
University of Durham 

Institute for Computational Cosmology 

The gas accretion history 
of the Milky Way: theory  

Gas accretion in spirals & 
ellipticals: theory & observations 

Carlos S.  Frenk 
  Institute for Computational Cosmology, 

Durham 



University of Durham 

Institute for Computational Cosmology 

The galaxy baryon budget in a 
ΛCDM universe 

•  The total amount of baryons associated with halos of galaxies is 
> 5 times the observed stars and gas at all redshifts 

•  These baryons should have accreted onto all but the smallest 
galaxy/halo systems as their halos grew  

From Simon White’s talk yesterday: 

Where are these baryons? 



A simple picture of disc galaxy formation in CDM!

•  Gas accreted onto dark matter halo 
‣  Has cosmic baryon fraction 
‣  Is shocked 

•  Gas cools radiatively 
‣  If  tcool < tdyn gas infalls directly  
‣   If  tcool >  tdyn gas forms hot atmosphere:  

  at virial temperature (~106 K for MW) 
  distributed like dark matter  

‣  Cooled gas forms rotationally supported disc 
‣  Stars condense out of cold gas 
‣  Some gas returned to hot corona by SN heating 

White & Frenk ʻ91 

•  In large galaxies, process is self-regulating  
‣  Disk continues to grow in spirals & ellipticals  
‣  Cooling gas emits x-rays 
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White & Frenk (1991) 

For Milky Way analogues, predict: 
‣  kT~0.1 keV (soft X-ray) 

‣  1041-1042 erg/s for vc ~ 220 kms-1 at z=0 

Galaxy formation in a cold 
dark matter universe 

…detectable  with ROSAT, XMM, Chandra 

direct 
infall 

direct 
infall 

hot 
corona 

hot 
corona 
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“Cold flows” 

Katz et al. ‘03, Keres et al. ‘05 

In  SPH sims, cold gas delivered 
into central parts by filaments 

WF ’91 theory includes rapidly 
cooling gas (tcool < tdyn) but assumes 

spherical symmetry 
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Looking for X-rays form 
spirals with ROSAT 

Benson, Bower, Frenk & White ‘00 

N2841 

N4594 

N5529 

Upper limit: (10-100) x below theoretical predictions 
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Check with hydro simulations


A problem for CDM galaxy 
formation theory!  

  several detections of X-rays from halos of spirals  

… but LX is (10-100) x below theoretical predictions  

XMM/Chandra  

Where did WF91 go wrong? 



Millennium Simulation 
L = 500 Mpc/h 

GIMIC region (1 of 5) 
r ~ 20 Mpc/h  

GIMIC galaxy  
  ε = 500 pc/h  

Galaxies-Intergalactic Medium Interaction Calculation!

‣  ``Resimulation’’ of 5 regions from the Millennium simulation including baryons


‣  Covering whole range of environments (voids --> clusters)


‣  OWLS code: SPH, cooling, SF, feedback, chemodynamics


‣  mgas ~106 Msun/h, L* galaxies resolved with 105 particles


‣  Runs to z=0
 Crain et al. (2009)
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The OWLS code 

•  Gas cooling   including 11 metals, external UV background 

•  Star formation (Schmidt law) 

•  Stellar evolution  inc SN Type II & Ia and release of 11 metals 

•  SN driven galactic winds  

•  NO black holes or AGN feedback  important for Mh  >1013 Mo 

Gadget-3 (Virgo consortium) 
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Galaxies in GIMIC 

Are these simulations reliable? 

Two problems with cosmological simulations: 

•  Too many stars are formed 

•  Difficult to make disk galaxies 
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log M200[Mo] 
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SPH simulations 

Disk galaxies in GIMIC 

Gimic gals  in halos of  
M<1012.5 Mo  are close to  

Guo-White data (but 
scatter is larger) 

Crain et al. ‘10 
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Are these simulations reliable? 

Two problems with cosmological simulations: 

•  Too many stars are formed 
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‣  Isolated central galaxies 

‣  1010< M★ <1011.5 Mo 

‣  D/T > 0.3  

‣  500 well-resolved ‘Milky 
Ways’  

 Realistic distribution of 
D/T stellar mass ratio 
(50% with D/T>0.5) !  

