
User guide for GADGET-2

Volker Springel
volker@mpa-garching.mpg.de

Max-Plank-Institute for Astrophysics, Garching, Germany

May 1, 2005

Contents

1 Introduction 3

2 Basic usage 3
2.1 Compilation requirements . 3
2.2 Starting the code . 4
2.3 Interrupting a run . 5
2.4 Restarting a run . 5

2.4.1 Restarting from restart-files . 5
2.4.2 Restarting from snapshot-files . 6

3 Types of simulations 7

4 Makefile options 7
4.1 Basic operation mode of code . 9
4.2 Things that are always recommended . 9
4.3 TreePM options . 9
4.4 Single/double precision . 11
4.5 Time integration options . 11
4.6 Output options . 12
4.7 Things for special behaviour . 12
4.8 Testing and debugging options . 14
4.9 Glass making . 14

5 Parameterfile 14
5.1 Filenames and file formats . 15
5.2 CPU-time limit and restart options . 17
5.3 Simulation specific parameters . 18

1

V. Springel

5.4 Cosmological parameters . 19
5.5 Memory allocation . 20
5.6 Gravitational force accuracy . 21
5.7 Time integration accuracy . 22
5.8 Output of snapshot files . 24
5.9 System of units . 25
5.10 SPH parameters . 26
5.11 Gravitational softening . 27

6 File formats of GADGET-2: Snapshots & Initial conditions 29
6.1 Structure of the default snapshot file format 29
6.2 A variant of the default file format . 34
6.3 The HDF file format . 35
6.4 Format of initial conditions . 35

7 Diagnostic output files 36
7.1 Information file . 36
7.2 Performance statistics of the gravitational tree 36
7.3 CPU-time statistics . 37
7.4 Energy statistics . 39

8 Differences between GADGET-1 and GADGET-2 40
8.1 Architectural changes . 40
8.2 Notes on migrating from GADGET-1 to GADGET-2 41
8.3 Dropped makefile options . 42
8.4 List of source files of GADGET-2 . 42
8.5 Notes on memory consumption of GADGET-2 42

9 Examples 44
9.1 Galaxy collision . 45
9.2 Adiabatic collapse of a gas sphere . 45
9.3 Cosmological formation of a cluster of galaxies 45
9.4 Large-scale structure formation including gas 46

10 Disclaimer 46

2

User’s guide for GADGET-2

1 Introduction

In its current implementation, the simulation code GADGET-2 (GAlaxies with Dark matter and
Gas intEracT1) supports collisionless simulations and smoothed particle hydrodynamics on
massively parallel computers. All communication is done explicitly by means of the message
passing interface (MPI). The code is written in standard ANSI C, and should run on all parallel
platforms that support MPI. So far, the portability of the code has been confirmed on a large
number of systems, including Cray-T3E, IBM-SP/2 and p690 systems, SGI Origins, various
systems from Sun, as well as a large number of Linux PC clusters (‘beowulfs’), based either on
Intel or AMD processors.

The code can be used for plain Newtonian dynamics, or for cosmological integrations in
arbitrary cosmologies, both with or without periodic boundary conditions. The modeling of
hydrodynamics is optional. The code is adaptive both in space and in time, and its Lagrangian
character makes it particularly suitable for simulations of cosmic structure formation.

The main reference for numerical and algorithmic aspects of the code is the paper ‘The cos-
mological simulation code GADGET-2’ (Springel, 2005, MNRAS, submitted), and references
therein. Further information on the previous public version GADGET-1 is also contained in
the paper ‘GADGET: A code for collisionless and gas-dynamical cosmological simulations’
(Springel, Yoshida & White, 2001, New Astronomy, 6, 51). In the following, these papers
will be frequently referenced, and it is recommended to read them before attempting to use the
code. This document provides additional technical information about the code, hopefully in a
sufficiently self-contained fashion to allow anyone interested an independent use of the code
for cosmological N-body/SPH simulations on parallel machines.

GADGET-2 was written by Volker Springel, and is made publicly available under the GNU
general public license. This implies that you may freely copy, distribute, or modify the sources,
but the copyright for the original code remains with the author and the Max-Planck-Institute for
Astrophysics (MPA). If you find the code useful for your scientific work, we kindly ask you to
include a reference to the code paper on GADGET-2 in all studies that use simulations carried
out with GADGET-2.

2 Basic usage

2.1 Compilation requirements

GADGET-2 needs the following non-standard libraries for compilation:

• mpi - the ‘Message Passing Interface’ (version 1.0 or higher). Many vendor supplied
versions exist, in addition to excellent open source implementations, e.g.
MPICH (http://www-unix.mcs.anl.gov/mpi/mpich), or
LAM (http://www.lam-mpi.org).

• gsl - the GNU scientific library. This open-source package can be obtained at
http://www.gnu.org/software/gsl, for example. GADGET-2 only needs this

1This peculiar acronym hints at the code’s origin as a tool for studying galaxy collisions.

3

V. Springel

library for a few very simple cosmological integrations at start-up.

• fftw - the ‘Fastest Fourier Transform in the West’. This open-source package can be ob-
tained at http://www.fftw.org. Note that the MPI-capable version 2.x of FFTW
is required, the new version 3 lacks MPI capability at this point. FFTW is only needed
for simulations that use the TreePM algorithm.

• hdf5 - the ‘Hierarchical Data Format’ (version 5.0 or higher, available at
http://hdf.ncsa.uiuc.edu/HDF5). This optional library is only needed when
one wants to read or write snapshot files in HDF format. It is possible to compile and use
the code without this library.

Note that FFTW needs to be compiled with parallel support enabled. This can be achieved
by passing the option --enable-mpi to its configure script. When at it, you might as
well add --enable-type-prefix to obtain the libraries in both a single and double pre-
cision version. The single-precision version can then be generated after the double preci-
sion one by a make clean command, followed by a reconfiguration that also includes the
--enable-single option and a renewed make install. Note that without the
--enable-type-prefix option in the compilation of FFTW, you should set the option
NOTYPEPREFIX FFTW in GADGET-2’s makefile to generate correct header and library names.

After unpacking the tar-file of GADGET-2, you will find a bunch of .c-files, .h-files, and a
Makefile. You should edit the Makefile and adjust it to your system, if needed. A number
of systems have been predefined in the Makefile (look at the SYSTYPE definitions), and by
following these examples, further customised system-types can be easily added. Note that
slight adjustments of the makefile will be needed if any of the above libraries is not installed in
a standard location on your system. Also, compiler optimisation options may need adjustment,
depending on the C-compiler that is used. The provided makefile is compatible with GNU-
make, i.e. typing make or gmake should then build the executable Gadget2. If your site
does not have GNU-make, get it, or modify the makefile accordingly.

The makefile also contains a number of compile-time options which determine the types of
simulations that can be run with a given GADGET-2 executable. These options are explained
in Section 4. Further code options of GADGET-2 are controlled by a parameter file, which is
described in Section 5.

2.2 Starting the code

To start a simulation, invoke the executable with a command like

mpirun -np 32 ./Gadget2 myparameterfile.param

This will start the simulation using 32 processors, and with simulation parameters as specified
in the parameter file (see below) of name myparameterfile.param. Note that on some
systems, the mpirun command may have a different syntax. Consult the man-pages or the
local support if in doubt.

4

User’s guide for GADGET-2

The code does not need to be recompiled for a different number of processors, or for a
different problem size. It is also possible to run GADGET-2 with a single processor only. In this
case, the leading ‘mpirun -np 1’ can be omitted, and GADGET-2 behaves like a serial code.
It is still necessary to have MPI installed, though, because even then the code will make some
(superfluous) calls to the MPI library. For GADGET-1, two separate code versions for serial and
parallel mode existed, GADGET-2 uses a single code base to take care of both functionalities.
Also, in GADGET-2, there is no restriction anymore for the processor number to be a power
of two, even though these partition sizes are in general prefered, because they allow the most
efficient communication schemes.

While GADGET-2 is run, it will print out a bunch of log-messages that inform about the
present steps taken by the code. When you start a simulation interactively, these log-messages
will appear on the screen, but you can also redirect them to a file. For production runs at a
supercomputing centre, you will usually have to put the above command into a script-file that
is submitted to the computing-queue. In this case, the standard output of GADGET-2 should be
automatically piped into a file.

