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Abstract

We describe the newly written code GADGET which is suitable both for cosmological simulations of structure formation
and for the simulation of interacting galaxies. GADGET evolves self-gravitating collisionless fluids with the traditional
N-body approach, and a collisional gas by smoothed particle hydrodynamics. Along with the serial version of the code, we
discuss a parallel version that has been designed to run on massively parallel supercomputers with distributed memory. While
both versions use a tree algorithm to compute gravitational forces, the serial version of GADGET can optionally employ the
special-purpose hardware GRAPE instead of the tree. Periodic boundary conditions are supported by means of an Ewald
summation technique. The code uses individual and adaptive timesteps for all particles, and it combines this with a scheme
for dynamic tree updates. Due to its Lagrangian nature, GADGET thus allows a very large dynamic range to be bridged,

7both in space and time. So far, GADGET has been successfully used to run simulations with up to 7.5 3 10 particles,
including cosmological studies of large-scale structure formation, high-resolution simulations of the formation of clusters of
galaxies, as well as workstation-sized problems of interacting galaxies. In this study, we detail the numerical algorithms
employed, and show various tests of the code. We publicly release both the serial and the massively parallel version of the
code.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction the non-linear gravitational clustering of dark matter,
the formation of clusters of galaxies, the interactions

Numerical simulations of three-dimensional self- of isolated galaxies, and the evolution of the inter-
gravitating fluids have become an indispensable tool galactic gas. Without numerical techniques the im-
in cosmology. They are now routinely used to study mense progress made in these fields would have been

nearly impossible, since analytic calculations are
often restricted to idealized problems of high sym-
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come possible both by the rapid growth of computer nature is a great advantage if a large dynamic range
performance and by the implementation of ever more in density needs to be covered. Here tree codes can
sophisticated numerical algorithms. The development outperform mesh based algorithms. In addition, tree
of powerful simulation codes still remains a primary codes are basically free from any geometrical restric-
task if one wants to take full advantage of new tions, and they can be easily combined with integra-
computer technologies. tion schemes that advance particles on individual

Early simulations (Aarseth et al., 1979; Holmberg, timesteps.
1941; Peebles, 1970; Press and Schechter, 1974; Recently, PM and tree solvers have been com-
White, 1976, 1978; among others) largely employed bined into hybrid Tree-PM codes (Bagla, 1999; Bode
the direct summation method for the gravitational et al., 2000; Xu, 1995). In this approach, the speed
N-body problem, which remains useful in collisional and accuracy of the PM method for the long-range
stellar dynamical systems, but it is inefficient for part of the gravitational force are combined with a
large N due to the rapid increase of its computational tree-computation of the short-range force. This may
cost with N. A large number of groups have there- be seen as a replacement of the direct summation PP

3fore developed N-body codes for collisionless dy- part in P M codes with a tree algorithm. The Tree-
namics that compute the large-scale gravitational PM technique is clearly a promising new method,
field by means of Fourier techniques. These are the especially if large cosmological volumes with strong

3 3PM, P M, and AP M codes (Bertschinger and Gelb, clustering on small scales are studied.
1991; Couchman, 1991; Eastwood and Hockney, Yet another approach to the N-body problem is
1974; Efstathiou et al., 1985; Hockney and Eas- provided by special-purpose hardware like the
twood, 1981; Hohl, 1978; MacFarland et al., 1998). GRAPE board (Ebisuzaki et al., 1993; Fukushige et
Modern versions of these codes supplement the force al., 1991, 1996; Ito et al., 1991; Kawai et al., 2000;
computation on scales below the mesh size with a Makino, 1990; Makino and Funato, 1993; Makino et
direct summation, and/or they place mesh refine- al., 1997; Okumura et al., 1993). It consists of
ments on highly clustered regions. Poisson’s equa- custom chips that compute gravitational forces by the
tion can also be solved on a hierarchically refined direct summation technique. By means of their
mesh by means of finite-difference relaxation meth- enormous computational speed they can considerably
ods, an approach taken in the ART code by Kravtsov extend the range where direct summation remains
et al. (1997). competitive with pure software solutions. A recent

An alternative to these schemes are the so-called overview of the family of GRAPE-boards is given by
tree algorithms, pioneered by Appel (1981, 1985). Hut and Makino (1999). The newest generation of
Tree algorithms arrange particles in a hierarchy of GRAPE technology, the GRAPE-6, will achieve a
groups, and compute the gravitational field at a given peak performance of up to 100 TFlops (Makino,
point by summing over multipole expansions of 2000), allowing direct simulations of dense stellar

6these groups. In this way the computational cost of a systems with particle numbers approaching 10 .
complete force evaluation can be reduced to a Using sophisticated algorithms, GRAPE may also be

32(N log N) scaling. The grouping itself can be combined with P M (Brieu et al., 1995) or tree
achieved in various ways, for example with Eulerian algorithms (Athanassoula et al., 1998; Fukushige et
subdivisions of space (Barnes and Hut, 1986), or al., 1991; Makino, 1991a) to maintain its high
with nearest-neighbour pairings (Jernigan and Porter, computational speed even for much larger particle
1989; Press, 1986). A technique related to ordinary numbers.
tree algorithms is the fast multipole-method (e.g., In recent years, collisionless dynamics has also
Greengard and Rokhlin, 1987), where multipole been coupled to gas dynamics, allowing a more
expansions are carried out for the gravitational field direct link to observable quantities. Traditionally,
in a region of space. hydrodynamical simulations have usually employed

While mesh-based codes are generally much faster some kind of mesh to represent the dynamical
for close-to-homogeneous particle distributions, tree quantities of the fluid. While a particular strength of
codes can adapt flexibly to any clustering state these codes is their ability to accurately resolve
without significant losses in speed. This Lagrangian shocks, the mesh also imposes restrictions on the
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geometry of the problem, and onto the dynamic use of a time integration scheme with individual and
range of spatial scales that can be simulated. New adaptive particle timesteps, and on the elimination of
adaptive mesh refinement codes (Klein et al., 1998; sources of overhead both in the serial and parallel
Norman and Bryan, 1998) have been developed to code under conditions of large dynamic range in
provide a solution to this problem. timestep. Such conditions occur in dissipative gas-

In cosmological applications, it is often sufficient dynamical simulations of galaxy formation, but also
to describe the gas by smoothed particle hydro- in high-resolution simulations of cold dark matter.
dynamics (SPH), as invented by Lucy (1977) and The code allows the usage of different timestep
Gingold and Monaghan (1977). The particle-based criteria and cell-opening criteria, and it can be
SPH is extremely flexible in its ability to adapt to comfortably applied to a wide range of applications,
any given geometry. Moreover, its Lagrangian nature including cosmological simulations (with or without
allows a locally changing resolution that ‘automat- periodic boundaries), simulations of isolated or inter-
ically’ follows the local mass density. This conveni- acting galaxies, and studies of the intergalactic
ent feature helps to save computing time by focusing medium.
the computational effort on those regions that have We thus think that GADGET is a very flexible
the largest gas concentrations. Furthermore, SPH ties code that avoids obvious intrinsic restrictions for the
naturally into the N-body approach for self-gravity, dynamic range of the problems that can be addressed
and can be easily implemented in three dimensions. with it. In this methods-paper, we describe the

These advantages have led a number of authors to algorithmic choices made in GADGET which we
develop SPH codes for applications in cosmology. release in its parallel and serial versions on the

1Among them are TREESPH (Hernquist and Katz, internet, hoping that it will be useful for people
1989; Katz et al., 1996), GRAPESPH (Steinmetz, working on cosmological simulations, and that it will
1996), HYDRA (Couchman et al., 1995; Pearce and stimulate code development efforts and further code-
Couchman, 1997), and codes by Carraro et al. sharing in the community.

´(1998), Dave et al. (1997), Evrard (1988), Hultman This paper is structured as follows. In Section 2,
¨and Kallander (1997), Navarro and White (1993). we give a brief summary of the implemented

See Kang et al. (1994) and Frenk et al. (1999) for a physics. In Section 3, we discuss the computation of
comparison of many of these cosmological hydro- the gravitational force both with a tree algorithm,
dynamic codes. and with GRAPE. We then describe our specific

In this paper we describe our simulation code implementation of SPH in Section 4, and we discuss
GADGET (GAlaxies with Dark matter and Gas our time integration scheme in Section 5. The
intEracT), which can be used both for studies of parallelization of the code is described in Section 6,
isolated self-gravitating systems including gas, or for and tests of the code are presented in Section 7.
cosmological N-body/SPH simulations. We have Finally, we summarize in Section 8.
developed two versions of this code, a serial work-
station version, and a version for massively parallel
supercomputers with distributed memory. The work-
station code uses either a tree algorithm for the 2. Implemented physics
self-gravity, or the special-purpose hardware
GRAPE, if available. The parallel version works

2.1. Collisionless dynamics and gravitywith a tree only. Note that in principle several
GRAPE boards, each connected to a separate host
computer, can be combined to work as a large Dark matter and stars are modeled as self-gravitat-
parallel machine, but this possibility is not im- ing collisionless fluids, i.e., they fulfill the collision-
plemented in the parallel code yet. While the serial less Boltzmann equation (CBE)
code largely follows known algorithmic techniques,
we employ a novel parallelization strategy in the

1parallel version. GADGET’s web-site is:
A particular emphasis of our work has been on the http://www.mpa-garching.mpg.de/gadget.
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Further, the thermal energy u per unit mass evolvesdf ≠f ≠f ≠F ≠f
] ] ] ]]; 1 v 2 5 0, (1) according to the first law of thermodynamics, viz.dt ≠t ≠x ≠r ≠v

du P L(u, r)where the self-consistent potential F is the solution ] ] ]]5 2 =? v 2 . (5)dt r rof Poisson’s equation

Here we used Lagrangian time derivatives, i.e.,
2

= F(r, t) 5 4pG E f(r, v, t) dv, (2)
d ≠
] ]5 1 v ?=, (6)dt ≠tand f(r, v, t) is the mass density in single-particle
and we allowed for a piece of ‘extra’ physics in formphase-space. It is very difficult to solve this coupled
of the cooling function L(u, r), describing externalsystem of equations directly with finite difference
sinks or sources of heat for the gas.methods. Instead, we will follow the common N-

For a simple ideal gas, the equation of state isbody approach, where the phase fluid is represented
by N particles which are integrated along the charac- P 5 (g 2 1)ru, (7)
teristic curves of the CBE. In essence, this is a

where g is the adiabatic exponent. We usually takeMonte Carlo approach whose accuracy depends
g 5 5/3, appropriate for a mono-atomic ideal gas.crucially on a sufficiently high number of particles.

2The adiabatic sound speed c of this gas is c 5 gP/r.The N-body problem is thus the task of following
Newton’s equations of motion for a large number of
particles under their own self-gravity. Note that we

3. Gravitational forceswill introduce a softening into the gravitational
potential at small separations. This is necessary to

3.1. Tree algorithmsuppress large-angle scattering in two-body colli-
sions and effectively introduces a lower spatial

An alternative to Fourier techniques, or to directresolution cut-off. For a given softening length, it is
summation, are the so-called tree methods. In theseimportant to choose the particle number large enough
schemes, the particles are arranged in a hierarchy ofsuch that relaxation effects due to two-body encoun-
groups. When the force on a particular particle isters are suppressed sufficiently, otherwise the N-body
computed, the force exerted by distant groups issystem provides no faithful model for a collisionless
approximated by their lowest multipole moments. Insystem. Note that the optimum choice of softening
this way, the computational cost for a complete forcelength as a function of particle density is an issue
evaluation can be reduced to order 2(N log N)that is still actively discussed in the literature (e.g.,
(Appel, 1985). The forces become more accurate ifAthanassoula et al., 2000; Romeo, 1998; Splinter et
the multipole expansion is carried out to higheral., 1998).
order, but eventually the increasing cost of evaluat-
ing higher moments makes it more efficient to2.2. Gasdynamics
terminate the multipole expansion and rather use a
larger number of smaller tree nodes to achieve aA simple description of the intergalactic medium
desired force accuracy (McMillan and Aarseth,(IGM), or the interstellar medium (ISM), may be
1993). We will follow the common compromise toobtained by modeling it as an ideal, inviscid gas. The
terminate the expansion after quadrupole momentsgas is then governed by the continuity equation
have been included.

dr We employ the Barnes and Hut (1986 henceforth
]1 r=? v 5 0, (3)dt BH) tree construction in this work. In this scheme,

the computational domain is hierarchically par-and the Euler equation
titioned into a sequence of cubes, where each cube

dv =P contains eight siblings, each with half the side-length] ]5 2 2=F. (4)dt r of the parent cube. These cubes form the nodes of an
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oct-tree structure. The tree is constructed such that situation, one formally needs the multipole moments
each node (cube) contains either exactly one particle, of the softened gravitational field. One can work
or is progenitor to further nodes, in which case the around this situation by opening nodes always for
node carries the monopole and quadrupole moments r , h, but this can slow down the code significantly
of all the particles that lie inside its cube. A if regions of very high particle density occur.
schematic illustration of the BH tree is shown in Fig. Another solution is to use the proper multipole
1. expansion for the softened potential, which we here

A force computation then proceeds by walking the discuss for definiteness. We want to approximate the
tree, and summing up appropriate force contributions potential at r due to a (distant) bunch of particles
from tree nodes. In the standard BH tree walk, the with masses m and coordinates x . We use a spline-i i

multipole expansion of a node of size l is used only softened force law, hence the exact potential of the
if particle group is

l
F(r) 5 2 G O m g x 2 r , (9)su ud] k kr . , (8)

u k

where the function g(r) describes the softened forcewhere r is the distance of the point of reference to
law. For Newtonian gravity we have g(r) 5 1/r,the center-of-mass of the cell and u is a prescribed
while the spline softened gravity with softeningaccuracy parameter. If a node fulfills the criterion
length h gives rise to(8), the tree walk along this branch can be termi-

nated, otherwise it is ‘opened’, and the walk is
1 r

continued with all its siblings. For smaller values of ] ]g(r) 5 2 W S D. (10)2h hthe opening angle, the forces will in general become
more accurate, but also more costly to compute. One The function W (u) is given in Appendix A. It arises2

can try to modify the opening criterion (8) to obtain by replacing the force due to a point mass m with the
higher efficiency, i.e., higher accuracy at a given force exerted by the mass distribution r(r) 5 mW(r;
length of the interaction list, something that we will h), where we take W(r; h) to be the normalized
discuss in more detail in Section 3.3. spline kernel used in the SPH formalism. The spline

