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Radio mode feedback by AGN: open questions

energy source:
release of non-gravitational accretion
energy of a black hole

jet-ICM interaction and rising bubbles:
1.) magnetic draping → amplification
2.) CR confinement vs. release
3.) excitation of turbulence

heating mechanism:
1.) self-regulated to avoid overcooling
2.) thermally stable to explain T floor
3.) low energy coupling efficiency Perseus cluster (NRAO/VLA/G. Taylor)

cosmic ray heating:
1.) are CRs efficiently mixed into the ICM?
2.) is the CR heating rate sufficient to balance cooling?
3.) how universal is this heating mechanism in cool cores?
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Messier 87 at radio wavelengths

ν = 1.4 GHz (Owen+ 2000) ν = 140 MHz (LOFAR/de Gasperin+ 2012)

high-ν: freshly accelerated CR electrons
low-ν: fossil CR electrons → time-integrated AGN feedback!

LOFAR: halo confined to same region at all frequencies and no
low-ν spectral steepening → puzzle of “missing fossil electrons”
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Solutions to the “missing fossil electrons” problem

solutions:

special time: M87 turned on
∼ 40 Myr ago after long
silence
⇔ conflicts order unity duty
cycle inferred from stat. AGN
feedback studies (Birzan+ 2012)

Coulomb cooling removes
fossil electrons
→ efficient mixing of CR
electrons and protons with
dense cluster gas
→ predicts γ rays from
CRp-p interactions:
p + p → π0 + . . . → 2γ + . . .
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The gamma-ray picture of M87

high state is time variable
→ jet emission

low state:
(1) steady flux

(2) γ-ray spectral index (2.2)
= CRp index
= CRe injection index as

probed by LOFAR

(3) spatial extension is under
investigation (?) Rieger & Aharonian (2012)

→ confirming this triad would be smoking gun for first γ-ray
signal from a galaxy cluster!
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Estimating the cosmic-ray pressure in M87

hypothesis: low state of γ-ray emission traces π0 decay in ICM:

X-ray data → n and T profiles

assume steady-state CR
streaming: Pcr ∝ ργcr/2 ∝ Pth

Fγ ∝
∫

dV Pcrn enables to
estimate Xcr = Pcr/Pth = 0.31
(allowing for Coulomb cooling
with τCoul = 40 Myr)

Rieger & Aharonian (2012)

→ in agreement with non-thermal pressure constraints from
dynamical potential estimates (Churazov+ 2010)
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Interactions of cosmic rays and magnetic fields

CRs scatter on magnetic fields → isotropization of CR momenta

CR streaming instability: Kulsrud & Pearce 1969

if vcr > vA, CR current provides
steady driving force, which amplifies
an Alfvén wave field in resonance
with the gyroradii of CRs

scattering off of this wave field limits
the (GeV) CRs’ bulk speed ∼ vA

wave damping: transfer of CR energy
and momentum to the thermal gas

→ CRs exert a pressure on the thermal gas by means of
scattering off of Alfvén waves
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Cosmic-ray transport

total CR velocity vcr = v + vst + vdi (where v ≡ vgas)

CRs are advected with the flux-frozen B field in the gas

CRs stream adiabatically down their own pressure gradient
relative to the gas:

vst = −vA b
b ·∇Pcr

|b ·∇Pcr|
with b =

B
|B|

and vA =

√
B2

4πρ

CRs diffuse in the wave frame due to pitch angle scattering by
MHD waves:

vdi = −κdi b
b ·∇Pcr

Pcr
,
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Cosmic-ray heating vs. radiative cooling (1)
CR Alfvén-wave heating:
(Loewenstein, Zweibel, Begelman 1991, Guo & Oh 2008, Enßlin+ 2011)

