### Supermassive Black Holes (SMBH) at Work: Effects of SMBH Outbursts Driving Galaxy Evolution

Bill Forman (SAO-CfA)/Jones/Churazov/Heinz

- Family of dark matter halos + hot gas
  - Galaxies, groups, clusters
- M87
  - Outburst up close
  - Classic shock
  - Buoyant bubbles
  - Energy partition and outburst duration
- Early type galaxies with SMBH
  - Feedback present in X-ray/optically luminous galaxies
  - Hot X-ray coronae mechanism to capture SMBH energy
  - Driver of galaxy evolution

Collaborators: Akos Bogdan, Mike Anderson, Paul Nulsen, Scott Randall, Larry David, Jan Vrtilek, Ralph Kraft, Simona Giacintucci, Marie Machacek, Ming Sun, Maxim Markevitch, Alexey Vikhlinin

#### Supermassive Black Hole Outbursts in the Family of Early Type Galaxy Atmospheres







#### Galaxy 1 kpc 10<sup>56</sup> ergs 10<sup>42</sup> erg/s

Group/Cluster Core 10 kpc 10<sup>59</sup> ergs 10<sup>45</sup> erg/s Cluster (MS0735) 100 kpc 10<sup>62</sup> ergs 10<sup>46</sup> erg/s

Very powerful outflows Very little radiation from black hole Predicted mass deposition rates vary by > 100x

# X-ray and Radio View of M87

- Multiple at least three SMBH outbursts
- Two X-ray "arms" produced/uplifted by buoyant radio bubbles
- Eastern arm classic buoyant bubble with torus i.e., "smoke ring" (Churazov et al 2001)
  - XMM-Newton shows cool arms of uplifted gas (Belsole et al 2001; Molendi 2002)
  - Eviderce for many small bubbles/filaments

Forman+05,+07 Million+10, Werner+10 Radio 90Mhz Owen et al. 2001

Old bubbles with no apparent spectral aging - powered by AGN?

inner lobes

uplifted thermal gas

to observer

- Driven by turbulence?

Fine, unperturbed X-ray filament Radio plasma is "blowing in the wind





Rising bubble loses energy to surrounding gas

 $f = (p_1/p_0)^{(\gamma-1)/\gamma}$ 

Generates gas motions in wake Kinetic energy (eventually) converted to thermal energy (via



### Buoyant Bubble "Simulation" (from you tube)





SHOCK

Chandra (3.5-7.5 keV)

Xarithmetic (Churazov et al. 2015)- choosing proper band

Piston drives shocks



23 kpc (75 lyr)

Chandra (0.5-1.0 keV)

1'

- Black hole = 6.6×10<sup>9</sup> solar masses (Gebhardt+11)
- SMBH drives jets and shocks
- Inflates "bubbles" of relativistic plasma
- Many small bubbles
- Heat surrounding gas
- Model to derive detailed shock properties

# Central Region of M87 - the driving force



- Cavities surround the jet and (unseen) counterjet
- Bubble breaking from counter jet cavity
  - Perpendicular to jet axis;
  - Radius ~1kpc.
  - Formation time ~4 ×10<sup>6</sup> years
- Piston driving shock
  - X-ray rim is low entropy gas uplifted/displaced by relativistic plasma



#### X-arithmetic - Churazov et al. 2015



Isolate processes by manipulating energy bands:

$$\left(\frac{\delta T}{T}\right) \approx \left(\frac{\delta n}{n}\right)^{\gamma-1}$$

Churazov+2015 Arevalo+2015

 $\gamma = 0(isobaric); 5/3(adiabatic); 1(isothermal)$ 



# Shock Model - the data

Hard (3.5-7.5 keV) pressure

soft (1.2-2.5 keV) density profiles





### Textbook Example of Shocks Consistent density and temperature jumps



 $(M_{T_{=}}1.24 M_{o}=1.18)$ 



### Long vs. Short Duration Outbursts



0.6 vs 2.2 Myr duration outbursts with  $E_{outburst} = 5.5 \times 10^{57}$  ergs Short outburst - leaves hot, shocked envelope outside the piston NOT observed ==> longer duration outburst required



# M87 Outburst Energy Parameters

#### Detect shock (X-ray) and driving piston (radio)

Classical (textbook) shock M=1.2 (temperature and density independently) Outburst constrained by:

Size of driving piston (radius of cocoon) Measured  $T_2/T_1$ ,  $\rho_2/\rho_1$  ( $p_2/p_1$ )

Current shock radius

#### **Outburst Model**

Age ~ 12 Myr Energy ~ 5x10<sup>57</sup> erg Bubble 50% Shocked gas 25% (25% carried away by weak wave) Outburst duration ~ 2 Myr Outburst is not violent (not Sedov-like) Outburst energy "balances" cooling (few 10<sup>43</sup> erg/sec)

#### M87 is not alone - IC1262, A2052



- IC1262 slightly more luminous twin
  - Different orientation
  - Outbursts with a merger!
  - Core destroyed?

#### • A2052 (Blanton et al. 2011)



# Feedback from Supermassive Black Holes key component in galaxy formation models



- Feedback mass closely tied to mass of surrounding stars  $M_{\text{SMBH}}$   $\approx 10^{\text{-3}} M_{\text{bulge}}$
- SMBH key to regulating star formation in evolutionary models at high mass end
- Radio loud AGN very common in massive galaxies
- e.g. Croton+06, White & Frenk 91, Cole+92 Benson+'03 Best+06, Teyssier+11

Galaxy Sample from Jones et al. (Anderson, Churazov, Forman+)



- Cavities common > 30% in luminous systems
- SMBH detected 70% radio and 80% X-ray
- Winds at  $L^{K} < 10^{11}$
- Scatter in L<sub>X</sub>-opt partly environment/partly gas removal



•Outskirts of Fornax cluster (>1.4 Mpc from NGC1399)

$$L_{nuc} \sim 2 \times 10^{42} \text{ erg/s}$$

Massive SMBH is willing and able to disrupt atmosphere given sufficient fuel; outburst power ~ 5×10<sup>58</sup> ergs (Lanz+10)
Likely merger (e.g., Schweizer 1980)
Gas rich mergers could drive such outbursts at early epochs and disrupt star formation

Massive Black Holes (Bogdan et al. 2012) - two outliers



NGC4342 ~ 4.6 × 10<sup>8</sup>  $M_{\odot}$ 

NGC4291 ~ 9.6 ×  $10^8 M_{\odot}$ 

(Cretton & van den Bosch 1999; Haring & Rix 2004; Schultze & Gebhardt 2011)

•NGC4342 - an extreme outlier (5.10 outlier)

•NGC4291 is less extreme (3.4σ outlier)

•NGC4342 and NGC4291 host massive dark matter halos sufficient to bind hot coronae

measured using X-ray gas
(~hydrostatic equilibrium)

- Black holes are too
   massive for their bulges
  - •M<sub>BH</sub>/M<sub>bulge</sub> =0.069 for NGC4342 and 0.019 for NGC4391
  - •60x and 13x larger than "predicted"

### NGC4342 and NGC4291 - star formation disrupted at early times - Bogdan+2012

- Evolutionary scenario for NGC4342 and NGC4291
- Star formation suppressed by powerful SMBH outburst (e.g., like Fornax A driven by gas rich merger) at early epochs BEFORE all stars formed??
- SMBH growth precedes stellar component e.g., Sijacki+14

eRosita will inventory dark matter halos

#### NGC4342



- M87 classic shock and bubbles
  - reveals detailed SMBH interaction
  - shocks are "weak"
  - outbursts are "long" (>Myr)
  - bubbles carry most of energy (>50%)
- AGN outbursts are common in all gas rich systems
  - bubbles/cavities everywhere!
  - more massive systems are more likely radio bright
- "cooling flows" from galaxies (~1 M<sub>sun</sub>/yr) to clusters (~few 100 M<sub>sun</sub>/yr) moderated by SMBH energy release
- SMBH's are willing and able to disrupt cooling atmospheres at low (and possibly high) redshifts (NGC4342/NGC4391 SMBH's are too massive for their stellar mass)
- SMBH outbursts are a key phenomenon across a vast range of halo mass and cosmic time

# Conclusions

M87 - bubbles & shocks X-ray (soft & hard)





 $M_{halo} \sim 10^{12} \longrightarrow 10^{15} M_{sun}$ 

# Finis