

Collaborators: Xavier Prochaska (UCSC); Chris Thom (STScI); Hsiao-Wen Chen (Chicago); Rob Simcoe (MIT); Joop Schaye & Co. (Leiden)

WHY CIV AND SIIV ABSORBERS?

- Trace cosmic enrichment cycle with common metals
 - And Si may trace O, which is most common
- Well-studied with optical telescopes for $1.5 \le z \le 5.5$
- Resonant absorption-line doublets
 - Characteristic wavelength separation and rest equivalent width ratio
- Rest wavelengths red-ward of Lyα 1215 (i.e., outside forest, unlike OVI)

• Interest in systems with both doublets for e.g., ionizing background studies

METAL ABSORPTION LINES AFFECTED BY...

- Metallicity and relative abundances
- Ionizing background
 - Changes ionization balance
- Physical distribution
 - Function of density and physical size

METAL ABSORPTION LINES AFFECTED BY...

- Metallicity and relative abundances
- Ionizing background
 - Changes ionization balance
- Physical distribution
 - Function of density and physical size

(Haardt & Madau 1996, 2005)

Local sources (e.g., stellar radiation field) softens background.

At $z \approx 3$, HeII reionization affects UVB around 4 Ryd.

METAL ABSORPTION LINES AFFECTED BY...

- Metallicity and relative abundances
- Ionizing background
 - Changes ionization balance
- Physical distribution
 - Function of density and physical size

log (# of 1 Ryd photons per H atom)

(Haardt & Madau 1996, 2005)

Local sources (e.g., stellar radiation field) softens background.

At $z \approx 3$, HeII reionization affects UVB around 4 Ryd.

C⁺³ not necessarily dominate C ion but best tracer observationally.

METAL ABSORPTION LINES AFFECTED BY...

- Metallicity and relative abundances
- Ionizing background
 - Changes ionization balance
- Physical distribution
 - Function of density and physical size

Data

$N(C^{+3})$ and $N(Si^{+3})$ Frequency Distributions

Analysis

Defining and Measuring C^{+3} Mass Density

• Relative to critical density of Universe:

$$\Omega_{C^{+3}} = \frac{H_0 m_C}{c \rho_{c,0}} \int_{N_{\min}}^{N_{\max}} f(N(C^{+3})) N(C^{+3}) dN(C^{+3})$$

• *Could* sum column densities:

$$\Omega_{C^{+3}} = \frac{H_0 m_C}{c \rho_{c,0}} \sum_{\mathcal{N}} \frac{N(C^{+3})}{\Delta X(N(C^{+3}))}$$

• *Actually* assume power-law formulism and integrate:

$$\Omega_{C^{+3}} = \frac{H_0 m_C}{c \rho_{c,0}} \frac{k}{2 + \alpha} \left(\frac{N_{\max}^{2+\alpha} - N_{\min}^{2+\alpha}}{N_0^{\alpha}} \right)$$

• Define finite bounds: $13 \le \log N \le 15$

Results

MASS DENSITIES OVER AGE OF UNIVERSE

C⁺³: Increases by 4±0.5 over high-z variance-weighted mean. Rate: $(0.51\pm0.16) \times 10^{-8}$ Gyr⁻¹

Si⁺³: Increases by 4+3/-1.9 over high-z unweighted median. Rate: (0.61±0.13) × 10⁻⁸ Gyr⁻¹

Results

Absorber Line Density: Evolution?

Teaser

THE C+3 MASS DENSITY "STORY"... Now Under FIRE

 $\frac{\text{Results}}{\text{IONIC RATIO}} \\ N(\text{Si}^{+3})/N(\text{C}^{+3})$

- No evolution with redshift
 - Both samples drawn from same parent population
- $N(\text{Si}^{+3})/N(\text{C}^{+3}) \approx 0.16$ for 12 Gyr!
 - No signature for HeII reionization at $z \approx 3$
- Balanced interplay of three processes:

$$\frac{N(\mathrm{Si}^{+3})}{N(\mathrm{C}^{+3})} = \left(\frac{L_{\mathrm{Si}}}{L_{\mathrm{C}}}\right) \left(\frac{n_{\mathrm{Si}}}{n_{\mathrm{C}}}\right) \left(\frac{\chi_{\mathrm{Si}}^{\mathrm{Si}^{+3}}}{\chi_{\mathrm{C}}^{\mathrm{C}^{+3}}}\right)$$

• Must turn to simulations...

Preliminary

OVERWHELMINGLY LARGE SIMULATIONS

See Schaye et al. (2010)

(Schaye & Dalla Vecchia 2008; Dalla Vecchia & Schaye 2008; Wiersma et al 2009a, b; Booth & Schaye 2009; and more!)

• Hydrodynamic cosmological simulations, $z = 127 \rightarrow 0$

- Gadget III
- Periodic boundary conditions
- 2×512³ (baryonic+dark matter) particles
- 100 h⁻¹ Mpc on a side
- Chemical evolution physics:
 - Radiative cooling by 11 elements
 - Photoionization by UV background in addition to collisional ionization equilibrium
 - Chemodynamics (production and dispersal of elements)

COMPARING SIMULATIONS TO OBSERVATIONS: $N(C^{+3})$ and $N(Si^{+3})$ Frequency Distributions

C⁺³: Just need <u>feedback and</u> <u>cooling</u> to reproduce shape. <u>Too few</u> CIV absorbers! Except for THERMAL_FB...? Si⁺³: Just need <u>feedback</u> to reproduce shape but <u>too few</u>. SiIV observations better reproduced with higher σ_8 ?

Preliminary

C⁺³ COLUMN DENSITY MAPS: GALAXIES?

Preliminary C⁺³ COLUMN DENSITY MAPS: GALAXIES!

Summary

SUMMARY

- $\circ\,z < 1$ C+3 and Si+3 mass densities increased compared to 1.5 < z < 5 mean/median
- Physical distribution of absorbers "work" to keep $d\mathcal{N}dX$ within factor of two for 12 Gyr
 - Interplay of co-moving number density and cross section
 - CIV and SiIV absorbers likely trace circumgalactic medium more than IGM

• At low redshift? At all redshifts?!

o Ionic ratio $N(Si^{+3})/N(C^{+3})$ constant for 12 Gyr

- Processes balance to produce constant ratio...
- ... future work with OWLS to disentangle