
GADGET-4
Volker Springel

Max-Planck-Institute for Astrophysics

Karl-Schwarzschild-Str. 1, 85748 Garching, Germany

Table of Contents

Introduction

Introduction to GADGET-4
Overview and history
Disclaimer

Running the Code

Compilation and basic usage
Compilation requirements
Building the code
Starting the code
Interrupting a run
Restarting a run

Restarting from restart-files
Restarting from snapshot-files

Starting postprocessing

Simulation Types

Types of simulations
Cosmological Simulations
Newtonian space
Stretched boxes
Two-dimensional simulations

Configuration

Code Configuration
Parallelization options
Basic operation mode of code
Gravity calculation
TreePM Options
Treatment of gravitational softening
SPH formulation
SPH kernel options
SPH viscosity options
Extra physics
Time integration options
Single/double precision and data types

•
•
•

•
•
•
•
•
•

◦
◦

•

•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

Output/Input options
On the fly FOF groupfinder
Subfind
Merger tree algorithm
On-the-fly lightcone creation
IC generation
MPI related settings
Testing and Debugging options

Parameterfile

Parameterfile
Filenames and file formats
CPU-time limit and restarts
Memory allocation
Simulated time span and spatial extent
Cosmological parameters
System of units
Gravitational force accuracy
Time integration accuracy
Domain decomposition
Output frequency
SPH parameters
Gravitational softening
Subfind parameters
Initial conditions generation
Lightcone output
Cooling and star formation
Special features

Snapshot Format

Snapshot file format
Legacy Format 1
Legacy Format 2
HDF5 file format
Format of initial conditions

Diagnostics Output

Diagnostic outputs
stdout
info.txt
timebins.txt
cpu.txt
domain.txt
balance.txt
memory.txt
timings.txt
density.txt
hydro.txt
energy.txt
sfr.txt

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

Group Finders

Groups and subhalos
FOF and SUBFIND
Format of group catalogues

FOF catalogue
SUBFIND catalogue

Special Features

Special code features
Initial conditions
Merger trees
Lightcone output
Power spectra
I/O bandwidth test

Examples

Example Setups
Cosmological DM-only simulation with IC creation
Aquarius Milky-Way Zoom
Colliding galaxies with star formation
Santa Barbara cluster
Old examples from GADGET-2

Galaxy collision
Adiabatic collapse of a gas sphere
Cosmological formation of a cluster of galaxies
Large-scale structure formation including gas

Changing the Code

Guide to code changes
Coding style guide

Code extensions
General code-style principles

Adding a config-option
Adding parameters
Adding a source file
Migration to GADGET4

Main changes in the code
Migrating old set-ups to GADGET-4

Notes on memory consumption of GADGET-4
Notes on various limits in GADGET-4

Introduction to GADGET-4
 ___ __ ____ ___ ____ ____ __
 / __) /__\ (_ \ / __)(___)(_ _)___ /. |
((_-. /(__)\)(_))((_-.)__))((___)(_ _)
 ___/(__)(__)(____/ ___/(____) (__) (_)

•
•
•

◦
◦

•
•
•
•
•
•

•
•
•
•
•
•

◦
◦
◦
◦

•
•

◦
◦

•
•
•
•

◦
◦

•
•

GADGET-4 is a massively parallel code for N-body/hydrodynamical cosmological simulations. It
is a flexible code that can be applied to a variety of different types of simulations, offering a number
of sophisticated simulation algorithms. An account of the numerical algorithms employed by the
code is given in the original code paper, subsequent publications, and this documentation.

GADGET-4 was written mainly by Volker Springel, with important contributions and suggestions
being made by numerous people, including Ruediger Pakmor, Oliver Zier, and Martin Reinecke.

Except in very simple test problems, one or more specialized code options will typically be used.
These are broadly termed modules and are activated through compile-time flags. Each module may
have several optional compile-time options and/or parameter file values.

Overview and history
In its current implementation, the simulation code GADGET-4 (GA laxies with D ark matter and G
as int E rac T - this peculiar acronym hints at the code's origin as a tool for studying galaxy
collisions) supports collisionless simulations and smoothed particle hydrodynamics on massively
parallel computers. All communication between concurrent execution processes is done either
explicitly by means of the message passing interface (MPI), or implicitly through shared-memory
accesses on processes on multi-core nodes. The code is mostly written in ISO C++ (assuming the
C++11 standard), and should run on all parallel platforms that support at least MPI-3. So far, the
compatibility of the code with current Linux/UNIX-based platforms has been confirmed on a large
number of systems.

The code can be used for plain Newtonian dynamics, or for cosmological integrations in arbitrary
cosmologies, both with or without periodic boundary conditions. Stretched periodic boxes, and
special cases such as simulations with two periodic dimensions and one non-periodic dimension are
supported as well. The modeling of hydrodynamics is optional. The code is adaptive both in space
and in time, and its Lagrangian character makes it particularly suitable for simulations of cosmic
structure formation. Several post-processing options such as group- and substructure finding, or
power spectrum estimation are built in and can be carried out on the fly or applied to existing
snapshots. Through a built-in cosmological initial conditions generator, it is also particularly easy to
carry out cosmological simulations. In addition, merger trees can be determined directly by the
code.

The main reference for numerical and algorithmic aspects of the code is the paper "Simulating
cosmic structure formation with the GADGET-4 code" (Springel et al., 2020, MNRAS, submitted),
and references therein. Further information on the previous public versions of GADGET can be
found in "The cosmological simulation code GADGET-2" (Springel, 2005, MNRAS, 364, 1105),
and in "GADGET: A code for collisionless and gas-dynamical cosmological simulations"
(Springel, Yoshida & White, 2001, New Astronomy, 6, 51). It is recommended to read these papers
before attempting to use the code. This documentation provides additional technical information
about the code, hopefully in a sufficiently self-contained fashion to allow anyone interested to learn
using the code for cosmological N-body/SPH simulations on parallel machines.

Most core algorithms in GADGET-4 have been written by Volker Springel and constitute evolved
and improved versions of earlier implementations in GADGET-2 and GADGET-3. Substantial
contributions to the code have also been made by all the authors of the GADGET-4 code paper.
Note that the code is made publicly available under the GNU general public license. This implies
that you may freely copy, distribute, or modify the sources, but the copyright for the original code
remains with the authors. If you find the code useful for your scientific work, we kindly ask you to
include a reference to the code paper on GADGET-4 in all studies that use simulations carried out
with the code.

mailto:vspringel@mpa-garching.mpg.de
mailto:rpakmor@mpa-garching.mpg.de
mailto:ozier@mpa-garching.mpg.de
mailto:martin@mpa-garching.mpg.de

Disclaimer
It is important to note that the performance and accuracy of the code is a sensitive function of some
of the code parameters. We also stress that GADGET-4 comes without any warranty, and without
any guarantee that it produces correct results. If in doubt about something, reading (and potentially
improving) the source code is always the best strategy to understand what is going on!

Please also note the following:

The numerical parameter values used in the examples contained in the code distribution do not
represent a specific recommendation by the authors! In particular, we do not endorse these
parameter settings in any way as standard values, nor do we claim that they will provide fully
converged results for the example problems, or for other initial conditions. We think that it is
extremely difficult to make general statements about what accuracy is sufficient for certain scientific
goals, especially when one desires to achieve it with the smallest possible computational effort. For
this reason we refrain from making such recommendations. We encourage every simulator to find
out for herself/himself what integration settings are needed to achieve sufficient accuracy for the
system under study. We strongly recommend to make convergence and resolution studies to
establish the range of validity and the uncertainty of any numerical result obtained with
GADGET-4.

Compilation and basic usage
If you are already familiar with older versions of GADGET or with AREPO, you will feel quickly
at home in compiling and working with GADGET-4, since the code follows very similar usage
concepts. However, GADGET-4 is now a C++ code, and has a more elaborate build concept that
in particular attempts to prevent basic forms of code rot. This makes the build process slightly more
advanced, as described below.

Compilation requirements
GADGET-4 needs the following non-standard libraries for compilation:

mpi: The `Message Passing Interface' (version 3.0 or higher). Many vendor supplied
versions exist, in addition to excellent open source implementations, e.g. MPICH https://
www.mpich.org, or OpenMPI http://www.open-mpi.org.

gsl: The GNU scientific library. This open-source package can be obtained at http://
www.gnu.org/software/gsl. GADGET-4 only needs this library for a few very simple
cosmological integrations at start-up.

fftw3: The `Fastest Fourier Transform in the West'. This open-source package can be
obtained at http://www.fftw.org. Note that the MPI-capable version of FFTW-3 is not
explicitly required (it makes no difference whether it is available or not as GADGET-4
implements its own communication routines when MPI is used). FFTW is only needed for
simulations that use the TreePM algorithm, or if power spectra are estimated, or cosmological
ICs are created.

hdf5: The `Hierarchical Data Format' (available at http://hdf.ncsa.uiuc.edu/HDF5. This
library is needed when one wants to read or write snapshot files in HDF5 format. It is highly

1.

2.

3.

4.

https://www.mpich.org
https://www.mpich.org
http://www.open-mpi.org
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
http://www.fftw.org
http://hdf.ncsa.uiuc.edu/HDF5

recommended to use HDF5 instead of the plain binary output format that can be used as an
alternative and still available for historical reasons.

hwloc : The `hardware locality library' is useful for allowing the code to probe the processor
topology it is running on and enable a pinning to individual cores. This library is optional and
only required if the IMPOSE_PINNING flag is set. Note that many MPI libraries nowadays
in any cases enable pinning by default.

vectorclass : This is a C++ library that the code utilizes when explicit vectorization via the
AVX instruction set is enabled in the SPH compute kernels. This is then implemented with
the vectorclass library by Agner Fog. For simplicity, the source code of this library (which
takes the form of C++ header files) is included in the GADGET-4 distribution in directory
src/vectorclass. Note that potential updates and bug fixed in this library require a
corresponding update of this subdirectory.

Compilation of GADGET-4 needs a working C++ compiler, supporting at least the C++11
standard. For GNU gcc, this means version 4.x or later. The code also makes use of GNU-Make
and Python as part of its build process. Those should hence be available as well.

Building the code
After obtaining GADGET-4 from the code repository, you will find a bunch of subdirectories as
well as few further files for the build system in the top-level directory. The most important
subdirectory is src/ , which contains the actual source code files, distributed into subdirectories
according to the functionality of each file.

The GADGET-4 code is controlled and configured by two different files, one containing compile-
time options, and one listing runtime parameters. The default name for the file with compile-time
options is Config.sh , and the meaning of the different options specified there is explained in a
special section of this manual. The run-time options of GADGET-4 are controlled by a parameter
file, and are described also in a separate section of this documentation.

One possible way to create the file Config.sh needed for compilation is to make a copy of
Template-Config.sh and then modify it as needed by commenting in or commenting out
the desired options. Given the length of this template file, better overview is provided by
assembling only the enabled options in a file (which can also be gleaned from a previous
GADGET-4 run). Another option is to use one of the Config.sh files that come with the example
problems, and modify it if needed. The code uses the GNU make utility for controlling the build
process, which is specified by the file Makefile. Typing make will attempt to build the
executable Gadget4 (hint: using make -j X, where X is some number of threads, the build
process can be carried much faster in parallel on multi-core machines). It is also possible to override
the default names for the configuration file and the executable by specifying them as parameters for
this command, for example as make CONFIG=MyNewConf.sh EXEC=Gadget4new.
Also, one may pass a directory to make, for example in the form make DIR=mysim/
newmodels/runA, and then the configuration file contained in this directory will be used, the
build process will be carried out there, and the executable appears there as well. This can be very
useful to build and run different code configurations from a common code base without risking to
accidentally mix up the executables. Each simulation should be organized into a different
subdirectory in this case, with configuration file and executable being placed into the same
subdirectory.

Often, one needs to specify (possibly non-standard) locations of the libraries required by
GADGET-4, or the name of the compiler and the settings of compiler flags to be used in order to

5.

6.

build the code. To make the selection of the target system and changes between different compiler
setups relatively simple, these settings have been largely decoupled from the Makefile , i.e. the
Makefile itself should usually not be changed in any significant way. Only if you want to add
additional source files to the code or introduce a new target computer system a small change is
needed there.

This is facilitated through the concept of a system type (which is the target computer combined with
compiler settings), which is selected through the environment variable SYSTYPE, or by the file
Makefile.systype. The simplest way to create the file Makefile.systype is to copy it
from Template-Makefile.systype, and then comment in/out the desired type. For the
selected symbolic name of the target system type, there should then be a short section in the
Makefile that includes usually two makefile stubs from the folder buildsystem/ which
specify the paths to the different libraries if they are not in standard locations, and determine the
compiler name(s) and compiler options that should be used. Once this is all set-up properly, you can
then switch to a different compiler setting by toggling one line in Makefile.systype. Also, if
you set the environment variable SYSTYPE in your login-script (.profile, .bashrc, etc.) on your
target computer (recommended for convenience), you will normally not have to deal with the file
Makefile.systype at all and can compile right away.

To summarize, if you want to set-up GADGET-4 for compilation on a new, not yet defined
computer system, you have to go through the following steps:

Make sure that the needed libraries are available, either by compiling them yourself (they can
all be installed in user space if needed) or by loading the right modules on systems that
support the module-environment.

Add a new symbolic name for your computer system to Template-
Makefile.systype (this file is meant to keep a record of all defined machine types),
and then select this name through the SYSTYPE environment variable or through the file
Makefile.systype.

In the file Makefile, create an if-clause in the "define available Systems" section, in
which you include two short files from the buildsystem directory that define path names
to the libraries that you need (i.e. if not in default locations), and that specify the compiler and
its flags that you want to select. Follow the provided examples to create your own versions of
these files, as needed. The reason why this information is normally not directly included in an
if-clause in the Makefile (which would be possible too) is to avoid repetition of identical
information in the Makefile (for example, because the same settings for the gcc compiler
may be used on many different target systems). Instead, the same small sub-file from
buildsystem/ can be included for many different target systems.

We note that many compile-time options are introduced with #ifdef / #endif statements in the
code in order to encapsulate the corresponding code extensions and allow them to be fully disabled
(i.e.~to be completely eliminated from the compiled code). This is done for performance and
memory reasons, which for us take precedence over the detrimental impact on readability/clarity of
the code brought about by such compiler pragmas. Another, more problematic side effect of using
such compile-time symbols is however that typos in specifying any of them may go easily
undetected. To provide protection against this, the code automatically runs a python-based check
script over the source code as part of the build process that will complain if any undefined or
misspelled compile time symbols are listed in Config.sh, or, conversely, if (new) symbols in the
source code are present that are neither defined nor briefly explained in Template-
Config.sh. This checking mechanism can be disabled if desired by using make build
instead of make, but we strongly advise against this. Also, it is possible to deliberately exempt a
symbol from the checking procedure. This is needed, for example, for header-file guards, and those
symbols should be added to the file defines_extra.

•

•

•

As a further extension of these checks, we have also added functionality that demands that all
compile-time and run-time options are actually documented. To this end, if you add a new compile
time option yourself, this needs to be documented in documentation/04_config-
options.md, and if you add a new run-time parameter, it needs to be documented in
documentation/05_parameterfile.md, otherwise the code will refuse to compile and
complain accordingly. Similarly, documented options that do no longer exist in the code will lead to
error messages when compiling. This checking of the documentation can be disabled by using
make build instead of make, but as pointed out above, this constitutes bad practice and should
not be done.

Finally, note that the GADGET-4 code is now written in the C++ language, and the source files can
only be compiled with a C++ compiler. While many useful and advanced features of the C++
language are used (like templating and operator overloading), because GADGET-4 evolved from
an older code base in C, it effectively represents in many places a mixture of C++ and C-styles of
coding.

Starting the code
To start a simulation, invoke the executable with a command like

mpirun -np 32 ./Gadget4 param.txt

This will start the simulation using 32 MPI ranks, and with simulation parameters as specified in the
parameter file (see below) of name param.txt. Note that on some systems, the command to launch
parallel execution may have a different name or syntax (e.g mpiexec, srun, poe, etc). Consult the
man-pages or the local support if in doubt.

The code does not need to be recompiled for a different number of processors, or for a different
problem size. It is also possible to run GADGET-4 with a single processor only. In this case, the
leading mpirun -np 1 can normally be omitted, and GADGET-4 will behave like a serial
code. It is still necessary to have MPI installed, though, because even then the code will make some
calls to the MPI library (but none that actually do non-trivial communications). There is no
restriction for the processor number to be a power of two, even though these partition sizes are
slightly preferred, because they allow the most efficient communication schemes. However, in
regimes where the code works well in terms of scalability, the communication times should is
subdominant anyhow, so this is not an important consideration in practice.

When more than one MPI-rank is used, the code will use a hybrid communication scheme in which
data stored by different MPI processes on the same compute node are accessed directly via shared-
memory. The code automatically detects groups of MPI ranks running on the same node. If more
than one node is in use, at least one MPI process on each node is set aside for asynchronously
serving incoming communication requests from other nodes (if only a single shared-memory is
used, this is not done). This means that multi-node jobs must have a minimum of two MPI ranks on
each node. Today's machines offer typically many more cores per node than 2, and their full power
is made available to GADGET-4 if one MPI rank is placed on every core.

At least one MPI communication rank needs to be set aside for every 64 ranks on a shared memory
node in multi-node jobs. If the number of MPI ranks per shared memory node is larger than 64, one
therefore needs to specify the NUMBER_OF_MPI_LISTENERS_PER_NODE=X option, with X
larger than 1 (which is the default).

While GADGET-4 is running, it will print out many log-messages that inform about the present
steps taken by the code. When you start a simulation interactively, these log-messages will appear
on the screen, but you can also redirect them to a file. For production runs on a cluster controlled by

a queuing system, you will usually have to put the above start-up command of GADGET-4 into a
batch script-file that is submitted to the queuing system. In this case, the standard output of
GADGET-4 is usually automatically piped into a file.

For example, assuming that the batch system SLURM is in use, a batch-script similar to

#!/bin/bash
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --mail-user=vspringel@mpa-garching.mpg.de
#SBATCH --time=24:00:00
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=40
#SBATCH --job-name SB128

echo
echo "Running on hosts: $SLURM_NODELIST"
echo "Running on $SLURM_NNODES nodes."
echo "Running on $SLURM_NPROCS processors."
echo "Current working directory is `pwd`"
echo

mpiexec -np $SLURM_NPROCS ./Gadget4 param.txt

could be used to start a job with 2 nodes with 40 MPI ranks each (i.e. using 80 cores in total). Here
a semi-automatic setting of the appropriate value of the total number of cores through SLURM
environment variables has been used. Note that in this example, GADGET-4 will only use 78 MPI
processes for the computational work, because on each node one process will be set aside by the
code purely for communication purposes.

Interrupting a run
Often, a single submission to a queue system will not provide enough CPU-time to finish the
computation of a large production simulation. Therefore, a running simulation can be interrupted
after every timestep, and resumed at the very same place later on. If the CPU-time limit is specified
correctly in the parameter file, the code will interrupt itself automatically before the CPU-time limit
is reached, and write a set of restart-files. Actually, each processor writes its own restart file. These
restart-files can be used to resume the simulation conveniently (see below) at the point where it was
interrupted.

Sometimes you might want to interrupt the code manually with the possibility to continue it later on
without losing any of the calculations. This can be achieved by generating a file named stop in
the output-directory of a simulation, e.g.

echo > /u/vrs/myoutput/stop

The code will then write a restart-file and terminate itself after the current timestep has been
completed, and the file stop will be erased automatically. If a simulation reaches the specified
CPU-time limit, it creates a file cont in the output directory (besides the restart files). This can be
used in a job batch script to detect that a run has ended gracefully and is hence ready for
continuation, at which point the script may submit another job for continuation. Modern queuing
systems also allow job dependencies, which can be used to submit a chain of jobs that are executed
sequentially, but only of the previous job finishes with an OK status. In case a run crashes for some
reason, the file cont is absent and hence a restart should not be initiated until the cause for the

problem has been investigated and removed. Note that restart files are also generated when the last
timestep of a simulation has been completed and the final time has been reached. They can be used
if one later wants to extend the simulated timespan beyond the original final time.

One can also instruct the code to write restart files in regular intervals (see parameterfile description)
without stopping the simulation. This is meant to protect against system failures or code problems in
long-running simulations. If such a thing happens, one can then resume the run from the most
recent set of restart files, which limits the amount of lost time. Furthermore, whenever a new set of
restart files is written, the old set is first renamed into a set of backup restart files. Hence, if a system
failure occurs while the new restart files are written, the old set of files still exits and is valid, and
can hence be used for resuming the run. To this end, one needs to rename the backup versions of
the restart files and give them the standard name again, followed by resuming the run with the
restart option (see below).

Restarting a run

Restarting from restart-files

To resume a run from restart-files, start the code with an optional flag 1 after the name of the
parameterfile, in the form

mpirun -np 32 ./Gadget4 param.txt 1

This will continue the simulation with the set of restart files in the output-directory, with the latter
being specified in the parameterfile. Restarting in this fashion is transparent to the code, i.e. the
simulation behaves after the restart exactly as if it had not been interrupted to begin with. Strictly
speaking this is only true if the PRESERVE_SHMEM_BINARY_INVARIANCE option is
activated. This prevents that sums of partial forces may be computed for certain particles in different
order when a run is repeated due to varying machine weather. While mathematically equivalent,
this will introduce differences in floating point round-off that can be quickly amplified in regimes of
non-linear evolution.

When the code is started with the restart-flag, the parameterfile is parsed, but only some of the
parameters are allowed to be changed, while any changes in the others will be ignored. Which
parameters these are is explained in the section about the parameterfile, and if such a new value for
a parameter is accepted this is also reflected in the log-files of the run.

It is important to not forget the 1 if you want to resume a run -- otherwise the simulation will
restart from scratch, i.e. by reading in the initial conditions again! Also note that upon restarting
from restart-files, the number of MPI ranks used for a simulation cannot be changed; if this is
attempted an error message is issued. Note that restart files can not necessarily be transferred from
one computer system to another one, or reused when the compiler is changed, because the layout
and padding of structures stored in the binary restart files may then be different. Hence, if you want
to continue a simulation with a different number of MPI ranks, on another computer architecture, or
with a different compiler, restarting from a snapshot file is the method of choice. This will be
discussed next.

Restarting from snapshot-files

There are two possibilities to restart a simulation from a previous snapshot file. In the first
possibility, one simply adopts the snapshot file as new initial conditions. Note that this option
requires changes in the parameterfile: You need to specify the snapshot-file as initial-conditions-file,

you also need to set TimeBegin (see below) to the correct time corresponding to the snapshot-
file. In addition, you should change the base filename for the snapshot files, since the counter for
the outputs will start at 0 again, thereby possibly overwriting outputs you might already have
obtained. Once this is done, you can continue/restart the run from the snapshot-file (without the
optional 1).

An alternative to this somewhat contrived procedure is to restart the code with a flag equal to 2
after the name of the parameterfile, i.e. just like above for the restart from restart-files, but with the
1 replaced by 2 , and with an additional further parameter that specifies the number of the snapshot
in the output file that you want to start from. The parameterfile normally needs not to be changed in
this case, in particular, the code takes the new starting time from the snapshot file that is read. In
addition, this also will cause any further snapshots that are generated to have higher sequence
numbers than this starting number, i.e. the code will number all further snapshots starting with one
plus the number of the snapshot that is used as input file. For example, the command for restarting
from snapshot 7 would look as follows:

mpirun -np 32 ./Gadget4 param.txt 2 7

Note that the restart-from-snapshot-files option allows a change of the number of processors used
for the simulation. This is not possible if you restart from restart-files. However, restarting from
restart-files is always the preferred method to resume a simulation, because it is faster (various start-
up calculations do not have to be done), and it minimises perturbations in the time integration
scheme of a running simulation.

Starting postprocessing
It is also possible to apply certain postprocessing algorithms built into GADGET-4 to a snapshot
file residing in the output directory. This works similarly to the restart from a snapshot file option in
that one specifies both a start-up option and a snapshot number (as well as potentially further
parameters). For example, to calculate a FOF/Subfind group catalogue for a snapshot file with the
number 7, one could start the code as

mpirun -np 32 ./Gadget4 param.txt 3 7

because the 3 selects the group finding algorithm. If such a postprocessing option is selected, the
code will not carry out any time evolution. Instead, the given snapshot is just read in, some
postprocessing is done, the output is written to the output directory, and then the code ends. One
can obtain a short list of the available postprocessing options when the code is started without any
paramater. Other postprocessing options for example include the calculation of a matter power
spectrum, the conversion of a snapshot file from one of the supported file formats to another, or the
creation of cosmological initial conditions (the latter is then actually more of a preprocessing and
not a postprocessing option).