2.3 Interrupting a run

Usually, a single submission to a queue system will not provide enough CPU-time to process
a big production run. Therefore, a running simulation can be interrupted after any timestep,
and resumed at the very same place later on. If the CPU-time limit is specified correctly in the
parameter file, the code will interrupt itself automatically before the CPU-time limit expires,
and write a set of ‘restart’-files. Actually, each processor writes its own restart file. These
restart-files can be used to continue the run conveniently (see below).

Sometimes you may want to interrupt the code manually with the possibility to resume it
later on. This can be achieved by generating a file named stop in the output-directory of a
simulation, e.g.

echo > /u/vrs/myoutput/stop

The code will then write a restart-file and terminate itself after the current timestep is com-
pleted, and the file ‘stop’ will be erased automatically. Restart files are also generated when
the last timestep of a simulation has been completed. They can be used if one later wants to
extend the simulation beyond the original final time.

2.4 Restarting a run

2.4.1 Restarting from restart-files

To resume a run from restart-files, start the code with an optional flag in the form

mpirun -np 32 ./Gadget2 myparameterfile.param 1

This will continue the simulation with the set of restart files in the output-directory, with the

5

V. Springel

latter being specified in the parameterfile. Restarting in this fashion is transparent to the code,
i.e. the simulation behaves after the restart exactly as if had not been interrupted to begin with.
In GADGET-1, this was not the case in general, because a restart always forced the occurrence
of a new domain decomposition and tree construction right after the simulation was resumed.

When the code is started with the restart-flag, the parameterfile is parsed, but only some of
the parameters are allowed to be changed, while any changes in the others will be ignored.
Which parameters these are is explained in Section 5 about the parameterfile.

It is important to not forget the 1 if you want to restart – otherwise the simulation will restart
from scratch, i.e. by reading in the initial conditions again! Also note that upon restarting from
restart-files, the number of processors used for a simulation cannot be changed. Also note
that restart files can in general not be transfered to another system, and that their structure is
completely different than that of snapshot files. If you want to continue a simulation on another
system or with a different number of processors, restarting from a snapshot file is the method
of choice. This will be discussed next.

2.4.2 Restarting from snapshot-files

There are two possibilities to restart a simulation from a previous snapshot-file. In the first
possibility, one simply adopts the snapshot file as new initial conditions. Note that this op-
tion requires changes in the parameterfile: You need to specify the snapshot-file as initial-
conditions-file, you also need to set TimeBegin (see below) to the correct time correspond-
ing to the snapshot-file. In addition, you should change the base filename for the snapshot files,
since the counter for the outputs will start at 0 again, thereby possibly overwriting outputs you
might already have obtained. Once this is done, you can continue the run from the snapshot-file
(without the optional 1).

An alternative to this somewhat inconvenient procedure is to restart the code with a flag equal
to 2 after the name of the parameterfile, i.e. just like above for the restart from restart-files, but
with the 1 replaced by 2. In this case, you only have to change the name of the initial conditions
file and make it equal to the name of the snapshot you want to start from, other parameters in
the parameterfile need not to be changed. In particular, the code will continue the numbering
of all further snapshots starting with 1 plus the number of the snapshot that is used as input file.
When you specify a snapshot file that was distributed onto several files (e.g. dump 007.0 to
dump 007.7) you should only give the base-name (i.e. here dump 007) as initial conditions
file when using this option.

Note that the restart from snapshot files allows a change of the number of processors used
for the simulation. This is not possible if you restart from restart-files. However, restarting
from restart-files is the preferred method to resume a simulation, because it is much faster,
and it minimises possible perturbations in the time integration scheme of a running simulation
(restarting from a snapshot forces the individual timestep scheme to be resynchronised). Be-
cause in general not all the particles are synchronised at the time of writing a snapshot file (the
others are first-order predicted to the output time), a small perturbation in the time integration
is introduced when restarting from a snapshot file.

6

User’s guide for GADGET-2

3 Types of simulations

Compared with GADGET-1, there are a number of new types of simulations that can be run
with GADGET-2, most importantly variants of the TreePM algorithm. A schematic overview of
these simulation types is given in Table 1.

Cosmological integrations with comoving coordinates are selected via the parameter
ComovingIntegrationOn in the parameterfile. Otherwise the simulations always as-
sume ordinary Newtonian space. Periodic boundary conditions and the various variants of
the TreePM algorithm require compile-time switches to be set appropriately in the makefile.

In particular, the TreePM algorithm is switched on by passing the desired mesh-size at com-
pile time via the makefile to the code. The relevant parameter is PMGRID, see below. Using
an explicit force split, the long-range force is then computed with Fourier techniques, while
the short-range force is done with the tree. Because the tree needs only be walked locally, a
speed-up can arise, particularly for near to homogeneous particle distributions, but not only
restricted to them. Periodic and non-periodic boundary conditions are implemented for the
TreePM approach. In the latter case, the code will internally compute FFTs of size 2*PMGRID
in order to carry out the required zero-padding. For zoom-simulations, it is possible to let the
code automatically place a refined mesh-layer on the high-resolution region.

Pure SPH simulations in periodic boxes can also be run in periodic boxes whose dimensions
in each direction are multiples of the basic boxsize. Such simulations can only be done without
self-gravity at the moment.

Finally, it is possible to run SPH runs (also with self-gravity) in two dimensions only. How-
ever, the latter feature is provided for test-runs only, and is not optimised; here three coordinates
are still stored for all particles and the computations are formally carried out as in the 3D case,
except that all particles lie in one coordinate plane, i.e. either have equal x-, y-, or z-coordinates.

4 Makefile options

Many aspects of the new features of GADGET-2 are controlled with compile-time options in
the makefile rather than run-time options in the parameterfile. This was done in order to allow
the generation of highly optimised binaries by the compiler, even when the underlying source
allows for many different ways to run the code. Unfortunately, this technique has the disad-
vantage that different simulations may require different binary executables of GADGET-2. If
several simulations are run concurrently, there is hence the danger that a simulation is started or
resumed with the ‘wrong’ binary. Note that while GADGET-2 checks the plausibility of some
of the most important code options, this is not done for all of them. To minimise the risk of
using the wrong code for a simulation, my recommendation is therefore to produce a separate
executable for each simulation that is run. A good strategy for doing this in practice is to make
a copy of the whole simulation source code together with its makefile in the output directory
of each simulation run, and then use this copy to compile the code and to run the simulation.
The code and its settings become then a logical part of the output generated in the simulation
directory.

7

V. Springel

Type of Simulation
Computational
methods

Remarks

1 Newtonian space
Gravity: Tree, SPH
(optional), vacuum
boundary conditions

OmegaLambda
should be set to zero

2 Periodic long box
No gravity, only SPH,
periodic boundary
conditions

NOGRAVITY needs to
be set, LONG X/Y/Z
may be set to scale the
dimensions of the box

3 Cosmological, physi-
cal coordinates

Gravity: Tree, SPH,
vacuum boundaries

ComovingIntegrationOn
set to zero

4 Cosmological, co-
moving coordinates

Gravity: Tree, SPH,
vacuum boundaries

ComovingIntegrationOn
set to one

5
Cosmological, co-
moving periodic
box

Gravity: Tree with
Ewald-correction,
SPH, periodic bound-
aries

PERIODIC needs to be
set

6
Cosmological, co-
moving coordinates,
TreePM

Gravity: Tree with
long range PM, SPH,
vacuum boundaries

PMGRID needs to be
set

7
Cosmological, co-
moving periodic box,
TreePM

Gravity: Tree with
long range PM, SPH,
periodic boundaries

PERIODIC and PM-
GRID need to be set

8
Cosmological, co-
moving coordinates,
TreePM, Zoom

Gravity: Tree with
long-range and
intermediate-range
PM, SPH, vacuum
boundaries

PMGRID and PLACE-
HIGHRESREGION
need to be set

9
Cosmological, peri-
odic comoving box,
TreePM, Zoom

Gravity: Tree with
long-range and
intermediate-range
PM, SPH, periodic
boundaries

PERIODIC, PMGRID
and PLACEHIGHRES-
REGION need to be set

10 Newtonian space,
TreePM

Gravity: Tree with
long-range PM, SPH,
vacuum boundaries

PMGRID needs to be
set

Table 1: Schematic overview of the different types of simulations possible with GADGET-2.