A technical difficulty arises when the gravity is softening has the advantage that the force becomes
softened. In regions of high particle density (e.g., exactly Newtonian for r . h, while some other
centers of dark haloes, or cold dense gas knots in possible force laws, like the Plummer softening,
dissipative simulations), it can happen that nodes converge relatively slowly to Newton’s law.
fulfill Eq. (8), and simultaneously one has r , h, Let s be the center-of-mass, and M the total mass
where h is the gravitational softening length. In this of the particles. Further we define y ; r 2 s. The

Fig. 1. Schematic illustration of the Barnes and Hut oct-tree in two dimensions. The particles are first enclosed in a square (root node). This
square is then iteratively subdivided in four squares of half the size, until exactly one particle is left in each final square (leaves of the tree).
In the resulting tree structure, each square can be progenitor of up to four siblings. Note that empty squares need not to be stored.
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potential may then be expanded in a multipole series 3.2. Tree construction and tree walks
assuming uyu 4 ux 2 su. Up to quadrupole order, thisk

results in The tree construction can be done by inserting the
particles one after the other in the tree. Once the

1 g0( y)T grouping is completed, the multipole moments of] ]]F(r) 5 2 G Mg( y) 1 y QH F 22 y each node can be recursively computed from the
moments of its daughter nodes (McMillan andg9( y)

]]1 (P 2 Q) y . (11) Aarseth, 1993).3 G Jy
In order to reduce the storage requirements for tree

nodes, we use single-precision floating point num-Here we have introduced the tensors
bers to store node properties. The precision of the

T resulting forces is still fully sufficient for collision-Q 5O m (x 2 s)(x 2 s)k k k
k less dynamics as long as the node properties are

T T calculated accurately enough. In the recursive calcu-5O m x x 2 Mss , (12)k k k
k lation, node properties will be computed from nodes

that are already stored in single precision. When the
and particle number becomes very large (note that more

than 10 million particles can be used in single2 2 2P 5 I O m (x 2 s) 5 I O m x 2 Ms , (13)k k k kF G objects like clusters these days), loss of sufficientk k

precision can then result for certain particle dis-
where I is the unit matrix. Note that for Newtonian tributions. In order to avoid this problem, GADGET
gravity, Eq. (11) reduces to the more familiar form optionally uses an alternative method to compute the

node properties. In this method, a link-list structure
M 1 3Q 2 PT is used to access all of the particles represented by] ] ]]]F(r) 5 2 G 1 y y . (14)F 5 Gy 2 y each tree node, allowing a computation of the node

properties in double-precision and a storage of the
Finally, the quadrupole approximation of the soft- results in single-precision. While this technique
ened gravitational field is given by guarantees that node properties are accurate up to a

26relative error of about 10 , it is also slower than thef(r) 5 2=F 5 G Mg ( y)y 1 g ( y)Qyh 1 2
recursive computation, because it requires of order

1 1T 2(1 log 1 ) operations, while the recursive method] ] J1 g ( y)sy Qydy 1 g ( y)Py . (15)3 42 2 is only of order 2(1 ).
The tree-construction can be considered very fastHere we introduced the functions g ( y), g ( y),1 2 in both cases, because the time spent for it isg ( y), and g ( y) as convenient abbreviations. Their3 4 negligible compared to a complete force walk for alldefinition is given in Appendix A. In the Newtonian

particles. However, in the individual time integrationcase, this simplifies to
scheme only a small fraction of all particles may

T require a force walk at each given timestep. If thisM 3Q 15 y Qy 3 P
] ] ]]] ] ]f(r) 5 G 2 y 1 y 2 y 1 y .H J3 5 7 5 fraction drops below | 1%, a full reconstruction of2 2y y y y

the tree can take as much time as the force walk
(16) itself. Fortunately, most of this tree construction time

can be eliminated by dynamic tree updates (McMil-
lan and Aarseth, 1993), which we discuss in moreNote that although Eq. (15) looks rather cumber-
detail in Section 5. The most time consuming routinesome, its actual numerical computation is only
in the code will then always remain the tree walk,marginally more costly than that of the Newtonian
and optimizing it can considerably speed up treeform (16) because all factors involving g( y) and
codes. Interestingly, in the grouping technique ofderivatives thereof can be tabulated for later use in
Barnes (1990), the speed of the gravitational forcerepeated force calculations.
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2computation can be increased by performing a r . The result is the purely geometrical criterion of
common tree-walk for a localized group of particles. Eq. (8).
Even though the average length of the interaction list However, as Salmon and Warren (1994) have
for each particles becomes larger in this way, this pointed out, the worst-case behaviour of the BH
can be offset by saving some of the tree-walk criterion for commonly employed opening angles is
overhead, and by improved cache utilization. Un- somewhat worrying. Although typically very rare in
fortunately, this advantage is not easily kept if real astrophysical simulations, the geometrical criter-
individual timesteps are used, where only a small ion (8) can then sometimes lead to very large force
fraction of the particles are active, so we do not use errors. In order to cure this problem, a number of
grouping. modifications of the cell-opening criterion have been

GADGET allows different gravitational softenings proposed. For example, Dubinski et al. (1996) have
for particles of different ‘type’. In order to guarantee used the simple modification r . l /u 1 d, where the
momentum conservation, this requires a symmetriza- quantity d gives the distance of the geometric center
tion of the force when particles with different of the cell to its center-of-mass. This provides
softening lengths interact. We symmetrize the soften- protection against pathological cases where the cen-
ings in the form ter-of-mass lies close to an edge of a cell.

Such modifications can help to reduce the rate at
h 5 max(h , h ). (17)i j which large force errors occur, but they usually do

not help to deal with another problem that arises for
However, the usage of different softening lengths geometric opening criteria in the context of cos-
leads to complications for softened tree nodes, mological simulations at high redshift. Here, the
because strictly speaking, the multipole expansion is density field is very close to being homogeneous and
only valid if all the particles in the node have the the peculiar accelerations are small. For a tree
same softening. GADGET solves this problem by algorithm this is a surprisingly tough problem,
constructing separate trees for each species of par- because the tree code always has to sum up partial
ticles with different softening. As long as these forces from all the mass in a simulation. Small net
species are more or less spatially separated (e.g., forces at high z then arise in a delicate cancellation
dark halo, stellar disk, and stellar bulge in simula- process between relatively large partial forces. If a
tions of interacting galaxies), no severe performance partial force is indeed much larger than the net force,
penalty results. However, this is different if the fluids even a small relative error in it is enough to result in
are spatially well ‘mixed’. Here a single tree would a large relative error of the net force. For an
result in higher performance of the gravity computa- unclustered particle distribution, the BH criterion
tion, so it is advisable to choose a single softening in therefore requires a much smaller value of the
this case. Note that for SPH particles we nevertheless opening angle than for a clustered one in order to
always create a separate tree to allow its use for a achieve a similar level of force accuracy. Also note
fast neighbour search, as will be discussed below. that in a cosmological simulation the absolute sizes

of forces between a given particle and tree-nodes of
3.3. Cell-opening criterion a certain opening angle can vary by many orders of

magnitude. In this situation, the purely geometrical
The accuracy of the force resulting from a tree BH criterion may end up investing a lot of computa-

walk depends sensitively on the criterion used to tional effort for the evaluation of all partial forces to
decide whether the multipole approximation for a the same relative accuracy, irrespective of the actual
given node is acceptable, or whether the node has to size of each partial force and the size of the absolute
be ‘opened’ for further refinement. The standard BH error thus induced. It would be better to invest more
opening criterion tries to limit the relative error of computational effort in regions that provide most of
every particle–node interaction by comparing a the force on the particle and less in regions whose
rough estimate of the size of the quadrupole term, mass content is unimportant for the total force.

2 4| Ml /r , with the size of the monopole term, | M / As suggested by Salmon and Warren (1994), one
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may therefore try to devise a cell-opening criterion ance of the two criteria, and compare it to the
that limits the absolute error in every cell–particle optimum cell-opening strategy.
interaction. In principle, one can use analytic error Note that the criterion (18) is not completely safe
bounds (Salmon and Warren, 1994) to obtain a from worst-case force errors either. In particular,
suitable cell-opening criterion, but the evaluation of such errors can occur for opening angles so large that
the relevant expressions can consume significant the point of force evaluation falls into the node itself.
amounts of CPU time. If this happens, no upper bound on the force error

Our approach to a new opening criterion is less can be guaranteed (Salmon and Warren, 1994). As
stringent. Assume the absolute size of the true total an option to the code, we therefore combine the
force is already known before the tree walk. In the opening criterion (18) with the requirement that the
present code, we will use the acceleration of the point of reference may not lie inside the node itself.
previous timestep as a handy approximate value for We formulate this additional constraint in terms of
that. We will now require that the estimated error of r . b , where b is the maximum distance of themax max

an acceptable multipole approximation is some small center-of-mass from any point in the cell. This
fraction of this total force. Since we truncate the additional geometrical constraint provides a very
multipole expansion at quadrupole order, the oc- conservative control of force errors if this is needed,
tupole moment will in general be the largest term in but increases the number of opened cells.
the neglected part of the series, except when the
mass distribution in the cubical cell is close to being 3.4. Special purpose hardware
homogeneous. For a homogeneous cube the octupole
moment vanishes by symmetry (Barnes and Hut, 2An alternative to software solutions to the N -
1989), such that the hexadecapole moment forms the bottleneck of self-gravity is provided by the GRAPE
leading term. We may very roughly estimate the size (GRAvity PipE) special-purpose hardware. It is2 3 2 4of these terms as | M /r (l /r) , or | M /r (l /r) , designed to solve the gravitational N-body problem
respectively, and take this as a rough estimate of the in a direct summation approach by means of its
size of the truncation error. We can then require that superior computational speed. The latter is achieved
this error should not exceed some fraction a of the with custom chips that compute the gravitational
total force on the particle, where the latter is force with a hardwired Plummer force law. The
estimated from the previous timestep. Assuming the Plummer-potential of GRAPE takes the form
octupole scaling, a tree-node has then to be opened if

3 5 mMl . a ua ur . However, we have found that in jold ]]]]]F(r) 5 2 G O . (19)2 2 1 / 2practice the opening criterion ur 2 r u 1 ej s dj

4 6 As an example, the GRAPE-3A boards installed atMl . a ua ur (18)old

the MPA in 1998 have 40 N-body integrator chips in
provides still better performance in the sense that it total with an approximate peak performance of 25
produces forces that are more accurate at a given GFlops. Recently, newer generations of GRAPE
computational expense. It is also somewhat cheaper boards have achieved even higher computational

6to evaluate during the tree-walk, because r is speeds. In fact, with the GRAPE-4 the 1 TFlop
5simpler to compute than r , which requires the barrier was broken (Makino et al., 1997), and even

evaluation of a root of the squared node distance. faster special-purpose machines are in preparation
The criterion (18) does not suffer from the high-z (Hut and Makino, 1999; Makino, 2000). The most
problem discussed above, because the same value of recent generation, GRAPE-6, cannot only compute
a produces a comparable force accuracy, indepen- accelerations, but also its first and second time
dent of the clustering state of the material. However, derivatives. Together with the capability to perform
we still need to compute the very first force using the particle predictions, these machines are ideal for
BH criterion. In Section 7.2, we will show some high-order Hermite integration schemes applied in
quantitative measurements of the relative perform- simulations of collisional systems like star clusters.
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However, our present code is only adapted to the tional N-body problem. This implies that for very
somewhat older GRAPE-3 (Okumura et al., 1993), large particle number a tree code running on the
and the following discussion is limited to it. workstation alone will eventually catch up and

The GRAPE-3A boards are connected to an outperform the combination of workstation and
ordinary workstation via a VME or PCI interface. GRAPE. For our current set-up at MPA this break-
The boards consist of memory chips that can hold up even point is about at 300 000 particles.
to 131 072 particle coordinates, and of integrator However, it is also possible to combine GRAPE
chips that can compute the forces exerted by these with a tree algorithm (Athanassoula et al., 1998;
particles for 40 positions in parallel. Higher particle Fukushige et al., 1991; Kawai et al., 2000; Makino,
numbers can be processed by splitting them up in 1991a), for example by exporting tree nodes instead
sufficiently small groups. In addition to the gravita- of particles in an appropriate way. Such a combina-
tional force, the GRAPE board returns the potential, tion of tree1GRAPE scales as 2(N log N) and is
and a list of neighbours for the 40 positions within able to outperform pure software solutions even for
search radii h specified by the user. This latter large N.i

feature makes GRAPE attractive also for SPH calcu-
lations.