The available postprocessing options are as follows:

RestartFlag Action
0 Read initial conditions and start simulation
1 Read restart files and resume simulation
2 Restart from specified snapshot dump and resume simulation
3 Run FOF and optionally SUBFIND
4 Calculate a matter power spectrum for specified snapshot number
5 Convert snapshot file to different format

RestartFlag Action
6 Create cosmological initial conditions
7 Create descendant/progenitor information when merger tree is done in postprocessing

8 Arrange halos in merger trees, using all group catalogues up to given snapshot
number

9 Carry out an I/O bandwidth test to determine best setting for the number of
concurrent reads/writes

10 Rearrange particle-lightcone data in merger tree order
11 Rearrange most-bound snapshot data in merger tree order

Types of simulations
There are a number of qualitatively different simulation set-ups that can be run with GADGET-4,
which differ mostly in the type of boundary conditions employed, in the physics that is included,
whether or not cosmological integrations with comoving coordinates are used, and in the selection
of numerical algorithms. A schematic overview of a subset of these simulation types, concentrating
on how gravity calculations are done, is given in the following table.

Overview of simulation types

Type of Simulation
Computational
Method

 Newtonian space

Gravity: Tree,
SPH (optional),
vacuum
boundary
conditions

 Periodic long box

No gravity,
only SPH,
periodic
boundary
conditions

 Cosmological, physical coordinates

Gravity: Tree,
SPH, vacuum
boundaries

 Cosmological, comoving coordinates

Gravity: Tree,
SPH, vacuum
boundaries

 Cosmological, comoving periodic box

Gravity: Tree
with Ewald-
correction,
SPH, periodic
boundaries

 Cosmological, comoving coordinates, TreePM

Gravity: Tree
with long range
PM, SPH,
vacuum
boundaries

 Cosmological, comoving periodic box, TreePM

Gravity: Tree
with long range
PM, SPH,
periodic
boundaries

 Cosmological, comoving coordinates, TreePM, Zoom

Gravity: Tree
with long-range
and
intermediate-
range PM,
SPH, vacuum
boundaries

 Cosmological, periodic comoving box, TreePM, Zoom

Gravity: Tree
with long-range
and
intermediate-
range PM,
SPH, periodic
boundaries

Newtonian space, TreePM

Gravity: Tree
with long-range
PM, SPH,
vacuum
boundaries

Cosmological Simulations
Cosmological integrations with comoving coordinates are selected via the parameter
ComovingIntegrationOn in the parameterfile. Otherwise the simulations always assume
ordinary Newtonian space. The use of self-gravity needs to be explicitly enabled through the
SELFGRAVITY compile-time switch, otherwise only external gravitational fields and/or
hydrodynamical processes are computed. Periodic boundary conditions and the various variants of
the Tree, FMM, TreePM, and FMM-PM algorithms require compile-time switches to be set
appropriately in the configuration file.

In particular, the TreePM algorithm is switched on by passing the desired mesh-size at compile time
via the Config.sh file to the code. The relevant parameter is PMGRID, see below. Using an explicit
force split, the long-range force is then (normally) computed with Fourier techniques, while the
short-range force is calculated with the tree. Because the tree needs only be walked locally, a speed-

up can arise, particularly for near to homogeneous particle distributions, but not only restricted to
them. Both periodic and non-periodic boundary conditions are implemented for the TreePM and
FMM-PM approaches. In the non-periodic case, the code will internally compute FFTs of size
HRPMGRID. In order to accommodate the required zero-padding, only half that size is actually
used to cover the high-res region. If HRPMGRID is not specified, a default value equal to PMGRID
is used. For zoom-simulations, the code automatically places the refined mesh-layer on the high-
resolution region. This is controlled with the PLACEHIGHRESREGION option.

Newtonian space
Periodic boxes need not necessarily be cubical in GADGET-4. They can be, if desired, stretched
independently in any of the coordinate directions through LONG_X, LONG_Y and LONG_Z
options. This works both for SPH simulations and also for simulations including self-gravity. In the
latter case, one may also choose one direction to be non-periodic in self-gravity, realizing mixed
boundary conditions that allow one to simulate infinitely extended two-dimensional systems.

Stretched boxes
This can now also be done with gravity and periodic boundaries in just two dimensions.

Two-dimensional simulations
It is also possible to run SPH simulations in two dimensions only, which is primarily provided for
test-purposes. Note that the code is not really optimised for doing this; three coordinates are still
stored for all particles in this case, and the computations are formally carried out as in the 3D case,
except that all particles lie in one coordinate plane, i.e. either with equal x, y, or z-coordinates.

Code Configuration
Many aspects of GADGET-4 are controlled with compile-time options rather than run-time options
in the parameterfile. This is done in order to allow the generation of highly optimised binaries by
the compiler, even when the underlying source code allows for many different ways to run the
code. Unfortunately, this technique has the disadvantage that different simulations typically require
different binary executables of GADGET-4, so "installing" GADGET-4 on a computer system is
not possible, and the act of compiling the code is an integral part of working with the code.
Keeping the executable at a single place is not recommended either, because if several simulations
are run concurrently, this invokes the danger that a simulation is started or resumed with the wrong
binary. Note that while GADGET-4 checks the plausibility of some of the most important code
options, this is not done for all of them. Hence, to minimise the risk of using the wrong code for a
simulation, it is highly recommended to produce a separate executable for each simulation that is
run.

As a piece of advice, a good strategy for doing this in practice is to create a separate directory for
each simulation that is made, place a copy of the whole simulation source code together with its
makefile into this directory, compile the code there and run it in this directory as well, with the
output directory specified as a subdirectory of the simulation directory. In this way, the code and its
settings become a logical and integral part of the output generated by the code. Everything
belonging to a given simulation is packaged up in one directory, and it becomes easy to reproduce

what was done even if considerable time should have passed, because the precise version of the
original code that was used and all produced log files are readily available. An alternative is to have
only a single copy of the code, but then to use a separate directory for each simulation that is done,
including placing its configuration file there and carrying out the compilation in this directory as
well (by passing the make DIR= option to the build as well). Then at least all object files and the
executable are unambiguously associated with a particular simulation run.

The easiest way to create the file
Config.sh needed for compilation is to produce it as a copy of Template-Config.sh ,
and then modify it as needed. When created from Template-Config.sh , the Config.sh
file contains a dummy list of all available compile-time code options, with most of them commented
out by default. To activate a certain feature, the corresponding symbol should be commented in,
and given the desired value, if appropriate.

Important Note:

Whenever you change one of the options described below, a full recompilation of the code may in
general be necessary. For this reason, the Config.sh itself has been added to the list of
dependences of each source file in the makefile, such that a complete recompilation should happen
automatically when the configuration file is changed and the command make is given. Note that a
manual recompilation of the whole code can be enforced with the command make clean ,
which will erase all object files, followed by make .

Most code options in Config.sh are switches that toggle a certain feature on/off. Some of the
symbols also take on a value if set. The following list shows these switches with fiducial example
values where appropriate.

Parallelization options
IMPOSE_PINNING

Ask the code to pin MPI processes to cores in an optimum fashion. This requires the hwloc library
for detecting the processor topology. It will generally only work on Linux. Note that most modern
MPI libraries can also be asked to arrange for the pinning via options to the MPI start-up command,
or they do this per default anyhow.

IMPOSE_PINNING_OVERRIDE_MODE

In case the MPI start-up has already established a pinning, this is normally detected and then
IMPOSE_PINNING does not do anything. Overriding this pre-established pinning can be
enforced with this option.

EXPLICIT_VECTORIZATION

This enables a few compute kernel (currently in SPH only) to explicitly use AVX instructions
through the use of the vectorclass C++ library.

PRESERVE_SHMEM_BINARY_INVARIANCE

This can be used to preserve the order in which partial results are added in case the parallel tree
walks use shared memory to access tree branch data that has been imported by different processes
on the same shared memory node. In this case, exact binary invariance of output can be retained
upon reruns of the code.

SIMPLE_DOMAIN_AGGREGATION

This tries to very roughly restrict the domain decomposition to place adjacent domain pieces on the
same shared memory node. This will then (in some cases significantly) reduce the number of
imports of particles and nodes that need to be made, but at the price of a higher imbalance overall.
Whether this is worth it depends strongly on the problem type. A better (forthcoming) solution will
be to do the domain decomposition hierarchically right away, taking the outline of the shared-
memory nodes into account from the outset.

Basic operation mode of code
PERIODIC

Set this option if you want to have periodic boundary conditions. In this case, the BoxSize
parameter in the parameterfile becomes relevant.

TWODIMS

This effectively switches off one spatial dimension in SPH, i.e. the code follows only 2D
hydrodynamics either in the xy-, yz-, or xz-plane. One doesn't need to tell the code explicitly which
of these planes are used, but all coordinates of the third dimension need to be exactly equal (usually
set to zero).

ONEDIMS

Similarly to TWODIMS, this effectively only allows one spatial dimension in SPH, i.e. the code
follows only 1D hydrodynamics either in the x-, y-, or z-directions. One doesn't need to tell the
code explicitly which of these directions are used, but all coordinates of the other dimensions
should be set to zero.

LONG_X_BITS = 2

In case periodic boundary conditions are used (i.e. PERIODIC is on), one can stretch the x-
dimension of the box relative to BoxSize by the factor 1 / 2^LONG_X_BITS. A setting
equal to 2 like in this example, would hence mean that the boxsize in the x-direction will be
BoxSize/4.

LONG_Y_BITS = 2

Similarly to the above, this switch can stretch the periodic box in the y-direction by the factor
1/2^LONG_Y_BITS relative to BoxSize.

LONG_Z_BITS = 1

Finally, this option implements a possible stretch in the z-direction, similar to LONG_X and
LONG_Y. Only a subset of the stretch factors or several/all of them may be used. The LONG_X/
Y/Z_BITS values must be positive integers.

NTYPES = 6

Number of particle types that should be used by the code. If not set, a default value of 6 is adopted
(which is the fixed value realised in GADGET-2/3). The different particle types are useful as a
means to organize the simulation particles into different logical sets, which can be helpful for
analysis (e.g., one may have a type for dark matter, one for stars, one for disk stars, etc.). The type
0 is reserved for gas particles, and to them SPH is applied. All other particle types are treated as
collisionless particles which are treated on the same footing as far as gravity is concerned. For each
of the types, one needs to specify a gravitational softening class in the parameterfile.

GADGET2_HEADER

This should be set if backwards compatibility of the snapshot file header format with GADGET-2/3
is required. Applies only to file formats 1 and 2. This can be useful, for example, to read in old
initial conditions. Note that in this case NTYPES may not be larger than 6, and it should be at least
as large as the number of types actually contained in the legacy initial conditions. Also, files cannot
have more than 2^31 particles of any type in total in this case.

SECOND_ORDER_LPT_ICS

Processes the initial conditions before actual simulation start-up to add in second order Lagrangian
perturbation theory corrections. This only works for specially constructed initial conditions created
with Adrian Jenkin's IC code.

LEAN

This option is meant for special DM-only simulations that aim at high savings in memory use. Only
a uniform particle mass, a single particle type, no hydrodynamics, and a single softening class are
allowed. In addition, one should use TREEPM_NOTIMESPLIT, and refrain from using double
precision to obtain a very small memory footprint.

Gravity calculation
SELFGRAVITY

This needs to be switched on if self-gravity should be computed by the code. If it is off, one can
still have hydrodynamics, and optionally a prescribed external gravitational field.

HIERARCHICAL_GRAVITY

If this is enabled, the time integration is carried out in a hierarchically fashion in which the
gravitational Hamiltonian is hierarchically split into slow and fast dynamics. The advantage of this

approach is that small subsystems on short timesteps can be cleanly decoupled from the more
slowly evolving rest of the system. This can be advantageous especially if there is a very deep and
increasingly thinly populated tail in the timestep distribution. It also allows a time integration that is
formally momentum conserving despite the use of individual timesteps. However, as additional
partial forces need to be computed, this approach typically entails a somewhat higher number of
force calculations. This can still be more efficient overall, but only if the number of particles per
timebin quickly declines when going to shorter timebins.

FMM

If this is enabled, the Fast Multipole Method for gravity calculations instead of the one-sided classic
tree algorithm is used.

MULTIPOLE_ORDER = 2

If this is enabled, one can control the order of the multipole expansion that is used. For a value of 3,
quadrupole moments are included in the normal tree calculation and/or in the FMM calculations. A
value of 4 includes octupole moments as well, and 5 goes further to hexadecupole moments. Note
that these higher orders increase the memory and CPU time needed for the force calculations, but
deliver more accurate forces in turn. It depends on the specific application whether this is
worthwhile. The default is a value of 2.

EXTRA_HIGH_EWALD_ACCURACY

If this is extrapolated, the Ewald corrections are extrapolated from the look-up table with a third
order Taylor expansion (quite a bit more expansive), otherwise a second order Taylor expansion is
used.

EXTRAPOTTERM

If this is activated, the extra multipole term in principle present for the potential computation is
evaluated, even though it does not enter the force. For example, for monopole/dipole order (p=2),
the code will then compute quadrupole moments and use them in the potential, but not in the force
computation.

ALLOW_DIRECT_SUMMATION

When this is set (it requires HIERARCHICAL_GRAVITY), the code will calculate the
gravitational forces for very small groups of particles (the threshold for the group size is given by
the constant DIRECT_SUMMATION_THRESHOLD, which is set per default to 500, but one can
override this value in the config file if desired) with direct summation. This can be useful if the
timestep distribution has a tail to very short, poorly occupied timebins. Doing the corresponding
timesteps frequently for very small sets of particles can be faster with direct summation than doing it
via the tree or FMM because then all overhead associated with tree construction and tree walks can
be avoided.

RANDOMIZE_DOMAINCENTER

When this is activated the whole particle set is randomly shifted in the simulation box whenever a
domain decomposition is done. This can be useful to average out in time subtle spatial correlations
in the force errors that arise from the relative positioning of the particle to the oct-tree geometry.
Since integer coordinates are used for particle positions, this shifting does not entail any round-off
error, and is reversible. In particular, the shifts will not be visible in any of the outputs created. This
option is basically always recommended, and should have only positive effects.

RANDOMIZE_DOMAINCENTER_TYPES = 2

Can be set to select one or several types (this is a bitmask) which will then be used to locate the
extension of a certain region. When the particle set is randomly translated throughout the box, the
code will then try to avoid intersecting large oct-tree node boundaries with this region. When this
option is not set explicitely but PLACEHIGHRESREGION is active, then this is automatically
done with a default setting
RANDOMIZE_DOMAINCENTER_TYPES=PLACEHIGHRESREGION.

EVALPOTENTIAL

When this is activated, the code also computes the gravitational potential (which is not needed for
the dynamics). This costs a bit of extra memory and CPU-time.

TREE_NUM_BEFORE_NODESPLIT = 4

The number of particles that may be in a tree node before it is split into daughter nodes. If the
number is reduced to 1, a fully threaded tree is obtained in which leaf nodes contain one particle
each. (Note that empty nodes are not stored, except potentially for part of the top-level tree if it is
very finely refined.)

EXTERNALGRAVITY

If this is switched on, an external gravitational field can be added to the dynamics. One still has to
define with different switches and/or parameters what this external field is.

EXTERNALGRAVITY_STATICHQ

Activates a simple external potential due to a Hernquist dark matter halo, with parameters specified
in the parameterfile.

TreePM Options
PMGRID = 512

This enables the TreePM method, i.e. the long-range force is computed with a PM-algorithm, and
the short range force with the tree or with FMM. The parameter has to be set to the size of the mesh
that should be used, e.g. 64, 96, 128, etc. The mesh dimensions need not necessarily be a power of
two, but the FFT is fastest for such a choice. Note: If the simulation is not in a periodic box, then a
FFT method for vacuum boundaries is employed, where due to the required zero-padding, only half
the mesh is covering the region with particles. (see also the HRPMGRID option).

ASMTH = 1.25

This can be used to override the value assumed for the scale that defines the long-range/short-range
force-split in the TreePM algorithm. The default value is 1.25, in units of mesh-cells. A larger value
will make the transition region better resolved by the mesh, yielding higher accuracy and less
residual scatter in the force matching region, but at the same time the region that needs to be
covered by the tree/FMM grows, which makes the computation more expensive.

RCUT = 6.0

This can be used to override the maximum radius out to which the short-range tree-force is
evaluated in case the TreePM/FMM-PM algorithm is used. The conservative default value is 7.0 for
this parameter, given in mesh-cells. Going much beyond 6.0 does however not yield much further
improvement in the way the force matching region is treated, and reducing this value to 4.5 will
give higher performance while being typically sufficiently accurate for most applications.

NTAB = 128

This can be used to define the size of the short-range lookup table. The default should normally be
sufficient to have negligible influence on the obtained force accuracy.

PLACEHIGHRESREGION = 2

If this option is set (will only work together with PMGRID), then the short range force computation
in the TreePM/FMM-PM algorithm is accelerated by an additional intermediate mesh with isolated
boundary conditions that is placed onto a certain region of high-res particles. This procedure can be
useful for zoom-simulations, where the majority of particles (the "high-res" particles) are occupying
only a small fraction of the volume. To activate this, the option needs to be set to an integer value in
the form of a bit mask that encodes the particle type(s) that should be used to define the spatial
location of the high-resolution patch. For example, if types 1 and 4 are supposed to define this
region, then the parameter should be set to PLACEHIGHRESREGION=2+16 , i.e. to the sum
2^1+2^4. The actual spatial region is then determined automatically from the current locations of
these particle types. This high-res zone may also intersect with the box boundaries if periodic
boundaries are used. Once the spatial region is defined by the code, it however applies to all
particle types. In fact, the short range interactions between particle pairs that fall fully inside the
high-res region are computed in terms of two contributions, one from the intermediate PM mesh
that covers the high-res region, and the other from a tree/FMM force that however now only
extends to a region that is reduced in size (which is the origin of a possible speed-up with this
option). Particle pairs for which at least one of the partners is outside the high-res region get the
normal Tree/FMM contribution with the standard cut-off region, corresponding to the plain TreePM
approach with the course grid covering the full simulation volume. Also note that when the particle
set is randomized throughout the box (with the RANDOMIZE_DOMAINCENTER option), the code
additionally tries to avoid intersecting larger oct-tree node boundaries by imposing certain
restrictions in the randomization.

HRPMGRID = 512

When PMGRID is set and non-periodic simulations are used, or when PLACEHIGHRESREGION
is active, the FFT algorithm is used to compute non-periodic gravitational fields, which requires
zero-padding, i.e. only one octant of the used grid can actually be covered by the mass distribution.

The grid size that the code uses for these FFTs is equal to HRPMGRID if this is set, otherwise the
value of PMGRID is used for this grid dimension as well. This option is hence optional, and allows
if desired the use of different FFT sizes for the periodic calculation covering the whole region, and
for the non-periodic calculations covering the zoom region.

FFT_COLUMN_BASED

Normally, the code employs a slab-based approach to parallelize the FFT grids across the MPI
ranks. However, for a Ngrid^3 FFT, this means that at most Ngrid different MPI ranks can
participate in the computation. This represents a serious limit to scalability as the minimum
computational effort per MPI rank then scales as Ngrid^2, and not more than Ngrid MPI ranks can
anyhow be used. If one is in the regime where the number of MPI ranks exceeds Ngrid, it is
therefore a good idea to activate FFT_COLUMN_BASED, which will use a slab-decomposition
instead. Now the minimum effort per MPI rank scales only as Ngrid, and the maximum number of
ranks that can participate is Ngrid^2, meaning that in practice this limit will not be encountered.
The results should not be affected by this option. Because the column-based approach requires
twice the number of transpose operations, it is normally somewhat slower than the slab-based
approach in the regime where the latter can still scale (i.e. for Ngrid >= Ncpu), so only for very
large small processor numbers and large grid sizes, the column based approach can be expected to
yield a speed advantage, aside from the better memory balance it provides.

PM_ZOOM_OPTIMIZED

Set this option if the particle distribution is spatially extremely inhomogeneous, like in a zoom
simulation. In this case, the FFT algorithm will use a different communication strategy that can
better deal with this inhomogeneity and maintain work balance despite of it. If the particle
distribution is reasonably homogenous (like in a uniformly sampled cosmological box), it is
normally better to leave this option off. In this case, a simpler communication strategy well adapted
to this situation is used which avoids some of the overhead required by the
PM_ZOOM_OPTIMIZED option.

TREEPM_NOTIMESPLIT

When activated, the long- and short-range gravity forces are simply summed up to a total force, and
then integrated in time with a common timestep. Otherwise, the short-range forces are subcycled,
and the PM force size is stored separately and integrated on a global, longer timestep.

GRAVITY_TALLBOX = 2

This can be used to set-up gravity with mixed-mode boundary conditions. The spatial dimension
selected by the option is treated with non-periodic boundaries, while the other two are treated with
periodic boundary conditions. This can facilitate, for example, stratified box simulations in which
there is periodicity in the transverse directions (which define, e.g., the plane of a sheet) and open
boundary conditions in the perpendicular direction. Set-ups of this kind are often used in
simulations of star formation.

Treatment of gravitational softening
NSOFTCLASSES = 4

Number of different softening values. Traditionally, this is set equal to the number of particle types,
but it can also be chosen differently. The mapping of a particle type to a particular softening class is
normally done through the parameter values SofteningClassOfPartTypeX as specified in
the parameterfile. Several different particle types could be mapped to the same softening class in
this case, and not all softening classes actually must be used by particles. With the help of the
INDIVIDUAL_GRAVITY_SOFTENING option, the mapping can also be based on the particle
mass, so that particles of the same type may be mapped to different softening lengths if their masses
are different. This is an attractive option especially for zoom simulations in order to allow heavier
boundary particles to be automatically associated with the closest natural softening length from the
tableau of available softening lengths.

INDIVIDUAL_GRAVITY_SOFTENING = 4+8+16

If this option is enabled, the selected particle types (INDIVIDUAL_GRAVITY_SOFTENING is
interpreted as a binary mask specifying these types) calculate for each of their particles a target
softening based on a cube-root scaling with the particle mass. As a reference point, the code takes
the softening class assigned for particle type 1, and the average particle mass of the type 1 particles.
The idea is to use this option for zoom simulations, where one assigns the high-resolution
collisionless particles to type 1 (all with equal mass) and maps the type 1 to a certain softening
class, which then fixes the softening assigned for type 1. For all other used particles types (which
typically may involve variable masses within the type), one then activates this option. For the
corresponding particles, a desired softening is computed based on a cube-root scaling with their
masses relative to the reference mass and softening of the type 1 particles. From all the available
softening classes, the code then assigns the softening class with the smallest logarithmic difference
in softening length to the computed target softening length. Since only the available softening
classes can be used for this, one should aim to supply a fine enough set of available softening
classes when this option is used.

ADAPTIVE_HYDRO_SOFTENING

Sometimes, one may want to scale the gravitational softening length of gas particles with their SPH
smoothing length. This can be achieved with this option. Enabling it, requires additional parameters
in the parameterfile, namely GasSoftFactor, MinimumComovingHydroSoftening
and AdaptiveHydroSofteningSpacing. When this option is used, the softening type 0 is
not available for any other particle type (and also won't be selected by types included in
INDIVIDUAL_GRAVITY_SOFTENING). SofteningClassOfPartType0 needs to be
0, and all other particle types need to have a non-zero value for their SofteningClassOfPartType.
The softening values specified in the parameterfile for softening type 0 are ignored, instead the
softening is selected for all gas particles based on their smoothing length from a finely spaced
discrete table (see explanations for the above softening parameters).

SPH formulation
PRESSURE_ENTROPY_SPH

Enables the pressure-entropy formulation of SPH (similar to Hopkins 2013), otherwise the default
density-entropy formulation (Springel & Hernquist, 2002) is used.

OUTPUT_PRESSURE_SPH_DENSITY

Outputs also density computed as in the standard SPH pressure-entropy formulation. This is only
useful if PRESSURE_ENTROPY_SPH is used.

INITIAL_CONDITIONS_CONTAIN_ENTROPY

The intial conditions file contains entropy instead of the thermal energy.

GAMMA = 1.4

Sets the equation of state index in the ideal gas law that is normally used in GADGET-4's SPH
implementation. If not set, the default of 5/3 for a mono-atomic gas is used.

