Supermassive Black Holes (SMBH) at Work: Effects of
SMBH Outbursts
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* Family of dark matter halos + hot gas

* Galaxies, groups, clusters Collaborators: Akos Bogdan,
- M87 Mike Anderson, Paul Nulsen,
Scott Randall, Larry David, Jan
* Outburst up close Vrtilek, Ralph Kraft, Simona
* Classic shock Giacintucci, Marie Machacek,

Ming Sun, Maxim Markevitch,

* Buoyant bubbles Alexey Vikhlinin

* Energy partition and outburst duration
* Early type galaxies with SMBH
 Feedback present in X-ray/optically luminous galaxies
* Hot X-ray coronae - mechanism to capture SMBH energy
* Driver of galaxy evolution



Supermassive Black Hole Outbursts in the Family of
Early Type Galaxy Atmospheres
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Galaxy Group/Cluster Core Cluster (MS0735)
1 kpc 10 kpc 100 kpc

10°%¢ ergs 10° ergs 1092 ergs

10%2 erg/s 10%° erg/s 10% erg/s

Very powerful outflows
Very little radiation from black hole
Predicted mass deposition rates vary by > 100x



X-ray and Radio View of M87

e Multiple - at least three - SMBH outbursts
e Two X-ray "arms" - produced/uplifted by \%

buoyant radio bubbles

uplifted thermal gas

Radio 90Mhz
Owen et al. 2001

Old bubbles with

Sl- no apparent
\ spectral aging

e - powered by
= M87 4 AGN?
- Driven by
Fine, unperturbed X-ray filament turbulence?

Radio plasma is "blowing in the wind



Fate of Bubble Energy
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Rising bubble loses energy to
surrounding gas
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Buoyant Bubble "Simulation” (from you tube)
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Classical Shock in M87
. 2 gg it
f P dl S Xarithmetic (Churazov et
P : al. 2015)- choosing proper
band

Piston drives shocks

4% SHOCK .-
Chandra (0.5-1.0keV) " chandra (3.5-7.5 keV)

A

23 kpc (75 Iyr) '

Black hole = 6.6x10° solar masses (Gebhardt+11)
SMBH drives jets and shocks

Inflates "bubbles” of relativistic plasma

Many small bubbles

Heat surrounding gas

Model to derive detailed shock properties



Central Region of M87 - the driving force

SMBH 3x10°M._,

6cm radio

g Gl ':"”::Jet Cmmy
— \“BUCI” /
e Cavities surround the jet and (unseen) counterjet
e Bubble breaking from counter jet cavity

- Perpendicular to jet axis;

- Radius ~1kpc.

- Formation time ~4 x10° years
e Piston driving shock —

- X-ray rim is low entropy gas uplifted/displaced by
relativistic plasma




X-arithmetic - Churazov et al. 2015
Isolate processes by

. S —
0.5-3.5 keV | 3575 ke V'~

: g S manipulating energy bands:

(b;-_T) = (%n)r—i

Churazov+2015
Arevalo+2015

No shocks No bubbles

Bubbles




Counts/s

Shock Model - the data

Hard (3.5-7.5 keV) pressure

soft (1.2-2.5 keV) density profiles
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Textbook Example of Shocks
Consistent density and tfemperature jumps

Rankine-Hugoniot Shock Jump Conditions
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Cavity size (kpc) Density jump
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Series of outbursts of varying 1 10
outburst energy (1.4, 5.5, Outburst Energy, 107 erg
22x10°7 ergs) with identical
duration (2.2 yr) - energy
determines shock amplitude

Energy vs. duration with
cavity size and density jump
constraints: duration ~ 2 Myr



Long vs. Short Duration Outbursts

10% ¢

L1 5151l

0.6 vs 2.2 Myr duration outbursts with
Eoutburst = 5.5x10°7 ergs

Short outburst - leaves hot, shocked
envelope outside the piston

NOT observed ==> longer duration
outburst required
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M87 Outburst Energy Parameters

Detect shock (X-ray) and driving piston (radio)
Classical (textbook) shock M=1.2 (temperature and density independently)
Outburst constrained by:
Size of driving piston (radius of cocoon)
Measured T2/T1, p2 /p1 (p2/p1)
Current shock radius

Outburst Model
Age ~ 12 Myr
Energy ~ 5x10°7 erg
Bubble 50%
Shocked gas 25% (25% carried away by weak wave)

Outburst duration ~ 2 Myr
Outburst is not violent (not Sedov-like)

Outburst energy "balances" cooling (few 10*3 erg/sec)



M87 is not alone - IC1262, A2052
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Feedback from Supermassive Black Holes
key component in galaxy formation models
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» Feedback - mass closely tied to mass of surrounding stars - Msmer
~ IO—SMbulge

+ SMBH key to reqgulating star formation in evolutionary models at
high mass end

» Radio loud AGN very common in massive galaxies
e.g. Croton+06, White & Frenk 91, Cole+92 Benson+'03 Best+06, Teyssier+11




Galaxy Sample from Jones et al. (Anderson, Churazov, Forman+)
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Cavities common > 30% in luminous *Massive SMBH is willing and able to disrupt
systems atmosphere given sufficient fuel: outburst
SMBH detected 70% radio and power ~ 5x10°8 ergs (Lanz+10)
80% X-ray *Likely merger (e.g., Schweizer 1980)
Winds at LK < 10! *Gas rich mergers could drive such
Scatter in L -opt partly outbursts at early epochs and disrupt star

environment/partly gas removal

formation



Massive Black Holes (Bogdan et al.
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NGC4342 ~ 4.6 x 108 Mo

NGC4291 ~ 9.6 x 108 Mo

(Cretton & van den Bosch 1999; Haring & Rix 2004;
Schultze & Gebhardt 2011)

NGC4342 - an extreme outlier (5.10 outlier)
*NGC4291 is less extreme (3.40 outlier)

2012) - two outliers

*NGC4342 and NGC4291
host massive dark matter
halos sufficient to bind hot
coronae

*measured using X-ray gas
(~hydrostatic equilibrium)

* Black holes are too
massive for their bulges

*Mgr/Mbuige =0.069 for
NGC4342 and 0.019 for
NGC4391

*60x and 13x larger
than “predicted”



NGC4342 and NGC4291 - star formation disrupted
at early times - Bogdan+2012

e Evolutionary scenario for NGC4342
NGC4342 and NGC4291 3 -

e Star formation suppressed - . e
by powerful SMBH outburst .
(e.g., like Fornax A driven by e
gas rich merger) at early el
epochs BEFORE all stars NGC4291
formed?? .

e SMBH growth precedes PR
stellar component e.g., * L.
Sijacki+14 b

eRosita will inventory

dark matter halos




M87 classic shock and bubbles
- reveals detailed SMBH interaction
- shocks are "weak”
- outbursts are "long” (>Myr)
- bubbles carry most of energy (>50%)

» bubbles/cavities everywherel

e more massive systems are more likely radio
bright

“cooling flows" from galaxies (~1 Msun/yr) to
clusters (~few 100 Msun/yr) moderated by SMBH
energy release

SMBH's are willing and able to disrupt cooling
atmospheres at low (and possibly high) redshifts

(NGC4342/NGC4391 SMBH's are too massive for

their stellar mass)

SMBH outbursts are a key phenomenon across
a vast range of halo mass and cosmic time

M87 - bubbles & shocks
X-ray (soft & hard)
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galaxies  groups clusters

Mhalo ~ 1012 —> 1015 Msun
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