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Is bimodality related to gas accretion physics? Dekel & Birnboim (2006)

. . or to the modes of 
galactic “feedback” 

from star formation or 
AGN?

Oppenheimer & Davé 2009

-14 -16 -18 -20 -22 -24 -26

0

1

2

3

4

Mr

u 
- r

Wed Jan 26 09:50:14 2011

cmd.ps

R
ed

Bl
ue

Keres+05

Fumagalli+11

Sunday, June 26, 2011



The Central Problem of the “Circumgalactic Medium”
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The Central Problem of the “Circumgalactic Medium”

“Circumgalactic” galaxy halo gas is 
too diffuse to be studied in emission, and 

a random sightline through the IGM is intercepted by 
<1 galaxy halo (they’re just too small!) 

Thus, we need a new approach to direct 
observations of galaxy accretion and outflows and 

their relations to galaxy properties. 
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Galaxy (L~L*) halo gas through the years

Lanzetta et al. (1995, ApJ, 442, 538)

Ly halo extends to 150-200 kpc, 
unity covering fraction inside there.

HI
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Galaxy (L~L*) halo gas through the years

Lanzetta et al. (1995, ApJ, 442, 538)

Ly halo extends to 150-200 kpc, 
unity covering fraction inside there.

HI

Chen, Lanzetta, & Webb (2001, ApJ, 556, 158)

C IV halo sharply edged at 100 kpc, 
unity covering fraction inside there.

CIV
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Galaxy (L~L*) halo gas through the years

Lanzetta et al. (1995, ApJ, 442, 538)

Ly halo extends to 150-200 kpc, 
unity covering fraction inside there.

HI

Chen, Lanzetta, & Webb (2001, ApJ, 556, 158)

C IV halo sharply edged at 100 kpc, 
unity covering fraction inside there.

CIV

Chen et al. (2010)

Mg II halo extends to ~50 kpc, 
70-80% covering fraction inside there.

Mg II
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Galaxy (L~L*) halo gas through the years

Lanzetta et al. (1995, ApJ, 442, 538)

Ly halo extends to 150-200 kpc, 
unity covering fraction inside there.

HI

Chen, Lanzetta, & Webb (2001, ApJ, 556, 158)

C IV halo sharply edged at 100 kpc, 
unity covering fraction inside there.

CIV

Chen et al. (2010)

Mg II halo extends to ~50 kpc, 
70-80% covering fraction inside there.

Mg II

Five O VI absorbers < 150 kpc, covering 
fraction ~2/3; prefer star-forming galaxies?

O VI
Chen & Mulchaey (2009, ApJ, 701, 1219)

See Prochaska+11 for dwarf and sub-L* galaxies
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Why O VI? 
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Advantages: 
- highest T probe available in FUV
- strong doublet, easily detected 
- IGM samples for comparison
- peak ionization fraction at T = 
300,000K, still significant at 106 K
- catches gas heating and/or cooling 
through coronal regime.

Disadvantages: 
- must be redshifted to detect w/ 
HST (mirror absorbs at < 1150). 
- peak abundance lies where rad 
cooling is efficient, so there are 
significant non-equilibrium issues.

O VI has also been widely used to 
count hot gas or “missing 

baryons”, so general IGM samples 
are well characterized. 

Tripp+08, Thom+Chen08,Danforth+Shull08
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39 galaxies in 134 HST orbits
(13 “red and dead”, 

26 star-forming)

Background light 
source (QSO)

STScI Team
Data Division

Jessica Werk & Xavier Prochaska (Santa Cruz)
Joseph Meiring & Todd Tripp (UMass)

Christopher Thom & Ken Sembach (STScI)
Theory Division

Amanda Ford & Romeel Davé (Arizona)
Neal Katz (UMass), David Weinberg (The OSU),
Ben Oppenheimer (Leiden), Molly Peeples (UCLA)

“COS-Halos”
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PI = Jim Green, U. of Colorado
Installed by John Grunsfeld & Drew 
Feustel on SM4, May 16, 2009

Optimized for UV spectroscopy,         
R = 2000 and R = 18000 gratings, 
low-background photon-counting 
detectors. 

FUV Channel: 
Effective area 10 - 20x that of STIS 
over 1150-1800 Å. 

The Cosmic Origins Spectrograph

Light from
HST secondary
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COS Installation 
May 16, 2009

PI = Jim Green, U. of Colorado
Installed by John Grunsfeld & Drew 
Feustel on SM4, May 16, 2009

Optimized for UV spectroscopy,         
R = 2000 and R = 18000 gratings, 
low-background photon-counting 
detectors. 

FUV Channel: 
Effective area 10 - 20x that of STIS 
over 1150-1800 Å. 

The Cosmic Origins Spectrograph

Light from
HST secondary

Sunday, June 26, 2011



COS-Halos Survey Design: 

- O VI 1032, 1036 must be redshifted
 to z > 0.11 to detect in HST band.

- The main SDSS spectroscopic galaxy 
survey is flux-limited to z ≤ 0.1, so select 
galaxies in foreground based on 
photometric redshift. 

- Then obtain spectroscopic redshifts with 
Keck/LRIS (via CoI Prochaska+Werk). 

- Selection for galaxies at z > 0.1 limits the 
survey to ~ L*. 

- Select background QSOs to obtain          
S/N ~ 10 with COS in 2-5 orbits. 
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Keck/LRIS Galaxy Spectroscopy 
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Werk+11Measure redshift, SFR, stellar mass, 
metallicity, environment, etc.
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Gas Halos and Galaxy Bimodality

GALEX+SDSS (Schiminovich et al. 2007) 
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Gas Halos and Galaxy Bimodality

“Blue cloud” galaxies have 92% detection rate (100% inside 90 kpc) 

GALEX+SDSS (Schiminovich et al. 2007) 
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Gas Halos and Galaxy Bimodality

“Blue cloud” galaxies have 92% detection rate (100% inside 90 kpc) 
“Red sequence” galaxies have 44% detection rate. 