ISOTHERM_EQS

This defines an isothermal equation of state, P = rho c^2, where c^2 is kept constant for every
particle at the value u = c^2 read from the initial conditions in the internal energy per unit mass
field. GAMMA=1 is set automatically in this case.

REUSE_HYDRO_ACCELERATIONS_FROM_PREVIOUS_STEP

If this option is enabled, the code does not recompute the SPH hydrodynamical acceleration at the
beginning of a timestep, but rather reuses the one computed at the end of the previous timestep,
which is typically good enough. The two accelerations can in principle differ slightly due to non-
reversible viscous effects, or external source functions (e.g. radiative heating or cooling).

IMPROVED_VELOCITY_GRADIENTS

Use more accurate estimates for the velocity gradients following Hu et. al (2014), which enter the
calculation of a time-dependent artificial viscosity.

VISCOSITY_LIMITER_FOR_LARGE_TIMESTEPS

Limits the maximum hydrodynamical acceleration due to the artificial viscosity such that the
viscosity term cannot change the sign of the relative velocity projected on the particle distance
vector. This should not be necessary if small enough timestepping is chosen.

SPH kernel options
CUBIC_SPLINE_KERNEL

Enables the cubic spline kernel as defined in Springel et al. (2001).

WENDLAND_C2_KERNEL

Enables the Wendland C2 kernel as discussed in Dehnen & Aly (2012).

WENDLAND_C4_KERNEL

Enables the Wendland C4 kernel as discussed in Dehnen & Aly (2012).

WENDLAND_C6_KERNEL

Enables the Wendland C6 kernel as discussed in Dehnen & Aly (2012).

WENDLAND_BIAS_CORRECTION

Reduces the self contribution for Wendland kernels following Dehnen & Aly (2012), their
equations (18) and (19). Only works in 3D.

SPH viscosity options
TIMEDEP_ART_VISC

Enables-time dependent viscosity.

HIGH_ART_VISC_START

Start with high rather than low viscosity.

NO_SHEAR_VISCOSITY_LIMITER

Turns of the shear viscosity suppression.

Extra physics
COOLING

Enables radiative cooling based on the collisional ionization equilibrium in the presence of a
spatially constant but time-variable UV background. The network computed is similar to that
described in the paper by Katz et al. (1996). Note that metal-line cooling is not included in this
module.

STARFORMATION

If this is enabled, the code can create new star particles out of SPH particles. The default star
formation model that is implemented corresponds to a basic varient of the sub-resolution multi-
phase model described in Springel & Hernquist (2003, http://adsabs.harvard.edu/abs/2003MNRAS.
339..289S). By default, the new star particles are created as particle type 4, but if desired, one can
also specify another type for them by setting the compile time flag STAR_TYPE to a different
value. Make sure that a gravitational softening length is defined for the chosen type.

http://adsabs.harvard.edu/abs/2003MNRAS.339..289S
http://adsabs.harvard.edu/abs/2003MNRAS.339..289S

Time integration options
FORCE_EQUAL_TIMESTEPS

This adopts a global timestep for all particles, determined by pushing all particles down to the
smallest timestep desired by any of the particles. The step size may still be variable in this case, but
it is the same for all particles.

Single/double precision and data types
POSITIONS_IN_32BIT

When this is set, the internal storage of positions will be based on 32-bit unsigned integers. If single
precision is used as default in the code (i.e. DOUBLEPRECISION is not set), then this is the
default if none of the POSITIONS_IN_XXBIT options is selected.

POSITIONS_IN_64BIT

When this is set, the internal storage of positions will be based on 64-bit unsigned integers,
otherwise on 32-bit unsigned integers. If double precision is used as default in the code (i.e.
DOUBLEPRECISION is set to 1), then this is the default if none of the
POSITIONS_IN_XXBIT options is selected.

POSITIONS_IN_128BIT

With this option, the internal storage of positions will be based on 128-bit unsigned integers,
offering an extreme spatial dynamic range. Use of this should be only of interest in truly extreme
scenarios.

DOUBLEPRECISION = 1

This makes the code store all internal particle data in double precision. Note that output files may
nevertheless be written by converting the values in files to single precision, unless
OUTPUT_IN_DOUBLEPRECISION is activated.

DOUBLEPRECISION_FFTW

If this is set, the code will use the double-precision version of FTTW and store the corresponding
field values in real and complex space in double. Otherwise single precision is used throughout for
this.

OUTPUT_IN_DOUBLEPRECISION

The output snapshot files will be written in double precision when this is enabled. This is helpful to
avoid round-off errors when using snapshot files for a restart, but will rarely be required for
scientific analysis, except perhaps for spatial coordinates, where many zoom simulations are
insufficiently represented by single precision. Outputting in mixed precision, double precision for

coordinates and single precision for everything else, can therefore be a useful option for these
simulations to save storage space without sacrificing anything in the analysis.

ENLARGE_DYNAMIC_RANGE_IN_TIME

This extends the dynamic range of the integer timeline from 32 to 64 bit, i.e. the smallest possible
timestep is approximately 2^64 times smaller than the simulated timespan instead of 2^32 times.
Correspondingly, the number of timebins grows from 32 to 64 in this case.

IDS_32BIT

If this is set, the code uses 32-bit particle IDs, hence at most 2^32 particles may be used. This is the
default setting.

IDS_48BIT

If this is set, the code uses 48-bit particle IDs, allowing some smaller fields to be packed into this
variable before a long-word boundary is reached. At most 2^48 particles can be used.

IDS_64BIT

If this is set, the code uses 64-bit particle IDs.

USE_SINGLEPRECISION_INTERNALLY

If this is activated, internal computations are carried out in single precision instead of double
precision. On some architectures (but not on all -- often current CPUs use the same number of
cycles for a single and a double precision operation), this can make some of the computations
faster, but comes with a loss of precision, of course. Use with extreme care.

NUMBER_OF_MPI_LISTENERS_PER_NODE = 1

For multi-node runs, normally one MPI rank is set aside per shared-memory node to
asynchronously process incoming communication requests. If the shared-memory node has a very
large number of cores, it might be helpful to have more than such communication processes, which
can be set with this parameter. If the number of cores per shared memory node is larger than 64,
then this in fact has to be done, see also the
MAX_NUMBER_OF_RANKS_WITH_SHARED_MEMORY option.

MAX_NUMBER_OF_RANKS_WITH_SHARED_MEMORY = 64

This sets the maximum number of MPI ranks on a node that have one MPI listener assigned to
them, and can access each other via shared memory. Possible values are 32 and 64, the default
being 64. If the total number of cores per node divided by
NUMBER_OF_MPI_LISTENERS_PER_NODE is at most 32, a setting of 32 can be used to save
a small amount of memory. If the total number of cores per node divided by
NUMBER_OF_MPI_LISTENERS_PER_NODE is above 64, you need to increase
NUMBER_OF_MPI_LISTENERS_PER_NODE.

Output/Input options
POWERSPEC_ON_OUTPUT

Creates a power spectrum measurement for every output time, i.e. for every snapshot that is created.
This is meant to be used in cosmological simulations.

REDUCE_FLUSH

The code produces relatively verbose log-file messages. To make sure that they immediately appear
in the log-file, a flush statement on the output stream is executed when outputting a new log
message. On slow or overloaded filesystems, this can become a significant source of overhead. To
avoid
this, this option can be used. A log-file flush is then only done on intervals determined via the
FlushCpuTimeDiff parameter.

OUTPUT_POTENTIAL

This will force the code to compute gravitational potentials for all particles each time a snapshot file
is generated. These values are then included in the snapshot files. Note that the computation of the
values of the potential incurs some computational overhead.

OUTPUT_ACCELERATION

This will include the physical gravitational acceleration of each particle in the snapshot files.

OUTPUT_TIMESTEP

This outputs the timestep used by the particles. Useful only to test whether the timestep criteria
behave in the intended way.

OUTPUT_PRESSURE

This outputs values for the pressure of each SPH particle (i.e. only for particles of type 0) to the
snapshot files.

OUTPUT_VELOCITY_GRADIENT

This outputs the SPH estimates of the velocity gradients to the snapshot files, separately for the vx,
vy, and vz components, i.e. one gets three 3-vectors.

OUTPUT_ENTROPY

When this option is activated, the code writes the values of the entropic variable associated with
each SPH particle to the snapshot files.

OUTPUT_CHANGEOFENTROPY

This outputs the rate of change of entropy for each particle. Only the dissipative change due to
shock heating is normally included here, meaning that radiative changes of the entropy are not
included in this field, only the viscous heating from the artificial viscosity is.

OUTPUT_DIVVEL

With this option, one can request an output of the velocity divergence for each SPH particle in the
snapshot files.

OUTPUT_CURLVEL

Likewise for the curl of the velocity field of all SPH particles, which is output in snapshots when
this option is activated.

OUTPUT_COOLHEAT

With this option, the actual rate of energy loss due to radiative cooling (or heating) can be output to
the snapshot files. This option requires COOLING to be active as well.

OUTPUT_VISCOSITY_PARAMETER

With this option, one can request an output of the viscosity parameter for each SPH particle in the
snapshot files. This option requires TIMEDEP_ART_VISC to be active as well.

OUTPUT_NON_SYNCHRONIZED_ALLOWED

If this option is activated, outputs occur precisely at the prescribed desired output times, with
particles being (linearly) drifted to this time, while velocities stay at the values they had after the last
kick. Otherwise (which is the default), snapshots are only written at times when all particles are
synchronized, and all timesteps have been completed with closing half-step velocity kicks. The
desired output times are mapped to the closest full synchronization points, to the extent possible
(note that if the spacing of desired output times is finer than the largest timestep size, some desired
output times may have to be skipped).

OUTPUT_VELOCITIES_IN_HALF_PRECISION

Stores particle velocities in half-precision format.

OUTPUT_ACCELERATIONS_IN_HALF_PRECISION

Stores accelerations in half-precision. To prevent a potential overflow of the values, the actually
stored values are normalized by the factor 10HV200, with V200 = 1000 km/sec.

OUTPUT_COORDINATES_AS_INTEGERS

Does not convert the internal integer coordinations to floating point before output, but rather
outputs them in integer representation. This retains more bits of information, and may give rise to
better compression possibilities if the particle data is spatially ordered.

ALLOW_HDF5_COMPRESSION

When this is enabled, certain output fields in the HDF5 output are compressed when written. The
compression/decompression is done on the fly, and is transparent to the user (but implies slightly
slower I/O speed).

On the fly FOF groupfinder
FOF

This switch enables the friends-of-friends group finder of the code. In this case, the code will
always run the FOF group finder whenever a snapshot is produced. This is done directly before the
snapshot is written to disk, allowing the particle data in the snapshot files to be arranged in group
order, i.e. it is easy to read the particles of any desired group. Also, when FOF is set, the code can
be applied in postprocessing mode to compute group catalogues for existing snapshots. The
snapshot in question is then written a second time with a name suffix "reordered", with the particle
data arrange in group order.

FOF_PRIMARY_LINK_TYPES = 2

This identifies via a bitmask the particle type or types to which the friends-of-friends linking
algorithm should be applied. Conventionally these are (high-resolution) dark matter particles stored
in type 1, so the default for this parameter is 2.

FOF_SECONDARY_LINK_TYPES = 1+16+32

All particles of types selected by this bitmask are looking for the nearest particle from the set
covered by FOF_PRIMARY_LINK_TYPES and are then made member of the FOF group this
particle belongs to. The idea is that the groups found with the plain FOF algorithm incorporate all
co-spatial particles from the set described by FOF_SECONDARY_LINK_TYPES. This is useful
especially for hydrodynamical cosmological simulations with radiative processes and star
formation. In this case, the spatial distribution of baryons becomes very different from the dark
matter, so that applying the friends-of-friends method to both dark matter and baryonic particles at
the same time would yield highly distorted results. It is then much cleaner to do this only for the
non-dissipative dark matter, and let these halos collect the baryons in the same halo with this option.

FOF_GROUP_MIN_LEN = 32

The minimum length a group needs to have before being stored in the group catalogue is set with
this parameter. The default number is 32.

FOF_LINKLENGTH = 0.2

Dimensionless linking length for the friends of friends algorithm. The code will cast this into a
comoving linking length by estimating the mean particle spacing from the dark matter density (as
given by OmegaDM - OmegaBaryon) and the mean particle mass of all the particles selected
with the FOF_PRIMARY_LINK_TYPES mask. It makes sense that the mass of all these particles

is equal, only then the FOF algorithm is known to produce well understood results. If in doubt,
check the log file for the linking length that is computed.

FOF_ALLOW_HUGE_GROUPLENGTH

Normally, the length of individual FOF groups and subhalos is restricted to reach at most 2^31 ~ 2
billion particles. If this is activated, it can be more.

Subfind
SUBFIND

When this is switched on, all identified FOF groups are subjected to a search for gravitationally
bound substructures with the SUBFIND algorithm, as described in Springel et al. (2001), http://
adsabs.harvard.edu/abs/2001MNRAS.328..726S. The snapshot outputs that are produced are
automatically ordered in group plus subhalo order, i.e. all particles of the same group are stored
subsequently, and subhalos are nested within each group, i.e. the particles are arranged in the order
of the groups and subhalos.

SUBFIND_HBT

This enables an implementation of the hierarchical bound tracing algorithm, where subhalo
candidates are identified with the help of a substructure catalogue from a precious time instead of
doing this with density excursion sets. This option requires both SUBFIND and MERGERTREE.

SUBFIND_STORE_LOCAL_DENSITY

This will calculate local densities and velocity dispersions for all particles, not only for particles in
FOFs, and store them in snapshot files.

SUBFIND_ORPHAN_TREATMENT

This produces special snapshot files after group catalogues are produced that contain only particles
that have formerly been most bound particles of a subhalo. This can later be used by semi-analytic
models of galaxy formation coupled to the merger tree output to treat temporarily lost or disrupted
subhalos.

Merger tree algorithm
MERGERTREE

This options enables an on-the-fly calculation of descendant subhalos, which are then stored along
with the group catalogues. This requires FOF and SUBFIND to be set, and is meant to be used in
cosmological simulations with a large number of outputs. The merger tree information can then be
used in a final postprocessing step to construct merger trees from all the group catalogues and
descendant/progenitor links produced on the fly (or in postprocessing). The merger tree

http://adsabs.harvard.edu/abs/2001MNRAS.328..726S
http://adsabs.harvard.edu/abs/2001MNRAS.328..726S

construction done in this way can in principle be carried out without having to store the actual
particle data of the snapshot files.

On-the-fly lightcone creation
LIGHTCONE

When this option is enabled, particle data is output continuously as particles cross the backwards
lightcone. The geometry of the lightcone (or of several lightcones) is described by a separate input
file as specified in the parameterfile. If needed, also periodic replications of the box are used to fill
the lightcone volume. Note that either LIGHTCONE_PARTICLES or
LIGHTCONE_MASSMAPS, or both, need to be selected as well if this option is activated.

LIGHTCONE_PARTICLES

When this option is enabled, particle data is output continuously as particles cross the backwards
lightcone. The geometry of the lightcone (or of several lightcones) is described by a separate input
file as specified in the parameterfile. If needed, also periodic replications of the box are used to fill
the lightcone volume.

LIGHTCONE_OUTPUT_ACCELERATIONS

This outputs the gravitational accelerations of particles on the lightcone, which can be used for
gravitational lensing applications.

LIGHTCONE_MASSMAPS

This option creates projected mass shells along the backwards lightcone, for weak lensing
applications. Requires the LIGHTCONE option.

LIGHTCONE_PARTICLES_GROUPS

This option runs the FOF (and SUBFIND if enabled) group finders on the lightcone particle data
before they are written to disk. Requires the LIGHTCONE and LIGHTCONE_PARTICLES
options.

LIGHTCONE_IMAGE_COMP_HSML_VELDISP

This special option is only relevant for lightcone image creation, and (re)computes adaptive
smoothing lengths as well as local velocity dispersions.

LIGHTCONE_MULTIPLE_ORIGINS

If this is enabled, origins of lightcones different from (0, 0, 0) can be defined. Possible origins need
to be listed in a separate file with the name LightConeOriginsFile. The light cone
definitions file then needs be augmented with a further number at the end of each lightcone
definition, and this serves as an index into the list of lightcone origins.

REARRANGE_OPTION

This option needs to be enabled to allow the rearrange lightcone particle feature to work. It only
needs to be on for the special postprocessing option, otherwise it can be disabled to save memory.

IC generation
NGENIC = 256

This master switch enables the creation of cosmological initial conditions for simulations with
periodic boundary conditions. The value of NGENIC should be set to the FFT-grid size used for IC
generation, which should be at least as fine as the particle resolution per dimension. If the code is
started without restartflag (i.e. when normally initial conditions are read), the code instead creates
the ICs first, followed by evolving them with the code, i.e. in this case the initial conditions do not
need to exist on disk. One can however also start the code with restartflag 6, in which case the ICs
are produced and written to disk, followed by a stop of the code. One can then also use the
produced files as ICs in a regular start of GADGET-4 without having the NGENIC option set.

CREATE_GRID

If this is activated, the IC creation is carried out with a regular Cartesian particle grid that is
produced on the fly. Otherwise, the unperturbed particle load is read in from the specified IC file,
which allows the use of a so-called glass files (which arise from evolving random Poisson samples
with the sign of gravity reversed until they settle in a quasi-equilibrium without preferred directions)
or of spatially variable resolution.

GENERATE_GAS_IN_ICS

This option can be used to modify dark matter-only initial conditions for cosmological simulations
upon start-up of the simulation code. The modification is to add gas to the simulation by splitting up
dark matter particles into a dark matter and gas particle, with masses set by the specified
cosmological parameters. The particle pair is displaced in opposite directions from the original
coordinate keeping the center-of-mass fixed. The separation is such that the new dark matter and
gas particles form two interleaved grids that maximize the relative distance between the two particle
types and minimizes pairing correlations. The velocities of the particles inherit the velocity of the
original dark matter particle. Note that here the transfer functions of dark matter and gas are not
distinguished, so this procedure is only a rough approximation. It is however typically sufficient on
large scales and for galaxy formation.

SPLIT_PARTICLE_TYPE = 4+8

This bitmask determines which of the dark matter particles contained in the dark matter only initial
conditions that are processed with GENERATE_GAS_IN_ICS should be split up into gas and
dark matter particles. Normally, this should be done for all of the dark matter particles to produce a
volume filling gas phase. However, sometimes this is restricted to the high-resolution region in
zoom simulations, which can then be picked out with this option.

NGENIC_FIX_MODE_AMPLITUDES

When activated, this leaves the mode amplitudes at sqrt[P(k)], instead of sampling them from a
Rayleigh distribution. This can be useful in the context of the variance suppression technique of
Angulo & Pontzen (2016).

NGENIC_MIRROR_PHASES

If this is activated, all phases in the created realization are turned by 180 degrees. This is useful to
realize a pair of simulations that differ only by the sign of the initial density perturbations but which
are otherwise identical.

NGENIC_2LPT

This option creates the initial conditions based on second-order Lagrangian perturbation theory,
instead of just using the Zeldovich approximation. Especially when the starting redshift is low, this
option is recommended.

NGENIC_TEST

This option is purely for testing purposes. When the code creates ICs on the fly, it just measures the
power spectrum of the produced ICs and terminates.

MPI related settings
MPI_MESSAGE_SIZELIMIT_IN_MB = 200

Some (especially older) MPI libraries are not overly stable when very large transfers are done. Such
transfers can however happen in GADGET-4 for large simulations, for example in the domain
decomposition. With this option one can ask the code to automatically split up such large transfers
in a sequence of smaller transfers. The maximum allowed size of one of the transfers in MB is set
by the value given to MPI_MESSAGE_SIZELIMIT_IN_MB.

NUMPART_PER_TASK_LARGE

Set this if the number of particles per task is quite large, in particular so large than 8 times this
number can overflow a 32-bit integer. This means that once you expect ~500 million or more
particles on a single MPI rank, this option needs to be set to guarantee that the PM algorithms still
work correctly. Of course, once you reach more than 2 billion particles per MPI rank, the code will
stop working anyhow due to integer overflows. The easy solution to this, of course, is to increase
the number of MPI ranks.

ISEND_IRECV_IN_DOMAIN

This option can be used to replace the default communication pattern used in the domain
decomposition (and also in FOF and SUBFIND) which is based on a hypercube with synchronous
myMPI_Sendrecv() calls, with a bunch of asynchronous communications. This should be faster in
principle, but it also tends to result in a huge number of simultaneously open communication
requests which can also choke the MPI communication subsystem. Whether this works robustly

and is indeed faster will depend on the system and the simulation size. If in doubt, rather stick with
the default algorithm.

USE_MPIALLTOALLV_IN_DOMAINDECOMP

Another approach to carry out the all-to-all communication occurring in the domain decomposition
is to simply use MPI's Alltoallv function. This is done when this option is set, and one then
effectively hopes that the internal algorithm used by Alltoallv is the most robust and fastest for the
communication task at hand. This may be the case, but there is no guarantee for it. The default
algorithm of GADGET-4 (hypercube with synchronous myMPI_Sendrecv), which is used when
this option is not used, should always be a reliable alternative, however.

MPI_HYPERCUBE_ALLGATHERV

Another issue with some MPI-libraries is that they may use quite a bit of internal storage for
carrying out MPI_Allgatherv. If this turns out to be a problem, one can set this option. The code
will then replace all uses of MPI_Allgatherv() with a simpler communication pattern that uses
hypercubes with myMPI_Sendrecv as a work-around.

MPI_HYPERCUBE_ALLTOALL

Some MPI libraries tend to be unstable for their myMPI_Alltoall. This is replacing this with a
robust hypercube communication pattern. Not necessarily the fastest, but very robust, scalable and
with decent speed.

ALLOCATE_SHARED_MEMORY_VIA_POSIX

If this is set, try to use POSIX directly to allocated shared memory in the virtual filesystem /dev/
shm, instead of relying on the MPI-3 call MPI_Win_allocate_shared() which on some systems
executes in a sluggish way.

Testing and Debugging options
DEBUG

This option is only meant to enable core-dumps (which are typically disabled by calling MPI_Init()
on program start-up). This can be useful to allow post-mortem analysis of a crash by loading the
core file with a debugger. Of course, the code should be compiled with symbols included (-g
option) to facilitate this, and it may also help to set the optimization level to something low or
disable optimizations entirely to avoid confusing the debugger in some situations.

DEBUG_ENABLE_FPU_EXCEPTIONS

This option is useful in combination with DEBUG and tries to enable FPU exceptions. In this case,
an illegal mathematical floating point instruction that creates a dreaded "Not a Number" (NaN) will
trigger a core file. With the debugger one can then quickly find the line in the code that is the
culprit.

DEBUG_SYMTENSORS

This option executes a few selected unit tests on the symmetric-tensor subroutines on start-up of the
code.

HOST_MEMORY_REPORTING

This option reports, when the code starts, available system memory information by analyzing /proc/
meminfo on Linux systems. It is enabled by default on Linux. Output of this option is found at the
beginning of the stdout log-file, and for example looks like this:

--
AvailMem: Largest = 29230.83 Mb (on task= 24), Smallest = 29201.10 Mb (on ta
Total Mem: Largest = 32213.01 Mb (on task= 0), Smallest = 32213.01 Mb (on ta
Committed_AS: Largest = 3011.91 Mb (on task= 12), Smallest = 2982.18 Mb (on ta
SwapTotal: Largest = 23436.99 Mb (on task= 0), Smallest = 23436.99 Mb (on ta
SwapFree: Largest = 22588.00 Mb (on task= 0), Smallest = 21600.56 Mb (on ta
AllocMem: Largest = 3011.91 Mb (on task= 12), Smallest = 2982.18 Mb (on ta
--
Task=0 has the maximum committed memory and is host: sandy-022
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ENABLE_HEALTHTEST

When this is enabled, the code tries to assess upon start-up whether all CPU cores are freely
available and show the same execution speed. Also, the MPI bandwidth both inside nodes and
between nodes is tested.

FORCETEST = 0.001

Calculates for the specified fraction of particles direct summation forces, which can then be
compared to the forces computed by the Tree/PM/FMM algorithms of GADGET-4 in order to
check or monitor the force accuracy of the code. This is only included as a testing and debugging
option. The value of the option should be set to a number between 0 and 1 (e.g. 0.001), and this
number gives the fraction of randomly chosen particles at each timestep for which forces by direct
summation are computed. The normal tree-forces and the exact direct summation forces are then
collected in a file forcetest.txt for later inspection. Note that the simulation itself is
unaffected by this option, but it will of course run much(!) slower, particularly if FORCETEST *
NumPart * NumPart >> NumPart Note: The particle IDs must be set to numbers >= 1
for this option to work.