8

User’s guide for GADGET-2

The makefile contains a dummy list of all available compile-time code options, with most
of them commented out by default. To activate a certain feature, the corresponding parameter
should be commented in, and given the desired value, where appropriate. At the beginning of
the makefile, there is also a brief explanation of each of the options.

Important Note: Whenever you change one of the makefile options described below, a full
recompilation of the code is necessary. For this reason, the makefile itself has been added to
the list of dependences of each source files, such that a complete recompilation should happen
automatically when the makefile is changed and the command make is given. A manual re-
compilation of the whole code can be enforced with the command make clean, which will
erase all object files, followed by make.

4.1 Basic operation mode of code

PERIODIC
Set this if you want to have periodic boundary conditions.

UNEQUALSOFTENINGS

Set this if you use particles with different gravitational softening lengths.

4.2 Things that are always recommended

PEANOHILBERT
This is a tuning option. When set, the code will bring the particles into
Peano-Hilbert order after each domain decomposition. This improves
cache utilisation and performance.

WALLCLOCK
If set, a wallclock timer is used by the code to measure internal time con-
sumption (see cpu-log file). Otherwise, a timer that measures consumed
processor ticks is used.

4.3 TreePM options

PMGRID=128
This enables the TreePM method, i.e. the long-range force is computed with
a PM-algorithm, and the short range force with the tree. The parameter has
to be set to the size of the mesh that should be used, e.g. 64, 96, 128, etc.
The mesh dimensions need not necessarily be a power of two, but the FFT
is fastest for such a choice. Note: If the simulation is not in a periodic box,
then a FFT method for vacuum boundaries is employed, using a mesh with
dimension twice that specified by PMGRID.

9

V. Springel

PLACEHIGHRESREGION=1+8
If this option is set (will only work together with PMGRID), then the long
range force is computed in two stages: One Fourier-grid is used to cover
the whole simulation volume, allowing the computation of the large-scale
force. A second Fourier mesh is placed on the region occupied by ‘high-
resolution’ particles, allowing the computation of an intermediate-scale
force. Finally, the force on very small scales is computed by the tree. This
procedure can be useful for ‘zoom-simulations’, where the majority of par-
ticles (the high-res particles) are occupying only a small fraction of the vol-
ume. To activate this option, the parameter needs to be set to an integer that
encodes the particle types that make up the high-res particles in the form of
a bit mask. For example, if types 0, 1, and 4 are the high-res particles, then
the parameter should be set to PLACEHIGHRESREGION=1+2+16, i.e. to
the sum 20 +21 +24. The spatial region covered by the high-res grid is de-
termined automatically from the initial conditions. Note: If a periodic box
is used, the high-res zone is not allowed to intersect the box boundaries.

ENLARGEREGION=1.1
The spatial region covered by the high-res zone normally has a fixed size
during the simulation, which initially is set to the smallest region that en-
compasses all high-res particles. Normally, the simulation will be inter-
rupted if high-res particles leave this region in the course of the run. How-
ever, by setting this parameter to a value larger than one, the high-res region
can be expanded. For example, setting it to 1.4 will enlarge its side-length
by 40% (it remains centred on the high-res particles). Hence, with such a
setting, the high-res region may expand or move by a limited amount. If
in addition SYNCHRONIZATION is activated, then the code will be able
to continue even if high-res particles leave the initial high-res grid. In this
case, the code will update the size and position of the grid that is placed
onto the high-resolution region automatically. To prevent that this poten-
tially happens every single PM step, one should nevertheless assign a value
slightly larger than 1 to ENLARGEREGION.

ASMTH=1.25
This can be used to override the value assumed for the scale that defines the
long-range/short-range force-split in the TreePM algorithm. The default
value is 1.25, in mesh-cells.

RCUT=4.5
This can be used to override the maximum radius in which the short-range
tree-force is evaluated (in case the TreePM algorithm is used). The default
value is 4.5, given in mesh-cells.

10

User’s guide for GADGET-2

4.4 Single/double precision

DOUBLEPRECISION
This makes the code store and compute internal particle data in double
precision. Note that output files are nevertheless written by converting the
values that are saved to single precision.

DOUBLEPRECISION FFTW
If this is set, the code will use the double-precision version of FTTW, pro-
vided the latter has been explicitly installed with a ”d” prefix, and NO-
TYPEPREFIX FFTW is not set. Otherwise the single precision version
(”s” prefix) is used.

4.5 Time integration options

SYNCHRONIZATION
When this is set, particles may only increase their timestep if the new
timestep will put them into synchronisation with the higher time level. This
typically means that only on half of the timesteps of a particle an increase
of its step may occur. Especially for TreePM runs, it is usually advisable to
set this option.

FLEXSTEPS
This is an alternative to SYNCHRONIZATION. Particle timesteps are here
allowed to be integer multiples of the minimum timestep that occurs among
the particles, which in turn is rounded down to the nearest power-of-two
devision of the total simulated time-span. This option distributes particles
more evenly over individual system timesteps, particularly once a simula-
tion has run for a while, and may then result in a reduction of work-load
imbalance losses.

PSEUDOSYMMETRIC
When this option is set, the code will try to ‘anticipate’ timestep changes by
extrapolating the change of the acceleration into the future. This can some-
times improve the long-term integration behaviour of periodic orbits, be-
cause then the adaptive integration becomes more akin to a time reversible
integrator. Use this option with care. Note: This option has no effect if
FLEXSTEPS is set.

NOSTOP WHEN BELOW MINTIMESTEP
If this is activated, the code will not terminate when the timestep falls below
the value of MinSizeTimestep specified in the parameterfile. This is useful
for runs where one wants to enforce a constant timestep for all particles.
This can be done by activating this option, and by setting MinSizeTimestep
and MaxSizeTimestep to an equal value.

11

V. Springel

NOPMSTEPADJUSTMENT
When this is set, the long-range timestep for the PM force computation
is always determined by MaxSizeTimeStep. Otherwise, it is set to the
minimum of MaxSizeTimeStep and the timestep obtained for the maxi-
mum long-range force with an effective softening scale equal to the PM
smoothing-scale.

4.6 Output options

HAVE HDF5
If this is set, the code will be compiled with support for input and output
in the HDF5 format. You need to have the HDF5 libraries and headers
installed on your computer for this option to work. The HDF5 format can
then be selected as format ”3” in Gadget’s parameterfile.

OUTPUTPOTENTIAL
This will force the code to compute gravitational potentials for all particles
each time a snapshot file is generated. These values are then included in
the snapshot files. Note that the computation of the values of the potential
costs additional time.

OUTPUTACCELERATION
This will include the physical acceleration of each particle in snapshot files.

OUTPUTCHANGEOFENTROPY
This will include the rate of change of entropy of gas particles in snapshot
files.

OUTPUTTIMESTEP
This will include the timesteps actually taken by each particle in the snap-
shot files.

4.7 Things for special behaviour

NOGRAVITY
This switches off gravity. Makes only sense for pure SPH simulations in
non-expanding space.

NOTREERND
If this is not set, the tree construction will succeed even when there are a few
particles at identical locations. This is done by ‘rerouting’ particles once
the node-size has fallen below 10−3 of the softening length. However, when
this option is activated, this will be suppressed and the tree construction will
always fail if there are particles at identical or extremely close coordinates.

12

User’s guide for GADGET-2

NOTYPEPREFIX FFTW
If this is set, the fftw-header/libraries are accessed without type prefix
(adopting whatever was chosen as default at compile-time of fftw). Oth-
erwise, the type prefix ’d’ for double-precision is used.

LONG X/Y/Z
These options can only be used together with PERIODIC and NOGRAV-
ITY. When set, the options define numerical factors that can be used to
distort the periodic simulation cube into a parallelepiped of arbitrary aspect
ratio. This can be useful for idealised SPH tests.

TWODIMS
This effectively switches of one dimension in SPH, i.e. the code follows
only 2d hydrodynamics in the xy-, yz-, or xz-plane. This only works with
NOGRAVITY and if all coordinates of one of the axis are exactly equal.
Can be useful for idealised SPH tests.

