

Optically selected clusters from DES science verification data and their SPT-SZE signature

Collaborators:

S. Boquet, E.Rozo, B.Benson, J.Mohr, B.Armstrong, E.Baxter, M.Becker, T.Biesiadzinski, L.Bleem, M.Busha, S.Dodelson, T. Giannantonio, B.Jain, J.Liu, J.McMahon, F. Menanteau, C.Miller, C.Reichardt, E.Rykoff, M.Soares Santos, V. Upadhyay, V.Vikram, R.Wechsler,+ +SPT coll.

+DES coll.

Alex Saro Universitäts-Sternwarte München

Outline

→ SPT-SZE and DES-SV

- I) Optical properties of SPT-SZE selected clusters
- > 2) SPT-SZE properties of optically selected clusters
- Conclusions

Our dataset

DES-SV

SPT-SZE

- ~250 sq. deg² of good imaging (griz)
 - Overlap with SPT and other fields
- Preliminary analysis underway in all the main science areas: Clusters, Weak Lensing, Supernovae, Large-Scale Structure

The 2500 deg² SPT-SZ Survey (2007-2011):

Final survey depths of:

- 90 GHz: 40 uK_{CMB}-arcmin
- 150 GHz: 17 uK_{CMB}-arcmin
- 220 GHz: 80 uK_{CMB}-arcmin

Complete overlap with DES survey

Zoom in on an SPT map 50 deg² from 2500 deg² survey

CMB Anisotropy

 Primordial and secondary anisotropy in the CMB

Point Sources - Highredshift dusty star forming galaxies and Active Galactic Nuclei

Clusters - High signal to noise SZ galaxy cluster detections as "shadows" against the CMB!

ALMA

z=2.782

HST-WFC3

Cluster of Galax

Sky at mm wavelenght

Sunyaev & Zel'dovich 1970, 1972

Adapted from L. Van Speybroeck

Unique spectrum

Unique angular scale

WMAP 90 GHz

Our dataset

DES-SV

<u>redMaPPer</u>

- → Based on the ^λ richness (Rozo+09; Rykoff+12,14; Rozo+14)
- → ~10⁴ clusters with richness λ >5 with

0.1<z<0.95

<u>Bleem et al. (2015)</u>

- → 677 SPT cluster candidates above a signal-to-noise threshold of $\xi = 4.5$
- → 516 confirmed SPT clusters up to z>1.5

1)Richness-Mass Relation for SPT-selected Clusters

Use our knowledge of SPT-SZE clusters to infer redMaPPer properties
Use the SPT-SZ 2500 deg² cluster catalog from Bleem et al. (2015), de Haan et al (2015, in prep)

• 19 DES-SV redMaPPer clusters cross-match with the SPT-SZ cluster catalog (Rozo et al. 2014)

•Use cosmology to constrain the Richness-Mass relation

1)Richness-Mass Relation for SPT-selected Clusters

POLE

$$\langle \ln \lambda | M_{500}, z \rangle = \ln A + B \ln \left(\frac{M_{500}}{3 \times 10^{14} \,\mathrm{M_{\odot}}} \right) + C \ln \left(\frac{E(z)}{E(z=0.6)} \right)$$

DARK ENERGY

SURVEY

$$\operatorname{Var}(\ln\lambda|M_{500}) = \exp(-\langle \ln\lambda|M_{500}\rangle) + D^2$$

Catalog	Α	В	С	D
SPT-RM $\xi > 4.5$	$66.1^{+6.3}_{-5.9}$	$1.14^{+0.21}_{-0.18}$	$0.73^{+0.77}_{-0.75}$	$0.15^{+0.10}_{-0.07}$
SPT-RM $\xi > 4$	$69.8_{-4.9}^{+6.0}$	$1.17_{-0.17}^{+0.19}$	$1.71_{-0.57}^{+0.63}$	$0.20^{+0.09}_{-0.08}$

 Parameters in agreement with lowz SDSS estimates by Rykoff et al. (2012)

Cluster Miscentering: Offsets in SZ-Optical Locations

=60.75 z=0

SPT-CLJ J0433-5630 S/N 5.3 z~0.7

1)SZ-Optical Central Offsets

Distribution of the SZ-redMaPPer center offsets:

• Important for future works (SZ properties of optically selected

clusters, e.g., Biesiadzinski+12,Sehgal+13,Rozo+14)

 Propagate the SPT positional uncertainty

$$\Delta \theta = \xi^{-1} \sqrt{\theta_{\text{beam}}^2 + \theta_c^2},$$

 Fit a 3 parameters model

$$P(x) = 2\pi x \left(\frac{\rho_0}{2\pi\sigma_0^2} e^{-\frac{x^2}{2\sigma_0^2}} + \frac{1-\rho_0}{2\pi\sigma_1^2} e^{-\frac{x^2}{2\sigma_1^2}} \right)$$

1)SZ-Optical Central Offsets

Distribution of the SZ-redMaPPer center offsets:

• Important for future works (SZ properties of optically selected clusters, e.g., Biesiadzinski+12,Sehgal+13,Rozo+14)

 Propagate the SPT positional uncertainty

$$\Delta\theta = \xi^{-1} \sqrt{\theta_{\rm beam}^2 + \theta_c^2},$$

 Fit a 3 parameters model

$$P(x) = 2\pi x \left(\frac{\rho_0}{2\pi\sigma_0^2} e^{-\frac{x^2}{2\sigma_0^2}} + \frac{1-\rho_0}{2\pi\sigma_1^2} e^{-\frac{x^2}{2\sigma_1^2}} \right)$$

Catalog	$ ho_0$	$\sigma_0[R_{500}]$	$\sigma_1[R_{500}]$
RM- $\xi > 4.5$	$0.63^{+0.15}_{-0.25}$	$0.07^{+0.03}_{-0.02}$	$0.25^{+0.07}_{-0.06}$

2)SZE-properties of **Optically Selected Clusters**

Stacked 719 RedMaPPer selected clusters from the largest contiguous region in DES-SV (SPT-E) match-filtered according to S15 λ -M₅₀₀ rel.

Stacked SPT maps for 11 log-equispaced λ -bins

 Y_{500} - λ relation

Including Arnaud+10, S15 λ mass calibration and bias due to SZ-optical miscentering priors

For every RM selected cluster: •Predict for a given point in p(scaling relations): $P(M_{500}|$ $\lambda,z,p)$ and $P(Y_{500\text{-expected}} | \lambda,z,p)$. •Correct for bias due to miscentering •Marginalize over scaling relations and miscentering distributions

Are we observing the same Planck-MaxBCG tension?

109

by the ACT team

One step back What is the SPT observable?

One step back What is the SPT observable?

100

X-axis can be read as mass for given redshift and cosmology

For every cluster selected with richness λ at redshift z can compute:

X-axis can be read as mass for given redshift and cosmology

SZE-properties of redMaPPer selected clusters

Including Arnaud+10, S15 λ mass calibration and bias due to SZ-optical miscentering priors.

For every RM selected cluster: •Predict for a given point in $p(\text{scaling relations}): P(M_{500}|$ $\lambda,z,p)$ and $P(Y_{500\text{-expected}}|\lambda,z,p)$. •Correct for bias due to miscentering •Marginalize over scaling relations and miscentering distributions

SZE-properties of redMaPPer selected clusters

Including Arnaud+10, S15 λ mass calibration and bias due to SZ-optical miscentering priors.

For every RM selected cluster: •Predict for a given point in $p(\text{scaling relations}): P(M_{500}|$ $\lambda,z,p)$ and $P(Y_{500\text{-expected}} | \lambda,z,p)$. •Correct for bias due to miscentering •Marginalize over scaling relations and miscentering distributions

Including preferred Planck bias 0.58

Conclusions

- •Two cluster surveys: SPT-SZE at mm and redMaPPer from DES at optical.
- •Robust and reliably cross-match of SPT-SZE selected clusters with optically selected clusters from the Science Verification data of the Dark Energy Survey.
- •Calibrate Richness-Mass scaling relation from SPT-SZE selected clusters and test the adopted model.
- •Calibrate the Optical-SZ central offset distribution
- •Strong correlation between richness and SPT-SZE signature detected for RM selected clusters
- Consistency checks show relatively low contamination levels from point-sources
- Model of optical-SZE central offset included

•Qualitatively agreement with previous literature works (but large impact of priors) and hint for a large bias (consistent with Planck results)