FORCETEST_TESTFORCELAW = 1

Special option for measuring the effective force law. Can be set to 1 or 2 for checking with
TreePM/FMM-PM, or TreePM/FMM-PM + PLACEHIGHRESREGION. The option 
FORCETEST must be activated as well. The simulation needs to be fed with a special initial
conditions file for which only one particle has mass, the others are massless test particles. The code
will then go through cycles in which the particle with the mass is randomly placed, and the other
particles are randomly placed around it, with distance spacing uniform in log(r). After 40 cycles are
carried out, the code terminates, and the force-law accuracy can be examined by analysing the file 
forcetest.txt .



FORCETEST_FIXEDPARTICLESET

This always checks the same particle IDs if force accuracy is checked during a run.

VTUNE_INSTRUMENT

This option creates additional instrumentation instructions for the Intel VTune code performance
tool, based on the internal timing routines. This can be used for a performance analysis based on
this tool.

DEBUG_MD5

This option can be used to compute MD5 checksums of the P[] and SphP[] arrays regularly in the
code, with the results being written to the log-file memory.txt. Using this, one can check for binary
invariance of the code when the code is interrupted and resumed from restart files.

TILING = 2

Replicates the read-in ICs the specified number of times in each dimension. This can be used for
scaling tests.

SQUASH_TEST

Squeezes the ICs on read-in on order to create a distortion from spherical symmetry in certain force
calculation tests.

DOMAIN_SPECIAL_CHECK

Outputs test data to check the balancing algorithms.

EWALD_TEST

A development test for testing the accuracy of the Ewald table lookup.

RECREATE_UNIQUE_IDS

This option can be used to reinitialize the particle IDs upon start-up. Useful if one has to deal with a
broken IC file.

NO_STOP_BELOW_MINTIMESTEP

Do not stop when the code wants to adopt a timestep below the specified minimum timestep, but
rather enforce this step size.

DO_NOT_PRODUCE_BIG_OUTPUT



This special option allows one to refrain from writing large output files (restart files, snapshots, and
group catalogues), which can be useful for scaling tests.

STOP_AFTER_STEP = 8

After the corresponding step has been completed, the simulation ends. This is meant to simplify
certain performance and scalability tests.

MEASURE_TOTAL_MOMENTUM

This option computes the total conjugate momentum after every step. Can be used to check for
manifest momentum conservation of different force computation schemes.

TREE_NO_SAFETY_BOX

When enabled, this disables the geometric 'near node' protection, i.e. for the one-sided tree, one
may then be closer to a node's center than 1.5 times the node size, and for FMM, adjacent nodes
may interact.

Parameterfile
Many features of GADGET-4 are controlled by a parameterfile that has to be specified whenever
the code is started. Each parameter value is set by specifying a keyword, followed by a numerical
value or a character string, separated by whitespace (spaces, tabs). For each keyword, a separate
line needs to be used, with the value and keyword appearing on the same line. Between keywords,
arbitrary amounts of whitespace (including empty lines) may be used. The order in which the
keywords are specified is arbitrary, but each keyword needs to appear exactly once, even if its
value is not relevant for the particular simulation (otherwise you'll get an error message). Note that
the keywords are type-sensitive.

Lines with a leading '%' or '#' are ignored. In lines with keywords, comments may also be added
after the specification of the value for the corresponding keyword, and in this case do not need to
begin with any special character.

In the following, each keyword and the meaning of its value are discussed in detail, and typical
example values are provided as an illustration. Some keywords may be changed during a run, i.e.
changes of the corresponding values will be taken into account upon resuming the code from
restartfiles whenever this is reasonable, but changes of certain other parameter values will be
ignored. For example, while changing the memory- or cpu-time limit specified for the code is
always possible, changing the cosmological parameters in the middle of a run will be prevented. If
a change in the middle of a run is accepted by the code, this will also be reflected in the log
messages when starting the code. Note, however, that you normally do not need to make any
changes in the parameterfile when you restart a run from restart-files.

Filenames and file formats
OutputDir /home/volker/galaxy_collision



This is the pathname of the directory that holds all the output generated by the simulation (snapshot
files, restart files, diagnostic files). The code will try to create this directory if it does not yet exist,
but the directory's parent directory needs to exist otherwise an error message will be produced.

SnapshotFileBase snapshot 

From this string, the name of the snapshot file is derived by adding an underscore, and the number
of the snapshot in a 3-digits format. If NumFilesPerSnapshot > 1 , each snapshot is
distributed into several files, with a group of processors writing their data to one of the files (these
files can be written concurrently). In this case, the filenames are supplemented with a tailing .n ,
where n designates the rank of the file in the group of files representing the snapshot. If the HDF5
file format is used, an identifier .hdf5 is also appended automatically.

SnapFormat 3 

A flag that specifies the file-format to be used for writing snapshot files. A value of 1 selects the
simple legacy binary file-format of GADGET-1/2/3, while a value of 2 selects a more convenient
variant of this simple binary format (which has been available from GADGET-2 onwards). A value
of 3 selects the use of HDF5 instead, which is the strongly recommended format. This is because
this data format allows a simple browsing of its contents, access to individual data items is easily
possible through the name of the data set, conversions between endianness and single/double
precision are automatically done if needed, and pesky I/O errors (like reading too many items from
a given data set) are detected reliably. HDF5 output has been introduced for snapshots already in
GADGET-2/3, but in GADGET-4, it is now also available for group catalogues, merger trees,
light-cone data, etc., and this parameter also regulates the file format of these outputs. If HDF5 is
selected, the filenames will be appended automatically with a .hdf5 suffix. The structure of the
snapshot files and of other outputs is discussed in a separate part of the documentation.

ICFormat 1

This flag selects the file format of the initial conditions read in by the code upon start-up. The
possible format choices are the same as for SnapFormat. It is therefore possible to use different
formats for the initial conditions and the produced snapshot files. In case your initial conditions is in
a different file format, we recommend that you convert your IC files to one of the three formats
supported by GADGET-4 (preferably HDF5). Alternatively, you could incorporate a customised
reading routine directly into the GADGET-4 code, but this requires an intimate understanding of
the internal workings of the code.

InitCondFile /home/volker/ICs/galaxy.dat

This sets the filename of the initial conditions to be read in at start-up. Note that the initial
conditions file (or files) does not have to reside in the output directory. The initial conditions can be
distributed into several files, in the same way as snapshot files. In this case, only the basename
without the tailing .n number should be specified as initial conditions filename. Likewise the 
.hdf5 file-name suffix should be omitted if HDF5 is used. The code will recognise the number of
files that make up the initial conditions from the file header entries, and load all of these files
accordingly. There is no constraint on the number of these files in relation to the processor number
used.

NumFilesPerSnapshot 2 



The code can distribute each snapshot onto several files. This leads to files that are easier to handle
in case the simulation is very large, and also speeds up I/O, because these files can then be written
or read in parallel. The number of processors should be equal or larger than 
NumFilesPerSnapshot , because each snapshot file will hold the data of a group of
processors (otherwise the code reduces the value to the number of MPI ranks used). Optimum I/O
throughput is reached if the number of processors is equal to, or a multiple of 
NumFilesPerSnapshot , and if MaxFilesWithConcurrentIO is reasonably large.
With the setting NumFilesPerSnapshot=1 it is possible to write all particle data in just one
snapshot file but then no parallel I/O is used.

MaxFilesWithConcurrentIO 8

This sets the number of concurrent I/O operations the code is allowed to carry out. If 0 is specified,
the code adopts a value equal to the number of MPI ranks, and the same is done if the specified
value is larger than the number of MPI rank. However, it can sometimes be sensible to limit this to
a smaller number, especially on very large MPI partitions in order to prevent that the I/O subsystem
is overloaded. Whether or not this is an issue can be found out by starting the code with restartflag
9, which carries out a special I/O bandwidth test where MaxFilesWithConcurrentIO is
systematically varied from the number of MPI-ranks down to 1 by factors of 2, and in each case a
write-test is performed using parallel I/O from all ranks. This can be used to determine a reasonable
setting for MaxFilesWithConcurrentIO that is not causing choking of the filesystem.

CPU-time limit and restarts
TimeLimitCPU 40000.0

This is the wallclock time limit for the current execution of the code, in seconds. Often the code
will be run through a submission to a computing queue, and hence this value should be matched to
the corresponding time limit of the computing queue or job submission script, as appropriate. The
run will automatically interrupt itself and write restart files if 85% of this time has elapsed. The extra
15% is introduced to make sure that there is always enough time left to safely finish the current time
step (or FOF/SUBFIND group finding) and for writing the restart files before the time limit is
reached. Note that this time refers to the wall-clock time on one processor only. The total CPU time
consumed by the code is obtained by multiplying with the total number of cores that are used/
occupied by the run.

CpuTimeBetRestartFile 7200

This is the maximum amount of wall-clock time, in seconds, that may elapse before the code writes
a new set of restart file for regular checkpointing. With this parameter the code can hence be asked
to write a restart file every once in a while. This is meant to provide some protection against
hardware or software failures, in which case one can resume a simulation from the last set of restart
files. In the above example, a restart file would be written automatically every 2 hours, so that the
lost time in case of such an issue would be at most 2 hours of computing. The old set of restart files
is renamed into a set of bak-restart.X files before the new files are written, so that there is
some protection against a crash during the writing of the restart files themselves. The latter could
happen, for example, because of a disk-full error. It is not possible to resume a simulation from a
corrupted set of restart files, or with restart files that correspond to a mix of different output times. In
case the code should really crash while writing restart files, it is best to discard all restart.X



files, and then to rename the bak-restart.X files into restart.X files (where X runs from
0 to the number of MPI ranks minus 1), for example with the command:

rename bak-restart restart bak-restart.*

Note that depending on your system, the convenient rename command may have a slightly different
syntax or may not be available at all (consult the man pages).

FlushCpuTimeDiff 120

The GADGET-4 code provides quite verbose output in its log-files, with each timestep producing
some entries. If you carry out a simulation with a very large number of very short timesteps and you
have a slow or busy filesystem, this I/O can slow down the code if the filesystem buffers are
flushed to disk after every output. With this parameter, the flush operations are only carried out with
a reduced frequency, in the above example every 120 seconds. This should avoid any significant
cost of this I/O, but it also means that you may not see right away what the code has been doing
when inspecting the log-files, because the information in these files will typically only be updated
when a new flush operation is triggered by the code.

Memory allocation
MaxMemSize 2000

This value gives the maximum amount of memory (in MByte) the code is allowed to use per MPI
process. The code will strictly enforce this limit, and terminate if a higher use is attempted by the
code. If this should occur, a table with the memory allocated for different code parts is output to the
log file, together with information in which line of the code each allocation has happened. Note that
the code will automatically try to make good use (in communication phases) of any extra memory
you specify here. It is therefore a good idea to set MaxMemSize to something close to the amount
of physical memory that can be used per MPI rank on the target compute nodes. The code will
check whether the memory on the target machines is actually sufficient for the setting chosen, and
otherwise terminate (this check only works on Linux). This check should safely prevent that you
accidentally run the code with a too high memory use that could make a compute-node start
swapping. (Driving a node into swapping is generally a really bad thing and would lead to dismal
performance and/or node crashes. Most HPC systems prevent this nowadays at the system level for
their compute nodes.) If you want to find out the smallest amount of memory a given simulation
would have needed to complete, you can grep the log-file memory.txt for the values reported
behind the phrase "Largest Allocation Without Generic". This gives the maximum that was needed
by any of the MPI ranks over the course of the simulation and corresponds to the lower possible
limit for MaxMemSize for the given run minus a small amount of communication buffer space
that you have to allow the code to use. So in practice, the setting for MaxMemSize needs to be at
least slightly larger than the "Largest Allocation Without Generic" value reported in 
memory.txt.

Simulated time span and spatial extent
TimeBegin 0



This initialises the time variable of the simulation when a run is started from initial conditions (in
internal units). If comoving integration is selected (ComovingIntegrationOn=1), the time
variable is the dimensionless expansion factor a itself, i.e. TimeBegin = a = 1 / (1 +
z_start) , otherwise it is simply physical time in the internal system of units of the code.

TimeMax 3.0

This marks the end of the simulation. The simulation will run up to this point, then write a restart-
file and a snapshot file corresponding to this time (even if the time TimeMax is not in the normal
sequence of snapshot files). If TimeMax is increased later on, the simulation can be simply
continued from the last restart-file. Note that this last snapshot file will then be overwritten in case
this was a special dump out of the normally expected output sequence. For comoving integrations,
the time variable is the expansion factor, e.g. TimeMax=1.0 will stop the simulation at redshift 
z=0 . Otherwise the value of TimeMax refers to physical time.

ComovingIntegrationOn 0

This flag enables or disables comoving integration in an expanding universe. For 
ComovingIntegrationOn=0 , the code uses plain Newtonian physics with vacuum or
periodic boundary conditions. Time, positions, velocities, and masses are measured in the internal
system of units, as specified by the selected system of units. For 
ComovingIntegrationOn=1 , the integration is carried out in an expanding universe, using
a cosmological model as specified by Omega0 , OmegaLambda , etc. In this cosmological mode,
coordinates are comoving, and the time variable is the natural logarithm of the expansion factor
itself. If the code has not been compiled with the PERIODIC makefile option, the underlying
model makes use of vacuum boundary conditions, i.e. density fluctuations outside the particle
distribution are assumed to be zero. This requires that your particle distribution represents a
spherical region of space around the origin. If PERIODIC is enabled, the code expects the particle
coordinates to lie in the interval [0, BoxSize].

BoxSize 10000.0

The size of the periodic box (in code units) encompassing the simulation volume. This parameter is
only relevant if the PERIODIC option is activated.

Cosmological parameters
Omega0 0.3

Cosmological matter density parameter in units of the critical density at z=0. Relevant only for
comoving integration.

OmegaLambda 0.7

Cosmological vacuum energy density (cosmological constant) in units of the critical density at 
z=0. For a geometrically flat universe, one has Omega0 + OmegaLambda = 1. Important:
For simulations in Newtonian space that do not account for cosmological expansion, this parameter
has to be set to zero.



OmegaBaryon 0.04

Baryon density in units of the critical density at z=0. This is not explicitly used in the time
integration of GADGET-4, but the parameter is relevant when initial conditions are created, or
when dark matter-only initial conditions are outfitted with gas particles upon code start-up with the 
GENERATE_GAS_IN_ICS option.

HubbleParam 0.7

This dimensionless parameter enters the definition of GADGET's system of units, and can be used
to eliminate an explicit dependence on the value of the Hubble constant, like it has been
traditionally done in cosmology. Most often, the value of HubbleParam is chosen to express the
value of the Hubble constant in units of 100 km/s/Mpc. While the value of HubbleParam is not
needed (in fact, it does not enter the computations at all) in purely collisionless simulations, the
value of HubbleParam is still relevant when conversions to physical cgs units are required, for
example to compute rate equations in radiative cooling physics.

Hubble 100.0

Value of the Hubble constant in internal units. Since the internal units contain a factor 
HubbleParam, one can basically choose whether one wants to set the Hubble constant via 
HubbleParam (then Hubble has the same value in all simulations, even if the cosmological
factors and the Hubble constant change), or one sets HubbleParam to unity and uses Hubble
to directly set the Hubble constant. Both is possible, and intermediate forms in principle as well.

System of units
UnitLength_in_cm 3.085678e21

This sets the internal length unit in cm/h, where H_0 = 100 h km/s/Mpc. The above choice is
convenient for cosmology, as it sets the length unit to 1.0 kpc/h.

UnitMass_in_g 1.989e43

This sets the internal mass unit in g/h, where H_0 = 100 h km/s/Mpc. The above choice is
convenient for cosmology, as it sets the mass unit to 10^10 M_sun/h.

UnitVelocity_in_cm_per_s 1.0e5

This sets the internal velocity unit in cm/sec. The above choice corresponds to a velocity unit of
km/sec, which is the commonly used and most convenient unit in cosmology. Note that the
specification of UnitLength_in_cm , UnitMass_in_g and 
UnitVelocity_in_cm_per_s also determines the internal unit of time. The definitions
made above imply that in internal units the Hubble constant has a numerical value independent of h
(where h is given by HubbleParam ). For the numerical examples above, the Hubble constant
has always the value 0.1 in internal units, independent of h, and the Hubble time is always 10.0 in
internal units, with one internal time unit corresponding to 9.8 x 10^8 yr/h. However, of course,
you are free to choose a different system of units if you like. Note again that this implies that for



purely gravitational dynamics, the code will not need to know the value of h at all. 
HubbleParam is nevertheless kept in the parameterfile because additional physics in the
hydrodynamical sector may require it.

GravityConstantInternal 0

The numerical value of the gravitational constant G in internal units depends on the system of units
you choose. For example, for the numerical choices made above, the physical value of G
corresponds to G=43007.1 in internal units. For GravityConstantInternal=0 (the
normal choice for cosmological simulations), the code calculates the internal value corresponding to
the physical value of G automatically. But sometimes, you might want to set G yourself. For
example, in scale-free test simulations, specifying GravityConstantInternal=1, 
UnitLength_in_cm=1, UnitMass_in_g=1, and 
UnitVelocity_in_cm_per_s=1, yields a natural system of units in which one may also
want to adopt G=1 as well, which can then be achieved by specifying a non-zero value for 
GravityConstantInternal, in this example GravityConstantInternal=1.

Gravitational force accuracy
TypeOfOpeningCriterion 0

This selects the type of cell-opening criterion used in the tree walks for computing gravitational
forces. A value of 0 results in a geometric opening criterion which is primarily governed by the
opening angle theta, while 1 selects a relative criterion that tries to limit the absolute truncation error
of the multipole expansion for every particle-cell or cell-cell interaction. The latter scheme usually
gives slightly higher accuracy at a comparable level of computational cost compared with the
geometric criterion. When it becomes more demanding to calculate accurate forces due to strong
cancellation effects (such as at high redshift with nearly uniform mass distribution), the relative
criterion automatically invests more effort because of the small residual forces there. This adaptivity
makes it advantageous especially for cosmological simulations, where a single value of theta for the
geometric criterion is not ideal at all redshifts.

ErrTolTheta 0.7

This is the accuracy criterion parameter (the opening angle theta) of the tree algorithm if the
geometric opening criterion (i.e. TypeOfOpeningCriterion=0 is used). If 
TypeOfOpeningCriterion=1 is adopted, then theta and the geometric opening criterion are
only used for a first force computation whose purpose is only to provide an estimate for the current
acceleration of each particle, which in turn is needed to compute forces with the relative cell
opening criterion. Hence, theta needs to be set to a sensible value even if the relative criterion is
used and only forces computed with the relative criterion enter the dynamics.

ErrTolForceAcc 0.005

This controls the accuracy of the relative cell-opening criterion (if enabled). Here, alpha is given by 
ErrTolForceAcc. Note that independent of this relative criterion, the code will always open
nodes if the point of reference lies within a geometric boundary box around the cubical cell (unless 
TREE_NO_SAFETY_BOX is enabled). This protects against the possibility of an occurrence of
unusually large force errors for very particular particle configurations.



ErrTolThetaMax 1.0

When the relative opening criterion is used, the effective opening angle allowed for a node of little
mass may grow very large, possibly approaching the convergence radius of the multipole
expansion. To protect against the possibility to get unexpectedly large errors from this, the
maximum allowed geometric opening angle can be limited with this parameter.

ActivePartFracForPMinsteadOfEwald 0.1

This parameter is only needed when the TreePM scheme is used in combination with the 
TREEPM_NOTIMESPLIT option. Then the time integration does not distinguish between a long
range and a short range force, instead the total force is integrated with a single (variable) timestep.
The TreePM method here only functions as a method for accelerating the computation of the total
force, with the alternative being to do it with a pure tree calculation (if needed with Ewald
correction for periodic boundaries). If only a small number of particles is active, doing the force
calculation as a pure tree can be faster than doing it with the TreePM approach, because for the PM
part always full FFTs have to be computed independent of the number of active particles. This
parameter is used to specify a threshold above which the active fraction needs to lie before TreePM
is applied for a given timestep, otherwise the force calculation is done with a pure tree. The same
applies to FMM-PM and pure FMM. In principle, this should only affect the performance of the
calculation, not its accuracy in any significant way (this is true in the limit when the TreePM and
pure Tree force errors are comparable in magnitude, and are both negligible).

Time integration accuracy
MaxSizeTimestep 0.01

This parameter sets the maximum timestep a particle may take. This should be set to a sensible
value in order to protect against too large timesteps for particles with very small acceleration.
Usually, a few percent of the dynamical time of the system gives sufficient accuracy. For
cosmological simulations, the parameter specifies the maximum allowed step in ln(a), because the
natural logarithm of the scale factor is discretized for the time integration in this case. Hence,
specifying the maximum allowed timestep for cosmological simulations is equivalent to specifying
it as a fraction of the current Hubble time. A value of ~0.01 is usually accurate enough for most
cosmological runs.

MinSizeTimestep 0

If a particle requests a timestep smaller than the specified value of this parameter, the simulation
terminates with an error message. This is meant to prevent simulations from continuing when the
timestep has dropped to an unreasonably small value, because such behaviour typically indicates a
problem of some sort. Setting the parameter to zero disables this safety check.

ErrTolIntAccuracy 0.025

This dimensionless parameter controls the accuracy of the simple kinematical timestep criterion
commonly employed in cosmological simulations, and which is also used in GADGET-4. The
timestep constraint is given by dt = sqrt(2 eta epsilon/|a|), where eta=ErrTolIntAccuracy,
epsilon is the gravitational softening length, and a the acceleration experienced by the particle. The



actual timestep taken by the particle will always be shorter than dt, as the particle will be forced
onto the power-of-two hierarchy of allowed timestep sizes by reducing the step to the next available
shorter step.

CourantFac 0.15

This sets the value of the Courant coefficient used in the determination of the hydrodynamical
timestep of SPH particles. Note that GADGET-4's definition of the SPH smoothing length differs
by a factor of 2 from that found in some part of the SPH literature. As a consequence, comparable
settings of CourantFac may be a factor of 2 smaller in GADGET4 when compared with codes
using a different convention.

Domain decomposition
ActivePartFracForNewDomainDecomp 0.01

A new domain decomposition is not necessarily determined for every single timestep. A value of 
ActivePartFracForNewDomainDecomp=0.01, for example, means that the domain
decomposition is reconstructed whenever there are at least 0.01 N particles active at the current
synchronization time, where N is the total particle number. Note that the gravitational tree is always
reconstructed in every step, whereas the neighbor search tree is only reconstructed in case a domain
decomposition is done for the current step. Otherwise it expands its nodes as needed to
accommodate all the SPH particles that were grouped into each node.

TopNodeFactor 2.5

The domain decomposition involves the construction of a coarse oct-tree whose leaf nodes
tessellate the simulation volume. The TopNodeFactor regulates how fine this top-level tree gets
(it is designated as f_top in the code paper). The code will roughly produce TopNodeFactor *
NTask * f_mult leaf-nodes in the top-level tree, focusing always on refining the most loaded
one first until the desired fineness is reached. Here f_mult refers to the number of different cost
categories that are balanced simultaneously. Since a tree node can only be assigned in full to
individual domains, this parameter influences the level of discreteness fluctuations present in the
load among the set of multiple domains that are mapped to individual MPI ranks. A value of a few
for this parameter is usually good enough. If a very large value is adopted, the top-level tree (which
is identically stored on all nodes) may get very large, making its memory use and construction time
costly.

Output frequency
OutputListOn 0

A value of 1 signals that the output times are given in the file specified by 
OutputListFilename Otherwise, the output times are generated automatically in the way
described below. We note that the code will only generate snapshot files if full timesteps have been
finished (this is different from GADGET-2) and thus the full system is synchronized in time. This
means that in GADGET-4, each particle has finished an integer number of full KDK timesteps
when stored in snapshots. Desired output times are given either in the file with output times or are



created in a regularly spaced way (as described below). The corresponding desired output times
will always be mapped to the closest available output time. The set of these available output times is
basically given by the simulation timespan divided by maximum used time step size. The mapping
then means that the actual output time of a snapshot can deviate from the desired output at most by
0.5 times the maximum timestep actually used in the simulation when the output occurs. If you
want to have many outputs with very fine spacing, it makes sense to set MaxSizeTiStep sufficiently
small, in particular smaller than the desired output spacing otherwise the number of created
snapshots could be lower than desired in case the simulation takes timesteps for some particles that
are larger than the desired output spacing.