SPH BND PARTICLES
If this is set, particles with a particle-ID equal to zero do not receive any
SPH acceleration. This can be useful for idealised SPH tests, where these
particles represent fixed ‘walls’.

NOVISCOSITYLIMITER
If this is set, there is no explicit upper limit on the viscosity. In the de-
fault version, this limiter will try to protect against possible particle ‘reflec-
tions’, which may in principle occur for poor timestepping in the presence
of strong shocks.

COMPUTE POTENTIAL ENERGY
When this option is set, the code will compute the gravitational potential
energy each time a global statistics is computed. This can be useful for
testing global energy conservation.

ISOTHERM EQS
This special option makes the gas behave like an isothermal gas with equa-
tion of state P = c2

sρ. The sound-speed squared, c2
s, is set instead of the

thermal energy per unit mass in the initial conditions, i.e. you need to spec-
ify c2

s in the block that is usually reserved for u. The generated snapshot
files will also contain the squared sound speed in this field. If the initial
value for u is zero, then the initial gas temperature in the parameter file is
used to define the sound speed according to c2

s = kT/mp, where mp is the
proton mass.

13

V. Springel

ADAPTIVE GRAVSOFT FORGAS
When this option is set, the gravitational softening lengths used for gas
particles is tied to their SPH smoothing length. This can be useful for dissi-
pative collapse simulations. The option requires the setting of UNEQUAL-
SOFTENINGS.

SELECTIVE NO GRAVITY
This can be used for special computations where one wants to exclude cer-
tain particle types from receiving gravitational forces. The particle types
that are excluded in this fashion are specified by a bit mask, in the same
way as for the PLACEHIGHRESREGION option.

LONGIDS
If this is set, the code assumes that particle-IDs are stored as 64-bit long
integers. This is only really needed if you want to go beyond ∼ 2 billion
particles.

4.8 Testing and debugging options

FORCETEST=0.01
This can be set to check the force accuracy of the code, and is only included
as a debugging option. The option should be set to a number between 0 and
1 (e.g. 0.01), which specifies the fraction of randomly chosen particles
for which at each timestep forces by direct summation are computed. The
normal tree-forces and the exact direct summation forces are then collected
in a file forcetest.txt for later inspection. Note that the simulation
itself is unaffected by this option, but it will of course run much(!) slower,
particularly if FORCETEST*NumPart*NumPart >> NumPart. Note:
Particle IDs must be set to numbers >=1 for this option to work.

4.9 Glass making

MAKEGLASS=262144
This option can be used to generate a glass-like particle configuration. The
value assigned gives the particle load, which is initially generated as a Pois-
son sample and then evolved towards a glass with the sign of gravity re-
versed.

5 Parameterfile

Many code features are controlled by a parameterfile that has to be specified whenever the
code is started. Each parameter value is set by specifying a keyword, followed by a numerical
value or a character string, separated by whitespace (spaces, tabs) from the keyword. For each
keyword, a separate line needs to be used, with the value and keyword appearing on the same

14

User’s guide for GADGET-2

line. Between keywords, arbitrary amounts of whitespace (including empty lines) may be used.
The sequence of keywords is arbitrary, but each keywords needs to appear exactly once, even
if its value is not relevant for the particular simulation (otherwise you’ll get an error message).
Note that the keywords are type-sensitive.

Lines with a leading ‘%’ are ignored. In lines with keywords, comments may also be added
after the specification of the value for the corresponding keyword.

In the following, each keyword and the meaning of its value are discussed in detail. Key-
words marked with ? may be changed during a run, i.e. changes of the corresponding values
will be taken into account upon starting the code with the restart-flag, but any changes of other
parameter values will be ignored. Note that you normally don’t need to make any changes in
the parameterfile when you restart a run from restart-files.

5.1 Filenames and file formats

OutputDir? /home/volker/galaxy collision

This is the pathname of the directory that holds all the output generated by
the simulation (snapshot files, restart files, diagnostic files). Note that this
directory needs to exist, otherwise an error message will be produced.

SnapshotFileBase? snapshot

From this string, the name of the snapshot files is derived by adding
an underscore, and the number of the snapshot in a 3-digits format. If
NumFilesPerSnapshot>1, each snapshot is distributed into several
files, where a group of processors writes simultaneously to a file. In this
case, the filenames are also supplemented with a tailing .n, where n desig-
nates the number of the file in the group of files representing the snapshot.

SnapFormat? 1

A flag that specifies the file-format to be used for writing snapshot files. A
value of 1 selects the standard file-format of GADGET-2 (which is compat-
ible with the format used in GADGET-1), while a value of 2 selects a more
convenient variant of this simple binary format. A value of 3 selects the use
of HDF5 instead. The structure of these files will be discussed in a sepa-
rate section below. Other values for SnapFormat could be used to select
customised file-formats if you implement appropriate modifications and/or
extensions of the code.

15

V. Springel

NumFilesPerSnapshot? 2

The code can distribute each snapshot onto several files. This
leads to files that are easier to handle in case the simulation is
very large, and also speeds up I/O, because these files can be writ-
ten in parallel. The number of processors must be equal or larger
than NumFilesPerSnapshot, because each snapshot file will hold
the data of a group of processors. Optimum I/O throughput is
reached if the number of processors is equal to, or a multiple of
NumFilesPerSnapshot, and if NumFilesWrittenInParallel
is equal to NumFilesPerSnapshot or a subdivision of it. With
NumFilesPerSnapshot=1 it is possible to write all particle data in
just one snapshot file.

InitCondFile /home/volker/ICs/galaxy.dat
This sets the filename of the initial conditions to be read in at start-up. Note
that the initial conditions file (or files) does not have to reside in the output
directory. The initial conditions can be distributed into several files, in the
same way as snapshot files. In this case, only the basename without the
tailing .n number should be specified as initial conditions filename. The
code will recognise the number of files that make up the initial conditions
from the header entries, and load all of these files accordingly. There is no
constraint for the number of these files in relation to the processor number.

ICFormat 1
This flag selects the file format of the initial conditions read in by the
code upon start-up. The possible format choices are the same as for
SnapFormat. It is therefore possible to use different formats for the ini-
tial conditions and the produced snapshot files. We recommend that you
convert your IC files to one of the formats of GADGET-2. Alternatively,
you could incorporate a customised reading routine directly into GADGET-
2, but this requires intimate understanding of the internal workings of the
code.

RestartFile? restart
This is the base filename of the restart files. For the given example param-
eter value, each processor will write a restart file restart.N, where N is
the rank number of the processor.

InfoFile? info.txt
This is the name of a file which will hold a list of all the timesteps. The last
entry always holds the timestep that is currently processed. For a running
simulation, the command ‘tail info.txt’ will then inform you about
the current status of the simulation. The meaning of the different entries in
the file is discussed in detail later on.

16

User’s guide for GADGET-2

TimingsFile? timings.txt

This is the name of a log-file that measures various aspects of the perfor-
mance of the gravitational force computation for each timestep. The mean-
ing of the individual entries will be described later on.

CpuFile? cpu.txt

This is a log-file that keeps track of the cumulative cpu-consumption of
various parts of the code. At each timestep, one line is added to this file.
The meaning of the individual entries will be described later on. A detailed
analysis of them allows an assessment of the code performance, and an
identification of potential bottlenecks.

EnergyFile? energy.txt

This is the name of a file where information about global energy statistics of
the simulation is stored. Checking energy conservation can sometimes be a
good proxy of time integration accuracy, but it is not a particularly stringent
test. Because computing the gravitational energy requires extra CPU time,
it has to be explicitly enabled with the COMPUTE POTENTIAL ENERGY
makefile option. Note also that an accurate computation of the peculiar
gravitational binding energy at high redshift is quite subtle, so that check-
ing for energy conservation is not a good test to evaluate the accuracy of
cosmological integrations.

5.2 CPU-time limit and restart options

TimeLimitCPU? 40000.0
This is the CPU-time limit for the current run (one submission to the com-
puting queue) in seconds. This value should be matched to the correspond-
ing limit of the queueing system, if appropriate. The run will automati-
cally interrupt itself and write a restart file, if 85% of this time has been
consumed. The extra 15% is introduced to guarantee that there is always
enough time left to safely finish the current time step and write the restart
file. Note that this CPU time refers to the wall-clock time on one processor
only.

