th>Emission</th>
<th>Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>44V</td>
<td>111 MS</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>45V</td>
<td>547 MS</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>46V</td>
<td>422.50 MS</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>47V</td>
<td>32.6 M</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>48V</td>
<td>15.9735 D</td>
<td>ec</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Number</th>
<th>Emission</th>
<th>Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>43Ti</td>
<td>509 MS</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>44Ti</td>
<td>60.0 Y</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>45Ti</td>
<td>184.8 M</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>46Ti</td>
<td>STABLE 8.25%</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>47Ti</td>
<td>STABLE 7.44%</td>
<td>ec</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Number</th>
<th>Emission</th>
<th>Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>42Sc</td>
<td>681.3 MS</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>43Sc</td>
<td>3.891 H</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>44Sc</td>
<td>2.97 H</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>45Sc</td>
<td>STABLE 83.79 D</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>46Sc</td>
<td>STABLE 100%</td>
<td>ec</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Number</th>
<th>Emission</th>
<th>Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>41Ca</td>
<td>1.02E+5 Y</td>
<td>ec + β</td>
<td>100.00%</td>
</tr>
<tr>
<td>42Ca</td>
<td>STABLE 0.647%</td>
<td>ec + β</td>
<td>100.00%</td>
</tr>
<tr>
<td>43Ca</td>
<td>STABLE 0.135%</td>
<td>ec + β</td>
<td>100.00%</td>
</tr>
<tr>
<td>45Ca</td>
<td>162.61 D</td>
<td>ec</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Number</th>
<th>Emission</th>
<th>Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>40K</td>
<td>1.248E+9 Y</td>
<td>ec + β</td>
<td>89.28%</td>
</tr>
<tr>
<td>41K</td>
<td>STABLE 6.7302%</td>
<td>ec + β</td>
<td>10.72%</td>
</tr>
<tr>
<td>42K</td>
<td>12.321 H</td>
<td>ec + β</td>
<td>100.00%</td>
</tr>
<tr>
<td>43K</td>
<td>22.3 H</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>44K</td>
<td>22.13 M</td>
<td>ec</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Number</th>
<th>Emission</th>
<th>Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>57Ni</td>
<td>35.60 H</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>58Ni</td>
<td>STABLE 68.077%</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>59Ni</td>
<td>7.6E+4 Y</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>60Ni</td>
<td>STABLE 26.223%</td>
<td>ec</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Number</th>
<th>Emission</th>
<th>Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>56Co</td>
<td>77.233 D</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>57Co</td>
<td>271.74 D</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>58Co</td>
<td>70.86 D</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>59Co</td>
<td>STABLE 100%</td>
<td>ec</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Number</th>
<th>Emission</th>
<th>Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>55Fe</td>
<td>2.737 Y</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>56Fe</td>
<td>STABLE 91.754%</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>57Fe</td>
<td>STABLE 2.119%</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>58Fe</td>
<td>STABLE 0.282%</td>
<td>ec</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass Number</th>
<th>Emission</th>
<th>Lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>54Mn</td>
<td>312.12 D</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>55Mn</td>
<td>STABLE 100%</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>56Mn</td>
<td>2.5789 H</td>
<td>ec</td>
<td>100.00%</td>
</tr>
<tr>
<td>57Mn</td>
<td>85.4 S</td>
<td>ec</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
Coded Mask Telescopes - Assembly

coded mask (a):
• opaque and transparent elements
• arranged in a mathematical order
=> every source should cast a unique shadow

camera (b):
• detector:
 - spatial and
 - spectral resolution
• spatial resolution better than size of mask elements
Bilder

http://www.ikp.uni-koeln.de/students/fp/download/AnleitungVers4.pdf

planarer Ge Detektor

koaxialer Detektor

p+ Kontakt durch Bor-Implantation, ~50 μm dick;
n+ Kontakt durch Li-Diffusion, ~0.5 mm dick;

(b)

(c)
Satellitengestützte γ-Detektoren

\(^{26}\text{Al} - \text{Characteristics}\)

production:
- by p-capture on \(^{25}\text{Mg}\)
- in H-layers (core or shell) or Ne-O layers
- ejected by SNe or strong stellar winds
- sources: massive stars, novae, SNe

decay:
- \(\beta^+\)-decay or electron capture
- emitting a \(\gamma\) with 1809keV
- lifetime: \(\approx 1\)Myrs

interpretation of the sky map:
- irregular distribution
- concentrations at regions hosting young and massive stars (e.g. Cygnus)

\(=>\) massive stars main source of \(^{26}\text{Al}\)
\(^{26}\text{Al} \)- Doppler Broadening and SFR

Doppler broadening:
- \(^{26}\text{Al} \) is ejected with high velocities (\(\approx 1000\text{km/s} \))
 => Doppler broadening expected
- GRIS-experiment measured 5.4\text{keV} broadening
 => correspond to a mean velocity of \(\approx 500\text{km/s} \)
 => implausibly large
- also measured by SPI:
 => upper limit for mean velocity: 150\text{km/s}

Star formation rate and core-collaps SN rate:
- flux from inner Galaxy: \((3,3+0,4) \times 10^{-4} \text{phcm}^{-2}\text{s}^{-1} \)
- with a model for the 3D spatial source distribution:
 => mass of \(^{26}\text{Al} \) in the Galaxy: \((2,8+0,8)\text{M}_{\odot} \)
- with this and more models:
 => star formation rate in the Galaxy: \((3,8+2,2)\text{M}_{\odot} \)
 => ccSN rate in the Galaxy: 1,9+1,1 per century
60Fe - Production Sites

production:
- successive neutron captures on stable Fe isotopes
- competes with β^--decays to Co

production sites:
- the hot interior of massive-stars
- neutrons sources: $^{22}\text{Ne}(\alpha,n)^{25}\text{Mg}$, $^{13}\text{C}(\alpha,n)^{16}\text{O}$
- convective move ^{60}Fe away, before it is destroyed by another n-capture
- ^{60}Fe buried deep inside the stars

\Rightarrow only revealed by final core-collapse SN

decay:
- β^--decays via ^{60}Co to ^{60}Ni
- γ-rays at 1173 and 1332keV
- lifetime: ≈3.8Myrs
e+e--Annihilation - Pre-INTEGRAL Period

early experiments:
• balloone-borne instruments measured different fluxes of the 511keV line
 => interpretation: the „Great Annihilator“ (compact source at galactic center)
• following experiments measured constant fluxes over several years
 => disproved the „Great Annihilator“ theory
• obserations showed a diffuse distribution
 => interpretation: disk is responsible (here are most of the plausible sources)

OSSE/CGRO results:
• highest flux comes from the galactic center (bright bulge with a weak disk)
 => was not expected with many plausible sources located in the disk
• measured the positronium fraction
 => about 95% of the positrons form positronium befors the annihilation
e⁺e⁻-Annihilation - Spectrum

interpretations:
• annihilation takes place in a warm medium (several 1000K)