OutputListFilename output_times.txt

This specifies the name of a file that contains a list of desired output times. If OutputListOn is
set to 1, this list will determine the times when snapshot-files are desired. The file given by 
OutputListFilename should just contain the floating point values of the desired output times
in plain ASCII format. The times do not have to be ordered in time, but there may be at most 1100
values (this is the default, but it can be enlarged if desired by setting the MAXLEN_OUTPUTLIST
contant in Config.sh). Output times that are in the past relative to the current simulation time will
always be ignored.

TimeOfFirstSnapshot 0.047619048

This variable selects the time for the first snapshot (relevant only if OutputListOn=0). For
comoving integration, the above choice would therefore produce the first dump at redshift z=20.

TimeBetSnapshot 1.0627825

If OutputListOn=1 this parameter is ignored. Otherwise, after a snapshot has been written, the
time for the next snapshot is determined by either adding TimeBetSnapshot to 
TimeOfFirstSnapshot, or by multiplying TimeOfFirstSnapshot with 
TimeBetSnapshot. The latter is done for comoving integration, and will hence lead to a series
of outputs that are equally spaced in ln(a). The above example steps down to redshift z=0 in 50
logarithmically spaced steps.

TimeBetStatistics 0.1

This determines the interval of time between two subsequent computations of the total potential
energy of the system. This information is then written to the file energy.txt, together with
information about the kinetic energies of the different particle types. A first energy statistics is
always produced at the start of the simulation at time TimeBegin.

SPH parameters
DesNumNgb 64

This is the desired number of SPH smoothing neighbours. Normally, the effective number of
neighbours (defined as the mass inside the kernel divided by the particle mass) is kept constant very
close to this value. Should it ever try to get outside a range +/- MaxNumNgbDeviation from 



DesNumNgb, the code will readjust the smoothing length such that the number of neighbours is
again in this range.

MaxNumNgbDeviation 2

This sets the allowed variation of the number of neighbours around the target value DesNumNgb.

InitGasTemp 10000

This sets the initial gas temperature in Kelvin when initial conditions are read. However, the gas
temperature is only set to a certain temperature if InitGasTemp > 0 and if at the same time the
temperature of the gas particles in the initial conditions file was found to be zero, otherwise the
initial gas temperature is left at the value stored in the IC file. If the temperature is set through this
parameter, and if it is below 10^4 K, a mean molecular weight corresponding to neutral gas of
primordial abundance is assumed, otherwise complete ionisation is assumed.

ArtBulkViscConst 1.0

This sets the value of the artificial viscosity parameter alpha_visc used by GADGET-4. See code
paper for details.

ViscosityAlphaMin

This sets the minimum value of the artificial viscosity parameter when a time-dependent viscosity is
enabled.

Gravitational softening
The code distinguishes between different particle types. As far as gravity is concerned, all the types
are treated equally by the code. The particles of the first type (type=0) are treated as SPH particles
and receive an additional hydrodynamic acceleration from pressure gradients. The concept of
particle types is primarily introduced to simplify analysis and to give certain particles an easily
identifiable role.

The default number of types is NTYPES=6, which was also used as a fixed setting in
GADGET-1/2/3. There, the six particle types were referred to with the symbolic tags "Gas",
"Halo", "Disk", "Bulge", "Stars", and "Bndry", in this order, but these names are now dropped in
favour of just numerical type specifiers. The number of available types can be enlarged or reduced
if needed, but a value equal to 6 needs to be used if backwards compatibility to the format of older
versions of GADGET is desired.

Normally, each particle type is mapped to a certain gravitational softening length. The number of
available different softening lengths is given by NSOFTCLASSES, and does not necessarily have
to be equal to NTYPES (this is however the default).

SofteningClassOfPartType0 0



Specifies the softening class that should be assigned to particle type=0. Depending on the setting of 
NTYPES, additional such parameters are needed, one for each particle type. One hence needs to
specify SofteningClassOfPartType0, SofteningClassOfPartType1, ..., 
SofteningClassOfPartTypeX, where X = NTYPES - 1. The values that are assigned
to these parameters need to be in the range [0, NSOFTCLASSES - 1]. It is allowed to map
several particle types to the same softening class.

SofteningComovingClass0 0.5

This specifies the (comoving) softening length of the first softening class. Depending on the setting
of NSOFTCLASSES, additional such parameters are needed, one for each softening class. One
hence needs to specify SofteningComovingType0, SofteningComovingType1, ..., 
SofteningComovingTypeX, where X = NSOFTCLASSES - 1.

Gravity is softened with a spline kernel in GADGET-4, as outlined in the code paper. The
softenings quoted here all refer to epsilon, the equivalent Plummer softening length. Note that for
the spline that is used, the force will be exactly Newtonian beyond r = 2.8 epsilon, and the potential
of a point mass m at zero lag is phi(0) = -G*m/epsilon. The softening lengths are given in internal
length units. For comoving integration, the softening refers to the one employed in comoving
coordinates, which usually stays fixed during the simulation.

SofteningMaxPhysClass0 0.5

In cosmological simulations, one sometimes wants to start a simulation with a softening 
epsilon_com that is fixed in comoving coordinates (where the physical softening, 
epsilon_phys = a * epsilon_com , then grows proportional to the scale factor a ),
but at a certain redshift one may want to freeze the resulting growth of the physical softening 
epsilon_phys at a certain maximum value. These maximum softening lengths are specified by
the SofteningMaxPhysClassX parameters. In the actual implementation, the code uses 
epsilon_com = min(epsilon_com, epsilon_phys^max / a) as comoving
softening. Note that this feature is only enabled for ComovingIntegrationOn=1, otherwise
the SofteningMaxPhysClassX values are ignored. The specific parameter 
SofteningMaxPhysClass0 specifies the maximum physical softening of the first softening
class. Depending on the setting of NSOFTCLASSES, additional such parameters are needed, one
for each softening class. One hence needs to specify SofteningMaxPhysClass0, 
SofteningMaxPhysClass1, ..., SofteningMaxPhysClassX, where X =
NSOFTCLASSES - 1.

GasSoftFactor 1.5

This parameter is only needed if ADAPTIVE_HYDRO_SOFTENING is activated. In this case, the
gravitational softening for the gas particles is individually selected based on their smoothing length
from a logarithmic table of available softening classes. The organization of this table is described by
the parameters below. In practice, the smoothing length of the gas particle is multiplied by 
GasSoftFactor and then the closest softening (in terms of smallest difference in the log of the
softenings) from the table is assigned as the softening class of the gas particle.

MinimumComovingHydroSoftening 0.001

Specifies the smallest allowed gaseous softening value. Together with the multiplicative factor 
AdaptiveHydroSofteningSpacing that describes the increase from step to step, this



defines the discrete table of available softenings for SPH particles when 
ADAPTIVE_HYDRO_SOFTENING is used.

AdaptiveHydroSofteningSpacing 1.05

This parameter defines the spacing between two adjacent available SPH softening classes when 
ADAPTIVE_HYDRO_SOFTENING is enabled. The total number of the set of available
softenings classes is given by the constant NSOFTCLASSES_HYDRO, which is normally set to 64
as default. (This can be changed, if desired, by overriding the value of this constant in 
Config.sh). The largest available gaseous softening length is then given by 
MinimumComovingHydroSoftening * AdaptiveHydroSofteningSpacing
^ (NSOFTCLASSES_HYDRO - 1).

Subfind parameters
DesLinkNgb 20

This sets the number of neighboring particles that are examined in the SUBFIND algorithm to
identify locally isolated peaks in the density field, and to link overdensity candidates across saddle
points. The typical value for this quantity is 20, and results of SUBFIND should be quite
insensitive to the exact choice. The parameter needs only be specified if SUBFIND is actually
enabled in Config.sh.

Initial conditions generation
The following initial conditions parameters are only used if NGENIC is activated in the code
configuration file. The value of NGENIC is interpreted as the size of the FFT grid used to compute
the displacement field. One should have NGENIC >= Nsample. The redshift of the initial
conditions is the same as the defined starting redshift of the simulation, hence is given by 
TimeBegin.

NSample 128

This sets the maximum wave number k that the code uses, i.e. this effectively determines the
Nyquist frequency that the code assumes, k_Nyquist = 2*PI / BoxSize *
Nsample/2 Normally, one chooses Nsample such that Ntot = Nsample^3, where Ntot is the total
number of particles.

GridSize 128

This parameter is only needed if CREATE_GRID is activated. In this case, the code will create the
initial particle load itself in terms of a uniform Cartesian grid with particles of constant mass. The
total number of particles that is used is then GridSize^3 . In cold dark matter, perturbations
should then be imprinted all the way to the Nyquist frequency of this particle grid, i.e. one should
pick GridSize=Nsample. If CREATE_GRID is not active, then this parameter is not present.
In this case, the initial unperturbed particle load is read in as the specified IC file.



PowerSpectrumType 2

This can be used to select the parameterization of the linear theory input spectrum. For a value of 1,
an analytic fitting function by Eisenstein & Hu is selected, while 2 uses a tabulated power spectrum
in the file specified with PowerSpectrumFile A value of 3 (or any other value) will use an
analytic parameterization from Efstathiou.

PowerSpectrumFile cmb_code_wmap7_spectrum.txt

This file gives a tabulated linear theory input power spectrum, which can be computed by a
Boltzmann code, like CAMB, for example. The file format is ASCII, and should contain two
columns, with a pair of values on every line:

log(k) log(Delta^2) 

Here log is the base10 logarithm, and k is given in units of h / cm /
InputSpectrum_UnitLength_in_cm (see below). Delta^2 refers to the dimensionless
power spectrum at wavenumber k, which is related to the ordinary power spectrum P(k) through
Delta^2 = 4 PI k^3 P(k).

InputSpectrum_UnitLength_in_cm 3.085678e24 

Defines the length unit used in the tabulated input spectrum in cm/h. If desired, this can be chosen
differently from UnitLength_in_cm, so that one can for example have an input spectrum
table based on Mpc/h while the simulation one carries out uses kpc/h.

ShapeGamma 0.21

This parameter is only relevant when PowerSpectrumType=3 is used (Efstathiou
parameterization). In this case, ShapeGamma should usually be set to something close to 
Omega0 * HubbelParam.

PrimordialIndex 1.0

This may be used to specify a tilt in the primordial index, provided this has not already been taken
care of in a tabulated input spectrum. Effectively, this option multiplies the spectrum (whatever the
source) with an additional factor k^(PrimordialIndex-1.0), i.e. if one does not want to do this, one
has to set this parameter to a value of 1. In particular, if one uses a tabulated input spectrum and this
already accounts for a primordial tilt, this parameter nevertheless still has to be set to 1.0.

Sigma8 0.86

Normalization of the linear theory input power spectrum when extrapolated to z=0. As is
commonly done, sigma8 gives the rms density contrast fluctuations in top-hat spheres of radius 8
Mpc/h.

ReNormalizeInputSpectrum 1

If set to zero, the tabulated input spectrum is assumed to be correctly normalized already in its
amplitude to the adopted starting redshift, otherwise the normalization is recomputed based on the



specified sigma8 value, and the linear theory growth factor for the specified cosmology.
Normally, this renormalization is always recommended.

SphereMode 0

If this is activated by setting it to 1, only modes with |k| < k_Nyquist are used (i.e. a sphere in k-
space), otherwise modes with |k_x|,|k_y|,|k_z| < k_Nyquist are used (i.e. a cube in k-space).

Seed 123456

An integer number that serves as seed for the random number generator used by the IC code.
Because the k-modes are filled systematically "inside-out" in k-space, changing the resolution but
keeping the seed the same will yield the same large-scale modes. This means that for a fixed seed,
one can easily carry out resolution studies on an object-by-object basis, if desired.

Lightcone output
The lightcone output will first collect particles that cross the backwards lightcone in an intermediate
storage buffer. The particle positions and velocities are extrapolated to the point of the light-cone
crossing. Once the intermediate storage buffer has accumulated a certain particle number, the
particles are written to disk in a light-cone file similarly to a snapshot file. After that the intermediate
buffer is emptied, and gradually filled again by the continuing lightcone until the next output
occurs. The individual lightcone files are thus spherical shells (or segments thereof) around the
observer position. When concatenated they yield the full lightcone.

LightConeDefinitionFile lightcones.txt

When continuous light-cone outputting is activated via the switch LIGHTCONE, the geometry of
the lightcone(s) is specified via this file. In particular, the start and end redshifts of the lightcone(s)
are specified in this file. Note that the lightcone feature only makes sense for cosmological
simulations with ComovingIntegrationOn=1. The constant LIGHTCONE_ALLOC_FAC
(default value 0.1) determines how much storage space the code sets aside for the intermediate
buffer before lightcone files are flushed to disk. This is done by prescribing the particle number that
can fit into the intermediate light-cone buffer as a fraction of the total particle number. This
indirectly determines on how many output files the lightcone is distributed. By overriding the
constant LIGHTCONE_ALLOC_FAC in the Config.sh-file, this can be influenced if desired.

The file defining the lightcones has the following format. Each line defines a separate lightcone,
and is defined at least by four numbers: 

Here can be either 0, 1, 2, 3, or 4, and defines the geometric selection of the specific lightcone,
according to: 0 = full sky, 1 = one octant, 2 = a pencil beam cone with circular aperture, 3 = a disk
like region, 4 = a pencil beam with a square-shaped aperture.

sets the far edge of the lightcone to redshift zmax = 1/astart - 1 sets the near edge of the lightcone to
redshift zend = 1/aend - 1

is normally 0. A value of 1 only makes sense combined with the
SUBFIND_ORPHAN_TREATMENT option and then restricts the output to formerly most bound
particles.



For type=1 (octant), an additional number with value 0, 1, ..., or 7 is needed to select the specific
octant.

For type=2 (cone), three additional numbers are expected to define the principal direction vector of
the cone (this does not need to be normalized), followed by its half opening angle in degrees. 

For type=3 (disk), three additional number are expected that define the normal of the disk region,
followed by a further number defining its comoving thickness.

For type=4 (pyramid with square base), first three additional number are expected to define the
direction vector of the pencil beam, then a further vector is expected that is used to set the
orientation of the x-direction of the patch of sky that is mapped by the lightcone, with the y-
direction being orthogonal to that. Finally, a last number gives the half opening angle of the
pyramid-shaped pencil beam in degrees.

Multiple lightcones, also of the same type, can be specified if desired. Note that the output will get
extremely large if you select even a moderate redshift depth, because the code will automatically
periodically replicate the simulation box as needed to cover the specified lightcone geometry. 

An example for a lightcone definition file could look like this:

0 0   0.5    1.0
1 0   0.4    1.0    0

This would define a full-sky light cone from z=1 to z=0, and an octant covering positive
x>0,y>0,z>0 from redshift z=1.5 to z=0.

LightConeOriginsFile lightcone_origins.txt

Only when LIGHTCONE_MULTIPLE_ORIGINS is activated, this option is required. One can
then supply a list of coordinate triples, each of which is a possible origin of a lightcone as defined
above. The invividual lightcone defintions from above then require one additional number for each
lightcone at the end. This number is an index into the listed origins, and thus selected the
corresponding origin.

LightConeMassMapsNside 12

The healpix Nside parameter defining the angular resolution used for the mass maps projections of
lightcone particles. To enable this, the LIGHTCONE_MASSMAPS option needs to be set.

LightConeMassMapThickness 25

Comoving thickness of one lightcone massmap shell.

LightConeMassMapMaxRedshift 5.0

Redshift out to which the massmaps should extend.



Cooling and star formation
The following parameters refer to the simple cooling and star formation model described in
Springel & Hernquist (2003, http://adsabs.harvard.edu/abs/2003MNRAS.339..289S).

MaxSfrTimescale 1.5

Gas consumption time scale in internal time units at the threshold density for star formation. This
sets the parameter t_0^star in the above paper.

TempClouds 1000.0

This is given in Kelvin and corresponds to the T_c parameter (or correspondingly to u_c when
expressed as thermal energy per unit mass) in the above paper.

TempSupernova 1.0e8

This is given in Kelvin and corresponds to the T_SN parameter in the above paper, or
correspondingly to u_SN when expressed as thermal energy per unit mass. The relation between
these two quantities is T_SN = (2/3) m u_SN / k_B, where m is the mean molecular mass and k_B
the Boltzmann constant.

FactorEVP 1000.0

This is the cloud evaporation parameter A_0 in the above paper.

FactorSN 0.1

This parameter (which corresponds to the symbol beta in the above paper) is the mass fraction of
short-lived massive stars (>8 Msun) formed for each initial population of stars. This depends on the
adopted stellar initial mass function.

CritPhysDensity 0 

The critical physical hydrogen number density in cm^(-3) above which star formation is allowed. In
the model of Springel & Hernquist (2003), this is computed via eqn (23) of the this paper if the
parameter is set to zero (which is the recommended setting for this model).

CritOverDensity 57.7

If a cosmological simulation would be started at very high redshift, then the physical baryon density
could exceed the prescribed physical star formation threshold computed above. To prevent this, a
second criterion is imposed, namely to require a minimum comoving overdensity as well, which is
given in dimensionless form by this parameter. CritOverDensity=57.7 is the extrapolated
overdensity for an NFW halo at the R200 radius, i.e. this choice corresponds to requiring that star-
forming gas should be contained inside the virial radius of halos. This cures the high-z problem
without restricting low-redshift star formation in any way.

http://adsabs.harvard.edu/abs/2003MNRAS.339..289S


TreecoolFile data/TREECOOL_fg_dec11

This file is used in cosmological simulations to tabulate the time evolution of an externally imposed
UV background that is responsible for cosmic reionization. Typically something like a Haard &
Madau or Faucher-Giguere model is used. The file tabulates the base10 logarithm of (1+z),
followed by the photoionization rates of HI, HeI and HeII, and the associated heating rates. The
simulation code will then linearly extrapolate from this table to set the UV background parameters
at any given redshift. Only in cosmological simulations with comoving integration the UV
background will be used, although the file is always expected if COOLING is enabled.

MinEgySpec 0

This parameter can be used to effectively impose a minimum allowed temperature onto the gas.
This is however done in terms of a minimum energy per unit mass u , i.e. if MinEgySpec is set
to some finite value, u will not be allowed to drop below this value.

Special features
A_StaticHQHalo 5.0

In case the EXTERNALGRAVITY_STATICHQ option is activated, this specifies the scale length
of a static Hernquist halo whose gravitational potential is added to the force calculation. The halo is
centered at the origin, and the scale length is given in internal length units.

Mass_StaticHQHalo 100.0

This parameter is only active when EXTERNALGRAVITY_STATICHQ is enabled, and then
gives the total mass (in internal units) of the halos that is added as a static potential to the force
computation.

Snapshot file format
The primary result of a simulation with GADGET-4 are snapshots, which are simply dumps of the
state of the system at certain times. GADGET-4 supports parallel output by distributing a snapshot
into several files, each written by a group of processors. This procedure allows an easier handling
of very large simulations; instead of having to deal with one file of size of a dozens of GB, say, it is
much easier to have several files with a smaller size of a few hundred MB to a couple of GB
instead. Also, the time spent for I/O in the simulation code can be reduced if several files are written
in parallel.

Each particle dump consists of k files, where k is given by NumFilesPerSnapshot. For k
> 1, the filenames are of the form snapshot_XXX.Y, where XXX stands for the number of the
dump, Y for the number of the file within the dump. Say we work on dump 7 with k=16 files, then
the filenames are snapshot_007.0 to snapshot_007.15, and if HDF5 is in use
(recommended!), they will be snapshot_007.0.hdf5 to snapshot_007.15.hdf5.
They will actually be stored in a directory called snapdir_007, created in the output directory.
For k=1, the filenames will just have the form snapshot_XXX and no separate subdirectory is



created for the snapshot. The base name "snapshot" can be changed by setting 
SnapshotFileBase to another value.

Each of the individual files of a given set of snapshot files contains a variable number of particles,
but the files all have the same basic format (this is the case for all three fileformats supported by
GADGET), and all of them are in binary. A binary representation of the particle data is the
preferred choice, because it allows much faster I/O than ASCII files, and in addition, the resulting
files are much smaller while still providing loss-less storage of the data.

Legacy Format 1
In the original default file format of GADGET (selected with SnapFormat=1), the data is
organised in blocks, each containing a certain information about the particles. For example, there is
a block for the coordinates, and one for the temperatures, etc. The sequence of blocks in snapshots
files of GADGET-4 (which for the most part is compatible with older versions of GADGET) is
given in the table below. Not all blocks are necessarily present in all simulations, for example, the
blocks describing gas properties such as internal energy or density will only be included in
hydrodynamic simulations, and some output blocks are an optional Config.sh option. The
presence of the mass block depends on whether or not particle masses are defined to be constant for
certain particle types by means of the Massarr table in the file header. If a non-zero mass is
defined there for a certain particle type, particles of this type will not be listed with individual
masses in the mass block. If such fixed particle masses are defined for all types that are present in
the snapshot file, the mass block will be completely absent.

Nr Format2-ID HDF5 Identifier Block contents
1 HEAD Header File header
2 POS Coordinates Particle positions
3 VEL Velocities Particle velocities
4 ID ParticleIDs Particle IDs
5 MASS Masses Masses (only for particle types with variable masses)
6 U InternalEnergy Thermal energy per unit mass (only SPH particles)
7 RHO Density Density of SPH particles
8 HSML SmoothingLength SPH smoothing length h
9 POT Potential Gravitational potential of particles
10 ACCE Acceleration Acceleration of particles
11 ENDT RateOfChangeOfEn Rate of change of entropic function of SPH particles
12 TSTP TimeStep Timestep of particles

Within each block, the particles are ordered according to their particle type, i.e. gas particles will
come first (type 0), then type-1 particles, followed by type-2 particles, and so on. However, it is
important to realize that the detailed sequence of particles within the blocks may change from
snapshot to snapshot. Also, a given particle may not always be stored in the snapshot file with the
same sub-number among the files belonging to one set of snapshot files. This is because particles
may move around from one processor to another during the course of a parallel simulation. In order
to trace a particle between different outputs, one therefore has to resort to the particle IDs, which
are intended to be used to label particles uniquely. (In fact, the uniqueness of the IDs in the initial
conditions is checked upon start up of the code.)

The first block (number 1) has a special role, it is a header which contains global information about
the particle set, for example the number of particles of each type, the number of files used for this



snapshot set, etc. The fields of the file header for formats 1 and 2 in GADGET-4 is given in the
table below:

Header
Field

Type HDF5 name Comment

Npart[6] uint NumPart_ThisFile The number of particles of each type in the present file.

Nall[6] uint64 NumPart_Total Total number of particles of each type in the
simulation.

Massarr[6] double MassTable
The mass of each particle type. If set to 0 for a type
which is present, individual particle masses are stored
for this type.

Time double Time Time of output, or expansion factor for cosmological
simulations.

Redshift double Redshift z=1/a-1 (only set for cosmological integrations)

BoxSize double BoxSize Gives the box size if periodic boundary conditions are
used.

NumFiles int NumFilesPerSnapshot Number of files in each snapshot.

In GADGET-1/2/3, the outline of the fields in the header has been slightly different, in particular
the number of particle types was always fixed to 6 (now this is given by NTYPES), and the total
particle number was stored as a 32-bit integer, such that simulations exceeding particle numbers of
a couple of billion needed as special (and ugly) extension of the header, where the high-order bits
in the particle numbers where stored in a separate entry. In addition, cosmological parameters like 
Omega0 and various flags informing about enabled/disabled code features were redundantly
stored there as well. Finally, the total header length was filled to a total length of exactly 256 bytes,
with a view to reserve the extra space for future extensions. However, as the block-size guards (see
below) anyhow store the length of the header in the file format, this has been a superfluous
restriction. In GADGET-4, this is hence lifted, and also other clean-ups of the header structure are
implemented (such as going to 64-bit integers for the particle numbers). While this makes the new
file format incompatible with older versions of GADGET, backwards compatibility can be
enforced by setting the GADGET2_HEADER switch.

To allow an easy access of the data also in Fortran (this should not be misunderstood as an
encouragement to use Fortran), the blocks are stored using the "unformatted binary" convention of
most Fortran implementations. In it, the data of each read or write statement is bracketed by block-
size fields, which give the length of the data block in bytes. These block fields (which are two 4-
byte integers, one stored before the data block and one after) can be useful also in C-code to check
the consistency of the file structure, to make sure that one reads at the right place, and to skip
individual blocks quickly by using the length information of the block size fields to fast forward in
the file without actually having to read the data. The latter makes it possible to efficiently read only
certain blocks, for example, just temperatures and densities but no coordinates and velocities. Note
however that this block size structure imposes the restriction that individual blocks may not be
larger than 4 GB in file formats 1 and 2.