ResubmitCommand? xyz.sh
If ResubmitOn=1, the code will execute the given command (xyz.sh
in this example) when it interrupts the run because the CPU-time limit is
about to be exhausted. Usually, xyz.sh should be set to the name of
an executable script in which one places the necessary commands for re-
submission of the job (with the 1-flag set for restart) to the computing
queue. Note that this feature should be used with care – it is always ad-
visable to supervise a running simulation closely.

17

V. Springel

ResubmitOn? 0
This flag can be used to enable the automatic re-submission feature of the
code (which is switched on for ResubmitOn=1).

CpuTimeBetRestartFile? 7200

This is the maximum amount of CPU-time (wall-clock time, in seconds)
that may be used by the code before it writes a new restart file. With this
parameter the code can hence be asked to write a restart file every once in a
while. This is meant to provide a precautionary measure against hardware
or software failures, in which case one can resume a simulation from the
last set of restart files. In the above example, a restart file would be written
automatically every 2 hours. The old set of restart files is renamed into
a set of .bak files before the new files are written, so that there is some
protection against a crash during the writing of the restart files itself (quite
typically, this may happen due to disk-full errors, for example).

5.3 Simulation specific parameters

TimeBegin 0

This initialises the time variable of the simulation when a run is started from
initial conditions (in internal units). If comoving integration is selected
(ComovingIntegrationOn= 1), the time variable is the dimension-
less expansion factor a itself, i.e. TimeBegin= a = 1/(1 + zstart).

TimeMax? 3.0
This marks the end of the simulation. The simulation will run up to this
point, then write a restart-file, and a snapshot file corresponding to this
time (even if the time TimeMax is not in the normal sequence of snapshot
files). If TimeMax is increased later on, the simulation can be simply
continued from the last restart-file. Note that this last snapshot-file will then
be overwritten, since it was a special dump out of the normal sequence.
For comoving integrations, the time variable is the expansion factor, e.g.
TimeMax= 1.0 will stop the simulation at redshift z = 0.

BoxSize 10000.0
The size of the periodic box (in code units) encompassing the simulation
volume. This parameter is only relevant if the PERIODIC makefile option
is used. Particle coordinates need to lie in the interval [0, BoxSize] in
the initial conditions file.

18

User’s guide for GADGET-2

PeriodicBoundariesOn 1
Enables or disables the use of periodic boundaries. The code needs to be
compiled with the PERIODIC makefile option for periodic boundaries,
otherwise it will complain and stop. (Actually, this parameter may be
viewed as redundant given that the same option is specified in the make-
file, but it is kept to make sure that you run your simulation always with
the ‘right’ executable.) When you use periodic boundary conditions for the
first time, GADGET-2 will compute correction tables for the periodic forces
and the periodic peculiar potential by means of Ewald summation (done in
parallel). As this computation takes a bit of time, these tables will be stored
on disk to speed-up the start of the code in future runs.

ComovingIntegrationOn 0

This flag enables or disables comoving integration in an expanding uni-
verse. For ComovingIntegrationOn=0, the code uses plain New-
tonian physics with vacuum or periodic boundary conditions. Time,
positions, velocities, and masses are measured in the internal sys-
tem of units, as specified by the selected system of units. For
ComovingIntegrationOn=1, the integration is carried out in an ex-
panding universe, using a cosmological model as specified by Omega0,
OmegaLambda, etc. In this cosmological mode, coordinates are comov-
ing, and the time variable is the expansion factor itself. If the code has not
been compiled with the PERIODIC makefile option, the underlying model
makes use of vacuum boundary conditions, i.e. density fluctuations outside
the particle distribution are assumed to be zero. This requires that your par-
ticle distribution represents a spherical region of space around the origin.
If PERIODIC is enabled, the code expects the particle coordinates to lie in
the interval [0, BoxSize].

5.4 Cosmological parameters

HubbleParam 0.7

Value of the Hubble constant in units of 100 km s−1Mpc−1. This is only
used in cosmological integrations when conversions to cgs units are re-
quired (e.g. for radiative cooling physics). Note however that the value of
HubbleParam is not needed (in fact, it does not enter the computation at
all) in purely collisionless simulations. This is because of the definition of
GADGET-2’s system of units, which eliminates an explicit appearance of
the value of the Hubble constant in the dynamical equations.

Omega0 0.3
Cosmological matter density parameter in units of the critical density at
z = 0. Relevant only for comoving integration.

19

V. Springel

OmegaLambda 0.7
Cosmological vacuum energy density (cosmological constant) in units of
the critical density at z = 0. Relevant only for comoving integration. For
a geometrically flat universe, one has Omega0 + OmegaLambda = 1.
For simulations in Newtonian space, this parameter has to be set to zero.

OmegaBaryon 0.04
Baryon density in units of the critical density at z = 0. This is not explicitly
used in the public version of GADGET-2, but since this paramater may be
useful for the implementation of certain physical processes (as it is done in
the full-physics version of GADGET-2), it has been kept in the code.

5.5 Memory allocation

BufferSize? 15
This specifies the size (in MByte) of a multi-purpose communication buffer
used by the code in various parts of the parallel algorithms, for example
during the force computation and the domain decomposition. The buffer
should be large enough to accommodate a ‘fair’ fraction of the particle mix
in order to minimise work-load imbalance losses. In practice, sizes between
a few to 100 MB offer enough room. Upon start-up, the code informs about
how many particles can be fitted into the communication structures during
the various parts of the code that make use of them. There is no problem
if a small BufferSize is used, except that it can lead to somewhat lower
overall performance.

PartAllocFactor? 1.1
Each processor allocates space for PartAllocFactor times the aver-
age number of particles per processor. This number needs to be larger
than 1 to allow the simulation to achieve a good work-load balance in
the domain decomposition, which requires that some particle-load imbal-
ance is accepted for better work-load balance. The specified value for
PartAllocFactor acts as a ceiling for the maximum allowed memory
imbalance, and the code will observe this limit in the domain decomposi-
tion, trying to achieve the best work-load balance within this bound. It is
good to make PartAllocFactor as large as possible for the available
memory per processor, but values in excess of 3 will usually not improve
performance any more. The recommended minimum value is ∼ 1.05, but
practical choices should be more like 1.5-2.0. For a value of 1.0 the code
will not be able to succeed in the domain decomposition and crash, unless
a single CPU is used.

20

User’s guide for GADGET-2

TreeAllocFactor? 0.7
To construct the BH-tree for N particles, somewhat less than N
internal tree-nodes are necessary for ‘normal’ particle distributions.
TreeAllocFactor sets the number of internal tree-nodes allocated
in units of the particle number. By experience, space for ' 0.65 N
internal nodes is usually fully sufficient for typical clustered particle
distributions, so a value of 0.7 should put you on the safe side. If
the employed particle number per processor is very small (less than a
thousand or so), or if there are many particle pairs with identical or
nearly identical coordinates, a higher value may be required. Since the
number of particles on a given processor may be higher by a factor
PartAllocFactor than the average particle number, the total amount of
memory requested for the BH tree on a single processor scales proportional
to PartAllocFactor*TreeAllocFactor.

5.6 Gravitational force accuracy

TypeOfOpeningCriterion? 0

This selects the type of cell-opening criterion used in the tree walks for
computing gravitational forces. A value of ‘0’ results in standard Barnes
& Hut, while ‘1’ selects a relative criterion that tries to limit the absolute
truncation error of the multipole expansion for every particle-cell interac-
tion. This scheme gives usually higher accuracy at a comparable level of
computational cost, something that makes it more costly at high redshift
because of the small residual forces there.

ErrTolTheta 0.7
This is the accuracy criterion (the opening angle θ) of the tree algo-
rithm if the standard Barnes & Hut (BH) opening criterion is used. If
TypeOfOpeningCriterion=1, θ and the BH criterion are only used
for the first force computation. These first forces are only used as input for
a recomputation of the forces with the relative cell opening criterion, which
is employed thereafter for the rest of the force computations.