The parts of our code that use GRAPE have 4. Smoothed particle hydrodynamics
benefited from the code GRAPESPH by Steinmetz
(1996), and are similar to it. In short, the usage of SPH is a powerful Lagrangian technique to solve
GRAPE proceeds as follows. For the force computa- hydrodynamical problems with an ease that is un-
tion, the particle coordinates are first loaded onto the matched by grid based fluid solvers (see Monaghan,
GRAPE board, then GADGET calls GRAPE re- 1992, for an excellent review). In particular, SPH is
peatedly to compute the force for up to 40 positions very well suited for three-dimensional astrophysical
in parallel. The communication with GRAPE is done problems that do not crucially rely on accurately
by means of a convenient software interface in C. resolved shock fronts.
GRAPE can also provide lists of nearest neighbours. Unlike other numerical approaches for hydro-
For SPH-particles, GADGET computes the gravita- dynamics, the SPH equations do not take a unique
tional force and the interaction list in just one call of form. Instead, many formally different versions of
GRAPE. The host computer then still does the rest of them can be derived. Furthermore, a large variety of
the work, i.e., it advances the particles, and computes recipes for specific implementations of force
the hydrodynamical forces. symmetrization, determinations of smoothing

In practice, there are some technical complications lengths, and artificial viscosity, have been described.
when one works with GRAPE-3. In order to achieve Some of these choices are crucial for the accuracy
high computational speed, the GRAPE-3 hardware and efficiency of the SPH implementation, others are
works internally with special fixed-point formats for only of minor importance. See the recent work by
positions, accelerations and masses. This results in a Thacker et al. (2000) and Lombardi et al. (1999) for
reduced dynamic range compared to standard IEEE a discussion of the relative performance of some of
floating point arithmetic. In particular, one needs to these possibilities. Below we give a summary of the
specify a minimum length scale d and a minimum specific SPH implementation we use.min

mass scale m when working with GRAPE. Themin
18spatial dynamic range is then given by d [22 ; 4.1. Basic equationsmin

182 ] and the mass range is m [1; 64e /d ] (Stein-min min

metz, 1996). The computation of the hydrodynamic force and
While the communication time with GRAPE the rate of change of internal energy proceeds in two

scales proportional to the particle number N, the phases. In the first phase, new smoothing lengths hi

actual force computation of GRAPE is still an are determined for the active particles (these are the
22(N )-algorithm, because the GRAPE board imple- ones that need a force update at the current timestep,

ments a direct summation approach to the gravita- see below), and for each of them, the neighbouring
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particles inside their respective smoothing radii are and the change of the internal energy as
found. The Lagrangian nature of SPH arises when

Pdu P1 ji ithis number of neighbours is kept either exactly, or ˜] ] ] ]5 O m 1 1 P (v 2 v )j 2 2 ij i jS Ddt 2 r rat least roughly, constant. This is achieved by j i j (24)
varying the smoothing length h of each particle 1 1i

] ]F G= W(r ; h ) 1 = W(r ; h ) .accordingly. The h thus adjust to the local particle i ij i i ij ji 2 2
density adaptively, leading to a constant mass res-

Instead of symmetrizing the pressure terms with anolution independent of the density of the flow.
arithmetic mean, the code can also be used with aNelson and Papaloizou (1994) argue that it is
geometric mean according toactually best to keep the number of neighbours

]exactly constant, resulting in the lowest level of P P PP j i jœinoise in SPH estimates of fluid quantities, and in the ] ] ]]1 → 2 . (25)2 2 r rr r i ji jbest conservation of energy. In practice, similarly
good results are obtained if the fluctuations in This may be slightly more robust in certain situations
neighbour number remain very small. In the serial (Hernquist and Katz, 1989). The artificial viscosity
version of GADGET we keep the number of neigh-

P̃ is taken to beijbours fixed, whereas it is allowed to vary in a small
band in the parallel code. 1˜ ]P 5 ( f 1 f )P , (26)Having found the neighbours, we compute the ij i j ij2
density of the active particles as

with
N

2[2ac m 1 2am ] /r if v ? r , 0r 5O m W(r ; h ), (20) ij ij ij ij ij iji j ij i P 5 (27)Hj51 ij 0 otherwise,
where r ; r 2 r , and we compute a new estimateij i j where
of divergence and vorticity as

u(=? v) ui
]]]]]]f 5 , (28)r (=? v) 5O m (v 2 v )= W(r ; h ), (21) ii i j j i i ij i u(=? v) u 1 u(= 3 v) ui ij

and
r (= 3 v) 5O m (v 2 v ) 3 = W(r ; h ). (22)i i j i j i ij i

j h (v 2 v )(r 2 r )ij i j i j
]]]]]]m 5 . (29)ij 22Here we employ the gather formulation for adaptive r 2 r 1 ehu ui j ij

smoothing (Hernquist and Katz, 1989).
This form of artificial viscosity is the shear-reducedFor the passive particles, values for density,
version (Balsara, 1995; Steinmetz, 1996) of theinternal energy, and smoothing length are predicted
‘standard’ Monaghan and Gingold (1983) artificialat the current time based on the values of the last
viscosity. Recent studies (Lombardi et al., 1999;update of those particles (see Section 5). Finally, the
Thacker et al., 2000) that test SPH implementationspressure of the particles is set to P 5 (g 2 1)r u .i i i
endorse it.In the second phase, the actual forces are com-

In Eqs. (23) and (24), a given SPH particle i willputed. Here we symmetrize the kernels of gather and
interact with a particle j whenever ur u , h or ur u ,scatter formulations as in Hernquist and Katz ij i ij

h . Standard search techniques can relatively easily(1989). We compute the gasdynamical accelerations j

find all neighbours of particle i inside a sphere ofas
radius h , but making sure that one really finds alliPP=P jigas visc interacting pairs in the case h . h is slightly more˜ j i] ] ]a 5 2 1 a 5 2O m 1 1 PS Di i j 2 2 ijS Dr i r r tricky. One solution to this problem is to simply findj i j

all neighbours of i inside h , and to consider thei1 1
] ]F G force components3 = W(r ; h ) 1 = W(r ; h ) , (23)i ij i i ij j2 2
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A cell is ‘opened’ (i.e., further followed) if it has aPP 1ji ˜] ] ]f 5 2 m m 1 1 P = W(r ; h ). (30) spatial overlap with the rectangular search range.ij i j 2 2 ij i ij iS D 2r ri j Testing for such an overlap is faster with a rectan-
gular search range than with a spherical one, so we

If we add f to the force on i, and 2 f to the forceij ij inscribe the spherical search region into a little cube
on j, the sum of Eq. (23) is reproduced, and the

for the purpose of this walk. If one arrives at a cell
momentum conservation is manifest. This also holds

with only one particle, this is added to the interaction
for the internal energy. Unfortunately, this only

list if it lies inside the search radius. We also
works if all particles are active. In an individual

terminate a tree walk along a branch, if the cell lies
timestep scheme, we therefore need an efficient way

completely inside the search range. Then all the
to find all the neighbours of particle i in the above

particles in the cell can be added to the interaction
sense, and we discuss our algorithm for doing this

list, without checking any of them for overlap with
below.

the search range any more. The particles in the cell
can be retrieved quickly by means of a link-list,

4.2. Neighbour search which can be constructed along with the tree and
allows a retrieval of all the particles that lie inside a

In SPH, a basic task is to find the nearest given cell, just as it is possible in the coarse-binning
neighbours of each SPH particle to construct its approach. Since this short-cut reduces the length of
interaction list. Specifically, in the implementation the tree walk and the number of required checks for
we have chosen we need to find all particles closer range overlap, the speed of the algorithm is increased
than a search radius h in order to estimate the by a significant amount.i

density, and one needs all particles with ur u , With a slight modification of the tree walk, oneij

max(h , h ) for the estimation of hydrodynamical can also find all particles with ur u , max(h , h ). Fori j ij i j

forces. Similar to gravity, the naive solution that this purpose, we store in each tree node the maxi-
2checks the distance of all particle pairs is an 2(N ) mum SPH smoothing length occurring among its

algorithm which slows down prohibitively for large particles. The test for overlap is then simply done
particle numbers. Fortunately, there are faster search between a cube of side-length max(h , h ) cen-i node

algorithms. tered on the particle i and the node itself, where hnode

When the particle distribution is approximately is the maximum smoothing length among the par-
homogeneous, perhaps the fastest algorithms work ticles of the node.
with a search grid that has a cell size somewhat There remains the task to keep the number of
smaller than the search radius. The particles are then neighbours around a given SPH particle approxi-
first coarse-binned onto this search grid, and link- mately (or exactly) constant. We solve this by

˜lists are established that quickly deliver only those predicting a value h for the smoothing length basedi

particles that lie in a specific cell of the coarse grid. on the length h of the previous timestep, the actuali

The neighbour search proceeds then by range number of neighbours N at that timestep, and thei

searching; only those mesh cells that have a spatial local velocity divergence:
overlap with the search range have to be opened.

1 / 3N1For highly clustered particle distributions and s(old)˜ ~] ]h 5 h 1 1 1 h Dt, (31)F S D Gi i ivarying search ranges h , the above approach quickly 2 Ni i

degrades, since the mesh chosen for the coarse grid
1~ ]has not the optimum size for all particles. A more where h 5 h (=? v) , and N is the desired numberi i i s3

flexible alternative is to employ a geometric search of neighbours. A similar form for updating the
tree. For this purpose, a tree with a structure just like smoothing lengths has been used by Hernquist and
the BH oct-tree can be employed, Hernquist and Katz (1989), see also Thacker et al. (2000) for a
Katz (1989) were the first to use the gravity tree for discussion of alternative choices. The term in brac-
this purpose. In GADGET we use the same strategy kets tries to bring the number of neighbours back to
and perform a neighbour search by walking the tree. the desired value if N deviates from it. Should thei
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resulting number of neighbours nevertheless fall particle. First, a particle position at the middle of the
outside a prescribed range of tolerance, we iterative- timestep Dt is predicted according to
ly adjust h until the number of neighbours is againi Dt(n11 / 2) (n) (n)˜ ]brought back to the desired range. Optionally, our r 5 r 1 v , (32)2
code allows the user to impose a minimum smooth-

and an acceleration based on this position is com-ing length for SPH, typically chosen as some fraction
puted, viz.of the gravitational softening length. A larger num-

ber of neighbours than N is allowed to occur if h (n11 / 2)s i (n11 / 2)˜a 5 2=F r . (33)utakes on this minimum value.
One may also decide to keep the number of Then the particle is advanced according to

neighbours exactly constant by defining h to be thei (n11) (n) (n11 / 2)v 5 v 1 a Dt, (34)distance to the N -nearest particle. We employ such as

scheme in the serial code. Here we carry out a 1(n11) (n) (n) (n11)˜ ]range-search with R 5 1.2h , on average resulting in r 5 r 1 fv 1 v g Dt. (35)i 2
| 2 N potential neighbours. From these we select thes

closest N (fast algorithms for doing this exist, see 5.1. Timestep criterions

Press et al., 1995). If there are fewer than Ns

particles in the search range, or if the distance of the In the above scheme, the timestep may vary from
N -nearest particle inside the search range is larger step to step. It is clear that the choice of timesteps

than R, the search is repeated for a larger search size is very important in determining the overall
range. In the first timestep no previous h is known, accuracy and computational efficiency of the integra-i

so we follow the neighbour tree backwards from the tion.
leaf of the particle under consideration, until we In a static potential F, the error in specific energy
obtain a first reasonable guess for the local particle arising in one step with the above integrator is
density (based on the number N of particles in a 2

3 1 ≠ F˜ (n) (n11 / 2) 3node of volume l ), providing an initial guess for h .i ]]]DE 5 v a Dti j4 ≠x ≠xi jHowever, the above scheme for keeping the
3number of neighbours exactly fixed is not easily 1 ≠ F (n) (n) (n) 3 4]]]]1 v v v Dt 1 2(Dt ) (36)accommodated in our parallel SPH implementation, i j k24 ≠x ≠x ≠xi j kbecause SPH particles may have a search radius that

overlaps with several processor domains. In this to leading order in Dt, i.e., the integrator is second
case, the selection of the closest N neighbours order accurate. Here the derivatives of the potentials

(n)becomes non-trivial, because the underlying data is are taken at coordinate r and summation over
distributed across several independent processor repeated coordinate indices is understood.
elements. For parallel SPH, we therefore revert to the In principle, one could try to use Eq. (36) directly
simpler scheme and allow the number of neighbours to obtain a timestep by imposing some upper limit on
to fluctuate within a small band. the tolerable error DE. However, this approach is

quite subtle in practice. First, the derivatives of the
potential are difficult to obtain, and second, there is
no explicit guarantee that the terms of higher order in

5. Time integration Dt are really small.
High-order Hermite schemes use timestep criteria

As a time integrator, we use a variant of the that include the first and second time derivative of
leapfrog involving an explicit prediction step. The the acceleration (e.g., Makino, 1991b; Makino and
latter is introduced to accommodate individual par- Aarseth, 1992). While these timestep criteria are
ticle timesteps in the N-body scheme, as explained highly successful for the integration of very non-
later on. linear systems, they are probably not appropriate for

We start by describing the integrator for a single our low-order scheme, apart from the fact that
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substantial computational effort is required to evalu- cosmological simulations, sometimes with an addi-
ate these quantities directly. Ideally, we therefore tional restriction on the displacement of particles in

˜want to use a timestep criterion that is only based on the form Dt 5 ae / uvu. It is unclear though why the
dynamical quantities that are either already at hand timesteps should depend on the gravitational soften-
or are relatively cheap to compute. ing length in this way. In a well-resolved halo, most

Note that a well-known problem of adaptive orbits are not expected to change much if the halo is
timestep schemes is that they will usually break the modeled with more particles and a correspondingly
time reversibility and symplectic nature of the simple smaller softening length, so it should not be neces-
leapfrog. As a result, the system does not evolve sary to increase the accuracy of the time integration
under a pseudo-Hamiltonian any more and secular for all particles by the same factor if the mass / length
drifts in the total energy can occur. As Quinn et al. resolution is increased.
(1997) show, reversibility can be obtained with a For self-gravitating collisionless fluids, another
timestep that depends only on the relative coordi- plausible timestep criterion is based on the local
nates of particles. This is for example the case for dynamical time:
timesteps that depend only on acceleration or on

3local density. However, to achieve reversibility the ]]]99Dt 5 a . (39)]]toltimestep needs to be chosen based on the state of the 8pGrœ
system in the middle of the timestep (Quinn et al.,
1997), or on the beginning and end of the timestep One advantage of this criterion is that it provides a
(Hut et al., 1995). In practice, this can be accom- monotonically decreasing timestep towards the cen-
plished by discarding trial timesteps appropriately. ter of a halo. On the other hand, it requires an
The present code selects the timestep based on the accurate estimate of the local density, which may be
previous step and is thus not reversible in this way. difficult to obtain, especially in regions of low

One possible timestep criterion is obtained by density. In particular, Quinn et al. (1997) have
constraining the absolute size of the second-order shown that haloes in cosmological simulations that
displacement of the kinetic energy, assuming a contain only a small number of particles, about equal

2typical velocity dispersion s for the particles, which or less than the number employed to estimate the
2corresponds to a scale E 5 s for the typical specific local density, are susceptible to destruction if a

energy. This results in timestep based on (39) is used. This is because the
kernel estimates of the density are too small in thiss

]Dt 5 a . (37) situation, leading to excessively long timesteps intol uau
these haloes.

