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Observations of M87
Cosmic rays
Heating

Radio mode feedback by AGN: open questions

Cosmic ray feedback

@ energy source:
release of non-gravitational accretion
energy of a black hole

magnetic draping — amplification
CR confinement vs. release
excitation of turbulence

self-regulated to avoid overcooling
thermally stable to explain T floor

1)
2.
3)
@ heating mechanism:
1)
2.)
3.) low energy coupling efficiency

Perseus cluster (NRAO/VLA/G. Taylor) Vi ket

@ cosmic ray heating:
1.) are CRs efficiently mixed into the ICM?
2.) is the CR heating rate sufficient to balance cooling? N
3.) how universal is this heating mechanism in cool cores? Jms
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Observations of M87
Cosmic rays
Heating

Messier 87 at radio wavelengths

Cosmic ray feedback

v = 1.4 GHz (Owen+ 2000) v = 140 MHz (LOFAR/de Gasperin+ 2012)

@ high-v: freshly accelerated CR electrons
low-v:

@ LOFAR: halo confined to same region at all frequencies and no
low-v spectral steepening — puzzle of “missing fossil electrons” ><J
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Observations of M87
Cosmic rays
Heating

Solutions to the “missing fossil electrons” problem

Cosmic ray feedback

solutions:
@ special time: M87 turned on R NN Ty
~ 40 Myr ago after long T gnenic
silence wEL

B=20.G v s

< conflicts order unity duty
cycle inferred from stat. AGN
feedback studies (irzan+ 2012)

10 Coulomb:

@ Coulomb cooling removes I
fossil electrons
— efficient mixing of CR
electrons and protons with It 10 1‘?; w0 I

dense cluster gas

electron loss timescales = E/E [Myr]
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The gamma-ray picture of M87

@ high state is time variable
— jet emission

! ' ! Radio
1000 4
HST W]
Chandra &
@ low state: 4|

(1) Steady flux " HESS. hgh

] L N
. ¥ L R

as

Y, [1079 ergfs om?]
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(3) spatial extension is under "
investigation (,?) Rieger & Aharonian (2012)

— confirming this triad would be smoking gun for first v-ray
signal from a galaxy cluster!
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Cosmic ray feedback

Estimating the cosmic-ray pressure in M87

@ X-ray data — nand T profiles S E T
@ assume steady-state CR o s
streaming: Pe o< p?/2 oc Py, % = .

¥ i

@ F, x [dV Pynenables to . Loes

eStimate Xcr - Pcr/Pth - 0.31 , *
(allowing for Coulomb cooling
with 7eou = 40 Myr)

01
10408 1er10 les12 lesld lesl6 Tles18 1e:20 1es22 1ei24 1er26 les28
v[HZ]

Rieger & Aharonian (2012)

— in agreement with non-thermal pressure constraints from
dynamical potential estimates (churazov+ 2010)
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Observations of M87
Cosmic rays
Heating

Interactions of cosmic rays and magnetic fields

Cosmic ray feedback

@ CRs scatter on magnetic fields — isotropization of CR momenta

@ CR Streaming InStablllty Kulsrud & Pearce 1969

o if vor > va, CR current provides
steady driving force, which amplifies
an Alfvén wave field in resonance
with the gyroradii of CRs

e scattering off of this wave field limits
the (GeV) CRs’ bulk speed ~ va

e wave damping: transfer of CR energy
and momentum to the thermal gas

— CRs exert a pressure on the thermal gas by means of
scattering off of Alfvén waves >\j
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Cosmic ray feedback

Cosmic-ray transport

@ total CR velocity vo = v + vy + Vg (Where )
] with the flux-frozen B field in the gas

@ CRs stream adiabatically down their own pressure gradient
relative to the gas:

b-VPy . B B?
=— _— h b=_—_ an =4\/—
Vgt VAb\b-VPcr\ with b B and v e
@ CRs diffuse in the wave frame due to pitch angle scattering by
MHD waves: b. VP
— . p2i Ve
Vg = —kai b Py s
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Cosmic ray feedback