GALEX+SDSS (Schiminovich et al. 2007) 
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Gas Halos and Galaxy Bimodality

“Blue cloud” galaxies have 92% detection rate (100% inside 90 kpc) 
“Red sequence” galaxies have 44% detection rate. 

“Green Valley”. . . too few to tell. Get some more data? 

GALEX+SDSS (Schiminovich et al. 2007) 
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Star Forming Galaxy Halos: Lots of Oxygen Mass!

MOVI = R2 NOVI 16mH M⊙ 

. . . then apply ionization correction fOVI. . . 

MOxygen = 1.2 x 107 (0.2/fOVI) M⊙ 

Mgas = 2 x 109 (Z⊙/Z) (0.2/fOVI) M⊙

R = 150 kpc
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MOxygen = 1.2 x 107 (0.2/fOVI) M⊙ 

Oxygen and Gas mass in ionized halos may 
exceed the average ISM!

Mgas = 2 x 109 (Z⊙/Z) (0.2/fOVI) M⊙

Requires 109 M⊙ of 
total star-formation!
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Accretion Scenario for O VI?

Sig
ht

lin
e

O VI can fit into the 
“Multiphase Accretion” 
scenario as the tracer of 
interface gas between the 

cooler condensed clouds and 
the hot coronal halo. 

T ~ 104 K
Mg II

T ~ 105 K
O VI

T ~ 106 K
hot halo

But the covering fraction 
predicted by “cold mode” or 

“multiphase” accretion is 
~10-20%, not ~100%. 

e.g. Keres&Hernquist 2009
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Models from Oppenheimer & Davé (2009)

O VI
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The large oxygen mass in the ionized halos of galaxies implies at 
least 1 Gyr worth of star formation and oxygen yield, efficiently 

transported out to > 150 kpc. 

All sample.

Blue

Red

Impact Parameter [kpc]

Mhalo  ~ 1012 M⊙ Mhalo  ~ 1013 M⊙ Mhalo  ~ 1012.5 M⊙ 

So what about outflows? 
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O VI Kinematics O VI gets stronger by getting broader 
(not by getting optically thick and 

saturated).

 There is little if any O VI-traced material 
outside beyond the escape velocities of 

the host halos.  

Tumlinson+11
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“Recycled winds” = half of accretion at z < 1?

The O VI we represents significant mass and 
metal outflow from galaxies, yet does not appear 
to exceed the escape velocity. 

This finding is consistent with the expectation that 
much of z < 1 accretion is recycled outflows.

“Wind mode” is 80% of accretion for L* galaxies 
(in this simulation). 

No 
winds

Fast 
winds

Slow
winds

Mom-
driven
winds

Oppenheimer et al. 2010
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Tripp et al. (2011, submitted)

PG1206+459 z = 0.93
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Tripp et al. (2011, submitted)

PG1206+459 z = 0.93
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A wind caught in the act
Ten multiphase components (Δv~1600km/s), 

with ions ranging from Mg II (104 K) to      
Ne VIII (106 K).

Cold gas can be photoionized by the 
extragalactic (HM) background. 

The hot gas is probably collisionally ionized, 
but closely tracks components in the colder 

material. 

Total wind mass 108 - 109 M⊙ inferred from 
ionization modeling and a shell geometry.

Tripp et al. (2011, submitted)

PG1206+459 z = 0.93
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J0943+0513
Thom et al. (2011, arXiv:1105.4601)

Two clouds: 
- one at “low velocity”, consistent with z = 0.1Zsun 
photoionized filament gas. (+85 kms-1)

- another at high column density, but               
[Z/H] < -1.5, and likely falling into the galaxy.

The “Metal-poor cloud” could be low-metallicity, 
cold-stream gas (e.g. Stewart+11, Fumagalli+11)

Evidence of Cold Accretion?

Sunday, June 26, 2011

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011arXiv1105.4601T&db_key=PRE&link_type=ABSTRACT&high=4cd6f4341400601
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2011arXiv1105.4601T&db_key=PRE&link_type=ABSTRACT&high=4cd6f4341400601


- a partial Lyman limit at z = 0.274

- [Z/H] < -1.7, and likely falling into 
the 0.3L* galaxy at 37 kpc.

- temperature constrained by 
linewidths to < 38000 K. 

Ribaudo et al. 2011
arXiv:1105.5381

More Cold Accretion? 

Sunday, June 26, 2011



Unfinished business: COS-Dwarfs
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Using COS, we have mapped hot ionized gas in L~L* galaxy halos: 

1. Hot ionized gas is as common in star-forming galaxy halos as in the Milky Way. 
External galaxy halos are also filled with “highly ionized HVCs”. 

2.  O VI covers 90% of blue sequence galaxies; only 30% of red sequence galaxies.  
The dichotomy of galaxy colors appears directly in their gaseous halos.

3. The ionized halos of star-forming galaxies contain > 107 M⊙ of oxygen and >109 M⊙ of gas.
These oxygen masses are comparable to a
whole galaxy ISM and require 109 M⊙ of
star formation over ~1 Gyr. Outflows!?

4. Infall models fail on covering fraction, 
but if outflows exist the material does 
not exceed the escape velocity. 

The halos of star-forming galaxies are
filled with accreting ionized gas, “galactic
fountain” material from recent star
formation, or some mixture. 
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The End

Thanks!
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