21

V. Springel

ErrTolForceAcc? 0.005
This controls the accuracy of the relative cell-opening criterion (if en-
abled), where a cell is opened if M l2 > α|aold|r4. Here, α is set by
ErrTolForceAcc, M is the mass inside a node, l is its cell side-length,
and aold is the magnitude of the total acceleration of the particle. The latter
is usually estimated based on the gravitational force on the particle in the
previous timestep. Note that independent of this relative criterion, the code
will always open nodes if the point of reference lies within the geometric
boundaries of the cubical cell (enlarged by an additional 10% on each side).
This protects against the rare occurrence of very large force errors, which
would otherwise be possible.

5.7 Time integration accuracy

MaxSizeTimestep? 0.01

This parameter sets the maximum timestep a particle may take. This needs
to be set to a sensible value in order to protect against too large timesteps
for particles with very small acceleration. Usually, a few percent up to
tens of percent of the dynamical time of the system gives sufficient accu-
racy. For cosmological simulations, the parameter MaxSizeTimestep
has undergone an important change in its definition. Formerly, the parame-
ter was specifying the maximum allowed step in terms of max(∆a), where
a is the scale factor. Now, the parameter specifies max(∆ ln a), where ln
is the natural logarithm. The new definition is equivalent to specifying the
maximum allowed timestep for cosmological simulations as a fraction of
the current Hubble time. A value of ' 0.025 is usually accurate enough for
most cosmological runs.

MinSizeTimestep? 0

If a particle requests a timestep smaller than the specified value, the simula-
tion is terminated with a warning message. This can be used to prevent sim-
ulations to continue when the timestep has dropped to a very small value,
because such behaviour typically indicates a problem of some sort. How-
ever, if NOSTOP WHEN BELOW MINTIMESTEP is set in the Makefile, the
timestep is forced instead to be at least MinSizeTimestep, even if this
means that the other timestep criteria are ignored. This option should hence
be used with care. It can be useful however to force equal and constant
timesteps for all particles.

22

User’s guide for GADGET-2

TypeOfTimestepCriterion? 0

This selects the type of timestep criterion employed by the code for col-
lisionless dynamics. In GADGET-1, there have been 5 possible criteria
for this. However, upon systematic testing with high-resolution simula-
tions, none of them showed a clearly superior performance compared with
the ‘standard’ criterion used traditionally in cosmological simulations (see
the paper by Powers et al., 2003, MNRAS, 338, 14). Due to this re-
sult, the choice of timestep criteria in GADGET-2 has been reduced again,
and only the standard criterion is offered at present. So the only possible
value for TypeOfTimestepCriterion is ‘0’, which selects a timestep
∝ 1/

√
a, or more precisely, the timestep is given by ∆t =

√

2ηε/|a|,
where η =ErrTolIntAccuracy and ε is the gravitational softening
length.

ErrTolIntAccuracy? 0.025

This dimensionless parameter controls the accuracy of the timestep crite-
rion selected by TypeOfTimestepCriterion.

TreeDomainUpdateFrequency? 0.05

A domain decomposition and a full tree construction are not necessarily
carried out every single timestep. Instead, properties of tree nodes can be
dynamically updated as needed. This can improve the performance of the
code if there are many timesteps that advance only a very small fraction
of particles (below a percent or so). This parameter determines how often
the domain decomposition and the full tree are reconstructed from scratch.
A value of TreeUpdateFrequency= 0.05, for example, means that
the domain decomposition and the tree are reconstructed whenever there
have been at least 0.05 N force computations since the last reconstruction,
where N is the total particle number. A value of zero for this parameter
will reconstruct the tree every timestep.

MaxRMSDisplacementFac? 0.25

This defines an additional timestep limiter for the PM-step when the
TreePM method is used. In this case, the code computes the 3D veloc-
ity dispersion σ for all particles in the simulation, and restricts the max-
imum simulation timestep (and hence the PM timestep) such that σ∆t is
less than MaxRMSDisplacementFac times the mean particle separa-
tion d, or less than MaxRMSDisplacementFac times the scale rs of the
short-range/long-range force split, whichever is smaller.

23

V. Springel

5.8 Output of snapshot files

OutputListOn? 0

A value of 1 signals that the output times are given in the file specified by
OutputListFilename. Otherwise output times are generated automat-
ically in the way described below.

OutputListFilename? output times.txt

This specifies the name of a file that contains a list of desired output times.
If OutputListOn is set to 1, this list will determine the times when
snapshot-files are produced. The file given by OutputListFilename
should just contain the floating point values of the desired output times in
plain ASCII format. The times do not have to be ordered in time, but there
may be at most 350 values. Output times that are in the past relative to the
current simulation time will be ignored.

TimeOfFirstSnapshot 0.047619048

This variable selects the time for the first snapshot (if
OutputListOn=0). For comoving integration, the above choice
would therefore produce the first dump at redshift z = 20.

TimeBetSnapshot? 1.0627825

After a snapshot has been written, the time for the next snap-
shot is determined by either adding TimeBetSnapshot
to TimeOfFirstSnapshot, or by multiplying
TimeOfFirstSnapshot with TimeBetSnapshot. The latter
is done for comoving integration, and will hence lead to a series of outputs
that are equally spaced in log(a). The above example steps down to
redshift z = 0 in 50 logarithmically spaced steps. Note however that if
OutputListOn=1 this parameter is ignored.

TimeBetStatistics? 0.1
This determines the interval of time between two subsequent computations
of the total potential energy of the system. This information is then written
to the file given by EnergyFile, together with information about the
kinetic energies of the different particle types. A first energy statistics is
always produced at the start of the simulation at TimeBegin.

24

User’s guide for GADGET-2

NumFilesWrittenInParallel? 16
This parameter determines how many files may be written (or read) si-
multaneously by the code when generating (reading) snapshot files, or
when writing (reading) of restart files. Because each processor writes
its own restart file, it is in principle possible to do this fully in parallel,
with each processor writing ‘his’ file at the same time. However, for big
runs, say with 512 processors, a very large number of simultaneous I/O re-
quests for large files may cause severe problems for the operating system,
since the number of available disk drives on the file server will likely be
smaller than the number of processors. As a result, the I/O system may
get congested because these requests cannot all be served efficiently at
the same time. In order to avoid such a congestion and to reach an op-
timum overall throughput of the I/O subsystem, it is often better not to
write too many files simultaneously. This can be achieved with the param-
eter NumFilesWrittenInParallel, which restricts the number of
files GADGET-2 processes concurrently during restart or snapshot file read-
ing/writing. Note that NumFilesWrittenInParallel must be equal
or smaller than the number of processors used.

5.9 System of units

UnitVelocity in cm per s 1e5

This sets the internal velocity unit in cm/sec. The above choice
is convenient – it sets the velocity unit to km/sec. Note that
the specification of UnitLength in cm, UnitMass in g, and
UnitVelocity in cm per s also determines the internal unit of time.
The definitions made above imply that in internal units the Hubble constant
has a numerical value independent of h and hence HubbleParam. For
the numerical examples above, the Hubble constant has always the value
0.1 in internal units, independent of h, and the Hubble time is always 10 in
internal units, with one internal time unit corresponding to 9.8× 108 yr/h.
However, you are free to choose a different system of units if you like.
Note also that this implies that for purely gravitational dynamics, the code
will not need to know the value of h at all. HubbleParam is kept in
the parameterfile only because additional physics in the hydrodynamical
sector (which is not contained in the public distribution of GADGET-2) may
require it.

UnitLength in cm 3.085678e21

This sets the internal length unit in cm/h, where H0 =
100 h km s−1 Mpc−1. The above choice is convenient – it sets the
length unit to 1.0 kpc/h.

25

V. Springel

UnitMass in g 1.989e43

This sets the internal mass unit in g/h, where H0 = 100 h km s−1 Mpc−1.
The above choice is convenient – it sets the mass unit to 1010 M¯/h.

