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microphysics



motivations for turbulence 
acceleration

• diffuse radio sources appear only in massive systems 

• they appear to be triggered by mergers / bi-modality (but see 
Enßlin+ 2011) 

• spectral curvature 

• source statistics suggests a lifetime of ca 1 Gyr 

• we don’t see gamma-rays that would suggest a secondary 
origin 

• other more sophisticated tests but like radial profile requiring 
some assumption about B or the like



outline

• (computational modeling) 

• some properties of turbulence in galaxy clusters 

• particle acceleration by turbulence, impact of 
microphysics of weak shocks



Eulerian Refinement Strategy:  
Zoom-in + Matryoshka of grids
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time: 11.9 Gyr time: 12.2 Gyr time: 12.6 Gyr
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Statistics

(von Karman & Howarth, 1938)
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Evolution of Turbulence
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Particle Acceleration
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Particle Acceleration

• Transit-Time-Damping (Fisk 1976, BL07): 
2nd order Fermi process, particles resonate with fast 
MHD waves and get reflected by the mirror force
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micro macro

• Non Resonant Mech. (Ptuskin 1988, BL07): 
stochastic acceleration due to velocity divergence 
according to the adiabatic process
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Spectra of Turbulent Cascade

Brunetti & Jones 2014



Key Cascade Physics
• the cascade of the compressional modes, Alfven vs Burgers: how much 

dissipation occurs during the cascade ? If enough to steepen the structure 
functions then the mechanisms become very inefficient 

• the slope of the cascade of compressional modes affects  

i) the value of the energy-averaged wave-vector which tends to kL as ζ⟶1 

ii) the cascade cutoff which can become much larger 

• the collisionality of the plasma; if thermal particles have their mfp reduced by 
micro instabilities (mirror, firehose…), they won’t resonate with and damp the 
MHD waves anymore, only CRs do, so their acceleration efficiency increases 
dramatically
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Time evolution of spectral 
indexes
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takeaway result
• the simulation model of the turbulence pins down an important ingredient entering 

the acceleration rate, which is the amount of compressional turbulent energy 
available for TTD or NR mechanisms 

• the microphysics of the ICM plasma, however, also enters the acceleration rates, 
and because we have fixed the above unknown, we can now expose its impact 

• the acceleration rates depend on at least the following microphysics (but possibly 
other as well) of:  

• the cascade of the compressional modes, Alfven vs Burgers: how much 
dissipation occurs during the cascade ? If enough to steepen the structure 
functions then the mechanisms become very inefficient 

• the collisionality of the plasma; if micro instabilities (mirror, firehose… ) reduce the 
thermal particles mfp then the acceleration efficiency is very high 

• we also need to understand the properties of magnetic fields