Disk galaxies in GIMIC 

disk/total (stellar mass) 

1267 galaxies,  M*>1010 Mo 

Select: 
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Crain et al. ‘10 



Simulations of galaxy formation and the real world 

with 
Rob Crain (Swinburne) 
Ian McCarthy (Cambridge),  
Tom Theuns (Durham), 
Joop Schaye (Leiden). Hydro simulation: gas 

density and OVIII flux 
• Crain etal ‘10 



University of Durham 

Institute for Computational Cosmology 

•  Soft X-ray luminosity: APEC Extra-planar, bound gas at T > 20,000 K;     
H, He & 9 metals 

A GIMIC galaxy in X-rays and K-band light 

Crain et al ‘10 

Soft X-rays


•  K-band luminosity: star particles treated as SSP+ GALAXEV (B&C’03) 
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‣  Little X-ray emiiting gas (by mass) is in outflows. 
Mass dominated by hydrostatic corona 

‣  Sub-dominant outflows contribute 
disproportionately to LX 

X-ray flux dominated by low surface brightness cooling flow gas, 
but SN outflows contribute disproportionally because they come 

from dense, metal-rich central parts 

X-rays: inflow or outflow? 
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‣  Assume vrot = vmax     
‣  Simulations  agree with               
observations! 

X-ray luminosity – disc velocity 
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GIMIC 

Crain et al. ‘10 

Data for: 

•  edge-on spirals 

•  binaries subtracted 

•  extraplanar emission  
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Simulations and data match! 

X-ray luminosity – disc velocity 

… at (10-100) lower LX than predicted by WF ‘91 

In sims most X-ray emission due to gas cooling from hot corona  
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… 
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‣  Assume vrot = vmax     
‣  Simulations  agree with               
observations! 

X-ray luminosity – disc velocity 

Crain, McCarthy et al. ‘10 

Data for: 

•  edge-on spirals 

•  binaries subtracted 

•  extraplanar emission ✪ 
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Winds/fountains vs accretion 

Reasons for the: 

“standard explanation of the emission as a fountain or originating 
from within the galaxy”   (Anderson & Bregman ‘11) 

•  Correlation between LX and SFR,  

•  Correlation between LX and stellar mass, LK  

€ 

˙ M *



Credit: X-ray: NASA/CXC/JHU/D.Strickland; Optical: NASA/ESA/STScI/AURA/The 
Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht


The nature of X-ray emitting gas!
Cooling flow or wind-driven outflow?!
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Credit: X-ray: NASA/CXC/JHU/D.Strickland; Optical: NASA/ESA/STScI/AURA/The 
Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht


The nature of X-ray emitting gas!
Cooling flow or wind-driven outflow?!



M82 is not a good test of WF91!

M81!

M82!



University of Durham 

Institute for Computational Cosmology 

‣  Little X-ray emiiting gas (by mass) is in outflows. 
Mass dominated by hydrostatic corona 

‣  Sub-dominant outflows contribute 
disproportionately to LX 

X-ray flux dominated by low surface brightness cooling flow gas, 
but SN outflows contribute disproportionally because they come 

from dense, metal-rich central parts 

X-rays: inflow or outflow? 
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Winds/fountains vs accretion 

Reasons for the: 

“standard explanation of the emission as a fountain or originating 
from within the galaxy”   (Anderson & Bregman ‘11) 

•  Correlation between LX and SFR,  

•  Correlation between LX and stellar mass, LK 

•   M82  
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Obs:: Benson+ 00, Strickland+ 04, Wang 05, 
Tullmann+06, Li, Wang & Hameed 07, Owen & 
Warwick 09, Rasmussen+ 09,Sun+09


LX vs stellar K-band luminosity    

•     GIMIC 
 X-ray detections/upper limits  •  Data shows weak  LX –       reln. 

•  Simulations and data match! 
€ 

˙ M 
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Crain, McCarthy et al. ‘10 
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Obs:: Benson+ 00, Strickland+ 04, Wang 05, 
Tullmann+06, Li, Wang & Hameed 07, Owen & 
Warwick 09, Rasmussen+ 09,Sun+09


LX vs stellar K-band luminosity    

•     GIMIC 
 X-ray detections/upper limits  

•  LX – LK correlation   

•  Simulations and data match! 