In simple test integrations of singular potentials,For a collisionless fluid, the velocity scale s should
we have found the criterion (37) to give better resultsideally be chosen as the local velocity dispersion,
compared to the alternative (38). However, neitherleading to smaller timesteps in smaller haloes, or
of these simple criteria is free of problems in typicalmore generally, in ‘colder’ parts of the fluid. The
applications to structure formation, as we will laterlocal velocity dispersion can be estimated from a
show in some test calculations. In the center oflocal neighbourhood of particles, obtained as in the
haloes, subtle secular effects can occur under con-normal SPH formalism.
ditions of coarse integration settings. The criterionAlternatively, one can constrain the second-order
based on the dynamical time does better in thisterm in the particle displacement, obtaining
respect, but it does not work well in regions of very

]] low density. We thus suggest to use a combination of92a etol
]]Dt 5 . (38) (37) and (39) by taking the minimum of the twouauœ

timesteps. This provides good integration accuracy in
9Here some length scale a e is introduced, which low density environments and simultaneously doestol

will typically be related to the gravitational soften- well in the central regions of large haloes. For the
ing. This form has quite often been employed in relative setting of the dimensionless tolerance param-
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eters we use a0 . 3a, which typically results in a At the beginning of the simulation, all particles
situation where roughly the same number of particles start out with the same current time. However, since
are constrained by each of the two criteria in an the timesteps of the particles are all different, the
evolved cosmological simulation. The combined current times of the particles distribute themselves
criterion is Galilean-invariant and does not make an nearly symmetrically around the current prediction
explicit reference to the gravitational softening time, hence the prediction step involves forward and
length employed. backward prediction to a similar extent.

Of course, it is impractical to advance only a
single particle at any given prediction time, because5.2. Integrator for N-body systems
the prediction itself and the (dynamic) tree updates
induce some overhead. For this reason we advanceIn the context of stellar dynamical integrations,
particles in bunches. The particles may be thought ofindividual particle timesteps have long been used
as being ordered according to their prediction timessince they were first introduced by Aarseth (1963).

p 1
]t 5 t 1 Dt . The simulation works through thisWe here employ an integrator with completely i i i2

time line, and always advances the particle with theflexible timesteps, similar to the one used by Groom
psmallest t , and also all subsequent particles in the(1997) and Hiotelis and Voglis (1991). This scheme i

time line, until the first is found withdiffers slightly from more commonly employed
binary hierarchies of timesteps (e.g., Hernquist and 1
Katz, 1989; McMillan and Aarseth, 1993; Steinmetz, ]t # t 1 Dt . (45)p i i41996).

This condition selects a group of particles at theEach particle has a timestep Dt , and a current timei

lower end of the time line, and all the particles of thet , where its dynamical state (r , v , a ) is stored. Thei i i i

group are guaranteed to be advanced by at least halfdynamical state of the particle can be predicted at
of their maximum allowed timestep. Compared totimes t [ [t 60.5Dt ] with first-order accuracy.i i

using a fixed block step scheme with a binaryThe next particle k to be advanced is then the one
hierarchy, particles are on average advanced closerwith the minimum prediction time defined as t ;p

to their maximum allowed timestep in this scheme,min t 1 0.5Dt . The time t becomes the news di i p

which results in a slight improvement in efficiency.current time of the system. To advance the corre-
Also, timesteps can more gradually vary than in asponding particle, we first predict positions for all
power of two hierarchy. However, a perhaps moreparticles at time t according top

important advantage of this scheme is that it makes
r̃ 5 r 1 v (t 2 t ). (40)i i i p i work-load balancing in the parallel code simpler, as

we will discuss in more detail later on.Based on these positions, the acceleration of particle
In practice, the size M of the group that isk at the middle of its timestep is calculated as

advanced at a given step is often only a small
(n11 / 2) r̃˜a 5 2=F(r ) k. (41) fraction of the total particle number N. In thisuk i

situation it becomes important to eliminate any
Position and velocity of particle k are then advanced overhead that scales with 2(N). For example, we
as obviously need to find the particle with the minimum

(n11) (n) (n11 / 2) prediction time at every timestep, and also thev 5 v 1 2a (t 2 t ), (42)k k k p k
particles following it in the time line. A loop over all

(n11) (n) (n) (n11) the particles, or a complete sort at every timestep,r 5 r 1 v 1 v (t 2 t ), (43)f gk k k k p k
would induce overhead of order 2(N) or 2(N log N),

and its current time can be updated to which can become comparable to the force computa-
tion itself if M /N < 1. We solve this problem by(new)t 5 t 1 2(t 2 t ). (44)k k p k keeping the maximum prediction times of the par-

(new) ticles in an ordered binary tree (Wirth, 1986) at allFinally, a new timestep Dt for the particle isk

times. Finding the particle with the minimum predic-estimated.
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tion time and the ones that follow it are then side-length of the tree node if any of its particles
operations of order 2(log N). Also, once the particles should have left its original cubical volume.
have been advanced, they can be removed and Finally, the full tree is reconstructed from scratch
reinserted into this tree with a cost of order 2(log N). every once in a while to take into account the slow
Together with the dynamic tree updates, which changes in the grouping hierarchy. Typically, we
eliminate prediction and tree construction overhead, update the tree whenever a total of | 0.1 N force
the cost of the timestep then scales as 2(M log N). computations have been done since the last full

reconstruction. With this criterion the tree construc-
tion is an unimportant fraction of the total computa-

5.3. Dynamic tree updates tion time. We have not noticed any significant loss of
force accuracy induced by this procedure.

If the fraction of particles to be advanced at a In summary, the algorithms described above result
given timestep is indeed small, the prediction of all in an integration scheme that can smoothly and
particles and the reconstruction of the full tree would efficiently evolve an N-body system containing a
also lead to significant sources of overhead. How- large dynamic range in time scales. At a given
ever, as McMillan and Aarseth (1993) have first timestep, only a small number M of particles are then
discussed, the geometric structure of the tree, i.e., the advanced, and the total time required for that scales
way the particles are grouped into a hierarchy, as 2(M log N).
evolves only relatively slowly in time. It is therefore
sufficient to reconstruct this grouping only every few 5.4. Including SPH
timesteps, provided one can still obtain accurate
node properties (center of mass, multipole moments) The above time integration scheme may easily be
at the current prediction time. extended to include SPH. Here we also need to

We use such a scheme of dynamic tree updates by integrate the internal energy equation, and the par-
predicting properties of tree-nodes on the fly, instead ticle accelerations also receive a hydrodynamical
of predicting all particles every single timestep. In component. To compute the latter we also need
order to do this, each node carries a center-of-mass predicted velocities
velocity in addition to its position at the time of its

ṽ 5 v 1 a (t 2 t ), (46)i i i21 p iconstruction. New node positions can then be pre-
dicted while the tree is walked, and only nodes that where we have approximated a with the accelerationiare actually visited need to be predicted. Note that of the previous timestep. Similarly, we obtain predic-
the leaves of the tree point to single particles. If they tions for the internal energy
are used in the force computation, their prediction

˜ ~u 5 u 1 u (t 2 t ), (47)corresponds to the ordinary prediction as outlined in i i i p i

Eq. (43).
and the density of inactive particles as

In our simple scheme we neglect a possible time
˜ ~r 5 r 1 r (t 2 t ). (48)variation of the quadrupole moment of the nodes, i i i p i

which can be taken into account in principle
(McMillan and Aarseth, 1993). However, we intro- For those particles that are to be advanced at the
duce a mechanism that reacts to fast time variations current system step, these predicted quantities are
of tree nodes. Whenever the center-of-mass of a tree then used to compute the hydrodynamical part of the
node under consideration has moved by more than a acceleration and the rate of change of internal energy
small fraction of the nodes’ side-length since the last with the usual SPH estimates, as described in Section
reconstruction of this part of the tree, the node is 4.
completely updated, i.e., the center-of-mass, center- For hydrodynamical stability, the collisionless
of-mass velocity and quadrupole moment are re- timestep criterion needs to be supplemented with the
computed from the individual (predicted) phase- Courant condition. We adopt it for the gas particles
space variables of the particles. We also adjust the in the form



94 V. Springel et al. / New Astronomy 6 (2001) 79 –117

on the current values of the maximum SPH smooth-a hcour i
]]]]]]]]]]]Dt 5 , (49) ing length in each node, and also expects that alli h u(=? v) u 1 max(c ,uv u) (1 1 0.6a )i i i i visc particles of a node are still inside the boundaries set

by the side-length of a node. To guarantee that thewhere a regulates the strength of the artificialv isc
neighbour search will always give correct results, webulk viscosity, and a is an accuracy parameter,cour
perform a special update of the SPH-tree everythe Courant factor. Note that we use the maximum of
timestep. It involves a loop over every SPH particlethe sound speed c and the bulk velocity uv u in thisi i
that checks whether the particle’s smoothing lengthexpression. This improves the handling of strong
is larger than h stored in its parent node, or if itmaxshocks when the infalling material is cold, but has
falls outside the extension of the parent node. Ifthe disadvantage of not being Galilean invariant. For
either of these is the case, the properties of the parentthe SPH-particles, we use either the adopted criterion
node are updated accordingly, and the tree is furtherfor collisionless particles or (49), whichever gives
followed ‘backwards’ along the parent nodes, untilthe smaller timestep.

gas each node is again fully ‘contained’ in its parent~As defined above, we evaluate a and u at the
node. While this update routine is very fast inmiddle of the timestep, when the actual timestep Dt
general, it does add some overhead, proportional toof the particle that will be advanced is already set.
the number of SPH particles, and thus breaks inNote that there is a term in the artificial viscosity that
principle the ideal scaling (proportional to M) ob-can cause a problem in this explicit integration
tained for purely collisionless simulations.scheme. The second term in Eq. (27) tries to prevent

particle inter-penetration. If a particle happens to get
5.5. Implementation of coolingrelatively close to another SPH particle in the time

Dt /2 and the relative velocity of the approach is
When radiative cooling is included in simulationslarge, this term can suddenly lead to a very large

v isc of galaxy formation or galaxy interaction, additionalrepulsive acceleration a , trying to prevent the
numerical problems arise. In regions of strong gasparticles from getting any closer. However, it is then
cooling, the cooling times can become so short thattoo late to reduce the timestep. Instead, the velocity
extremely small timesteps would be required toof the approaching particle will be changed by

v isc follow the internal energy accurately with the simplea Dt, possibly reversing the approach of the two
explicit integration scheme used so far.particles. But the artificial viscosity should at most

To remedy this problem, we treat the coolinghalt the approach of the particles. To guarantee this,
semi-implicitly in an isochoric approximation. Atwe introduce an upper cut-off to the maximum

ad~any given timestep, we first compute the rate u ofacceleration induced by the artificial viscosity. If
change of the internal energy due to the ordinaryv ? r , 0, we replace Eq. (26) withij ij
adiabatic gas physics. In an isochoric approximation,

v ? r1 we then solve implicitly for a new internal energyij ij˜ ] ]]]]]P 5 ( f 1 f ) min P , , (50)F Gij i j ij predicted at the end of the timestep, i.e.,2 (m 1 m )W Dti j ij

(n) (n11)ˆL r ,u Dtf gwhere W 5 r = W(r ; h ) 1 W(r ; h ) /2. With this i i(n11) (n) adf gij ij i ij i ij j ˆ ]]]]]~u 5 u 1 u Dt 2 . (51)i i (n)change, the integration scheme still works reasonably r i
well in regimes with strong shocks under conditions

The implicit computation of the cooling rate guaran-of relatively coarse timestepping. Of course, a small
tees stability. Based on this estimate, we compute anenough value of the Courant factor will prevent this
effective rate of change of the internal energy, whichsituation from occurring to begin with.
we then take asSince we use the gravitational tree of the SPH

(n11) (n)particles for the neighbour search, another subtlety ˆ~u 5 u 2 u /Dt . (52)f gi i iarises in the context of dynamic tree updates, where
the full tree is not necessarily reconstructed every We use this last step because the integration scheme
single timestep. The range searching technique relies requires the possibility to predict the internal energy
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at arbitrary times. With the above procedure, u is fluctuations outside this region. In this case, thei
]always a continuous function of time, and the background density r gives rise to an additional

prediction of u may be done for times in between term, viz.i

the application of the isochoric cooling /heating. m x~a 1 1j ij 2Still, there can be a problem with predicted internal ] ] ]] ]¨ ~x 1 2 x 5 2 G O 1 V H x .i i 3 3 0 0 iF Ga 2a ux uj±i ijenergies in cases when the cooling time is very
small. Then a particle can lose a large fraction of its (55)
energy in a single timestep. While the implicit

GADGET supports both periodic and vacuumsolution will still give a correct result for the
boundary conditions. We implement the former bytemperature at the end of the timestep, the predicted
means of the Ewald summation technique (Hernquistenergy in the middle of the next timestep could then
et al., 1991).become very small or even negative because of the

For this purpose, we modify the tree walk such~large negative value of u. We therefore restrict the
that each node is mapped to the position of itsmaximum cooling rate such that a particle is only
nearest periodic image with respect to the coordinateallowed to lose at most half its internal energy in a
under consideration. If the multipole expansion ofgiven timestep, preventing the predicted energies
the node can be used according to the cell openingfrom ‘overshooting’. Katz and Gunn (1991) have
criterion, its partial force is computed in the usualused a similar method to damp the cooling rate.
way. However, we also need to add the force exerted
by all the other periodic images of the node. The

5.6. Integration in comoving coordinates slowly converging sum over these contributions can
be evaluated with the Ewald technique. If x is the

For simulations in a cosmological context, the coordinate of the point of force-evaluation relative to
expansion of the universe has to be taken into a node of mass M, the resulting additional accelera-
account. Let x denote comoving coordinates, and a tion is given by
be the dimensionless scale factor (a 5 1.0 at the
present epoch). Then the Newtonian equation of x x 2 nL F] ]]]a (x) 5 M 2O 3 erfc(a ux 2 nLu)Hc 3 3motion becomes nuxu ux 2 nLu