Assuming that variables have been allocated/declared appropriately, a possible read-statement of
some of these blocks in Fortran could then for example take the form:

read (1) npart, nall, massarr, a, redshift
read (1) pos
read (1)
read (1) id
read (1) masses



In this example, the block containing the velocities, and several fields in the header, would be
skipped. Further read-statements may follow to read additional blocks if present. In the file 
read_snapshot.f included in the code distribution, you can find a simple example of a more
complete read-in routine. There you will also find a few lines that automatically generate the
filenames, and further hints how to read in only certain parts of the data.

When you use C, the block-size fields need to be read or skipped explicitly, which is quite simple to
do. This is demonstrated in the file read_snapshot.c. Note that you need to generate the
appropriate block field when you write snapshots in C, for example when generating initial
conditions for GADGET.

GADGET-4 will check explicitly that the block-size fields contain the correct values and refuse to
continue if not. It will also use the block-size information to convert between single and double
precision (or vice versa), and between 32-bit and 64-bit, where appropriate, i.e. when reading in
files the code will autodetect if single or double precision is used and do conversions if needed.

Legacy Format 2
Whether or not a certain block is present in GADGET's snapshot file format depends on the type of
simulation, and the makefile options. This makes it difficult to write reasonably general I/O routines
for analysis software when file formats 1 and 2 are used, capable of dealing with output produced
for a variety of makefile settings. For example, if one wants to analyse the (optional) rate of entropy
production of SPH particles, then the location of the block in the file changes if, for example, the
output of the gravitational potential is enabled or not. This problem becomes particularly acute if
more complicated baryonic physics modules or optional output fields are added to GADGET runs.

To remedy this problem, a variant of the default fileformat was implemented in GADGET (based
on a suggestion by Klaus Dolag), which can be selected by setting SnapFormat=2. Its only
difference is that each block is preceded by a small additional block which contains an identifier in
the form of a 4-character string (filled with spaces where appropriate). This identifier is listed in the
"Format2-ID" in the above block table. Using it, one can write more flexible I/O routines and
analysis software that quickly fast-forwards to blocks of interest in a simple way, without having to
know where it is expected in the snapshot file.

HDF5 file format
A yet more general solution is provided by HDF5, which is nowadays the strongly recommended
format for the code. If the hierarchical data format is selected as format for snapshot files or initial
conditions files, GADGET-4 accesses files with low level HDF5 routines. Advantages of HDF5 lie
in its portability (e.g. automatic endianness conversion) and generality (which however results in
somewhat more complicated read and write statements), and in the availability of a number of tools
to manipulate or display HDF5 files. Also, attributes such as units or conversion factors can be
stored along-side data-sets. Together with HDF5 utility commands like h5ls, h5dump, etc., this
makes the file format self-documenting to a significant degree. A wealth of further information
about HDF5 can be found on the website of the HDF5 library.

In the HDF5 file format of GADGET, the blocks are stored as datasets with names as given in the
column "HDF5 Identifiers" in the table above. To make accessing different particle types easier, for
each particle type presented in the snapshot file, a separate data group is defined, named 
ParticleType0, ParticleType1, and so on, and the blocks of the standard file format are
appearing as datasets within these groups. These data groups can be thought of as subdirectories in
the HDF5 file, with each being devoted to one particular particle type. In addition, in HDF5 each



of these datasets is also equipped with attribute values that store conversion factors to cgs units, as
well as factors that inform whether one has to multiply with a certain power of the scale factor and/
or of the dimensionless Hubble parameter h to get to truly physical quantities.

Finally, the file header is also moved to a special Header group in the HDF5 output. This group
does not contain datasets, but only attributes that hold the values for all the fields defined for file
format 1 and 2 of GADGET-4. The names of these attributes are listed in the column "HDF5
name" in the table above.

To graphically explore the contents of HDF5 files, the program HDFView, available for free from
the HDF-Group, is one good possibility. It allows an easy exploration of the structure and the
contents of the various HDF5 outputs produced by GADGET4. It also readily reveals the type of
data set fields, the values of attributes, etc., and hence greatly facilitates the writing of
corresponding analysis scripts.

Alternatively, one can also explore the contents of HDF5 files at the command line, using simple
tools that are part of the HDF5 library. For example, to list contents of the header of a snapshot file
on the command line, use the following command:

h5dump -g Header  snapshot_007.3.hdf5

To list, for example, which blocks are available for type-0 particles, you can use the following
command:

h5ls  snapshot_007.3.hdf5/ParticleType0

Just using h5ls snapshot_007.3.hdf5 would tell you which particle types are available
as separate data groups.

Finally, GADGET-4 also stores all the parameters and config file options with which it was run to
produce the given snapshot in all its HDF5 files. This is realized through Parameter attributes stored
in two special data groups called Parameters and Config.

To examine the parameter file settings that were used, you can hence issue the command:

h5dump -g Parameters  snapshot_007.3.hdf5

And for retrieving the Config.sh options, you can use:

h5dump -g Config  snapshot_007.3.hdf5

Here are a couple of additions noted on the format, units, and variable types of the individual
blocks in the snapshot files:

Particle positions: A floating point 3-vector for each particle, giving the comoving
coordinates in internal length units (corresponds to kpc/h if the above choice for the system
of units is adopted). N=sum(header.Npart) is the total number of particles in the file. Note:
For file formats 1 and 2, the particles are ordered in the file according to their type, so it is
guaranteed that particles of type 0 come before those of type 1, and so on. However, within a
type, the sequence of particles can change from dump to dump. For file format 3, different
particle types appear in separate particle groups.

Particle velocities: Particle velocities u are in internal velocity units (corresponds to km/sec if
the default choice for the system of units is adopted). For cosmological simulations, peculiar
velocities v are obtained from u by multiplying u with sqrt(a), i.e. v = u * sqrt(a).

• 

• 



Particle identifiers: These are unsigned 32-bit or 64-bit integers (if IDS_64BIT is set) and
intended to provide a unique identification of particles. The order of particles may change
between different output dumps, but the IDs can be easily used to bring the particles back
into the original order for every dump.

Variable particle masses: Single or double precision floats, with a total length Nm. Only
stored for those particle types that have variable particle masses (indicated by zero entries in
the corresponding massarr entry in the header). Nm is thus the sum of those npart
entries that have vanishing massarr . If Nm=0, this block is not present at all.

Internal energy: Single/double precision float values for Ngas. Internal energy per unit mass
for the Ngas=npart(0) gas particles in the file. The block is only present for Ngas>0.
Units are again in internal code units, i.e. for the standard system of units, u is given in 
(km/sec)^2 .

Density: The comoving density of SPH particles. Units are again in internal code units, i.e.
for the above system of units, rho is given in 10^10 Msun/h / (kpc/h)^3.

Smoothing length: Smoothing length of the SPH particles. Given in comoving coordinates in
internal length units.

Gravitational potential: This block will only be present if it is explicitly enabled in the
makefile.

Accelerations: Likewise, only present if it is explicitly enabled in the makefile.

Rate of entropy production: The rate of change of the entropic function of each gas particles.
For adiabatic simulations, the entropy can only increase due to the implemented artificial
viscosity. This block will only be present if it is explicitly enabled in the makefile.

Timesteps of particles: Individual particle timesteps of particles. For cosmological
simulations, the values stored here are d ln(a), i.e. intervals of the natural logarithm of the
expansion factor. This block will only be present if it is explicitly enabled in the makefile.

Format of initial conditions
The possible file formats for initial conditions are the same as those for snapshot files, and are
selected with the ICFormat parameter. However, only the blocks up to and including the gas
temperature (if gas particles are included) need to be present; gas densities, SPH smoothing lengths
and all further blocks need not be provided and are ignored.

In preparing initial conditions for simulations with gas particles, the temperature block can be filled
with zero values, in which case the initial gas temperature is set in the parameterfile with the 
InitGasTemp parameter. However, even when this is done, the temperature block must still be
present. Note that the field Time in the header will be ignored when GADGET-4 is reading an
initial conditions file. Instead, you have to set the time of the start of the simulation with the 
TimeBegin parameter in the parameterfile.

• 

• 

• 

• 

• 

• 

• 

• 

• 



Diagnostic outputs
Aside from the verbose stdout log-file that is produced when the code is run (take a detailed look!),
various files in the output directory provide useful metrics about the progress of a simulation, its
memory usage, work-load balance, and cpu consumption. Here, these files are described in turn.
(Make sure that your browser window is set wide enough to avoid line-breaks in some of the wide
tables.)

stdout
After starting the code, the stdout will report a welcome message that includes the git version hash-
key and the date this corresponds to. This uniquely identifies the last update/pull of the code from
the version control system. The output then lists all the compile time options that were set. Note that
these can be easily copied into an empty Config.sh file to configure the source with the same
configuration. The code then reports the number of MPI ranks used, as well as the detected node
configuration and the pinning settings that are applied, if any. This is followed by a detailed
examination of the memory available on the execution hosts (unless this is disabled). After that, the
parameterfile settings that are used for the run are listed. Again, note that these can be easily pasted
into an empty parameter file to reproduce the settings used here, if needed. The stdout-file thus
always contains all the information needed to reproduce a given run. Before the actual simulation
begins, some other information that is sometimes useful is reported as well, such as the unit system
that is used and the sizes of the most important data structures used by the code.

During a run, the code outputs frequent log-message what is currently done by GADGET-4.
Usually, the corresponding lines begin with a capitalized key-word that identifies the corresponding
code part. For example, lines beginning with "DOMAIN:" refer to information issued by the
domain decomposition, lines starting with "PM-PERIODIC:" will be identified with the periodic
FFT-based computation of the long-range gravitational force. It can be useful to filter the file with
grep for one of these phrases to get a clearer picture of what is happening in a particular code part.

In case a problem should occur that forces the code to stop, you will typically see a line starting
with "Code termination on task" in the output file, followed with information on which task, in
which function, and in which line number of a particular source file the crash was triggered. This is
followed by some information about the nature of the problem. For example, such a message could
look like this:

Code termination on task=48, function restart(), file src/io/restart.c, line 207: RESTAR

All of this together hopefully provides a good clue about what may have happened, and how the
issue can be fixed.

info.txt
The file with name info.txt in the output directory just contains a list of all the timesteps. The
last entry always holds the timestep that is currently processed. For a running simulation, the
command

tail info.txt

will thus inform you about the current progress of the simulation. Typical output in this file looks
like this:



Sync-Point 26566, Time: 0.789584, Redshift: 0.26649, Systemstep: 5.84556e-05, Dloga: 7.4

Sync-Point 26567, Time: 0.789642, Redshift: 0.266396, Systemstep: 5.84599e-05, Dloga: 7.

Sync-Point 26568, Time: 0.789701, Redshift: 0.266302, Systemstep: 5.84642e-05, Dloga: 7.

The first number just counts and identifies all the timesteps in terms of the synchronization points of
the timestep hierarchy, which are the places where force computations occur. The values given after
Time/Redshift are the current simulation times (time is the scale factor in cosmological simulations).
The Systemstep-values give the time difference to the preceeding step, which is equal to by how
much the simulation as a whole has been advanced since the last synchronization point. For
cosmological integrations, this is supplemented with the systemstep in logarithmic form in terms of
the ln of the scale factor. Finally, the number of collisionless particles that are in sync with the
current system time (i.e. these are the ones that have finished their timestep there and start a new
one) is reported. This is also done separately for the SPH particles.

timebins.txt
The file timebins.txt in the output directory provides a much more detailed account of the
distribution of particles onto the timestep hierarchy. A typical entry, created for every
synchronization point, of this file looks as follows:

Sync-Point 16521, Time: 0.934985, Redshift: 0.0695359, Systemstep: 6.92201e-05, Dloga: 7
Occupied timebins: gravity         sph          dt              cumul-grav   cumul-sph A
    bin=17        12287592           0     0.001184577701         27292287           0  
    bin=16         8012442           0     0.000592288851         15004695           0  
 X  bin=15         4946259           0     0.000296144425          6992253           0 <
 X  bin=14         1809726           0     0.000148072213          2045994           0  
 X  bin=13          236268           0     0.000074036106           236268           0  
               ------------------------
Total active:      6992253           0

The first line corresponds to information also included in info.txt. This is followed with a table
that shows the distribution of all particles (listed unter "gravity") onto different timebins. The
different possible timestep sizes are identified via the timebin number and the corresponding
timestep size, which is listed in column "dt". Also given is the distribution of gaseous SPH particles
onto the timebins. The columns "cumul-grav" and "cumul-sph" list the cumulative numbers of
particles in this timebin and below in the categories of gravity and SPH calculations. The "X"
symbols in the beginning mark the timebins that are synchronized with the current system time. All
particles that are included in these timebins need a force calculation at the current system time,
hence the cumulative numbers reported for the top timebin of this set, which is marked with a "<"
sign in the "A" column give an indication of the amount of computational work required for this
step. The value reported under "avg-time" represents an estimated execution time of this current
step, obtained by averaging around five past executions of this timebin when it was equally marked
with a "<" sign. Note that sometimes these values can be distorted a bit when the code had to do a
special operation during one of these last averaging steps, like computing a group catalogue, or
writing restart files. Also note that lower timebins need to be executed more frequently than higher
timebins. For example, there will be twice as many executions of timebin 15 than of timebin 16 for
every execution of timebin 17. The last column represents the resulting distribution of consumption
of total CPU-time when the different execution frequency of the steps is taken into account, based
on the values reported under avg-time . While this estimate is approximate in nature, it gives a
good idea about what cost is incurred in the total simulation run-time due to the presence of certain
timebins. In particular, a situation where the lowest occupied timebins consume the dominant



fraction of the CPU time despite the fact that these are only thinly populated normally indicates that
the simulation does not run very efficiently and only slowly makes progress.

cpu.txt
In the file cpu.txt, you get detailed statistics about the total CPU consumption measured in various
parts of the code while it is running. At each timestep, a table is added to this file, which roughly
looks like this:

Step 328, Time: 0.0485236, CPUs: 2496, HighestActiveTimeBin: 19
                          diff                 cumulative
total                   260.48  100.0%   63526.74  100.0%
  treegrav              213.41   81.9%   52556.59   82.7%
    treebuild             3.01    1.2%     931.09    1.5%
      insert              1.56    0.6%     524.64    0.8%
      branches            0.34    0.1%     113.39    0.2%
      toplevel            0.19    0.1%      72.99    0.1%
    treeforce           210.39   80.8%   51622.08   81.3%
      treewalk          174.82   67.1%   42617.69   67.1%
      treeimbalance      27.99   10.7%    6866.13   10.8%
      treefetch           0.53    0.2%     105.94    0.2%
      treestack           7.05    2.7%    2032.32    3.2%
  pm_grav                31.68   12.2%    6395.72   10.1%
  ngbtreebuild            0.00    0.0%       0.00    0.0%
  ngbtreevelupdate        0.11    0.0%      25.42    0.0%
  ngbtreehsmlupdate       0.00    0.0%       0.21    0.0%
  sph                     0.00    0.0%       0.00    0.0%
    density               0.00    0.0%       0.00    0.0%
      densitywalk         0.00    0.0%       0.00    0.0%
      densityfetch        0.00    0.0%       0.00    0.0%
      densimbalance       0.00    0.0%       0.00    0.0%
    hydro                 0.00    0.0%       0.00    0.0%
      hydrowalk           0.00    0.0%       0.00    0.0%
      hydrofetch          0.00    0.0%       0.00    0.0%
      hydroimbalance      0.00    0.0%       0.00    0.0%
  domain                 11.95    4.6%    2177.10    3.4%
  peano                   1.24    0.5%     291.91    0.5%
  drift/kicks             1.44    0.6%     312.75    0.5%
  timeline                0.07    0.0%      18.62    0.0%
  treetimesteps           0.00    0.0%       0.00    0.0%
  i/o                     0.00    0.0%      71.90    0.1%
  logs                    0.18    0.1%      43.06    0.1%
  fof                     0.00    0.0%       0.00    0.0%
    fofwalk               0.00    0.0%       0.00    0.0%
    fofimbal              0.00    0.0%       0.00    0.0%
  restart                 0.00    0.0%    1506.94    2.4%
  misc                    0.40    0.2%     126.52    0.2%

Two columns of measurements are provided. The entries under "diff" measure the time difference
in seconds relative to the last time step. This total elapsed time reported in the row "total" is then
subdivided onto different code parts, as labelled. If the indention level is increased, a further
subdivision of the corresponding code part is provided in terms of the subsequent indented items.



The relative fractions of these various code parts are also reported as a percentage of the total time
of the step.

In addition, the values reported under "cumulative" give the same analysis for the cumulative
elapsed time since the start of the simulation. Again, the first number gives absolute elapsed times,
so that the number reported under "total" is the total consumed time since the start of the simulation.
The count continues across restarts, i.e. when the simulation is completed, this number gives a
faithful account of the total time (in seconds) needed to bring the simulation to completion. Note
that to get the full CPU-time consumption in core-hours, this number has still to be multiplied with
the number of cores occupied (and to be divided by 3600 to convert from seconds to hours, of
course).

The data contained in the cpu.txt file is additionally output as a column-separated file 
cpu.csv , where all the numbers for one timestep appear in a one line entry. This can be used to
more easily make plots of the CPU time consumption in different code parts, if this is desired.

domain.txt
The log file domain.txt receives a new entry whenever a new domain decomposition is carried
out by the code. A typical output for one step may look like this:

DOMAIN BALANCE, Sync-Point 31488, Time: 0.994978
Timebins:       Gravity       Hydro  cumulative      grav-balance       hydro-balance
 |bin=17     5882690219           0 10204440916  m  1.106 | 1.000       0.000 | 0.000
 |bin=16     2353095591           0  4321750697  m  1.525 | 1.000       0.000 | 0.000
>|bin=15     1425860069           0  1968655106  m  1.031 | 1.016  *    0.000 | 0.000
 |bin=14      503495925           0   542795037  m  1.070 | 1.031  *    0.000 | 0.000
 |bin=13       39299112           0    39299112  m  2.247 | 1.040  *    0.000 | 0.000
-------------------------------------------------------------------------------------
BALANCE,  LOAD:   1.003       0.000       1.003  WORK:      1.087               0.000

Here the first line indicates the current system time of the code, and the following table reports all
timebins and their occupancy with gravity-only and hydrodynamic particles, as well as the total
cumulative occupancy up to the given timebin. The currently highest synchronized timebin is
marked with a "<" sign. The current timestep distribution and the settings of the code (in particular
the parameter ActivePartFracForNewDomainDecomp), allow the code to tell when the
next domain decomposition will be done. In particular, in the above example, this will not happen
when timebins 14 or 13 are the highest active timebin. Therefore, the current domain
decomposition has attempted to balance timebins 15, 14, and 13 simultaneously, which is indicated
by the * marker sign. Only the timebins marked by * need to be balanced by the current domain
decomposition. In this balancing, the code attempts to reach a good balance for the particle load, the
gravity work-load, and the hydrodynamic work-load. For the latter two, the algorithm takes into
account that several steps need to be executed until the next domain decomposition will occur, and
that the goal should be to minimize the overall execution time until then. This for example means
that a larger relative imbalance for bin 13 may be acceptable if the absolute time for executing this
step is reasonably short.

The result of the domain decomposition is reported under "grav-balance" and "hydro-balance",
respectively. The first number gives the work-imbalance if this step would be executed alone. This
imbalance factor is defined as the maximum (estimated) execution time among the MPI-ranks
divided by the average of the execution times. Because the total work required per step is invariant
under the domain decomposition, this should be approximately independent of the domain



decomposition, so the goal is to push the maximum execution time as close to the average as
possible. The imbalance factor gives the relative slowdown due to an imperfect work-load balance.

The values reported under grav-balance and hydro-balance inform about the relative success of the
domain decomposition to reach the desired balance among multiple different quantities. The first
number gives the imbalance factor if only the current step would have to be executed. This is
however only the full story if another domain decomposition will be carried out in the next step
immediately. If this is not the case, several steps need to be averaged appropriately, and the relative
slow-down of the residual imbalance in the present step is reported as the second number, while the
overall imbalance over all simultaneously balanced steps is reported behind "WORK" (first number
in the case of gravity.) The second numbers in the table above should add up to this number, as
they give for every timebin involved in the balancing the relative contribution they are responsible
for in this overall imbalance. Effectively, the "WORK" factor tells how much faster the code may
run if the domain decomposition could be carried out perfectly for every involved step. Note that
timebins that are occupied with particles but do not need to be balanced by the current domain
decomposition may have a large intrinsic imbalance, but this doesn't affect the run-time behaviour
at all, hence the second number is reported as a 1.0 in this case.

Similarly, the hydrodynamic imbalance is reported in a second pair of columns, yielding a further
overall imbalance factor that is reported as second number after "WORK".

Finally, there is an overall memory-load imbalance factor reported behind "LOAD", which is also
subdivided into gravity and SPH-particles. This is another important metric as GADGET-4 attempts
to balance the work-load without allowing for significant memory imbalance (because often
simulations can be memory-bound). This is in practice achieved by trying to push down all values
reported under LOAD and WORK simultaneously. The categories memory-load and work-load in
gravity and SPH is given equal weight in this context.

balance.txt
The file balance.txt provides another quick look at the performance and execution pattern of
the code. It is important to view this in a terminal window that is set wide enough to avoid extra
line wrapping. In this file, each step of the code is reported with a single line, giving step number,
total execution time, and the number of active gravity and hydro particles. This is followed with a
block of characters of a total length representing the full execution time of the step. Different code
parts are represented by different characters, and are filling this block with their corresponding
character in proportion to the time spent in this code part. A piece of the the resulting output may
then for example look something like this:

Step=    761  sec=     9.406 Nsync-grv=  27292287 Nsync-hyd=         0  :r**************
Step=    762  sec=     0.373 Nsync-grv=     15778 Nsync-hyd=         0  ::::::::::::::::
Step=    763  sec=     8.025 Nsync-grv=  26662053 Nsync-hyd=         0  ::.*************
Step=    764  sec=     0.371 Nsync-grv=     16226 Nsync-hyd=         0  ::::::::::::::::
Step=    765  sec=     9.385 Nsync-grv=  27292287 Nsync-hyd=         0  :r**************
Step=    766  sec=     0.403 Nsync-grv=     16748 Nsync-hyd=         0  ::::::::::::::::
Step=    767  sec=     8.049 Nsync-grv=  26662117 Nsync-hyd=         0  ::.*************
Step=    768  sec=     0.419 Nsync-grv=     17202 Nsync-hyd=         0  ::::::::::::::::
Step=    769  sec=     9.399 Nsync-grv=  27292287 Nsync-hyd=         0  :r**************
Step=    770  sec=     0.407 Nsync-grv=     17695 Nsync-hyd=         0  ::::::::::::::::
Step=    771  sec=     8.016 Nsync-grv=  26662178 Nsync-hyd=         0  ::.*************
Step=    772  sec=     0.430 Nsync-grv=     18152 Nsync-hyd=         0  ::::::::::::::::
Step=    773  sec=     9.517 Nsync-grv=  27292287 Nsync-hyd=         0  :r**************
Step=    774  sec=     0.435 Nsync-grv=     18726 Nsync-hyd=         0  ::::::::::::::::



Step=    775  sec=     8.062 Nsync-grv=  26662000 Nsync-hyd=         0  ::.*************
Step=    776  sec=     0.506 Nsync-grv=     19217 Nsync-hyd=         0  ::::::::::::::::
Step=    777  sec=    19.647 Nsync-grv=  27292287 Nsync-hyd=         0  :::D************
Step=    778  sec=     0.445 Nsync-grv=     19759 Nsync-hyd=         0  ::::::::::::::::
Step=    779  sec=     8.101 Nsync-grv=  26662013 Nsync-hyd=         0  ::.*************
Step=    780  sec=     0.373 Nsync-grv=     20232 Nsync-hyd=         0  ::::::::::::::::
Step=    781  sec=     9.538 Nsync-grv=  27292287 Nsync-hyd=         0  :r**************
Step=    782  sec=     0.366 Nsync-grv=     20811 Nsync-hyd=         0  ::::::::::::::::
Step=    783  sec=     8.053 Nsync-grv=  26662006 Nsync-hyd=         0  ::.*************

A key to the different symbols used for different code parts is included in the beginning of the file 
balance.txt. The idea of this output is to allow a quick graphical analysis of the execution
patterns of the code, in particular also to allow visual identification of sudden changes of it. For
example, normally the appearance of additional timestep bins, or the dominance of certain code
parts can be readily inferred from this graphical text output. Likewise, the occurrence of things like
group finding or light-cone file output tends to show up. Also imbalances in certain code parts are
reported separately by different symbols, so this can also be a way to tell whether imbalances in
certain places are particularly strong.