•  Increased scatter at LK<3x10Lo 

Crain, McCarthy et al. ‘10 
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LX vs stellar K-band luminosity    
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LX,       , M*,  LK all depend on M200!  
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K-band lum stellar mass halo mass 

… and this is why LX correlates with      , LK, etc 
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A problem for CDM galaxy 
formation theory!  

  several detections of X-rays from halos of spirals  

… but LX is (10-100) x below theoretical predictions  

XMM/Chandra  

Where did WF91 go wrong? 
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 Cooling/star formation & SN feedback reduce the central density 
of hot gas.  Entropy injection increases tcool w.r.t. analytic model.  

The state of halo gas  

Suppression of LX by x(10-100) relative to WF’91 

Hot gas density profile 
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The evolution of halo gas  

Rapid entropy injection 
at z~1-3, during peak of 

star formation 

Entropy evolution 
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•  Infalling gas shock-heated to Tvir  

•  Gas cools radiatively onto central 
galaxy and forms disk, conserving J 

 rdisk  ~ λh rcool 

•  Satellite sinks by dynamical friction 
and merges onto central galaxy 

•  Mergers trigger central starburst 

•  In major mergers, stellar disks  
spheroids 

•  New disk may form by gas accretion 

Galaxy formation: the basics 

•  Stars form in disk  

•  And give rise to feedback effects 



University of Durham 

Institute for Computational Cosmology 

X-rays for galaxy halos: spirals 

Spirals 

LX(0.5-2KeV)  vs  LK 

XMM/Chandra 
XMM/Chandra 

(exc binaries) 
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X-rays for galaxy halos: ellipticals 

XMM/Chandra 

Spirals / Ellipticals 

LX(0.5-2KeV)  vs  LK 

Same location! 

XMM/Chandra 

(exc binaries) 

Same physics? 
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X-rays for galaxy halos: ellipticals 

XMM/Chandra 

Spirals / Ellipticals 

LX(0.5-2KeV)  vs  LK 

Same location! 

XMM/Chandra 

(exc binaries) 

Same physics? 
LX of ellipticals here potentially 

dominated by unresolved thermal 
point souirces 
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X-rays for galaxy halos: S+E 

XMM/Chandra 
and 

GIMIC 

Spirals / Ellipticals 

LX(0.5-2KeV)  vs  LK 

Same location! 

Same physics? 

Emission from 
hot corona! 

GIMIC 
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X-rays: from galaxies to clusters 

 McCarthy et al ‘11 

Clusters, groups, spirals, 
ellipticals all lie on a 

single    LX-TX relation! 

Over 5 decades in LX 

 Same physics? 

Break may be due to transition 
from baryonically closed to 

baryonically open halos KT (ev) 
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•  Rapid mode dominates  z<1 

•  For Mhalo~1012Mo, 2/3 of star 
formed from coronal mode  

What fuels star formation in disks?  

Distinguish gas accreted with 
short and long tcool as: 

•  “Rapid mode”: Tmax  > 105K 

•  “Coronal mode”: Tmax < 105K   
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Crain, McCarthy, Frenk et al. ‘10 
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•  Hot X-ray emitting halos: key prediction of CDM gal. form. theory 

•  Observed halos around spirals: (10-100)x fainter than predicted 

•  GIMC simulations give low LX in agreement with obs because: 

-  Baryon content reduced by star formation and winds 

-  Gas much less concentrated than DM due to SN feedback 
(entropy raised at z~1-3) 

•  X-rays dominated by cooling from hot quasistatic corona 

•  < 30% of X-rays come from winds (which are disproportionally bright) 

•  Sims agree with obs. scaling relns: LX – vrot, LX – LK, LX -   

•  Ellipticals have similar X-ray properties to spirals 

•  Spirals & ellipticals follow same LX – TX rel. as groups & clusters 

Conclusions  
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Stars only
All baryons
 Baryon fractions 

Suppressed below 90% of 
cosmic by SF & winds 

The baryon content of gal halos  

 Gas

For Mhalo  < 1012 Mo 

fb~0.5 of cosmic 

 Low fb contributes 
to low LX   

Crain, McCarthy et al. ‘10 