~a dr(x9) (x 2 x9) 2a ux 2 nLu3 2 2] ]]]]¨ ~x 1 2 x 5 2 G E d x9. (53) G]]]1 exp 2 a ux 2 nLu )3 ]Œa pux 2 x9u
2 2

p uhu2 h 2p]Here the function dr(x) 5 r(x) 2r denotes the (prop- ] ] ]] ]S D2 O exp 2 sin h ? x .S D J2 2 2 2 LL uhu a Lh±0er) density fluctuation field.
In an N-body simulation with periodic boundary Here n and h are integer triplets, L is the box size,

conditions, the volume integral of Eq. (53) is carried and a is an arbitrary number (Hernquist et al.,
out over all space. As a consequence, the homoge- 1991). Good convergence is achieved for a 5 2/L,]neous contribution arising from r drops out around where we sum over the range unu , 5 and uhu , 5.
every point. Then the equation of motion of particle i Similarly, the additional potential due to the periodic
becomes replications of the node is given by

m (x 2 x )~a G j i j erfc(a ux 2 nLu)1 p] ] ]]]]¨ ~x 1 2 x 5 2 O , (54)i i 3 3 ] ]] ]]]]]f (x) 5 M 1 2Oa Hc 2 3a ux 2 x uj±i / 1 i j x ux 2 nLuna L
periodic

2 2
p uhu1 1 2p

] ]] ]] ]S Dwhere the summation includes all periodic images of 2 O exp 2 cos h ? x .S D J2 2 2L Lp uhu a Lh±0the particles j.
(57)However, one may also employ vacuum boundary

conditions if one simulates a spherical region of
radius R around the origin, and neglects density We follow Hernquist et al. (1991) and tabulate the
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correction fields a (x) /M and f (x) /M for one octant w remains constant in the linear regime. Strictlyc c

of the simulation box, and obtain the result of the speaking this holds at all times only for an Einstein–
Ewald summation during the tree walk from trilinear de-Sitter universe, however, it is also true for other
interpolation off this grid. It should be noted, how- cosmologies at early times. Hence Eqs. (59)–(62) in
ever, that periodic boundaries have a strong impact principle solve linear theory for arbitrarily large steps
on the speed of the tree algorithm. The number of in a. This allows to traverse the linear regime with
floating point operations required to interpolate the maximum computational efficiency. Furthermore,
correction forces from the grid has a significant toll Eqs. (59)–(62) represent a convenient formulation
on the raw force speed and can slow it down by for general cosmologies, and for our variable times-
almost a factor of two. tep integrator. Since w does not vary in the linear

˜In linear theory, it can be shown that the kinetic regime, predicted particle positions based on x 5i

energy x 1 w (a 2 a ) /S(a ) are quite accurate. Also, thei i p i p

acceleration entering the timestep criterion may now
1 2 be identified with dw /da, and the timestep (37)]T 5 O m v (58)i2 becomesi

21in peculiar motion grows proportional to a, at least at dw
2 U U]Da 5 a s . (63)~early times. This implies that o m x ~1/a, hence toli i da

~the comoving velocities x 5 v /a actually diverge for
a → 0. Since cosmological simulations are usually The above equations only treat the gravity part of
started at redshift z . 30 2 100, one therefore needs the dynamical equations. However, it is straight-

~to follow a rapid deceleration of x at high redshift. forward to express the hydrodynamical equations in
So it is numerically unfavourable to solve the the variables (x, w, a) as well. For gas particles, Eq.

~equations of motion in the variable x. (60) receives an additional contribution due to
To remedy this problem, we use an alternative hydrodynamical forces, viz.

velocity variable
= Pdw 1 x1 / 2 ] ]]]]S D 5 2 . (64)~w ; a x, (59) hydroda ra S(a)

and we employ the expansion factor itself as time For the energy equation, one obtains
variable. Then the equations of motion become

du 3 P 1 Pdw 3 w 1 ] ] ] ]] ]5 2 2 = ? w. (65)x] ] ] ]]5 2 1 da a r rS(a)2da 2 a a S(a)

m x Here the first term on the right hand side describes1j ij 2]] ]3 2 G O 1 V H x , (60)3 0 0 iF G the adiabatic cooling of gas due to the expansion of2ux uj±i ij the universe.
dx w
] ]]5 , (61)da S(a)

3 / 2 6. Parallelizationwith S(a) 5 a H(a) given by

]]]]]]]]3 Massively parallel computer systems with distrib-S(a) 5 H V 1 a(1 2 V 2 V ) 1 a V . (62)œ0 0 0 L L
uted memory have become increasingly popular
recently. They can be thought of as a collection ofNote that for periodic boundaries the second term in
workstations, connected by a fast communicationthe square bracket of Eq. (60) is absent, instead the
network. This architecture promises large scalabilitysummation extends over all periodic images of the
for reasonable cost. Current state-of-the art machinesparticles.
of this type include the Cray T3E and IBM SP/2. ItUsing the Zel’dovich approximation, one sees that
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is an interesting development that ‘Beowulf’-type 6.1. Domain decomposition
systems based on commodity hardware have started
to offer floating point performance comparable to The typical size of problems attacked on parallel
these supercomputers, but at a much lower price. computers is usually much too large to fit into the

However, an efficient use of parallel distributed memory of individual computational nodes, or into
memory machines often requires substantial changes ordinary workstations. This fact alone (but of course
of existing algorithms, or the development of com- also the desire to distribute the work among the
pletely new ones. Conceptually, parallel program- processors) requires a partitioning of the problem
ming involves two major difficulties in addition to onto the individual processors.
the task of solving the numerical problem in a serial For our N-body/SPH code we have implemented
code. First, there is the difficulty of how to divide the a spatial domain decomposition, using the orthogonal
work and data evenly among the processors, and recursive bisection (ORB) algorithm (Dubinski,
second, an efficient communication scheme between 1996). In the first step, a split is found along one
the processors needs to be devised. spatial direction, e.g., the x-axis, and the collection

In recent years, a number of groups have de- of processors is grouped into two halves, one for
veloped parallel N-body codes, all of them with each side of the split. These processors then ex-
different parallelization strategies, and different change particles such that they end up hosting only
strengths and weaknesses. Early versions of parallel particles lying on their side of the split. In the
codes include those of Barnes (1986), Makino and simplest possible approach, the position of the split
Hut (1989) and Theuns and Rathsack (1993). Later, is chosen such that there are an equal number of
Warren et al. (1992) parallelized the BH-tree code on particles on both sides. However, for an efficient
massively parallel machines with distributed mem- simulation code the split should try to balance the
ory. Dubinski (1996) presented the first parallel tree work done in the force computation on the two sides.
code based on MPI. Dikaiakos and Stadel (1996) This aspect will be discussed further below.
have developed a parallel simulation code In a second step, each group of processors finds a
(PKDGRAV) that works with a balanced binary tree. new split along a different spatial axis, e.g., the
More recently, parallel tree-SPH codes have been y-axis. This splitting process is repeated recursively

´introduced by Dave et al. (1997) and Lia and Carraro until the final groups consist of just one processor,
(2000), and a PVM implementation of a gravity-only which then hosts a rectangular piece of the computa-
tree code has been described by Viturro and Carpin- tional volume. Note that this algorithm constrains the
tero (2000). number of processors that may be used to a power of

We here report on our newly developed parallel two. Other algorithms for the domain decomposition,
version of GADGET, where we use a parallelization for example Voronoi tessellations (Yahagi et al.,
strategy that differs from previous workers. It also 1999), are free of this restriction.
implements individual particle timesteps for the first A two-dimensional schematic illustration of the
time on distributed-memory, massively parallel com- ORB is shown in Fig. 2. Each processor can
puters. We have used the Message Passing Interface construct a local BH tree for its domain, and this tree
(MPI) (Pacheco, 1997; Snir et al., 1995), which is an may be used to compute the force exerted by the
explicit communication scheme, i.e., it is entirely up processors’ particles on arbitrary test particles in
to the user to control the communication. Messages space.
containing data can be sent between processors, both
in synchronous and asynchronous modes. A par- 6.2. Parallel computation of the gravitational force
ticular advantage of MPI is its flexibility and por-
tability. Our simulation code uses only standard C GADGET’s algorithm for parallel force computa-
and standard MPI, and should therefore run on a tion differs from that of Dubinski (1996), who
variety of platforms. We have confirmed this so far introduced the notion of locally essential trees.
on Cray T3E and IBM SP/2 systems, and on Linux- These are trees that are sufficiently detailed to allow
PC clusters. the full force computation for any particle local to a
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Fig. 2. Schematic representation of the domain decomposition in two dimensions, and for four processors. Here, the first split occurs along
the y-axis, separating the processors into two groups. They then independently carry out a second split along the x-axis. After completion of
the domain decomposition, each processor element (PE) can construct its own BH tree just for the particles in its part of the computational
domain.

processor, without further need for information from fronted with subtle synchronization issues for the
other processors. The locally essential trees can be nodes and particles that have been imported from
constructed from the local trees by pruning and other processor domains. Imported particles in par-
exporting parts of these trees to other processors, and ticular may have received force computations since
attaching these parts as new branches to the local the last ‘full’ reconstruction of the locally essential
trees. To determine which parts of the trees need to tree occurred, and hence need to be re-imported. The
be exported, special tree walks are required. local domain will also lack sufficient information to

A difficulty with this technique occurs in the be able to update imported nodes on its own if this is
context of dynamic tree updates. While the additional needed. So some additional communication needs to
time required to promote local trees to locally occur to properly synchronize the locally essential
essential trees should not be an issue for an integra- trees on each timestep. ‘On-demand’ schemes, in-
tion scheme with a global timestep, it can become a volving asynchronous communication, may be the
significant source of overhead in individual timestep best way to accomplish this in practice, but they will
schemes. Here, often only 1% or less of all particles still add some overhead and are probably quite
require a force update at one of the (small) system complicated to implement. Also note that the con-
timesteps. Even if a dynamic tree update scheme is struction of locally essential trees depends on the
used to avoid having to reconstruct the full tree every opening criterion. If the latter is not purely geometric
timestep, the locally essential trees are still con- but depends on the particle for which the force is
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desired, it can be difficult to generate a fully where only a very small fraction of particles are
sufficient locally essential tree. For these reasons we active. In general, one cannot expect that the same
chose a different parallelization scheme that scales domain decomposition will balance the work for
linearly with the number of particles that need a both of these steps.
force computation. Our force computation scheme proceeds therefore

Our strategy starts from the observation that each as sketched schematically in Fig. 3. Each processor
of the local processor trees is able to provide the identifies the particles that are to be advanced in the
force exerted by its particles for any location in current timestep, and puts their coordinates in a
space. The full force might thus be obtained by communication buffer. Next, an all-to-all communi-
adding up all the partial forces from the local trees. cation phase is used to establish the same list of
As long as the number of these trees is less than the coordinates on all processors. This communication is
number of typical particle–node interactions, this done in a collective fashion: For N processors, thep

computational scheme is practically not more expen- communication involves N 2 1 cycles. In eachp

sive than a tree walk of the corresponding locally cycle, the processors are arranged in N /2 pairs.p

essential tree. Each pair exchanges their original list of active
A force computation therefore requires a com- coordinates. While the amount of data that needs to

munication of the desired coordinates to all pro- be communicated scales as 2 [M(N 2 1)] . 2(MN ),p p

cessors. These then walk their local trees, and send the wall-clock time required scales only as 2(M 1

partial forces back to the original processor that sent cN ) because the communication is done fully inp

out the corresponding coordinate. The total force is parallel. The term cN describes losses due top

then obtained by summing up the incoming contribu- message latency and overhead due to the message
tions. envelopes. In practice, additional losses can occur on

In practice, a force computation for a single certain network topologies due to message collisions,
particle would be badly imbalanced in work in such or if the particle numbers contributed to M by the
a scheme, since some of the processors could stop individual processors are significantly different, re-
their tree walk already at the root node, while others sulting in communication imbalance. On the T3E,
would have to evaluate several hundred particle– the communication bandwidth is large enough that
node interactions. However, the time integration only a very small fraction of the overall simulation
scheme advances at a given timestep always a group time is spent in this phase, even if processor parti-
of M particles of size about 0.5–5% of the total tions as large as 512 are used. On Beowulf-class
number of particles. This group represents a repre- networks of workstations, we find that typically less
sentative mix of the various clustering states of than about 10–20% of the time is lost due to
matter in the simulation. Each processor contributes communication overhead if the computers are con-
some of its particle positions to this mix, but the total nected by a switched network with a speed of

21list of coordinates is the same for all processors. If 100 Mbit s .
the domain decomposition is done well, one can In the next step, all processors walk their local
arrange that the cumulative time to walk the local trees and replace the coordinates with the corre-
tree for all coordinates in this list is the same for all sponding force contribution. Note that this is the
processors, resulting in good work-load balance. In most time-consuming step of a collisionless simula-
the time integration scheme outlined above, the size tion (as it should be), hence work-load balancing is
M of the group of active particles is always roughly most crucial here. After that, the force contributions
the same from step to step, and it also represents are communicated in a similar way as above between
always the same statistical mix of particles and work the processor pairs. The processor that hosted a
requirements. This means that the same domain particular coordinate adds up the incoming force
decomposition is appropriate for each of a series of contributions and finally ends up with the full force
consecutive steps. On the other hand, in a block step for that location. These forces can then be used to
scheme with binary hierarchy, a step where all advance its locally active particles, and to determine
particles are synchronized may be followed by a step new timesteps for them. In these phases of the
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Fig. 3. Schematic illustration of the parallelization scheme of GADGET for the force computation. In the first step, each PE identifies the
active particles, and puts their coordinates in a communication buffer. In a communication phase, a single and identical list of all these
coordinates is then established on all processors. Then each PE walks its local tree for this list, thereby obtaining a list of partial forces.
These are then communicated in a collective process back to the original PE that hosts the corresponding particle coordinate. Each processor
then sums up the incoming force contributions, and finally arrives at the required total forces for its active particles.