One should be cautious, however, to avoid over-interpreting this graphical text output. Because
short and long steps are all stretched to the same width in their corresponding output lines, short
timesteps (which may be comparatively unimportant for the total CPU budget) tend to be
overrepresented in this graphical representation. Note that by filtering out certain timebins, this
effect can be avoided and the variation in the execution metrics of this particular step as the
simulation progresses can be monitored.

memory.txt
Another interesting diagnostic information about the simulation code is contained in the file 
memory.txt. There, each time a new high-watermark is reached in the total memory
consumption on any of the MPI-ranks, a new entry in the form of an extended table is produced.
An example for this table is reproduced below.

One of the most important numbers is the value reported behind "Largest Allocation Without
Generic". This is the minimum amount of memory the code needed to run in the present
configuration during this timestep, excluding communication buffers. The latter are flexible in size
and will automatically adjust to the amount of free memory left according to the MaxMemSize
parameter.

For a more detailed view, the table tells the name (normally identical to the variable name in the
source code used to refer to the buffer) of each allocated memory block. This is followed by its size
in MBytes, and the cumulative size of all allocated blocks up to this point. In addition, the function,
file name, and line number where this particular block was allocated is given as well.

GADGET-4 organizes its internal memory handling in the form of a stack in order to avoid
memory fragmentation. The flag reported under "F" shows whether the block has been explicitly
allocated as movable (so that previous blocks may be freed or resized), or whether this hasn't been
done by the source code. The number reported for "Task" is just the MPI-rank on which this
maximum allocation had occurred.

MEMORY:  Largest Allocation = 1542.21 Mbyte  |  Largest Allocation Without Generic = 301

-------------------------- Allocated Memory Blocks---- ( Step     5086 )----------------



Task    Nr F                  Variable      MBytes   Cumulative  Function|File|Linenumbe
----------------------------------------------------------------------------------------
  12     0 0                               Exportflag      0.0002       0.0002  allocate
  12     1 0                              Exportindex      0.0002       0.0005  allocate
  12     2 0                          Exportnodecount      0.0002       0.0007  allocate
  12     3 0                                     Send      0.0005       0.0012  allocate
  12     4 0                                     Recv      0.0005       0.0017  allocate
  12     5 0                               Send_count      0.0002       0.0020  allocate
  12     6 0                              Send_offset      0.0002       0.0022  allocate
  12     7 0                               Recv_count      0.0002       0.0024  allocate
  12     8 0                              Recv_offset      0.0002       0.0027  allocate
  12     9 0                         Send_count_nodes      0.0002       0.0029  allocate
  12    10 0                        Send_offset_nodes      0.0002       0.0032  allocate
  12    11 0                         Recv_count_nodes      0.0002       0.0034  allocate
  12    12 0                        Recv_offset_nodes      0.0002       0.0037  allocate
  12    13 0                          Tree.Send_count      0.0002       0.0039  allocate
  12    14 0                         Tree.Send_offset      0.0002       0.0042  allocate
  12    15 0                          Tree.Recv_count      0.0002       0.0044  allocate
  12    16 0                         Tree.Recv_offset      0.0002       0.0046  allocate
  12    17 1                                IO_Fields      0.0035       0.0082  init_fie
  12    18 1                                IO_Fields      0.0123       0.0205  init_fie
  12    19 0                             slab_to_task      0.0020       0.0225  my_slab_
  12    20 0                         slabs_x_per_task      0.0002       0.0227  my_slab_
  12    21 0                     first_slab_x_of_task      0.0002       0.0229  my_slab_
  12    22 0                         slabs_y_per_task      0.0002       0.0232  my_slab_
  12    23 0                     first_slab_y_of_task      0.0002       0.0234  my_slab_
  12    24 0                             slab_to_task      0.0020       0.0254  my_slab_
  12    25 0                         slabs_x_per_task      0.0002       0.0256  my_slab_
  12    26 0                     first_slab_x_of_task      0.0002       0.0259  my_slab_
  12    27 0                         slabs_y_per_task      0.0002       0.0261  my_slab_
  12    28 0                     first_slab_y_of_task      0.0002       0.0264  my_slab_
  12    29 0                                kernel[1]      8.0312       8.0576  pm_init_
  12    30 1                      def->ntype_in_files      0.0015       8.0591  read_fil
  12    31 1                                        P     98.3903     106.4494  allocate
  12    32 1                                     SphP      0.0001     106.4495  allocate
  12    33 1                  NextActiveParticleHydro      0.0001     106.4495  timebins
  12    34 1                       NextInTimeBinHydro      0.0001     106.4496  timebins
  12    35 1                       PrevInTimeBinHydro      0.0001     106.4496  timebins
  12    36 1                NextActiveParticleGravity      3.6441     110.0938  timebins
  12    37 1                     NextInTimeBinGravity      3.6441     113.7379  timebins
  12    38 1                     PrevInTimeBinGravity      3.6441     117.3820  timebins
  12    39 1                             D->StartList      0.0020     117.3839  domain_a
  12    40 1                               D->EndList      0.0020     117.3859  domain_a
  12    41 1                    D->FirstTopleafOfTask      0.0002     117.3861  domain_a
  12    42 1                      D->NumTopleafOfTask      0.0002     117.3864  domain_a
  12    43 1                              D->TopNodes      0.0234     117.4098  domain_a
  12    44 1                            D->TaskOfLeaf      0.0103     117.4200  domain_a
  12    45 1                       D->ListOfTopleaves      0.0103     117.4303  domain_d
  12    46 1                                       PS     65.5936     183.0239  fof_fof(
  12    47 1                                    Group      0.0610     183.0848  fof_fof(
  12    48 1                                 SubGroup      2.0081     185.0930  subfind(
  12    49 1                             D->StartList      0.0001     185.0931  domain_a
  12    50 1                               D->EndList      0.0001     185.0932  domain_a
  12    51 1                    D->FirstTopleafOfTask      0.0001     185.0933  domain_a



  12    52 1                      D->NumTopleafOfTask      0.0001     185.0933  domain_a
  12    53 1                              D->TopNodes      0.0011     185.0944  domain_a
  12    54 1                            D->TaskOfLeaf      0.0005     185.0949  domain_a
  12    55 1                       D->ListOfTopleaves      0.0005     185.0954  domain_d
  12    56 1                                IndexList      2.5806     187.6760  subfind_
  12    57 1                             D->StartList      0.0001     187.6761  domain_a
  12    58 1                               D->EndList      0.0001     187.6761  domain_a
  12    59 1                    D->FirstTopleafOfTask      0.0001     187.6762  domain_a
  12    60 1                      D->NumTopleafOfTask      0.0001     187.6763  domain_a
  12    61 1                              D->TopNodes      0.0004     187.6766  domain_a
  12    62 1                            D->TaskOfLeaf      0.0002     187.6768  domain_a
  12    63 1                       D->ListOfTopleaves      0.0002     187.6770  domain_d
  12    64 1                                       sd      8.5197     196.1967  subfind_
  12    65 1                                     Head      2.1299     198.3266  subfind_
  12    66 1                                     Next      2.1299     200.4565  subfind_
  12    67 1                                     Tail      2.1299     202.5865  subfind_
  12    68 1                                      Len      1.0650     203.6515  subfind_
  12    69 1                          coll_candidates      0.2130     203.8645  subfind_
  12    70 1                             D->StartList      0.0001     203.8646  domain_a
  12    71 1                               D->EndList      0.0001     203.8647  domain_a
  12    72 1                    D->FirstTopleafOfTask      0.0001     203.8648  domain_a
  12    73 1                      D->NumTopleafOfTask      0.0001     203.8649  domain_a
  12    74 1                              D->TopNodes      0.0011     203.8660  domain_a
  12    75 1                            D->TaskOfLeaf      0.0005     203.8665  domain_a
  12    76 1                       D->ListOfTopleaves      0.0005     203.8669  domain_d
  12    77 1                              unbind_list      1.1685     205.0354  subfind_
  12    78 0                                     dold      1.1685     206.2039  subfind_
  12    79 0                                   potold      2.3369     208.5407  subfind_
  12    80 1                           Tree.NodeLevel      0.0001     208.5408  force_tr
  12    81 1                         Tree.NodeSibling      0.0005     208.5413  force_tr
  12    82 1                           Tree.NodeIndex      0.0005     208.5418  force_tr
  12    83 1                           Tree.Task_list      2.1603     210.7021  force_tr
  12    84 1                           Tree.Node_list      2.1603     212.8625  force_tr
  12    85 1                               Tree.Nodes     35.7231     248.5856  force_tr
  12    86 1                              Tree.Points      0.0001     248.5857  force_tr
  12    87 1                            Tree.Nextnode      3.6446     252.2303  force_tr
  12    88 1                              Tree.Father      3.6441     255.8744  force_tr
  12    89 1                                 PartList   1019.9025    1275.7769  src/subf
  12    90 1                                  Ngblist      2.1603    1277.9373  src/subf
  12    91 1                                   DataIn     13.8409    1291.7781  src/subf
  12    92 1                               NodeDataIn     29.4413    1321.2195  src/subf
  12    93 1                                  DataOut      2.3068    1323.5263  src/subf
  12    94 1                                  DataGet      6.2735    1329.7998  src/subf
  12    95 1                              NodeDataGet     19.1392    1348.9390  src/subf
  12    96 1                               DataResult      1.0456    1349.9846  src/subf
----------------------------------------------------------------------------------------

timings.txt
The file timings.txt contains detailed performance statistics of the gravitational tree algorithm for
each timestep, which is usually (but not always) the main sink of computational time in a
simulation. A typical output for a certain step may look like this:



Step(*): 364, t: 0.050221, dt: 4.79423e-05, highest active timebin: 19  (lowest active: 
Nf=8589934592  timebin=19  total-Nf=2087354121396
   work-load balance: 1.15054   part/sec: raw=19746.3, effective=17162.6     ia/part: av
   maximum number of nodes: 636059, filled: 0.943865
   NumForeignNodes: max=395371 avg=258155 fill=0.201039
   NumForeignPoints: max=1.51499e+06 avg=973285 fill=0.0961538  cycles=42
   avg times: <all>=208.996  <tree>=174.285  <wait>=26.7201  <fetch>=0.593317  <stack>=7
   total interaction cost: 5.46276e+12  (imbalance=1.13168)

The first line of the block generated for each step informs about the number of the current timestep,
the current simulation time, and the system timestep itself (i.e. the time difference to the last force
computation). Also the highest active time at this step and the range of occupied timebins is
reported. Then, the number behind Nf is the number of gravitational forces that are computed in
this invokation of the tree code, whereas the number behind total-Nf gives the total number of
such force calculations since the beginning of the simulation.

The line starting with work-load balance gives the actual work-load balance measured for
the summed execution times of the tree walks. The next number, for part/sec, measures the
raw force speed in terms of tree-force computations per processor per second. The first number
basically gives the speed that would be achieved for perfect work-load balance, while the actually
achieved average effective force speed will always be lower in practice due to work-load
imbalance, and this number is given after the label effective. The number reported for ia/
part gives the average number of particle-node interactions required to compute the force for
each of the active particles, and this should be roughly anti-proportional to the raw calculational
speed. The following two numbers in parathenses give the average number of particle-particle and
particle-node interactions that were computed per particle.

The next line reports the maximum number of tree nodes that were used among the MPI-ranks,
while the number behind filled gives this quantity normalised to the number of allocated tree
nodes, and hence indicates the degree to which the tree storage was filled. The next two lines report
how many nodes and particles were imported from other nodes by each MPI rank, both in terms of
the maximum that occurred, and the average values. Again, the values behind 'fill' give the
maximum degree to which the buffer storage for these two components were filled. The value
behind cycles indicates the maximum number of times an MPI process needed to call the routine
that fetches foreign nodes or particles before it could continue.

The line beginning with avg times reports the average execution times of different parts in the
tree calculation. For all the total execution time is reported, for tree the time the code carries
out actual tree walks and gravity calculations, and for wait the time lost because some processes
finish before others and then need to wait until everybody is done (this reflects the work-load
imbalance). The time reported for fetch is the time MPI ranks needed to wait for the arrival of
data requested from foreign nodes, while stack measures further bookkeeping time to organize
the importing of data in the first place. If the PM-algorithm is used, a number in parenthesis gives
the execution time of the most recent PM-force calculation.

Finally, the last line reports the total cost measure the code computes for the work done in this step,
and the imbalance therein. It is this cost measure that the code tries to balance in the domain
decomposition. This is thus the imbalance the code expects to be there based on the domain
decomposition it has done, whereas the one reported for work-load balance is the one
measured based on the actual execution time.



density.txt
The file density.txt contains detailed performance statistics of the SPH density calculation
for each timestep. This is very simular in structure and information content to the timings.txt
output for the gravitational tree walks. A typical output for a certain step may look like this:

Step: 404, t: 0.0940046, dt: 6.98469e-05, highest active timebin: 17  (lowest active: 17
Nf= 16777216  highest active timebin=19  total-Nf=3875640800
   work-load balance: 1.18233   part/sec: raw=224112, effective=189550
   maximum number of nodes: 11024, filled: 0.835658
   NumForeignNodes: max=8058 avg=3646.1 fill=0.00688725
   NumForeignPoints: max=99570 avg=52765 fill=0.010639  cycles=8
   avg times: <all>=1.24922  <tree>=0.959757  <wait>=0.168166  <fetch>=0.0849678  sec

Just like for the tree-gravity, the work-load balance gives the ratio between the maximum
execution time for SPH density loops relative to the average among all MPI ranks. The numbers
behind part/sec and effective give the number of SPH density computations per second
completed per particle, ignoring work-load imbalance or including it, respectively. The numbers
reported for imported nodes and particles have the same meaning as for the gravity tree, except that
they here refer to the neighbor tree, and imported particles are exclusively SPH particles (type 0).

Finally, the last line reports the average times spent in different parts of the calculation. Note that 
tree refers here to walking of the neighbor tree to find neighbours and doing all SPH calculations
on them.

hydro.txt
There is also a log file informing in detail about the performance of the SPH hydrodynamical force
calculations. Its structure and information content follows very closely the density.txt file for
the SPH density computation, we therefore refrain from inlining an example output here.

energy.txt
In the file energy.txt, the code gives some statistics about the total energy of the system. In
regular intervals (specified by TimeBetStatistics), the code computes the total kinetic,
thermal and potential energy of the system, and it then adds one line to this file. Each of these lines
contains 28 numbers (if NTYPES=6 is used), which you may process by some analysis script. The
first number in the line is the output time, followed by the total internal energy of the system (will
be 0 if no gas physics is included), the total potential energy, and the total kinetic energy.

The next 18 numbers are the internal energy, potential energy, and kinetic energy of the six particle
types. Finally, the last six numbers give the total mass in these components.

Note that while frequent outputs of the energy quantities allow a check of energy conservation in
Newtonian dynamics, this is more difficult for cosmological integrations, where the Layzer-Irvine
equation is needed. (Note that the softening needs to be fixed in comoving coordinates for it.) We
remark that it is in practice not easy to obtain a precise value of the peculiar potential energy at high
redshift (should be exactly zero for a homogeneous particle distribution). Also, the cosmic energy



integration is a differential equation, so a test of conservation of energy in an expanding cosmos is
less straightforward that one may think.

sfr.txt
This is only present in simulations with cooling and star formation. It can then be used to obtain a
simple global overview of the total star formation rate in the simulation.

Groups and subhalos
Group finding is a basic analysis task of cosmological simulations of structure formation.
GADGET-4 contains parallel algorithms for finding virialized dark matter halos and their
embedded gravitationally bound subhalos which can be run both on the fly and in postprocessing.
The group finders may also be applied to particle data accumulated directly on past backwards
lightcone. In the following, a basic description of the storage format is given, which is largely
identical with the one introduced in AREPO in the context of the Illustris and IllustrisTNG projects
(note that read-scripts from the data-releases of these two projects may thus be easily adapted for
GADGET-4 usage, too).

FOF and SUBFIND
Group finding in GADGET-4 is supported through two main algorithms, the classic friends-of-
friends (FOF) approach to find groups of particles of approximately virial overdensity, and the
SUBFIND algorithm to identify gravitationally bound substructures in these groups in
configuration space. SUBFIND hence relies on FOF, and in can only be used if also FOF is
enabled. Furthermore, there is the SUBFIND_HBT variant of SUBFIND which identifies the
substructure candidates based on past membership in gravitationally bound subhalos.

In case group finding is enabled, the snapshot output of GADGET-4 will occur in group order.
Specifically, the particles in the output files will appear in the order of the group catalogue itself,
giving them the following logical structure:

https://www.illustris-project.org
https://www.tng-project.org


In case the HDF5 output is used, the order is imposed individually on every particle type in its
corresponding data set group. In the classic file format, it applies to each particle type individually
as well (here each block in the snapshot contains the particle types jointly in type-order). If a
snapshot is split over multiple files, the contents of these files in each dataset are treated logically as
if they were concatenated in the order of the partial files. Note that individual groups are allowed to
spill over across file boundaries.

The snapshot files first contain the particles found in FOF groups, and these groups are ordered
descending in size. This means that the particle data begins with the particles contained in the
largest FOF group. Normally, not all particles are contained in FOF groups above the imposed
minimum threshold for the group particle number. The particles outside the resolved groups then
come at the end of snapshot file.

Each FOF halo is decomposed by SUBFIND or SUBFIND_HBT into a set of disjoint
gravitationally bound subhalos. They are nested inside the FOF group, again in an order of
decreasing length. This means that the particles with the largest subhalo in a FOF group will come



first, followed by the second largest subhalo, and so on. Within each subhalo, the particles are
additionally sorted according to their binding energy, i.e. the most bound particle in a subhalo will
come first. Since not all particles within a FOF group need to be part of a subhalo, the sequence of
subhalo particles is in general followed by a set of particles that are members of the FOF group but
are not gravitationally bound to any of the subhalos. There may also be no subhalo for a given FOF
group at all, meaning that there is no gravitationally bound subset of particles in the FOF group
above detection threshold.

Format of group catalogues
The structure and organization of the group catalogues is quite similar to the snapshot files. They
consist of different blocks that are stored subsequently in the binary files corresponding to formats 1
and 2, and in different data groups called Header, Groups, and Subhalos when HDF5 is selected.
Like the snapshot files, the group catalogues can be split over multiple files (in which they are
stored in separate groupdir_XXX directories), or they can be stored in a single file. If they
contain only FOF information, they start with the basename fof_tab otherwise they start with
the basename fof_subhalo_tab.

The most important fields of the Header in the group catalogues are:

Header Field Type HDF5 name Comment
Ngroups int64 Ngroups_ThisFile number of groups in this file
Nsubhalos int64 Nsubhalos_ThisFile number of subhalos in the present file
Nids int64 Nids_ThisFile number of particles in groups in this file
NgroupsTot int64 Ngroups_Total total number of groups
NsubhalosTot int64 Nsubhalos_Total total number of subhalos
NidsTot int64 Nids_Total total number of particles in groups
NumFiles int NumFiles number of subfiles of this catalogue
Time double Time output time/scale factor
Redshift double Redshift output redshift

FOF catalogue

The information about the FOF groups consists of the following blocks. They are effectively a table
with properties for each FOF group. Some of the fields are only present if the FOF halos have also
been processed with SUBFIND, such as the number of subhalos contained in a FOF halo, for
example.

Nr HDF5 Identifier Fmt2-ID Block contents
1 GroupPos File header
2 GroupVel Particle positions
3 GroupMass Particle velocities

To locate a certain FOF halo in the corresponding snapshot file, one has to get the offset from the
beginning of the file for each particle type, and then skip fast forward in the snapshot file to the
corresponding starting position. One can then start reading there, taking the number of particles for
the reported group length. This is then the FOF halo.



SUBFIND catalogue

The SUBFIND catalogue extends the group catalogue with additional blocks (i.e. datasets) that
give further information for each subhalo. The total length of these entries is equal to the total
number of subhalos given in the Header, i.e. TotNsubhalos. The entries in the catalogue are as
follows:

Nr HDF5 Identifier Fmt2-ID Block contents
1 SubhaloPos File header
2 SubhaloVel Particle positions
3 SubhaloMass Particle velocities

To read the particle data of an individual subhalo, one again needs to compute the correct file offset
into the corresponding snapshot file. This is obtained here by first identifying the offset of the
corresponding parent FOF group, and then computing an additional offset by summing up the
lengths of all previous subhalos in the same FOF group. This needs to be done for each particle
type separately. One can then skip towards the beginning of the corresponding subhalo and read the
right number of particles there.

Special code features
The GADGET-4 code contains a number of modules that take the form of extensions of the code
for specific science applications or common postprocessing tasks. Examples include merger-tree
creation, lightcone outputs, or power spectrum measurements. Here we briefly describe the usage
of the most important of these modules in GADGET-4.

Initial conditions
GADGET-4 contains a built-in initial conditions generator for cosmological simulations (based on
the N-GenIC code), which supports both DM-only and DM plus gas simulations. Only cubical
periodic boxes are supported at this point. Once the IC-module is compiled in (by setting NGENIC
in the configuration), the code will create initial conditions upon regular start-up and then
immediately start a simulation based on them. It is also possible to instruct the code to only create
the ICs, store them in a file and then end, which is accomplished by launching the code with
restartflag 6.



The NGENIC option needs to be set to the size of the FFTs used in the initial conditions creation,
and the meaning of the other code parameters that are required for describing the initial conditions
is described in detail in the relevant section of this guide.

Merger trees
The merger tree construction follows the concepts introduced in the paper Springel et al. (2005), 
http://adsabs.harvard.edu/abs/2005Natur.435..629S. It is a tree for subhalos identified within FOF
groups, i.e. it requires group finding carried out with FOF, and SUBFIND or SUBFINF_HBT,
and hence these options need to be enabled when MERGERTREE is set. The schematic
organisation of the merger tree that is constructed is depicted in the following sketch:

http://adsabs.harvard.edu/abs/2005Natur.435..629S


At each output time, FOF groups are identified which contain one or several (sub)halos, and the
merger tree connects these halos. The FOF groups play no direct role for the tree, except that the
largest halo in a given FOF group is singled out as main subhalo in the group. To organize the
tree(s), a number of pointers for each subhalo need to be defined.

Each halo must know its descendant in the subsequent group catalogue at later time, and the most
important step in the merger tree construction is determining this link. This can be accomplished in
two ways with GADGET-4. Either one enables MERGERTREE while a simulation is run. Then for
each new snapshot that is produced, the descendant pointers for the previous group catalogue are
computed as well and accumulated in the output directory. The results will be written in special files
called sub_desc_XXX. In essence, these provide the glue between two subsequent group



catalogues. One advantage of doing this on the fly is that this allows merger tree constructions
without ever having to output the particle data itself.

Alternatively, one also create these files in postprocessing for a simulation that was run without the 
MERGERTREE option. This however requires that snapshot files are available, or at the very least,
that particle IDs have been included in the group catalogue output. The process of creating these
link files can be accomplished with restartflag 7, which does this for the given snapshot number and
the previous output. This has to be repeated for all snapshots except the first one (i.e. one starts at
output number 1 until the last one) that should be part of the merger tree.

Finally, one can ask GADGET-4 to isolate individual trees and to arrange the corresponding
subhalos in a format that allows easy processing of the trees, for example, in a semi-analytic code
for galaxy formation. This process also computes the other links shown in the above sketch. To this
end, one starts GADGET-4 with restartflag 8, and provides the last snapshot number as additional
argument. GADGET-4 will then process all the group catalogue data and the descendant link files,
and determine a new set of tree-files. The algorithms are written such that they are fully parallel and
should be able to process extremely large simulations, with very large group catalogues and tree
sets. The tree files will normally be split up over many files in this case, and the placing of a tree
into any of these files is randomized in order to balance them roughly in size, which simplifies later
processing. In order to quickly look-up based, based on a given subhalo number from one of the
timeslices, in which tree this subhalo is found, corresponding pointers are added to the group
catalogues as well.

Lightcone output
One new feature in GADGET-4 is the ability to output continuous light cones, i.e. particles are
stored at the position and velocity at the moment the backwards lightcone passes over them. This is
illustrated in the following sketch, which shows how the code determines an interpolated particle
coordinate x' in between two endpoints of the timestepping procedure.

