Shocking News from Galaxy Clusters

Marcus Brüggen

Franco Vazza (Hamburg) Francesco De Gasperin (Hamburg) Annalisa Bonafede (Hamburg) Reinout van Weeren (CfA) Georgiana Ogrean (CfA) Huub Röttgering (Leiden) Will Dawson (UC Davis) David Wittman (UC Davis) James Jee (UC Davis) Andra Stroe (Leiden)

M Brüggen

U of Hamburg

What can mergers between galaxy clusters teach us about:

- 1. Particle acceleration (and generation of B fields)?
- 2. The nature of Dark Matter?
- 3. Galaxy Evolution?

€

Momentum

What are radio relics?

PSZ1 G108.18-11.53

colour: X-ray contours: radio

ZwCl 0008.8+5215

van Weeren et al. 11

De Gasperin 14

U of Hamburg

The sausage: CIZA J2242.8+5301

GMRT 610 MHz, resolution of 4.8 arcsec×3.9 arcsec. total on source time 9 hrs, bandwidth of 32 MHz.

U of Hamburg

Akamatsu, van Weeren, Kawahara, Röttgering, MB Hoeft, Sobral, Ogrean, Kaastra 2014

Smoothed galaxy luminosity density map of CIZA

Problem #1: Efficient electron acceleration at low Mach numbers

Shock-Drift Acceleration

U of Hamburg

Shock-Drift Acceleration

Guo et al. 2014

U of Hamburg

E-vectors

12 \bigcirc 0 0 0 100 % 11 10 Declination 09 Ô 08 07 0 \bigcirc 0 53⁰ 06' 22^h 43^m 30^s 20^s 42^m 50^s 30^s 10^S 40^s 20^s 00^{s} Right Ascension

polarisation @ 2.2 GHz: 50 %

and why is it so smooth?

U of Hamburg

Still some questions...

Abell 2146 puzzle

Chandra 0.3-7.0 keV, Russell et al. 2011

GMRT 325 MHz

Mach numbers:

M = 2.1 + / - 0.2

M = 1.6 + / - 0.1

Why do we not observe radio emission from these shocks?

Slide from Reinout

PLCKG287.0 +32.9

Connection AGN relic?

red: XMM blue: 325 MHz

Bonafede et al 2014

Problem #2: Where are the protons?

Where are the protons?

U of Hamburg

Ackermann et al (2013) stacked samples **** 10⁰ K_{ep}(M) Vazza, Eckert & Brüggen (in prep.) $\epsilon = 0.05$ $\epsilon = 0.04$ 10^{-1} f = 0.03 γ -emission[ph/(s cm²)] 10⁻⁹ $\epsilon = 0.00$ $\epsilon = 0.01$ $\epsilon = 0.02$ 10^{-2} 10^{-3} $0.1\eta_{p}(M)$ stacking of this dataset 10^{-4} ξ.(M) 10^{-10} 10^{-5} FERMI stack.(Huber+13) 2.0 1.5 2.5 3.0 3.5 4.0 $\mathsf{M}_{\mathsf{radio}}$ 5 0 1 3 2 4 models

Figure 8. Acceleration efficiency of CR-protons (green, rescaled by a factor $\times 10$ down) and CR-electrons (blue), and electron to proton acceleration ratio (red) allowed by our combined radio and γ -ray comparison with observations. In this case, we assumed a fixed magnetic field of $B = 2\mu G$ for all relics.

Fermi-upper limits (stacked)

Figure 3. Acceleration efficiency, defined as the fraction of the post-shock energy density in particles with $E \ge 10E_{sh}$, at $t = 200\omega_c^{-1}$, for several shock inclinations and Mach numbers. There is a very significant drop in the acceleration efficiency for $\vartheta \ge 45^{\circ}$, and the largest efficiency is achieved for fast, parallel shocks. A color version is available in the online journal.

U of Hamburg

Problem #3: Where does the B field come from?

Magnetic field amplification by cosmic rays

precursor exerts a force on the upstream plasma not proportional to gas density

Density fluctuations \rightarrow acceleration fluctuations \rightarrow density fluctuations

Cosmic-ray driven turbulence

Magnetic field amplification

can be probed with Faraday rotation...

Brüggen 2013

U of Hamburg

Hamburg LOFAR station just completed

https://lofar.physik.uni-bielefeld.de//

U of Hamburg

LOFAR

van Weeren et al in prep

H alpha Luminosity Function

Stroe, Sobral, Dawson, Jee, Hoekstra, Brüggen, et al. 2014

Conclusions

 Relativistic plasma is great for finding shocks in cluster outskirts and learn about B-fields

- Some cluster shocks show relics, some do not.
- Relics show best evidence to date for shock acceleration at low M
- Efficient electron acceleration at low-M shocks at high beta via SDA
- Why are there no gamma rays detected?
- Look for offset between DM and galaxy centroid SIDM?
- Star formation increased behind shock in CIZA 2242 but not in toothbrush
- First LOFAR observations of relics are becoming available

Thank you!