N-body algorithm, as well as in the tree construction, space, represented by its particles, to cause some cost
no further information from other processors is in the tree-walk process. A good measure for this
required. cost is the number of particle–node interactions

originating from this region of space. To balance the
6.3. Work-load balancing work, the domain decomposition should therefore try

to make this cost equal on the two sides of each
Due to the high communication bandwidth of domain split.

parallel supercomputers like the T3E or the SP/2, the In practice, we try to reach this goal by letting
time required for force computation is dominated by each tree-node carry a counter for the number of
the tree walks, and this is also the dominating part of node–particle interactions it participated in since the
the simulation as a whole. It is therefore important last domain decomposition occurred. Before a new
that this part of the computation parallelizes well. In domain decomposition starts, we then assign this
the context of our parallelization scheme, this means cost to individual particles in order to obtain a
that the domain decomposition should be done such weight factor reflecting the cost they on average
that the time spent in the tree walks of each step is incur in the gravity computation. For this purpose,
the same for all processors. we walk the tree backwards from a leaf (i.e., a single

It is helpful to note, that the list of coordinates for particle) to the root node. In this walk, the particle
the tree walks is independent of the domain de- collects its total cost by adding up its share of the
composition. We can then think of each patch of cost from all its parent nodes. The computation of
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these cost factors differs somewhat from the method ticle population. For example, the density computa-
of Dubinski (1996), but the general idea of such a tion of SPH can be handled in much the same way as
work-load balancing scheme is similar. that of the gravitational forces. In a collective

Note that an optimum work-load balance can often communication, the processors establish a common
result in substantial memory imbalance. Tree-codes list of all coordinates of active particles together with
consume plenty of memory, so that the feasible their smoothing lengths. Each processor then com-
problem size can become memory rather than CPU- putes partial densities by finding those of its particles
time limited. For example, a single node with 128 that lie within each smoothing region, and by doing
Mbyte on the Garching T3E is already filled to the usual kernel weighting for them. These partial

5roughly 65% with 4.0 3 10 particles by the present densities are then delivered back to the processor that
code, including all memory for the tree structures, holds the particle corresponding to a certain entry in
and the time integration scheme. In this example, the the list of active coordinates. This processor then
remaining free memory can already be insufficient to adds up the partial contributions, and obtains the full
allow an optimum work-load balance in strongly density estimate for the active particle.
clustered simulations. Unfortunately, such a situation The locality of the SPH interactions brings an
is not untypical in practice, since one usually strives important simplification to this scheme. If the
for large N in N-body work, so one is always smoothing region of a particle lies entirely inside a
tempted to fill up most of the available memory with local domain, the particle coordinate does not have
particles, without leaving much room to balance the to be exported at all, allowing a large reduction in
work-load. Of course, GADGET can only try to the length of the common list of coordinates each
balance the work within the constraints set by the processor has to work on, and reducing the necessary
available memory. The code will also strictly ob- amount of communication involved by a large factor.
serve a memory limit in all intermediate steps of the In the first phase of the SPH computation, we find
domain decomposition, because some machines (e.g., in this way the density and the total number of
T3E) do not have virtual memory. neighbours inside the smoothing length, and we

evaluate velocity divergence and curl. In the second
6.4. Parallelization of SPH phase, the hydrodynamical forces are then evaluated

in an analogous fashion.
Hydrodynamics can be seen as a more natural Notice that the computational cost and the com-

candidate for parallelization than gravity, because it munication overhead of this scheme again scale
is a local interaction. In contrast to this, the gravita- linearly with the number M of active particles, a
tional N-body problem has the unpleasant property feature that is essential for good adaptivity of the
that at all times each particle interacts with every code. We also note that in the second phase of the
other particle, making gravity intrinsically difficult SPH computation, the particles ‘see’ the updated
to parallelize on distributed memory machines. density values automatically. When SPH particles

It therefore comes as no large surprise that the themselves are imported to form a locally essential
parallelization of SPH can be handled by invoking SPH-domain, they have to be exchanged a second
the same strategy we employed for the gravitational time if they are active particles themselves in order
part, with only minor adjustments that take into to have correctly updated density values for the

´account that most SPH particles (those entirely hydrodynamical force computation (Dave et al.,
‘inside’ a local domain) do not rely on information 1997).
from other processors. An interesting complication arises when the do-

In particular, as in the purely gravitational case, main decomposition is not repeated every timestep.
we do not import neighbouring particles from other In practice this means that the boundaries of a
processors. Rather, we export the particle coordinates domain may become ‘diffuse’ when some particles
(and other information, if needed) to other pro- start to move out of the boundaries of the original
cessors, which then deliver partial hydrodynamical domain. If the spatial region that we classified as
forces or partial densities contributed by their par- interior of a domain is not adjusted, we then risk
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missing interactions because we might not export a Hubble time. The initial radial particle distribution
particle that starts to interact with a particle that has and the initial velocity distribution were taken from a

21entered the local domain boundaries, but is still halo of circular velocity 1350 km s identified in a
hosted by another processor. Note that our method to cosmological N-body simulation and well fit by the
update the neighbour-tree on each single timestep NFW profile. However, we now evolved the particle
already guarantees that the correct neighbouring distribution using a fixed softened potential, corre-
particles are always found on a local processor — if sponding to the mass profile
such a search is conducted at all. So in the case of

d rsoft domain boundaries we only need to make sure c crit.
]]]]]]r(r) 5 , (66)2r rthat all those particles are really exported that can
] ]1 e 1 1S DS Dpossibly interact with particles on other processors. r rs s

We achieve this by ‘shrinking’ the interior of the
local domain. During the neighbour-tree update, we fitted to the initial particle distribution. We use a
find the maximum spatial extension of all SPH static potential in order to be able to isolate prop-
particles on the local domain. These rectangular erties of the time integration only. As a side-effect
regions are then gathered from all other processors, this also allows a quick integration of all orbits for a
and cut with the local extension. If an overlap occurs Hubble time, and the analytic formulae for the
the local ‘interior’ is reduced accordingly, thereby density and potential can also be used to check
resulting in a region that is guaranteed to be free of energy conservation for each of the particles in-
any particle lying on another processor. In this way, dividually. Note that we introduced a softening
the SPH algorithm will produce correct results, even parameter e in the profile which is not present in the
if the domain decomposition is repeated only rarely, normal NFW parameterization. The halo had con-

21or never again. In the case of periodic boundaries, centration c 5 8 with r 5 170 h kpc, and con-s

special care has to be taken in treating cuts of the tained about 140 000 particles inside the virial
current interior with periodic translations of the other radius. We followed the orbits of all particles inside a

21domain extensions. sphere of radius 3000 h kpc around the halo center
(about 200 000 in total) using GADGET’s integra-
tion scheme for single particles in haloes of three

7. Results and tests different softening lengths, e 5 0.0004, 0.004, and
0.04. The corresponding density profiles are plotted

7.1. Tests of timestep criteria in Fig. 4.
In Fig. 5, we give the radii of shells enclosing

Orbit integration in the collisionless systems of fixed numbers of particles as a function of the mean
cosmological simulations is much less challenging number of force evaluations necessary to carry out
than in highly non-linear systems like star clusters. the integration for one Hubble time. The figure thus
As a consequence, all the simple timestep criteria shows the convergence of these radii when more and
discussed in Section 5.1 are capable of producing more computational effort is spent.
accurate results for sufficiently small settings of their The results show several interesting trends. In
tolerance parameters. However, some of these general, for poor integration accuracy (on the left),
criteria may require a substantially higher computa- all radii are much larger than the converged values,
tional effort to achieve a desired level of integration i.e., the density profile shows severe signs of relaxa-
accuracy than others, and the systematic deviations tion even at large distances from the center. When an
under conditions of coarse timestepping may be integrator with fixed timestep is used (solid lines),
more severe for certain criteria than for others. the radii decrease monotonically when more force

In order to investigate this issue, we have followed evaluations, i.e., smaller timesteps, are taken, until
the orbits of the particle distribution of a typical convergence to asymptotic values is reached. The
NFW-halo (Navarro et al., 1996, 1997) for one other timestep criteria converge to these asymptotic
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center for the criteria (37) and (38) as soon as the
logarithmic slope of the density profile becomes
shallower than 21. On the other hand, the density
increases monotonically towards the center, and
hence a timestep based the local dynamical time will
decrease. If one uses the local velocity dispersion in
the criterion (37), a better behaviour can be obtained,
because the velocity dispersion declines towards the
center in the core region of dark matter haloes.
However, this is not enough to completely suppress
non-monotonic behaviour, as we have found in
further sets of test calculations.

We thus think that in particular for the cores of
large haloes the local dynamical time provides the
best of the timestep criteria tested. It leads to hardly
any secular evolution of the density profile down to
rather coarse timestepping. On the other hand, as
Quinn et al. (1997) have pointed out, estimating the

Fig. 4. NFW density profiles used in the test of time integration density in a real simulation poses additional prob-
criteria. The solid line gives the shape of the normal (unsoftened)

lems. Since kernel estimates are carried out over aNFW profile, dashed lines are softened according to e 5 0.0004,
number of neighbours, the density in small haloes0.004, and 0.04, respectively (see Eq. (66)).
can be underestimated, resulting in ‘evaporation’ of
haloes. These haloes are better treated with a criter-

values much more quickly. Also, for small softening ion based on local acceleration, which is much more
21values, the timestep criterion Dt ~uau (dashed lines) accurately known in this case.

performs noticeably better than the one with t We thus think that a conservative and accurate
21 / 2

~uau (dotted lines), i.e., it is usually closer to the way to choose timesteps in cosmological simulations
converged values at a given computational cost. On is obtained by taking the minimum of (37) and (39).
the other hand, the criterion based on the local This requires a computation of the local matter
dynamical time (dot-dashed lines) does clearly the density and local velocity dispersion of collisionless
best job. It stays close to the converged values even material. Both of these quantities can be obtained for
at a very low number of timesteps. the dark matter just as it is done for the SPH

This impression is corroborated when the soften- particles. Of course, this requires additional work in
ing length is increased. The timestep based on the order to find neighbours and to do the appropriate
local dynamical time performs better than the other summations and kernel estimates, which is, however,
two simple criteria, and the fixed timestep. Interest- typically not more than | 30% of the cost the
ingly, the criteria based on the acceleration develop a gravitational force computation. However, as Fig. 5
non-monotonic behaviour when the potential is shows, this is in general worth investing, because the
softened. Already at e 5 0.004 this is visible at the alternative timestep criteria require more timesteps,
three lowest radii, but more clearly so for e 5 0.04. and hence larger computational cost, by a larger
Before the radii increase when poorer integration factor in order to achieve the same accuracy.
settings are chosen, they actually first decrease.
There is thus a regime where both of these criteria 7.2. Force accuracy and opening criterion
can lead to a net loss of energy for particles close to
the shallow core induced by the softening, thereby In Section 3.3, we have outlined that standard
steepening it. We think that this is related to the fact values of the BH-opening criterion can result in very
that the timesteps actually increase towards the high force errors for the initial conditions of cos-
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25 24 23 23 22 21 21Fig. 5. Radii enclosing a fixed mass (7.1 3 10 , 3.6 3 10 , 1.8 3 10 , 7.1 3 10 , 3.6 3 10 , 2.1 3 10 , and 7.1 3 10 in units of the
virial mass) after integrating the particle population of a NFW halo in a fixed potential for one Hubble time with various timestep criteria.

21 21 / 2Solid lines are for fixed timesteps for all particles, dashed lines for timesteps based on Dt ~uau , dotted lines for Dt ~uau , and dot-dashed
21 / 2for timesteps based on the local dynamical time, i.e., Dt ~r . The three panels are for softened forms of the NFW potential according to

Eq. (66). Note that the fluctuations of the lowest radial shell are caused by the low sampling of the halo in the core and are not significant.
The horizontal axis gives the mean number of force evaluation per particle required to advance the particle set for one Hubble time.

mological N-body simulations. Here, the density of GADGET using two processors on a Linux PC.
field is very close to being homogeneous, so that We first examine the distribution of the relative
small peculiar accelerations arise from a cancellation force error as a function of the tolerance parameter
of relatively large partial forces. We now investigate used in the two different cell-opening criteria (8) and
this problem further using a cosmological simulation (18). These results are shown in Fig. 6, where we

3with 32 particles in a periodic box. We consider the also contrast these distributions with the ones ob-
particle distribution of the initial conditions at red- tained with an optimum cell-opening strategy. The
shift z 5 25, and the clustered one of the evolved latter may be operationally defined as follows:

´simulation at z 5 0. Dave has kindly made these Any complete tree walk results in an interaction
particle dumps available to us, together with exact list that contains a number of internal tree nodes
forces he calculated for all particles with a direct (whose multipole expansions are used) and a number
summation technique, properly including the period- of single particles (which give rise to exact partial
ic images of the particles. In the following we will forces). Obviously, the shortest possible interaction
compare his forces (which we take to be the exact list is that of just one entry, the root node of the tree
result) to the ones computed by the parallel version itself. Suppose we start with this interaction list, and
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Fig. 6. Cumulative distribution of the relative force error obtained as a function of the tolerance parameter for three opening criteria, and for
3two different particle distribution. The panels in the left column show results for the particle distribution in the initial conditions of a 32

simulation at z 5 25, while the panels on the right give the force errors for the evolved and clustered distribution at z 5 0.
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then open always the one node of the current way. The resulting cumulative error distributions as a
interaction list that gives rise to the largest absolute function of d are shown in Fig. 6.
force error. This is the node with the largest differ- Looking at this figure, it is clear that the BH error
ence between multipole expansion and exact force, distribution has a more pronounced tail of large force
as resulting from direct summation over all the errors compared to the opening criterion (18). What
particles represented by the node. With such an is most striking, however, is that at high redshift the
opening strategy, the shortest possible interaction list BH force errors can become very large for values of
can be found for any desired level of accuracy. The the opening angle u that tend to give perfectly
latter may be set by requiring that the largest force acceptable accuracy for a clustered mass distribution.
error of any node in the interaction list has fallen This is clearly caused by its purely geometrical
below a fraction d uau of the true force field. nature, which does not know about the smallness of