Hcr = −vA ·∇Pcr = −vA

(
Xcr∇r 〈Pth〉Ω +

δPcr

δl

)
Alfvén velocity vA = B/

√
4πρ with

B ∼ Beq from LOFAR and ρ from X-ray data

Xcr inferred from γ rays

Pth from X-ray data
pressure fluctuations δPcr/δl (e.g., due to weak shocks ofM' 1.1)

radiative cooling:
Crad = neniΛcool(T , Z )

cooling function Λcool with Z ' Z�,
all quantities determined from X-ray data
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Cosmic-ray heating vs. radiative cooling (2)
Global thermal equilibrium on all scales in M87
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Local stability analysis (1)

heating

kT

cooling

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations
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Local stability analysis (1)

heating

kT

unstable FP

cooling

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations
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Local stability analysis (1)

cooling

kT

unstable FP

heating

stable FP

isobaric perturbations to global thermal equilibrium

CRs are adiabatically trapped by perturbations
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Local stability analysis (1)

cooling
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region of stability region of instability
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CRs are adiabatically trapped by perturbations

Christoph Pfrommer AGN feedback: mechanical versus cosmic-ray heating



Cosmic ray feedback
Diversity of cool cores

Observations of M87
Cosmic rays
Heating

Local stability analysis (2)
Theory predicts observed temperature floor at kT ' 1 keV

105 106 107 108

-5

0

5

temperatureT [K]

in
st

ab
ili

ty
cr

ite
ri

o
n

,a
rs

in
h(D

)

“islands of stability”

“ocean of instability”

XCR = 0.31
XCR = 0.031

C.P. (2013)

Christoph Pfrommer AGN feedback: mechanical versus cosmic-ray heating



Cosmic ray feedback
Diversity of cool cores

Observations of M87
Cosmic rays
Heating

Virgo cluster cooling flow: temperature profile
X-ray observations confirm temperature floor at kT ' 1 keV

Matsushita+ (2002)
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Emerging picture of CR feedback by AGNs

(1) during buoyant rise of bubbles:
CRs diffuse and stream outward
→ CR Alfvén-wave heating

(2) if bubbles are disrupted, CRs are
injected into the ICM and caught in a
turbulent downdraft that is excited by
the rising bubbles
→ CR advection with flux-frozen field
→ adiabatic CR compression and
energizing: Pcr/Pcr,0 = δ4/3 ∼ 20 for
compression factor δ = 10

(3) CR escape and outward stream-
ing → CR Alfvén-wave heating

CR streaming
and diffusion

CR injection
by bubble disruption

and CR energization
adiabatic compression
turbulent advection:
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Prediction: flattening of high-ν radio spectrum
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How universal is CR heating in cool core clusters?

no γ rays observed from other clusters → Pcr unconstrained

strategy: construct sample of 24 cool cores
(1) assume Hcr = Crad at r = rcool, 1 Gyr

(2) assume steady-state CR streaming: Pcr ∝ ργcr/2

(3) adopt B model from Faraday rotation studies:
B = 40 µG×

(
n/0.1 cm−3

)αB where αB ∈ {2/3, 1}
(4) calculate hadronic radio and γ-ray emission and

compare to observations

consequences:
⇒ if Hcr = Crad ∀ r and hadr. emission below observational limits:
successful CR heating model that is locally stabilized at ∼ 1 keV

⇒ otherwise CR heating ruled out as dominant heating source
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Cosmic-ray heating in cool core clusters (1)
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Cosmic-ray heating in cool core clusters (2)
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Cosmic-ray heating in Hydra A vs. Perseus
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2 populations of cool cores emerging:

pop 1 (Hydra A, Virgo, . . . ): Hcr = Crad → CR heated?

pop 2 (Perseus, Ophiuchus, . . . ): Hcr 6= Crad: host radio-mini halos!
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Non-thermal pressure balance
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define Xcr = Pcr/Pth and XB = PB/Pth

CR heating rate: Hcr = −vA ·∇Pcr ∝ X 0.5
B Xcr

non-thermal pressure at fixed heating rate:

Xnt ≡ (XB + Xcr)Hcr
= AX−2

cr + Xcr → Xcr,min = (2A)1/3

Christoph Pfrommer AGN feedback: mechanical versus cosmic-ray heating



Cosmic ray feedback
Diversity of cool cores

Cool core sample
Bimodality
Conclusions

Hadronic emission: radio and γ rays
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Jacob & C.P. (in prep.)