Cosmic-ray heating vs. radiative cooling (1)

CR Alfvén-wave heating:
(Loewenstein, Zweibel, Begelman 1991, Guo & Oh 2008, EnBlin+ 2011)

5P,
Hoy = —VaVPy = —vs (xc,v,<Pth>Q + 5/“)

@ Alfvén velocity va = B/+/4mp with
B ~ Bgq from LOFAR and p from X-ray data

@ X inferred from ~ rays
@ Py, from X-ray data
@ pressure fluctuations 6P, /d/ (e.g., due to weak shocks of M ~ 1.1)

radiative cooling:
Crad = NeNilcool(T, Z)

@ cooling function Aggo With Z ~ Z, N
all quantities determined from X-ray data JHITS
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Cosmic ray feedback

Cosmic-ray heating vs. radiative cooling (

Global thermal equilibrium on all scales in M87

0%

radial extent of radio halo:
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Cosmic ray feedback

Local stability analysis (1)

T?Her
Tzcrad

heating

cooling

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /‘/XJH,TS
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Cosmic ray feedback

Local stability analysis (1)

T?Her
Tzcrad

heating

cooling

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /‘/XJH,TS
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Cosmic ray feedback

Local stability analysis (1)

T?Her
Tzcrad

heating

stable FP cooling

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /‘/XJH,TS
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Cosmic ray feedback

Local stability analysis (1)

T?Her
Tzcrad

separatrix

heating

&

‘stable FP cooling

region of stability

KT
@ isobaric perturbations to global thermal equilibrium

@ CRs are adiabatically trapped by perturbations /‘/XJH,TS
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Cosmic ray feedback

Local stability analysis (2)

Theory predicts observed temperature floor at kT ~ 1 keV

L Xcr =031 A
sL I3 ____ Xcr=0031-
\
~ [ 1 1
g | 1
% L : “islands of stability” B
© [ 7
g o A
[} | \/1( 1
£ !
G | )
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5 ‘ ]
»g; ‘\ “ocean of instability” _
ol L L PR
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Virgo cluster cooling flow: temperature profile

X-ray observations confirm temperature floor at kT ~ 1 keV

™

KT (keV)

1 10

R (arcmin) Matsushita+ (2002) XJ
g HITS
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Observations of M87
Cosmic rays
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Emerging picture of CR feedback by AGNs

Cosmic ray feedback

(1) during buoyant rise of bubbles:
CRs diffuse and stream outward
— CR Alfvén-wave heating

CR streaming

(2) if bubbles are disrupted, CRs are ™1
injected into the ICM and caught in a ’ .
turbulent downdraft that is excited by " Biltou et advection:
the rising bubbles adiabatic compression

nd CR energization

— CR advection with flux-frozen field
— adiabatic CR compression and
energizing: Pe/Pero = 0*/3 ~ 20 for
compression factor § = 10

CR injection

(3) CR escape and outward stream- by bubble disruption
ing — CR Alfvén-wave heating ,
/ >/\‘\JHITS
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Cosmic ray feedback

Prediction: flattening of high-»~ radio spectrum
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Cool core sample
Bimodality

Diversity of cool cores .
Conclusions

How universal is CR heating in cool core clusters?

@ no ~ rays observed from other clusters — P, unconstrained

@ strategy: construct sample of 24 cool cores
(1) assume Her = Crag at r = Teool, 1 Gyr
(2) Per o< P%r/z
(3) adopt B model from Faraday rotation studies:
B = 404G x (n/0.1cm~%)"® where ag € {2/3,1}
(4) calculate hadronic radio and ~-ray emission and
compare to observations
@ consequences:

= if Her = Crag V r @and hadr. emission below observational limits:
successful CR heating model that is locally stabilized at ~ 1 keV

= otherwise CR heating ruled out as dominant heating source * XJ

HITS
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heating in cool core clusters (1)

Diversity of cool cores
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heating in cool core clusters (2

Diversity of cool cores
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Conclusions

Cosmic-ray heating in Hydra A vs. Perseus
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L
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2 populations of cool cores emerging:

@ pop 1 (Hydra A, Virgo, ...): Her = Crag

L
100
r [kpc]

Jacob & C.P. (in prep.)