Of course, this optimum strategy is not practical in the net forces, and thus does not invest sufficient
a real simulation, after all it requires the knowledge effort to evaluate partial forces to high enough
of all the exact forces for all internal nodes of the accuracy.
tree. If these were known, we would not have to The error distributions alone do not tell yet about
bother with trees to begin with. However, it is very the computational efficiency of the cell-opening
interesting to find out what such a fiducial optimum strategies. To assess these, we define the error for a
opening strategy would ultimately deliver. Any other given cell-opening criterion as the 95% percentile of
analytic or heuristic cell-opening criterion is bound the error distribution, and we plot this versus the
to be worse. Knowing how much worse such criteria mean length of the interaction list per particle. This
are will thus inform us about the maximum per- length is essentially linearly related to the computa-
formance improvement possible by adopting alter- tional cost of the force evaluation.
native cell-opening criteria. We therefore computed In Fig. 7, we compare the performance of the
for each particle the exact direct summation forces cell-opening criteria in this way. At high redshift, we
exerted by each of the internal nodes, hence allowing see that the large errors of the BH criterion are
us to perform an optimum tree walk in the above mainly caused because the mean length of the

Fig. 7. Computational efficiency of three different cell-opening criteria, parameterized by their tolerance parameters. The horizontal axes is
proportional to the computational cost, and the vertical axes gives the 95% percentile of the cumulative distribution of relative force errors in

3a 32 cosmological simulation. The left panel shows results for the initial conditions at z 5 25, the right panel for the clustered distribution at
redshift z 5 0.
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interaction list remains small and does not adapt to We note that the improvement obtained by criter-
the more demanding requirements of the force ion (18) brings us about halfway to what might
computation in this regime. Our ‘new’ cell-opening ultimately be possible with an optimum criterion. It
criterion does much better in this respect; its errors thus appears that there is still room for further
remain well controlled without having to adjust the improvement of the cell-opening criterion, even
tolerance parameter. though it is clear that the optimum will likely not be

Another advantage of the new criterion is that it is reachable in practice.
in fact more efficient than the BH criterion, i.e., it
achieves higher force accuracy for a given computa- 7.3. Colliding disk galaxies
tional expense. As Fig. 7 shows, for a clustered
particle distribution in a cosmological simulation, the As a test of the performance and accuracy of the
implied saving can easily reach a factor 2–3, speed- integration of collisionless systems, we here consider
ing up the simulation by the same factor. Similar a pair of merging disk galaxies. Each galaxy has a
performance improvements are obtained for isolated massive dark halo consisting of 30 000 particles, and
galaxies, as the example in Fig. 8 demonstrates. This an embedded stellar disk, represented by 20 000
can be understood as follows: The geometrical BH particles. The dark halo is modeled according to the
criterion does not take the dynamical significance of NFW-profile, adiabatically modified by the central
the mass distribution into account. For example, it exponential disk, which contributes 5% of the total
will invest a large number of cell–particle interac- mass. The halo has a circular velocity v 5200

21tions to compute the force exerted by a large void to 160 km s , a concentration c 5 5, and spin parame-
a high relative accuracy, while actually this force is ter l 5 0.05. The radial exponential scale length of

21of small absolute size, and it would be better to the disk is R 5 4.5 h kpc, while the verticald

concentrate more on those regions that provide most structure is that of an isothermal sheet with thickness
of the force on the current particle. The new opening z 5 0.2R . The gravitational softening of the halo0 d

21criterion follows this latter strategy, improving the particles is set to 0.4 h kpc, and that of the disk to
21force accuracy at a given number of particle–cell 0.1 h kpc.

interactions. Initially, the two galaxies are set-up on a parabolic
orbit, with separation such that their dark haloes just
touch. Both of the galaxies have a prograde orienta-
tion, but are inclined with respect to the orbital
plane. In fact, the test considered here corresponds
exactly to the simulation ‘C1’ computed by Springel
(2000), where more information about the construc-
tion of the initial conditions can be found (see also
Springel and White, 1999).

We first consider a run of this model with a set of
parameters equal to the coarsest values we would
typically employ for a simulation of this kind. For
the time integration, we used the parameter a s 5tol

2125 km s , and for the force computation with the
tree algorithm, the new opening criterion with a 5

Fig. 8. Force errors for an isolated halo /disk galaxy with the 0.04. The simulation was then run from t 5 0 to
BH-criterion (boxes), and the new opening criterion (triangles). t 5 2.8 in internal units of time (corresponding to

21The dark halo of the galaxy is modeled with a NFW profile and is 2.85 h Gyr). During this time the galaxies have
truncated at the virial radius. The plot shows the 90% percentile of

their first close encounter at around t . 1.0, wherethe error distribution, i.e., 90% of the particles have force errors
tidal tails are ejected out of the stellar disks. Due tobelow the cited values. The horizontal axes measures the computa-

tional expense. the braking by dynamical friction, the galaxies
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eventually fall together for a second time, after with adaptive timesteps (triangles) to the one with a
which they quickly merge and violently relax to form fixed timestep of Dt 5 0.01 (boxes). We here show
a single merger remnant. At t 5 2.8, the inner parts the spherically averaged profile of the stellar com-
of the merger remnant are well relaxed. ponent, with the center of the remnants defined as

This simulation required a total number of 4684 the position of the particle with the minimum
steps and 27 795 733 force computations, i.e., a gravitational potential. It can be seen that in the

21computationally equally expensive computation with innermost | 1 h kpc, the density obtained with the
fixed timesteps could just make 280 full timesteps. fixed timestep falls short of the adaptive timestep

23The relative error in the total energy was 3.0 3 10 , integration.
and a Sun Ultrasparc-II workstation (sparcv9 pro- To get an idea how small the fixed timestep has to
cessor, 296 MHz clock speed) did the simulation in 4 be to achieve similar accuracy as with the adaptive
h (using the serial code). The raw force speed was timestep, we have simulated this test a second time,
| 2800 force computations per second, older work- with a fixed timesteps of Dt 5 0.0025. We also show
stations will achieve somewhat smaller values, of the corresponding profile (diamonds) in Fig. 9. It can
course. Also, higher force accuracy settings will slow be seen that for smaller Dt, the agreement with the

21down the code somewhat. variable timestep result improves. At | 2 3 0.4 h
We now consider a simulation of the same system kpc, the softening of the dark matter starts to become

using a fixed timestep. For Dt 5 0.01, the run needs important. For agreement down to this scale, the
280 full steps, i.e., it consumes the same amount of fixed timestep needs to be slightly smaller than
CPU time as above. However, in this simulation, the Dt 5 0.0025, so the overall saving due to the use of
error in the total energy is 2.2%, substantially larger individual particle timesteps is at least a factor of
than before. There are also differences in the density 4 2 5 in this example.
profile of the merger remnants. In Fig. 9, we
compare the inner density profile of the simulation 7.4. Collapse of a cold gas sphere

The self-gravitating collapse of an initially iso-
thermal, cool gas sphere has been a common test
problem of SPH codes (Carraro et al., 1998; Evrard,
1988; Hernquist and Katz, 1989; Steinmetz and

¨Muller, 1993; Thacker et al., 2000; and others).
Following these authors, we consider a spherically
symmetric gas cloud of total mass M, radius R, and
initial density profile

M 1
]] ]r(r) 5 . (67)2 r2pR

We take the gas to be of constant temperature
initially, with an internal energy per unit mass of

Fig. 9. Spherically averaged density profile of the stellar com- GM
]]u 5 0.05 . (68)ponent in the merger remnant of two colliding disk galaxies. R

Triangles show the results obtained using our variable timestep
integration, while boxes and diamonds are for fixed timestep At the start of the simulation, the gas particles are at

21 21integrations with Dt 5 0.01 (10 h Myr) and Dt 5 0.0025 (2.5 h rest. We obtain their initial coordinates from a
Myr), respectively. Note that the simulation using the adaptive

distorted regular grid that reproduces the densitytimestep is about as expensive as the one with Dt 5 0.01. In each
profile (67), and we use a system of units withcase, the center of the remnant was defined as the position of the

particle with the minimum gravitational potential. G 5 M 5 R 5 1.
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Fig. 10. Time evolution of the thermal, kinetic, potential, and total energy for the collapse of an initially isothermal gas sphere. Solid lines
show results for a simulations with 30 976 particles, dashed lines are for a 4224 particle run.

In Fig. 10, we show the evolution of the potential, a time integration scheme with individual timesteps
the thermal, and the kinetic energy of the system of arbitrary size, this small error is reassuring. The
from the start of the simulation at t 5 0 to t 5 3. We total number of small steps taken by the 4224
plot results for two simulations, one with 30 976 particle simulation was 3855, with a total of
particles (solid), and one with 4224 particles 2 192 421 force computations, i.e., the equivalent
(dashed). During the central bounce between t ¯ 0.8 number of ‘full’ timesteps was 519. A Sun Ultrasparc-
and t ¯ 1.2 most of the kinetic energy is converted II workstation needed 2300 s for the simulation. The
into heat, and a strong shock wave travels outward. larger 30 976 particle run took 10 668 steps, with an
Later, the system slowly settles to virial equilibrium. equivalent of 1086 ‘full’ steps, and 12 h of CPU

For these runs N was set to 40, the gravitational time. Note that by reducing the time integrations

softening to e 5 0.02, and time integration was accuracy by a factor of 2, with a corresponding
controlled by the parameters a s 5 0.05 and reduction of the CPU time consumption by the sametol

2
a 5 0.1, resulting in very good energy conserva- factor, the results do practically not change, how-cour

tion. The absolute error in the total energy is less ever, the maximum error in the energy goes up to
23than 1.1 3 10 at all times during the simulation, 1.2% in this case.

translating to a relative error of 0.23%. Since we use The results of Fig. 10 agree very well with those
¨of Steinmetz and Muller (1993), and with Thacker et

al. (2000) if we compare to their ‘best’ implementa-2Note that our definition of the smoothing length h differs by a
tion of artificial viscosity (their version 12). Stein-factor of 2 from most previous SPH implementations. As a

¨metz and Muller (1993) have also computed aconsequence, corresponding values of a are different by acour

factor of 2, too. solution of this problem with a very accurate, one-
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dimensional, spherically symmetric piecewise tion sphere, two million high-resolution particles
parabolic method (PPM). For particle numbers above were placed in the somewhat enlarged Lagrangian
10 000, our SPH results become very close to the region of the cluster. The rest of the volume was
finite difference result. However, even for very small filled with an extended shell of boundary particles of
particle numbers, SPH is capable of reproducing the larger mass and larger softening; they are needed for
general features of the solution very well. We also a proper representation of the gravitational tidal field.
expect that a three-dimensional PPM calculation of To keep our test simple, we have cut a centred

21the collapse would likely require at least the same sphere of comoving radius 12.25 h Mpc from these
amount of CPU time as our SPH calculation. initial conditions, and we only simulated the 500 000

high-resolution particles with mass m 5 1.36 3p
9 2110 h M found within this region. Such a simula-(

7.5. Performance and scalability of the parallel tion will not be useful for direct scientific analysis
gravity because it does not model the tidal field properly.

However, this test will show realistic clustering and
We here show a simple test of the performance of time-stepping behaviour, and thus allows a reason-

the parallel version of the code under conditions able assessment of the expected computational cost
relevant for real target applications. For this test, we and scaling of the full problem.
have used a ‘stripped-down’ version of the initial We have run the test problem with GADGET on
conditions originally constructed for a high-resolu- the Garching T3E from redshift z 5 50 to redshift
tion simulation of a cluster of galaxies. The original z 5 4.3. We repeated the identical run on partitions of
set of initial conditions was set-up to follow the size four, eight and 16 processors. In this test, we
cosmological evolution of a large spherical region included quadrupole moments in the tree computa-

21with comoving radius 70 h Mpc, within a LCDM tion, we used a BH opening criterion with u 5 1.0,
21cosmogony corresponding to V 5 0.3, V 5 0.7, and a gravitational softening length of 15 h kpc.0 L

z 5 50, and h 5 0.7. In the center of the simula- In Table 1 we list in detail the elapsed wall-clockstart

Table 1
aConsumption of CPU-time in various parts of the code for a cosmological run from z 5 50 to z 5 4.3

Four processors Eight processors 16 Processors

Cumulative Relative Cumulative Relative Cumulative Relative
time (s) time (%) time (s) time (%) time (s) time (%)

Total 8269.0 100.0 4074.0 100.0 2887.5 100.0
Gravity 7574.6 91.6 3643.0 89.4 2530.3 87.6

Tree walks 5086.3 61.5 2258.4 55.4 1322.4 45.8
Tree construction 1518.4 18.4 773.7 19.0 588.4 20.4
Communication 24.4 0.3 35.4 0.9 54.1 1.9
and summation
Work-load imbalance 901.5 10.9 535.1 13.1 537.4 18.6

Domain decomposition 209.9 2.5 158.1 3.9 172.2 6.0
Potential computation 46.3 0.2 18.1 0.4 11.4 0.4

(optional)
Miscellaneous 438.3 5.3 254.8 6.3 173.6 6.0

a The table gives timings for runs with four, eight and 16 processors on the Garching Cray T3E. The computation of the gravitational
forces is by far the dominant computational task. We have further split up that time into the actual tree-walk time, the tree-construction time,
the time for communication and summation of force contributions, and into the time lost by work-load imbalance. The potential computation
is done only once in this test (it can optionally be done in regular intervals to check energy conservation of the code). ‘Miscellaneous’ refers
to time spent in advancing and predicting particles, and in managing the binary tree for the timeline. I /O time for writing a snapshot file
(groups of processors can write in parallel) is only 1–2 s, and therefore not listed here.
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fixed timestep, the work-load balancing would be
essentially perfect. Note that the use of our adaptive
timestep integrator results in a saving of about a
factor of 3–5 compared to a fixed timestep scheme
with the same accuracy.

We think that the overall performance of
GADGET is good in this test. The raw gravitational
speed is high, and the algorithm used to parallelize
the force computation scales well, as is seen in the
left panel of Fig. 11. Note that the force-speed of the
N 5 8 run is even higher than that of the N 5 4 run.p p

This is because the domain decomposition does
exactly one split in the x-, y-, and z-directions in the
N 5 8 case. The domains are then close to cubes,p

which reduces the depth of the tree and speeds up the
tree-walks.