CR heating solution ruled out in radio mini-halos (Hcr 6= Crad)!
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Hadronic emission: radio and γ rays
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CR heating solution ruled out in radio mini-halos (Hcr 6= Crad)!
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Hadronic emission: radio and γ rays
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CR heating solution ruled out in radio mini-halos (Hcr 6= Crad)!
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Hadronic emission: radio and γ rays
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CR heating solution ruled out in radio mini-halos (Hcr 6= Crad)!
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Correlations in cool cores
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Jacob & C.P. (in prep.)

possibly cosmic ray-heated cool cores vs. radio mini halo clusters:

Fν,obs > Fν,pred: strong radio source = abundant injection of CRs

peaked CC profile (rcool . 20 kpc) and simmering star formation:
cosmic-ray(?) heating is effectively balancing cooling

large star formation rates: heating out of balance
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Conclusions on AGN feedback by cosmic-ray heating

cosmic-ray heating in M87:

LOFAR puzzle of “missing fossil electrons” in M87 solved by
mixing with dense cluster gas and Coulomb cooling

predicted γ rays identified with low state of M87
→ estimate CR-to-thermal pressure of Xcr = 0.31

CR Alfvén wave heating balances radiative cooling on all scales
within the central radio halo (r < 35 kpc)

local thermal stability analysis predicts observed temperature
floor at kT ' 1 keV

diversity of cool cores:

peaked cool cores: possibly stably heated by cosmic rays

radio mini halo clusters: cosmic-ray heating ruled out
systems are strongly cooling and form stars at large rates
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Literature for the talk

AGN feedback by cosmic rays:
Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei:
new insights from M87 observations by LOFAR, Fermi and H.E.S.S., 2013, ApJ,
779, 10.

Jacob & Pfrommer, Diversity in cool core clusters: implications for cosmic-ray
heating, in prep.
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Additional slides
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Impact of varying Alfvén speed on CR heating

global thermal equilibrium:
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radial extent of radio halo:

local stability criterion:
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HCR, υA = const.

parametrize B ∝ ραB , which implies vA = B/
√

4πρ ∝ ραB−1/2:

αB = 0.5 is the geometric mean, implying vA = const.

αB = 0 for collapse along B, implying vA,‖ ∝ ρ−1/2

αB = 1 for collapse perpendicular to B, implying vA,⊥ ∝ ρ1/2
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CR heating dominates over thermal conduction
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Critical length scale of the instability (∼ Fields length)

CR streaming transfers energy to a gas parcel with the rate

Hcr = −vA ·∇Pcr ∼ fsvA|∇Pcr|,

where fs is the magnetic suppression factor

line and bremsstrahlung emission radiate energy with a rate Crad

limiting size of unstable gas parcel since CR Alfvén-wave heating
smoothes out temperature inhomogeneities on small scales:

λcrit =
fsvAPcr

Crad

however: unstable wavelength must be supported by the system
→ constraint on magnetic suppression factor fs
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Critical length scale of the instability (∼ Fields length)
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Self-consistent CR pressure in steady state

CR streaming transfers energy per unit volume to the gas as

∆εth = −τAvA ·∇Pcr ≈ Pcr = XcrPth,

where τA = δl/vA is the Alfvén crossing time and δl the CR
pressure gradient length

comparing the first and last term suggests that a constant
CR-to-thermal pressure ratio Xcr is a necessary condition if CR
streaming is the dominant heating process

→ thermal pressure profile adjusts to that of the streaming CRs!
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