GravityConstantInternal 0

The numerical value of the gravitational constant G in internal
units depends on the system of units you choose. For example,
for the numerical choices made above, G = 43007.1 in internal
units. For GravityConstantInternal=0 the code calculates the
value corresponding to the physical value of G for you. Some-
times, you might want to set G yourself. For example, by spec-
ifying GravityConstantInternal=1, UnitLength in cm=1,
UnitMass in g=1, and UnitVelocity in cm per s=1, one ob-
tains a ‘natural’ system of units. Note that the code will nevertheless
try to use the ‘correct’ value of the Hubble constant even in this case, so
you should always set GravityConstantInternal=0 in cosmologi-
cal integrations.

5.10 SPH parameters

DesNumNgb 64
This is the desired number of SPH smoothing neighbours. Normally, the ef-
fective number of neighbours (defined as the mass inside the kernel divided
by the particle mass) is kept constant very close to this value. Should it ever
try to get outside a range ±MaxNumNgbDeviation from DesNumNgb,
the code will readjust the smoothing length such that the number of neigh-
bours is again in this range.

MaxNumNgbDeviation? 2

This sets the allowed variation of the number of neighbours around the
target value DesNumNgb.

ArtBulkViscCons? 1.0
This sets the value of the artificial viscosity parameter αvisc used by
GADGET-2. See code paper for details.

CourantFac? 0.15
This sets the value of the Courant parameter used in the determination of
the hydrodynamical timestep of SPH particles. Note that GADGET-2’s def-
inition of the SPH smoothing length differs by a factor of 2 from that found
in large parts of the SPH literature. As a consequence, comparable settings
of CourantFac are a factor of 2 smaller in GADGET-2 when compared
with codes using the different convention.

26

User’s guide for GADGET-2

InitGasTemp 10000

This sets the initial gas temperature in Kelvin when initial conditions are
read. If the temperature is below 104 K, a mean molecular weight cor-
responding to neutral gas of primordial abundance is assumed, otherwise
complete ionisation is assumed. However, the gas temperature is only set
to a certain temperature if InitGasTemp> 0 and if at the same time the
temperature of the gas particles in the initial conditions file is zero, other-
wise the initial gas temperature is left at the value stored in the IC file.

MinGasTemp 20

The minimum allowed gas temperature in Kelvin (this is converted by the
code to a minimum thermal energy per unit mass assuming the mean molec-
ular weight of neutral gas). This may be set to zero in principle, but often
it is desirable to prevent the gas from becoming too cold, e.g. for resolution
reasons or because of lower limits in the implemented cooling function.

MinGasHsmlFractional 0.1
This parameter sets the minimum allowed SPH smoothing length in units
of the gravitational softening length of the gas particles. The smooth-
ing length will be prevented from falling below this value. When this
bound is actually reached, the number of smoothing neighbours will in-
stead be increased above DesNumNgb, even if this means that the upper
limit DesNumNgb+MaxNumNgbDeviation is exceeded. The parame-
ter MinGasHsmlFractional can be zero, allowing the smoothing ra-
dius to vary without bounds, which is usually adequate.

5.11 Gravitational softening

The code distinguishes between different particle types. Each type may have a different grav-
itational softening. As far as gravity is concerned, all the types are treated equivalently by the
code, the names ‘Gas’, ‘Halo’, ‘Disk’, ‘Bulge’, ‘Stars’, and ‘Bndry’, are just arbitrary tags,
still reflecting GADGET-2’s origin as a tool to study colliding galaxies. However, the particles
of the first type (‘Gas’) are indeed treated as SPH particles, i.e. they receive an additional hy-
drodynamic acceleration, and their internal entropy per unit mass is evolved as independent
thermodynamic variable.

Gravity is softened with a spline, as outlined in the code paper. The softenings quoted here
all refer to ε, the roughly equivalent Plummer softening length. Note that for the spline that is
actually used, the force will be exactly Newtonian beyond h = 2.8ε. The softening lengths are
in internal length units. For comoving integration, the softening refers to the one employed in
comoving coordinates, which usually stays fixed during the simulation. However, employing
the *MaxPhys parameters described below the code can also be asked to switch to a fixed
softening in physical scale below a certain redshift.

If particle types with different softenings are used, the UNEQUALSOFTENINGS option in

27

V. Springel

the makefile needs to be set. Unlike in GADGET-1, the present code stores all particle types in a
single tree, and this option tells the code to mark tree nodes that contain particles with different
softenings in a special way.

In cosmological simulations, one sometimes wants to start a simulation with a softening εcom

that is fixed in comoving coordinates (where the physical softening, εphys = aεcom, then grows
proportional to the scale factor a), but at a certain redshift one wants to freeze the resulting
growth of the physical softening εmax

phys at a maximum value. These maximum softening lengths
are specified by the Softening*MaxPhys parameters. In the actual implementation, the
code uses ε′com = min(εcom, εmax

phys/a) as comoving softening. Note that this feature is only
enabled for ComovingIntegrationOn=1, otherwise the *MaxPhys values are ignored.

SofteningGas 0

SofteningGas specifies the (comoving) softening of the first particle
group.

SofteningHalo 18

This specifies the (comoving) softening of the second particle group.

SofteningDisk 90

This specifies the (comoving) softening of the third particle group.

SofteningBulge 450

This specifies the (comoving) softening of the fourth particle group.

SofteningStars 0

This specifies the (comoving) softening of the fifth particle group.

SofteningBndry 0

This specifies the (comoving) softening of the sixth particle group.

SofteningGasMaxPhys 0

This specifies the maximum physical softening of the first particle group.

SofteningHaloMaxPhys 3

This specifies the maximum physical softening of the second particle group.

SofteningDiskMaxPhys 15

This specifies the maximum physical softening of the third particle group.

SofteningBulgeMaxPhys 75

This specifies the maximum physical softening of the fourth particle group.

SofteningStarsMaxPhys 0

This specifies the maximum physical softening of the fifth particle group.

28

User’s guide for GADGET-2

SofteningBndryMaxPhys 0

This specifies the maximum physical softening of the sixth particle group.

6 File formats of GADGET-2: Snapshots & Initial conditions

The primary result of a simulation with GADGET-2 are snapshots, which are simply dumps of
the state of the system at certain times. GADGET-2 supports parallel output by distributing a
snapshot into several files, each written by a group of processors. This procedure allows an
easier handling of very large simulations; instead of having to deal with one file of size of a few
GB, say, it is much easier to have several files with a smaller size of a few hundred MB instead.
Also, the time spent for I/O in the simulation code can be reduced if several files are written in
parallel.

Each particle dump consists of k files, where k is given by NumFilesPerSnapshot. For
k > 1, the filenames are of the form snapshot XXX.Y, where XXX stands for the number
of the dump, Y for the number of the file within the dump. Say we work on dump 7 with
k = 16 files, then the filenames are snapshot 007.0 to snapshot 007.15. For k = 1,
the filenames will just have the form snapshot XXX. The base “snapshot” can be changed
by setting SnapshotFileBase to another value.

Each of the individual files of a given set of snapshot files contains a variable number of par-
ticles. However, the files all have the same basic format (this is the case for all three fileformats
supported by GADGET-2), and all of them are in binary. A binary representation of the particle
data is our preferred choice, because it allows much faster I/O than ASCII files. In addition, the
resulting files are much smaller, and the data is stored loss-less.

6.1 Structure of the default snapshot file format

In the default file format of GADGET-2 (selected as fileformat 1 for SnapFormat), the data
is organised in blocks, each containing a certain information about the particles. For example,
there is a block for the coordinates, and one for the temperatures, etc. A list of the blocks
defined in the public version of GADGET-2 is given in Table 2. The first block has a special
role, it is a header which contains global information about the particle set, for example the
number of particles of each type, the number of files used for this snapshot set, etc.

Within each block, the particles are ordered according to the particle type, i.e. gas particles
will come first (type 0), then ‘halo’ particles (type 1), followed by ‘disk’ particles (type 2), and
so on. The correspondence between type number and symbolic type name is given in Table 3.
However, it is important to realize that the detailed sequence of particles within the blocks will
still change from snapshot to snapshot. Also, a given particle may not always be stored in the
snapshot file with the same number among the files belonging to one set of snapshot files. This
is because particles may move around from one processor to another during the coarse of a
parallel simulation. In order to trace a particle between different outputs, one therefore has to
resort to the particle IDs, which can be used to label particles uniquely.