— CR heated?

@ pop 2 (Perseus, Ophiuchus, ...): Her 7# Crag: host radio-mini halos!
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Non-thermal pressure balance

Xer mi Xer.s Hydra A
0.30 Cr. :mn | | CI %ll | ydra
02sk| ! ! -

| |
0.20 | | B
> 0.15 | | | .
0.10 |- | | — XA
—_— Xp
0.05 |- ' X,
0.00 L L | L
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Xer

Jacob & C.P. (in prep.)
@ define X = Por/Pin and Xg = Pg/ P
@ CRheating rate:  Her = —Va+ VPor o< X3 Xer
@ non-thermal pressure at fixed heating rate:
Xot = (Xg + Xer)py,, = AXe? + X — Xormin = (RA)° 30
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Hadronic emission: radio and ~ rays
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Hadronic emission: radio and ~ rays
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Hadronic emission: radio and ~ rays
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Hadronic emission: radio and ~ rays
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@ CR heating solution ruled out in radio mini-halos (Her # Crag)! XJ
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Correlations in cool cores
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Jacob & C.P. (in prep.)

possibly cosmic ray-heated cool cores vs. radio mini halo clusters:
@ F,obs > Fupred: strong radio source = abundant injection of CRs

@ peaked CC profile (.00 < 20 kpc) and simmering star formation:
cosmic-ray(?) heating is effectively balancing cooling

@ large star formation rates: heating out of balance //XJH,TS
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Conclusions on AGN feedback by cosmic-ray heating

cosmic-ray heating in M87:

@ LOFAR puzzle of “missing fossil electrons” in M87 solved by
mixing with dense cluster gas and Coulomb cooling

)
— estimate CR-to-thermal pressure of X, = 0.31

@ CR Alfvén wave heating balances radiative cooling on all scales
within the central radio halo (r < 35 kpc)

@ local thermal stability analysis predicts observed temperature
floor at KT ~ 1 keV

diversity of cool cores:
@ peaked cool cores: possibly stably heated by cosmic rays

@ radio mini halo clusters: cosmic-ray heating ruled out —
systems are strongly cooling and form stars at large rates /XJHITS
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Literature for the talk

AGN feedback by cosmic rays:
@ Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei:
new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ,

779, 10.
@ Jacob & Pfrommer, Diversity in cool core clusters: implications for cosmic-ray
heating, in prep.
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Impact of varying Alfvén speed on CR heating

global thermal equilibrium: local stability criterion:

10% .

T T
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5i- —— Her, va=const o
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radial extent of radio halo:

s ] _
. 10 g T
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1

parametrize B o p®&, which implies va4 = B/\/4mp o p*8~1/2:
@ ap = 0.5 is the geometric mean, implying v4 = const.
°

@ ap = 1 for collapse perpendicular to B, implying va ;  p'/2 \,.XJH”S
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CR heating dominates over thermal conduction

Diversity of cool cores
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Critical length scale of the instability (~ Fields length)

@ CR streaming transfers energy to a gas parcel with the rate
Her = —Va+ VPy ~ fva|V Py,

where fs is the magnetic suppression factor
@ line and bremsstrahlung emission radiate energy with a rate Cyqq

@ limiting size of unstable gas parcel since CR Alfvén-wave heating
smoothes out temperature inhomogeneities on small scales:

i — fsVaPer
crit —
C'rad
o
— constraint on magnetic suppression factor fs J
HITS
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Critical length scale of the instability (~ Fields length)

Diversity of cool cores
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Self-consistent CR pressure in steady state

@ CR streaming transfers energy per unit volume to the gas as
Aeyh = —7aVa - V Py = Por = Xor P,

where 74 = 6//vj4 is the Alfvén crossing time and ¢/ the CR
pressure gradient length

@ comparing the first and last term suggests that a constant
CR-to-thermal pressure ratio X is a necessary condition if CR
streaming is the dominant heating process

— thermal pressure profile adjusts to that of the streaming CRs!
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