This option is activated with the LIGHTCONE switch, and needs to be active while the simulation
is run. In this case, additional particle outputs are created, which have a structure similar to snapshot
files, except that the velocities are stored directly as peculiar velocities.

While it is possible also here to use the file format 1 or 2, it is highly recommended to not bother
with this but rather use HDF5 throughout for such more complicated output. This is the only



sensible way to not get caught up in struggles to parse the (possibly frequently varying) binary file
format.

Power spectra
The GADGET-4 code can also be used to measure matter power spectra with a high dynamic
range through the "folding technique", described in more detail in Springel et al. (2018) http://
adsabs.harvard.edu/abs/2017arXiv170703397S. In essence, three power spectra are measured in
each case, one for the unmodified periodic box, yielding a conventional measurement that extends
up to close to the Nyquist frequency of the employed Fourier mesh (which is set by PMGRID ).
The other two are extensions to smaller scales by imposing periodicity on some inter division of the
box, with the box folded on top of itself. The default value for this folding factor is 
POWERSPEC_FOLDFAC=16 but this value can be modified if desired by overriding it with a
configuration option.

The measured power spectra are outputted in a finely binned fashion in k-space as ASCII files. This
data can be easily rebinned by band-averaging to any desired coarser binning (which then also
reduces the statistical error for each bin), which is a task relegated to a plotting script. This can then
also be used to combine the coarse and fine measurements into a single plot, and to do a shot-noise
subtraction if desired. The shot-noise, allowing for variable particle masses if present, is also
measured and output to the file. Example plotting scripts to parse the powerspectrum are provided
in the code distribution.

There are two ways to measure the power spectra. This can either be done on the fly whenever a
snapshot file is produced, by means of the POWERSPEC_ON_OUTPUT option. Or one can
compute a power spectrum in postprocessing by applying the code with restartflag 4 to any of the
snapshot numbers. In both cases, power spectra are measured both for the full particle distribution,
and for every particle type that is present.

I/O bandwidth test
Another small feature of GADGET-4 is a stress test for the I/O subsystem of the target compute
cluster. This is meant to get some information about the available I/O bandwidth for parallel write
operations, and in particular, to find out whether MaxFilesWithConcurrentIO should be
made smaller than the number of MPI-ranks for a specific setup to avoid that too many files being
written at the same time, because this can be counter-productive in terms of throughput or cause a
too high load on the I/O subsystem that inconveniences other users or jobs.

To this end, GADGET-4 can be started with the restartflag 9 option, using the same number of MPI
ranks that is intended for a relevant production run. The code will then not actually carry out a
simulation but instead carry out a number of systematic write tests. The tests are repeated for
different settings of MaxFilesWithConcurrentIO , starting at the number of MPI ranks,
and then halving this number until it drops below unity. For each of the tests, each MPI-rank tries to
write 10 MB of data to files stored in the output directory (these are again deleted after the test
automatically). The code then reports the effective I/O bandwidth reached for the different settings
of MaxFilesWithConcurrentIO, and the results should inform about which setting is
reasonable. In particular, in a regime where the I/O bandwidth only very weakly increases (i.e.
strongly sub-linearly) with MaxFilesWithConcurrentIO, it will usually be better to go
with a lower value where such linearity is still approximately seen to retain some responsiveness of
the filesystem when GADGET-4 does parallel I/O.

http://adsabs.harvard.edu/abs/2017arXiv170703397S
http://adsabs.harvard.edu/abs/2017arXiv170703397S


Example Setups
To get an idea of some of the different possible usages of GADGET-4, and as a starting point for
your own simulations and numerical experiments, we include a small set of examples with the code
distribution. These can be found in the folder examples. Each of the examples has its own
subdirectory containing the example's configuration and parameterfile, and sometimes auxiliary
files for the specific runs.

To compile the code for one of the examples, you can either copy its configuration file 
Config.sh to the main code directory and run make there, or you execute make by passing it
the DIR variable with a value that points to the subdirectory of the example. The executable for the
example is then created right in the subdirectory of the corresponding problem, allowing you to run
it right there. This is the recommended approach.

For convenience, the corresponding make-commands are contained in the file make-
examples.sh, with one line with a suitable call of make for each of the examples. Copying the
corresponding line and pasting it as a command into the main directory of the code will then build
the executable for the example. Executing the full shell script will compile all the examples at once
(provided there are no compilation problems, of course).

Below, we describe each of the examples and also give a few suggestions for setup-variants that
could be of interest. Note that for some of the examples, you need to obtain initial conditions that
are available as part of a separate IC-package (183 MB) on the GADGET-4 web-site. This also
contains the ICs for the examples adopted from the GADGET-2 code distribution (these ICs are
identical to those distributed with GADGET-2).

Cosmological DM-only simulation with IC
creation
The setup in DM-L50-N128 simulates a small box of comoving side-length 50 Mpc/h using
128^3 dark matter particles. The initial conditions are created on the fly upon start-up of the code,
using second order Lagrangian perturbation theory with a starting redshift of z=63. The LEAN
option and 32-bit arithmetic are enabled to minimize memory consumption of the code.

Gravity is computed with the TreePM algorithm at expansion order p=3. Three output times are
defined, for which FOF group finding is enabled, and power spectra are computed as well for the
snapshots that are produced. Also, the code is asked to compute a power spectrum for each output.

Aquarius Milky-Way Zoom
The directory DM-Zoom-Aq-C-5 contains a setup for a cosmological zoom-simulation that
follows the formation of a Milky Way-sized dark matter halo. To carry out this example, you need
access to the Aq-C-5-dm initial conditions files, which stem from the Aquarius Project and were
also used as part of the Aquila Project. These IC files are available as part of the IC-package on the
GADGET-4 web-site.

The example uses particle type 1 for the high-resolution dark matter particles, while types 2 to 4 are
employed for more massive boundary particles of increasingly higher mass. For computing the
gravitational forces, the TreePM algorithm is used.

https://wwwmpa.mpa-garching.mpg.de/gadget4/example_ics.tar
http://adsabs.harvard.edu/abs/2008MNRAS.391.1685S
https://ui.adsabs.harvard.edu/abs/2012MNRAS.423.1726S
https://wwwmpa.mpa-garching.mpg.de/gadget4/example_ics.tar


The code is instructed to create 16 dumps, with output times that are specified through an input file.
Before each snapshot is written, the FOF group finding algorithm is run on the high-resolution
particles, followed by SUBFIND, and the snapshot dumps will be stored according to group order.

Interesting variants of this setup:

The default setup of this example does not enable a high resolution mesh, which could
however be used in principle.

If the resolution is as high and spartially concentrated as here, 
HIERARCHICAL_GRAVITY can also be of interest for these types of zoom simulations.

If a merger tree is desired, simulations of this kind could be run with the MERGERTREE
option.

Colliding galaxies with star formation
This simulation with setup in the folder CollidingGalaxiesSFR considers the collision of
two compound galaxies made up of a dark matter halo, a stellar disk and bulge, and cold gas in the
disk that undergoes star formation.

Radiative cooling due to helium and hydrogen is included. Star formation and feedback is modelled
with a simple subgrid treatment. The simulation corresponds closely to the model of a galaxy
collisions considered in the code paper.

Santa Barbara cluster
The Santa Barbara cluster is a hydrodynamical simulation of the formation of a galaxy cluster,
which was introduced originally in the code comparison paper by Frenk et al. (1999).

In this example, we consider the problem at 2 x 64^3 resolution, using the pressure-based
formulation of SPH (for the sake of change, and not because we think this is necessarily to be
recommended for this problem).

Old examples from GADGET-2

Galaxy collision

This purely collisionless simulation in G2-galaxy runs two disk galaxies into each other, leading
to a merger between the galaxies. Each galaxy consists of a stellar disk, and a massive and
extended dark matter halo. This example uses plain Newtonian physics, with 20000 disk and
40000 halo particles in total.

The setup provided corresponds to a traditional tree algorithm with ordinary timestepping.
Alternatives to this now possible with GADGET-4 include the use the FMM algorithm for gravity,
and higher order multipole expansion. Note that this example from GADGET-2 is almost trivially
small, and some of these alternatives will only show their real advantages in much larger
simulations of higher resolution.

• 

• 

• 

https://ui.adsabs.harvard.edu/abs/1999ApJ...525..554F


To get a first idea whether the example has worked you may check for energy conservation by
analysing the log-file energy.txt. A simple example for doing this is provided in the form of
the IDL script file plot_energy.pro.

Adiabatic collapse of a gas sphere

This simulation in G2-gassphere considers the gravitational collapse of a self-gravitating
sphere of gas which initially has a 1/r density profile and a very low temperature. The gas falls
under its own weight to the centre, where it bounces back and a strong shock wave that moves
outwards develops. This common test problem of SPH codes has first been described by Gus
Evrard.

The simulation uses Newtonian physics in a natural system of units (G=1). The setup corresponds
to vanilla density-based SPH with the entropy formulation introduced by Springel & Hernquist
(2002). You can use the IDL-script plot_energy_gassphere.pro to display the evolution
of thermal, kinetic and potential energy for the collapsing gassphere. Note that this is a really tiny
simulation of just 1472 particles.

Cosmological formation of a cluster of galaxies

This problem in G2-cluster uses collisionless dynamics in an expanding universe. It is a small
cluster simulation that has been set-up (a long time ago) with Bepi Tormen's initial conditions
generator ZIC using vacuum boundaries and a multi-mass technique. The simulation has a total of
276498 particles. In a central high-resolution zone there are 140005 particles, surrounded by a
boundary region with two layers of different softening, the inner one containing 39616 particles,
and the outer one 96877 particles.

Note that while this simulation is a cosmological simulation in comoving coordinates, it is unusual
in that it doesn't use periodic boundary conditions but rather follows a sphere of matter around the
origin with average density equal to the mean density. This technique is not very commonly used
any more.

Large-scale structure formation including gas

This problem in G2-lcdm-gas consists of 32^3 dark matter, and 32^3 gas particles, following
structure formation in a periodic box of 50 Mpc/h on a side in a LCDM universe. Only adiabatic
gas physics is included, and the minimum temperature of the gas is set to 1000 K. This simple
example uses grid initial conditions, where gas particles are put at the centres of the grid outlined by
the dark matter particles. The simulation starts at z=10, and the code will produce snapshot files at
redshifts 5, 3, 2, 1, and 0. As in the other old GADGET-2 examples, the SPH setup is density-
based SPH based on the entropy formation.

Guide to code changes
In the following, we give a set of assorted hints and recommendations about modifying and/or
extending the code. We also comment about some differences with respect to GADGET-2/3 in
terms of code usage and its architecture.

http://adsabs.harvard.edu/abs/2002MNRAS.333..649S
http://adsabs.harvard.edu/abs/2002MNRAS.333..649S


Coding style guide
We strongly recommend to follow the general coding practices (even if you don't like them) and
architecture of GADGET-4 in modifying or extending the code. Only then different extensions by
different people have a chance to happily coexist with each other. This concerns mostly the
following points:

Code extensions

Non-standard code extensions should always be written such that they can be switched off if
not needed, and have no side effects on existing code when this is done. Normally this means
that they have to be enclosed in conditional compilation precompiler statements (#ifdef),
especially if variables in the global structures of the code need to be allocated for the
extension. However, if the extension's execution can also be controlled at run-time by simple
variables, then consider introducing a parameterfile variable to control the extension. In
general, the number of symbols (and this additional Config.sh options) to control
conditional compilation should be kept to a minimum.

Do not place any substantial piece of code belonging to your extension into existing
functions of the code. Write your own classes or functions for a code extension, and only
place a function call (if needed bracketed by an #ifdef) into the appropriate place of the
primary code. Also, place your extension functions into separate source files.

General code-style principles

Code formatting: Be consistent with the code formatting of the main code, which is more or
less GNU-style, and is obtained by running the code formatting tool "clang-format" of the
clang compiler suite. The specific options used by GADGET-4 are defined in the hidden file
".clang-format" in the code's main directory. Running there something like

  clang-format-mp-6.0 -style=file -i src/*/*

should then make sure that all your source file(s) have a consistent indention and code formatting.

Name functions all in lower case as a "command" that is descriptive of what the function
does. Different words should normally be separated by underscores, e.g.
calculate_normal_vector_for_triangle(...) For all functions, input arguments should come
first, output arguments last.

Global variables (whose use should be kept to an absolute minimum, and the sins of
GADGET-4 in this regard should not be repeated) start with an upper case character. Global
variable names are nouns, with words separated by mixed lower/upper case characters, and
contain no underscores. Use abbreviations that are clear, e.g. 
NumForceCalculations. If you have to use a global variable in your own code class
or module, try to restrict its scope to the classes or files of your module through appropriate
declarations.

Local variables start with lowercase, and should have descriptive names, too, except for
simple loop iterators and the like. Try to narrow the scope of a variable as much as possible,
for example by declaring them inside a block where they are needed. Generally define them
as close as possible to where they are needed for the first time. Declaration and initialization
should be combined in one command where possible, e.g.

• 

• 

• 

• 

• 

• 



int n = get_particle_count();

instead of

int n;
  ...
n = get_particle_count();

Avoid repetition of code, i.e. do not use cut & paste to implement the same or similar
functionality multiple times. This is always an indication that a new function is in order here.
Break up long functions into smaller more manageable pieces.

Preprocessor macros that have arguments should be avoided whenever possible, and really
should only be used for a compelling reason. Note that in C++ you can use inlined and type-
safe functions instead. In any case, preprocessor macros should be fully capitalized.

Magic numbers and non-trivial numerical constants should be avoided in the actual code and
instead be replaced by a symbolic constant declared within a header file, with a name all in
uppercase. Consider enums instead of the use of numerical constants to distinguish between
different cases.

All warnings emitted by the compiler upon compilation with "-Wall" should be addressed.
Unless there are extremely good reasons, the code should compile without any warnings left.

Include consistent commenting in your code. The meaning of all global variables should be
commented where they are introduced, ideally with doxygen syntax, e.g:

       int MyGlobalCount;   /*!< counts the number of timesteps */

Functions should be preceded by a brief explanation of what the function does, including
instruction, if any, about how the function may be used, e.g.:

      /*!
       * Insert the point P[i] into the partice list. Start
       * the search at the current particle t.
       */
       int insert_point(int i, int t)
       {
         ...
       }

You do not need to state here how the function achieves what it does; this can be stated if
appropriate in comments in the function body. There, avoid superfluous comments that just
reflect what's obvious from the code anyway, like 

       do_domain_decomposition();   /* call domain decomposition */

Instead, focus on comments that help one to quickly understand/check what the code tries to
do at an algorithmic level. If complicated formulae are implemented, try to include in a
comment a reference to the equation that is implemented.

• 

• 

• 

• 

• 

• 

• 

• 



Adding a config-option
To add a new symbolic configuration option to the code, you need to add it to the file 
Template-Config.sh besides just using it in the code. In addition, you must add a short
explanation of the option to the file documentation/04_config-options.md
following the syntax used for the other configuration option. Only then the checking scripts of the
source code will be happy and accept the new option. Note that for this the option really needs to
be used somewhere in the source code that is described as belonging to GADGET-4 by the 
Makefile.

Adding parameters
To add a new parameter to the parameterfile of GADGET-4, the following steps are necessary:

Add the new variable to the structure global_data_all_processes in the file 
data/allvars.h. The variable has to be of type double, int, or a character string.

In the file io/parameters.c , add a function call to add_param(...) for the new
parameter in the function register_parameters() . Simply follow the examples for
the other parameters. If your parameter is optional and should only be active when a specific
option is activated, bracket the add_param() call with a corresponding #ifdef/#endif

Add a short explanation of the new parameter in the file documentation/
05_parameterfile.md This is needed otherwise the code checking scripts will not
accept the new parameter.

Once these steps are followed, the new parameter will be included in the parsing of the
parameterfile, and will also be stored in restart files as well as in HDF5 output files.

Adding a source file
To add a new source file, create it in a subdirectory of src/ , not in src/ itself. Preferably you
create your own subdirectory for this, say src/mymodule Then in the Makefile of the code,
add appropriate statements that list the file(s) and header file(s) belonging to your new source file.
For example, something like this:

SUBDIRS += mymodule
OBJS    += mymodule/mysource1.o  mymodule/mysource2.o
INCL    += mymodule/mymodule.h

Your new source file should also come with a header file, at the very least containing a function
prototype for one of your new functions that is intended to be called from the main code. This
header file can then be included in the main code at an appropriate place to facilitate a call to your
new code. The header file should be protected by a header file guard, i.e. you should add
something like

#ifndef MYMODULE_H
#define MYMODULE_H

at the beginning of the header file, and

• 

• 

• 



#endif

at the end. To tell the code checks scripts that the constant MYMODULE_H is not an undocumented
code configuration parameter, you also need to add it to the file defines_extra in the main
directory of the code. Importantly, you should also add your new source file to version control
system. Ideally, you make a git-branch of GADGET-4 and then implement your extension/
modification in this branch. Try to keep the branch current with the main line of the code as long as
it is still kept alive as a separate branch. If possible, try to integrate your feature into a main line of
development for GADGET-4, for example through a pull request, and if successful close your
branch again. To update the html-documentation of the code with your new configuration and
parameterfile options, and to also include your source in the cross-referenced source code
documentation, run the command doxygen in the main directory of the code. (If doxygen should
be unavailable on your local machine, you can always easily install it.)

Migration to GADGET4

Main changes in the code

There have been many major changes in the internal workings between previous versions of
GADGET and GADGET-4, affecting nearly all parts of the code. In fact, basically all parts of the
code have been completely rewritten since GADGET-3 (sometimes several times), or were in any
case substantially revised. These modifications were done to improve the accuracy and the
performance of the code, to reduce its memory consumption, and to make it applicable to a wider
range of simulation types. Detailed explanations of the reasoning behind each of these
modifications is beyond the scope of this short set of notes. Some of this information can be
however found in the code paper on GADGET-4.

Some of the most important changes in code design include:

A new hierarchical timestepping option for gravity

An optional FMM solver for gravity

Availability of hybrid parallelization with shared memory use

Support for very large simulation sizes

Stretched boxes also for gravity, as well as mixed boundary conditions for gravity

Inclusion of FOF and SUBFIND in the public code version, a new parallelization scheme for
SUBFIND, and the addition of SUBFIND_HBT

Inclusion of a power spectrum estimator

An optional column-based FFT can be used

Inclusion of an updated version of the N-GenIC initial conditions generator that also supports
2LPT

Explicit vectorization support in some parts of the code

New domain decomposition algorithm

Support of two formulations of SPH

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



On-the-fly merger tree construction

Continuous light-cone output

Integration of a simple cooling and star formation formulation in the public version of the
code

Migrating old set-ups to GADGET-4

If you have used earlier version of GADGET before, you will be familiar with all the practicalities
of running GADGET already. This is because nothing much has really changed here in
GADGET-4. In particular, the mechanisms for starting, interrupting, and resuming a simulation are
still the same.

However, as described in this guide, there have been a number of changes in the parameterfile that
controls each simulation, and there are more compilation options that are now more conveniently
controlled through the Config.sh file. If you want to reuse an old parameterfile with
GADGET-4, you therefore have to make a few modifications of it. If you simply start the new code
with the old parameterfile, you will get error messages that complain about obsolete or missing
parameters. Delete or add these parameters as needed. Also, carefully review which makefile
options are still appropriate for a given simulation. While many of the basic compile time options
available in previous versions of GADGET are still around, others have become obsolete. The code
will complain about options that are set in Config.sh but don't exist any more, so you should be
automatically informed about this when you try to use an old setup. Importantly, however, the
structure and format of the snapshot files produced by the code has hardly changed (and the system
of units has not changed at all), meaning that you should still be able to use old analysis software
from previous versions of GADGET essentially unchanged.

Notes on memory consumption of
GADGET-4
GADGET-4 uses an internal memory manager where a large block of memory is allocated once at
the beginning of the simulation, and the code then satisfies all its internal allocations out of this
block. The size of this block corresponds to the maximum allowed memory usage per MPI process,
and it is set by the parameter file MaxMemSize.

The code will periodically output information to the file memory.txt about all allocated memory
blocks and their sizes. This happens whenever a new high watermark in the memory allocation is
reached. It is best to check this table to get an accurate assessment of the amount of memory the
code at least needs to run successfully for a certain particle number. For communication and particle
exchanges, the code will use buffers that automatically adjust their size to the amount of still
available memory. It is hence advantageous to set MaxMemSize as large as possible for the
amount of physical memory available on the compute nodes. An overcommitment of the physical
memory of a node is prevented by the code (it then exists with an error message), but this check
only works if HOST_MEMORY_REPORTING is enabled. At the beginning of the stdout-file, you
can also find the sizes of the most important code structures for the chosen configuration. In
particular this tells about how many bytes per collisionless particle are needed, and how many bytes
are in addition needed to store one SPH particle.

• 
• 

• 



Notes on various limits in GADGET-4
Maximum number of particles per MPI-rank is restricted to 2^31 ~ 2 Billion

Maximum number of groups/subhalos per MPI-rank is restricted to 2^31 ~ 2 Billion

The total number of particles, and the total number of groups/subhalos, can however be
much larger than this if a sufficiently large number of MPI ranks is used.

Maximum particle number in a single group or subhalo is for the default setting 2^31 ~ 2
billion, but this can be enlarged if needed by setting the option 
FOF_ALLOW_HUGE_GROUPLENGTH

The maximum number of subhalos per group is restricted nevertheless to 2^31 ~ 2 billion.

If the legacy output formats 1/2 are used, each block in the output is restricted to 2 Gbyte in
size or less. This also means that the maximum number of particles per single output file, and
the maximum number of groups/subhalos per single group catalogue file can be at most of
order 2 Billion, normally substantially less than that. While this restriction can be
circumvented by splitting output over enough files, it provides one further motivation to use
the HDF5 format!

Maximum number of lightcones: 256

• 

• 

• 

• 

• 

• 

• 


	GADGET-4
	Table of Contents
	Introduction
	Running the Code
	Simulation Types
	Configuration
	Parameterfile
	Snapshot Format
	Diagnostics Output
	Group Finders
	Special Features
	Examples
	Changing the Code

	Introduction to GADGET-4
	Overview and history
	Disclaimer
	Compilation and basic usage
	Compilation requirements
	Building the code
	Starting the code
	Interrupting a run
	Restarting a run
	Restarting from restart-files
	Restarting from snapshot-files

	Starting postprocessing
	Types of simulations
	Cosmological Simulations
	Newtonian space
	Stretched boxes
	Two-dimensional simulations
	Code Configuration
	Parallelization options
	Basic operation mode of code
	Gravity calculation
	TreePM Options
	Treatment of gravitational softening
	SPH formulation
	SPH kernel options
	SPH viscosity options
	Extra physics
	Time integration options
	Single/double precision and data types
	Output/Input options
	On the fly FOF groupfinder
	Subfind
	Merger tree algorithm
	On-the-fly lightcone creation
	IC generation
	MPI related settings
	Testing and Debugging options
	Parameterfile
	Filenames and file formats
	CPU-time limit and restarts
	Memory allocation
	Simulated time span and spatial extent
	Cosmological parameters
	System of units
	Gravitational force accuracy
	Time integration accuracy
	Domain decomposition
	Output frequency
	SPH parameters
	Gravitational softening
	Subfind parameters
	Initial conditions generation
	Lightcone output
	Cooling and star formation
	Special features
	Snapshot file format
	Legacy Format 1
	Legacy Format 2
	HDF5 file format
	Format of initial conditions
	Diagnostic outputs
	stdout
	info.txt
	timebins.txt
	cpu.txt
	domain.txt
	balance.txt
	memory.txt
	timings.txt
	density.txt
	hydro.txt
	energy.txt
	sfr.txt
	Groups and subhalos
	FOF and SUBFIND
	Format of group catalogues
	FOF catalogue
	SUBFIND catalogue

	Special code features
	Initial conditions
	Merger trees
	Lightcone output
	Power spectra
	I/O bandwidth test
	Example Setups
	Cosmological DM-only simulation with IC creation
	Aquarius Milky-Way Zoom
	Colliding galaxies with star formation
	Santa Barbara cluster
	Old examples from GADGET-2
	Galaxy collision
	Adiabatic collapse of a gas sphere
	Cosmological formation of a cluster of galaxies
	Large-scale structure formation including gas

	Guide to code changes
	Coding style guide
	Code extensions
	General code-style principles

	Adding a config-option
	Adding parameters
	Adding a source file
	Migration to GADGET4
	Main changes in the code
	Migrating old set-ups to GADGET-4

	Notes on memory consumption of GADGET-4
	Notes on various limits in GADGET-4