Also, the force communication does not involve a
significant communication overhead, and the time
spent in miscellaneous tasks of the simulation code
scales closely with processor number. Most losses in
GADGET occur due to work-load imbalance in the
force computation. While we think these losses are
acceptable in the above test, one should keep in mind
that we here kept the problem size fixed, and just

Fig. 11. Code performance and scalability for a cosmological increased the processor number. If we also scale up
integration with vacuum boundaries. The left panel shows the

the problem size, work-load balancing will be sig-speed of the gravitational force computation as a function of
nificantly easier to achieve, and the efficiency ofprocessor number (in particles per second). This is based on the
GADGET will be nearly as high as for smalltree walk time alone. In the simulation, additional time is needed

for tree construction, work-load imbalance, communication, do- processor number.
main decomposition, prediction of particles, timeline, etc. This Nevertheless, the computational speed of
reduces the ‘effective’ speed of the code, as shown in the right

GADGET may seem disappointing when comparedpanel. This effective speed gives the number of particles advanced
with the theoretical peak performance of modernby one timestep per second. Note that the only significant source
microprocessors. For example, the processors of theof work-load imbalance in the code occurs in the gravity computa-

tion, where some small fraction of time is lost when processors T3E used for the timings have a nominal peak
idly wait for others to finish their tree-walks. performance of 600 MFlops, but GADGET falls far

short of reaching this. However, the peak perform-
ance can only be reached under the most favourable

time for various parts of the code for the three of circumstances, and typical codes operate in a
simulations. The dominant sink of CPU time is the range where they are a factor of 5–10 slower.
computation of gravitational forces for the particles. GADGET is no exception here. While we think that
To advance the test simulation from z 5 50 to z 5 the code does a reasonable job in avoiding un-

64.3, GADGET needed 30.0 3 10 force computations necessary floating point operations, there is certainly
in a total of 3350 timesteps. Note that on average room for further tuning measures, including pro-
only 1.8% of the particles are advanced in a single cessor-specific ones which have not been tried at all
timestep. Under these conditions it is challenging to so far. Also note that our algorithm of individual tree
eliminate sources of overhead incurred by the time- walks produces essentially random access of memory
stepping and to maintain work-load balancing. locations, a situation that could hardly be worse for
GADGET solves this task satisfactorily. If we used a the cache pipeline of current microprocessors.
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mological applications we consider a simulation of
21structure formation in a periodic box of size (50h

3 3Mpc) , including adiabatic gas physics. We use 32
3dark matter particles, and 32 SPH particles in a

LCDM cosmology with V 5 0.3, V 5 0.7 and h 50 L

0.7, normalized to s 5 0.9. For simplicity, initial8

conditions are constructed by displacing the particles
from a grid, with the SPH particles placed on top of
the dark matter particles.

We have evolved these initial conditions from
z 5 10 to z 5 1, using two, four, eight, 16, and 32
processors on the Cray T3E in Garching. The final
particle distributions of all these runs are in excellent
agreement with each other.

In the bottom panel of Fig. 12, we show the code
speed as a function of the number of processors
employed. We here define the speed as the total
number of force computations divided by the total
elapsed wall-clock time during this test. Note that the
scaling of the code is almost perfectly linear in this
example, even better than for the set-up used in the
previous section. In fact, this is largely caused by the
simpler geometry of the periodic box as compared to
the spherical volume used earlier. The very absence
of such boundary effects makes the periodic box
easier to domain-decompose, and to work-balance.

The top and middle panels of Fig. 12 show the
speed of the gravitational force computation and that
of the SPH part separately. What we find encourag-
ing is that the SPH algorithm scales really very well,
which is promising for future large-scale applica-
tions.

It is interesting that in this test (where N 5 40s

SPH neighbours have been used) the hydro-
dynamical part actually consumes only | 25% of the

Fig. 12. Speed of the code in a gasdynamical simulation of a
overall CPU time. Partly this is due to the slowerperiodic LCDM universe, run from z 5 10 to z 5 1, as a function
gravitational speed in this test compared to theof the number of T3E processors employed. The top panel shows

the speed of the gravitational force computation (including tree results shown in Fig. 11, which in turn is caused by
construction times). We define the speed here as the number of the Ewald summation needed to treat the periodic
force computations per elapsed wall-clock time. The middle panel boundary conditions, and by longer interaction lists
gives the speed in the computation of hydrodynamical forces,

in the present test (we here used our new openingwhile the bottom panel shows the resulting overall code speed in
criterion). Also note that only half of the particles interms of particles advanced by one timestep per second. This

effective code speed includes all other code overhead, which is this simulation are SPH particles.
less than 5% of the total cpu time in all runs. We remark that the gravitational force computa-

tion will usually be more expensive at higher redshift
7.6. Parallel SPH in a periodic volume than at lower redshift, while the SPH part does not

have such a dependence. The fraction of time
As a further test of the scaling and performance of consumed by the SPH part thus tends to increase

the parallel version of GADGET in typical cos- when the material becomes more clustered. In dis-
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sipative simulations one will typically form clumps phases of the waves of the initial fluctuation spec-
of cold gas with very high density — objects that we trum. For each of the two CR simulations, we
think will form stars and turn into galaxies. Such employed | 75 million particles in total, with 53
cold knots of gas can slow down the computation million high-resolution particles of mass 3.6 3

9 21 10 21substantially, because they require small hydro- 10 h M (LCDM) or 1.2 3 10 h M (tCDM)( (

dynamical timesteps, and if a lower spatial resolution in the low-density and critical-density models, re-
cut-off for SPH is imposed, the hydrodynamical spectively.
smoothing may start to involve more neighbours than The main technical features of GADGET are as
N . follows. Gravitational forces are computed with as

Barnes and Hut oct-tree, using multipole expansions
up to quadrupole order. Periodic boundary conditions
can optionally be used and are implemented by

8. Discussion means of Ewald summation. The cell-opening criter-
ion may be chosen either as the standard BH-criter-

We have presented the numerical algorithms of ion, or a new criterion which we have shown to be
our code GADGET, designed as a flexible tool to computationally more efficient and better suited to
study a wide range of problems in cosmology. cosmological simulations starting at high redshift. As
Typical applications of GADGET can include inter- an alternative to the tree-algorithm, the serial code
acting and colliding galaxies, star formation and can use the special-purpose hardware GRAPE both
feedback in the interstellar medium, formation of to compute gravitational forces and for the search for
clusters of galaxies, or the formation of large-scale SPH neighbours.
structure in the universe. In our SPH implementation, the number of

In fact, GADGET has already been used success- smoothing neighbors is kept exactly constant in the
fully in all of these areas. Using our code, Springel serial code, and is allowed to fluctuate in a small
and White (1999) have studied the formation of tidal band in the parallel code. Force symmetry is
tails in colliding galaxies, and Springel (2000) has achieved by using the kernel averaging technique,
modeled star formation and feedback in isolated and and a suitable neighbour searching algorithm is used
colliding gas-rich spirals. For these simulations, the to guarantee that all interacting pairs of SPH par-
serial version of the code was employed, both with ticles are always found. We use a shear-reduced
and without support by the GRAPE special-purpose artificial viscosity that has emerged as a good
hardware. parameterization in recent systematic studies that

The parallel version of GADGET has been used to compared several alternative formulations (Lombardi
compute high-resolution N-body simulations of clus- et al., 1999, Thacker et al., 2000).
ters of galaxies (Springel, 1999; Springel et al., Parallelization of the code for massively parallel
2000; Yoshida et al., 2000a,b). In the largest simula- supercomputers is achieved in an explicit message
tion of this kind, 69 million particles have been passing approach, using the MPI standard communi-
employed, with 20 million of them ending up in the cation library. The simulation volume is spatially
virialized region of a single object. The particle mass split using a recursive orthogonal bisection, and each

210in the high-resolution zone was just | 10 of the of the resulting domains is mapped onto one pro-
total simulated mass, and the gravitational softening cessor. Dynamic work-load balancing is achieved by

21length was 0.7 h kpc in a simulation volume of measuring the computational expense incurred by
21diameter 140 h Mpc, translating to an impressive each particle, and balancing the sum of these weights

5spatial dynamic range of 2 3 10 in three dimen- in the domain decomposition.
sions. The code allows fully adaptive, individual particle

We have also successfully employed GADGET for timesteps, both for collisionless particles and for
two ‘constrained-realization’ (CR) simulations of the SPH particles. The speed-up obtained by the use of
Local Universe (Mathis et al., 2000, in preparation). individual timesteps depends on the dynamic range
In these simulations, the observed density field as of the time scales present in the problem, and on the
seen by IRAS galaxies has been used to constrain the relative population of these time scales with par-
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ticles. For a collisionless cosmological simulation and Simone Marri for their patience in working with
earlier versions of GADGET. We thank Lars Her-with a gravitational softening length larger than

21 nquist, Martin White, Charles Coldwell, Jasjeet| 30 h kpc the overall saving is typically a factor
Bagla and Matthias Steinmetz for many helpfulof 3 2 5. However, if smaller softening lengths are
discussions on various algorithmic and numericaldesired, the use of individual particle timesteps

´issues. We also thank Romeel Dave for making someresults in larger savings. In the hydrodynamical part,
of his test particle configurations available to us. Wethe savings can be still larger, especially if dissipa-
are indebted to the Rechenzentrum of the Max-tive physics is included. In this case, adaptive
Planck-Society in Garching for providing excellenttimesteps may be required to make a simulation
support for their T3E, on which a large part of thefeasible to begin with. GADGET can be used to run
computations of this work have been carried out. Wesimulations both in physical and in comoving coordi-
want to thank the referee, Junichiro Makino, for verynates. The latter is used for cosmological simulations
insightful comments on the manuscript.only. Here, the code employs an integration scheme

that can deal with arbitrary cosmological background
models, and which is exact in linear theory, i.e., the

Appendix A. Softened tree nodeslinear regime can be traversed with maximum ef-
ficiency.

The smoothing kernel we use for SPH calculationsGADGET is an intrinsically Lagrangian code.
is a spline of the form (Monaghan and Lattanzio,Both the gravity and the hydrodynamical parts
1985)impose no restriction on the geometry of the prob-

lem, nor any hard limit on the allowable dynamic 2 3r r r 1
] ] ] ]1 2 6S D 1 6S D , 0 # # ,range. Current and future simulations of structure h h h 2

8formation that aim to resolve galaxies in their correct 3r 1 r
]]W(r; h) 5 ] ] ]2S1 2 D , , # 1,3cosmological setting will have to resolve length ph h 2 h

21 5 rscales of size 0.1 2 1 h kpc in volumes of size
]21 0, . 1.| 100 h Mpc. This range of scales is accompanied h

by a similarly large dynamic range in mass and time (A.1)
scales. Our new code is essentially free to adapt to

Note that we define the smoothing kernel on thethese scales naturally, and it invests computational
interval [0, h] and not on [0, 2h] as it is frequentlywork only where it is needed. It is therefore a tool
done in other SPH calculations.that should be well suited to work on these problems.

We derive the spline-softened gravitational forceSince GADGET is written in standard ANSI-C,
from this kernel by taking the force from a pointand the parallelization for massively parallel super-
mass m to be the one resulting from a densitycomputers is achieved with the standard MPI library,
distribution r(r) 5 mW(r;h). This leads to a potentialthe code runs on a large variety of platforms, without

requiring any change. Having eliminated the depen- m r
] ]F(r) 5 G W S D (A.2)2dence on proprietary compiler software and oper- h h

ating systems we hope that the code will remain with a kernel
usable for the foreseeable future. We release the

16 48 32 14 1parallel and the serial version of GADGET publicly 2 4 5] ] ] ] ]u 2 u 1 u 2 , 0 # u , ,3 5 5 5 2in the hope that they will be useful for others as a  1 32 48scientific tool and as a basis for further numerical 2 3 4] ] ]1 u 2 16u 1 u15u 3 5developments. W (u) 52 32 16 15 ] ] ]2 u 2 , # u , 1,15 5 2
1Acknowledgements ]2 , u $ 1. u

We are grateful to Barbara Lanzoni, Bepi Tormen, (A.3)
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The multipole expansion of a group of particles is
discussed in Section 3.1. It results in a potential and
force given by Eqs. (11) and (15), respectively. The
functions appearing in Eq. (15) are defined as

g9( y)
]]g ( y) 5 , (A.4)1 y

g0( y) g9( y)
]] ]]g ( y) 5 2 , (A.5)2 2 3y y

9g ( y)2
]]g ( y) 5 , (A.6)3 y

Fig. 14. Comparison of spline-softened (solid) and Plummer-
softened (dotted) force law with Newton’s law (dashed). Here

9g ( y) h 5 1.0, and e 5 h /2.8.1
]]g ( y) 5 . (A.7)4 y

Writing u 5 y /h, the explicit forms of these functions
384 1are ] ]2 96u, u # ,5 2

384 1 48 132 192 1 12 3 ] ] ] ]] ] ] 2 2 1 1 32u, , u , 1,2 1 u 2 32u , u # , ]g ( y) 5 52 5 5 u 23 5 2 5uh 1 64 3
]] ]2 1 48u ], u . 1,3 51 315u u]g ( y) 51 3 192 32 1h 2 3 (A.9)] ] ]2 u 1 u , , u , 1,5 3 2

1 96 1
] ] ]2 , u . 1, 2 , u # ,3 u 2 u 

32 1 48 11(A.8) ] ] ] ]1 2 , , u , 1,]g ( y) 5 (A.10)7 33 7 u 2u uh
15
]2 , u . 1,7 u

96 1
] ]2 (5u 2 4), u # ,5 2

48 1 384 11
] ] ] ]2 2 1 32u, , u , 1,]g ( y) 5 54 5 u 5 25uh
3
], u . 1.5u

(A.11)

In Figs. 13 and 14, we show the spline-softened
and Plummer-softened force and potential of a point
mass. For a given spline softening length h, we
define the ‘equivalent’ Plummer softening length asFig. 13. Comparison of spline-softened (solid) and Plummer-
e 5 h /2.8. For this choice, the minimum of thesoftened (dotted) potential of a point mass with the Newtonian

potential (dashed). Here h 5 1.0, and e 5 h /2.8. potential at u 5 0 has the same depth.
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