29

V. Springel

To allow an easy access of the data also in Fortran2, the blocks are stored using the ‘un-
formatted binary’ convention of most Fortran implementations. In it, the data of each read or
write statement is bracketed by block-size fields, which give the length of the data block in
bytes. These block fields (which are two 4-byte integers, one stored before the data block and
one after) can be useful also in C-code to check the consistency of the file structure, to make
sure that one reads at the right place, and to skip individual blocks quickly by using the length
information of the block size fields to fast forward in the file without actually having to read the
data. The latter makes it possible to efficiently read only certain blocks, say just temperatures
and densities, but no coordinates and velocities.

Assuming that variables have been allocated/declared appropriately, a possible read-statement
of some of these blocks in Fortran could then for example take the form:
read (1) npart, massarr, a, redshift, flagsfr, flagfeedb, nall
read (1) pos
read (1)
read (1) id
read (1) masses

In this example, the block containing the velocities, and several fields in the header, would
be skipped. Further read-statements may follow to read additional blocks if present. In the
file read snapshot.f, you can find a simple example of a more complete read-in routine.
There you will also find a few lines that automatically generate the filenames, and further hints
how to read in only certain parts of the data.

When you use C, the block-size fields need to be read or skipped explicitly, which is quite
simple to do. This is demonstrated in the file read snapshot.c. Note that you need to
generate the appropriate block field when you write snapshots in C, for example when gen-
erating initial conditions for GADGET-2. Unlike GADGET-1, GADGET-2 will check explicitly
that the block-size fields contain the correct values and refuse to start if not. In the Analysis
directory, you can also find an example for a read-in routine in IDL.

The sequence of blocks in a file is given in Table 2. Note however that not all of the blocks
need to be present, depending on the type of the simulation, and the makefile options of the
code. For example, if there are no gas particles in the snapshot file, the blocks for internal
energy or density will be absent. The presence of the mass block depends on whether or not
particle masses are defined to be constant for certain particle types by means of the Massarr
table in the file header. If a non-zero mass is defined there for a certain particle type, particles
of this type will not be listed with individual masses in the mass block. If such fixed particle
masses are defined for all types that are present in the snapshot file, the mass block will be
absent.

The detailed structure of the fields of the file header is given in Table 4. Note that the header
is filled to a total length of 256 bytes with unused entries, leaving space for extensions that can
be easily ignored by legacy code. Also note that a number of the flags defined in the header are

2This should not be misunderstood as an encouragement to use Fortran.

30

User’s guide for GADGET-2

Block ID HDF5 identifier Block content

1 HEAD Header
2 POS Coordinates Positions
3 VEL Velocities Velocities
4 ID ParticleIDs Particle ID’s
5 MASS Masses Masses (only for particle types with vari-

able masses)
6 U InternalEnergy Internal energy per unit mass (only SPH

particles)
7 RHO Density Density (only SPH particles)
8 HSML SmoothingLength SPH smoothing length h (only SPH parti-

cles)
9 POT Potential Gravitational potential of particles (only

when enabled in makefile)
10 ACCE Acceleration Acceleration of particles (only when en-

abled in makefile)
11 ENDT RateOfChangeOfEntropy Rate of change of entropic function of

SPH particles (only when enabled in
makefile)

12 TSTP TimeStep Timestep of particles (only when enabled
in makefile)

Table 2: Output blocks defined in GADGET-2’s file formats.

Type Symbolic Type Name

0 Gas
1 Halo
2 Disk
3 Bulge
4 Stars
5 Bndry

Table 3: Symbolic type names and their corresponding type numbers.

31

V. Springel

not used by the public version of GADGET-2. The data type of each field in the header is either
double (corresponding to real*8 in Fortran), or int (corresponding to int*4 in Fortran),
with the exception of the particle numbers, which are unsigned int.

The format, units, and variable types of the individual blocks in the snapshot files are as
follows:

1. Header:
struct io header;

The individual fields of the file header are defined in Table 4.

2. Particle positions:
float pos[N][3]; real*4 pos(3,N)

Comoving coordinates in internal length units (corresponds to h−1kpc if the above
choice for the system of units is adopted). N=sum(io header.Npart) is the total num-
ber of particles in the file. Note: The particles are ordered in the file according to their
type, so it is guaranteed that particles of type 0 come before those of type 1, and so on.
However, within a type, the sequence of particles can change from dump to dump.

3. Particle velocities:
float vel[N][3]; real*4 vel(3,N)

Particle velocities u in internal velocity units (corresponds to km/sec if the default choice
for the system of units is adopted). Peculiar velocities v are obtained by multiplying u
with

√
a, i.e. v = u

√
a. For non-cosmological integrations, u = v are just ordinary

velocities.

4. Particle identifications:
unsigned int id[N]; int*4 id(N)

Particle number for unique identification. The order of particles may change between
different output dumps, but the IDs can be easily used to bring the particles back into the
original order for every dump.

5. Variable particle masses:
float masses[Nm]; real*4 masses(Nm)

Particle masses for those particle types that have variable particle masses (i.e. zero entries
in massarr). Nm is the sum of those npart entries that have vanishing massarr. If
Nm=0, this block is not present at all.

6. Internal energy:
float u[Ngas]; real*4 u(Ngas)

Internal energy per unit mass for the Ngas=npart(0) gas particles in the file. The
block is only present for Ngas>0. Units are again in internal code units, i.e. for the
above system of units, u is given in (km/sec)2.

7. Density:
float rho[Ngas]; real*4 rho(Ngas)

32

User’s guide for GADGET-2

Header Field Type HDF5 name Comment

Npart[6] uint NumPart ThisFile The number of particles of each
type in the present file.

Massarr[6] double MassTable The mass of each particle type. If
set to 0 for a type which is present,
individual particle masses from the
mass block are read instead.

Time double Time Time of output, or expansion factor
for cosmological simulations.

Redshift double Redshift z = 1/a−1 (only set for cosmolog-
ical integrations).

FlagSfr int Flag Sfr Flag for star formation (unused in
the public version of GADGET-2).

FlagFeedback int Flag Feedback Flag for feedback (unused).
Nall[6] int NumPart Total Total number of particles of each

type in the simulation.
FlagCooling int Flag Cooling Flag for cooling (unused).
NumFiles int NumFilesPerSnapshot Number of files in each snapshot.
BoxSize double BoxSize Gives the box size if periodic

boundary conditions are used.
Omega0 double Omega0 Matter density at z = 0 in units of

the critical density (only relevant for
cosmological integrations).

OmegaLambda double OmegaLambda Vacuum energy density at z = 0 in
units of the critical density.

HubbleParam double HubbleParam Gives ‘h’, the Hubble constant
in units of 100 km s−1Mpc−1 (for
cosmological integrations).

FlagAge int Flag StellarAge Creation times of stars (unused).
FlagMetals int Flag Metals Flag for metallicity values (unused).
NallHW[6] int NumPart Total HW For simulations that use more than

232 particles, these fields hold the
most significant word of 64-bit total
particle numbers. Otherwise zero.

flag entr ics int Flag Entropy ICs Flags that initial conditions contain
entropy instead of thermal energy in
the u block.

unused Currently unused space which fills
the header to a total length of 256
bytes, leaving room for future addi-
tions.

Table 4: Fields in the file header of snapshot files. In the native file formats of GADGET-2,
these fields are the elements of a structure of total length of 256 bytes. In the HDF5
file format, each field is stored as an attribute to a Header data group.

33

V. Springel

Comoving density of SPH particles. Units are again in internal code units, i.e. for the
above system of units, rho is given in 1010 h−1M¯/(h−1kpc)3.

8. Smoothing length:
float hsml[Ngas]; real*4 hsml(Ngas)

Smoothing length of the SPH particles. Given in comoving coordinates in internal length
units.

9. Gravitational potential:
float pot[N]; real*4 pot(N)

Gravitational potential for particles. This block will only be present if it is explicitly
enabled in the makefile.

10. Accelerations:
float acc[N][3]; real*4 acc(3,N)

Accelerations of particles. This block will only be present if it is explicitly enabled in the
makefile.

11. Rate of entropy production:
float dAdt[Ngas]; real*4 dAdt(Ngas)

The rate of change of the entropic function of each gas particles. For adiabatic simula-
tions, the entropy can only increase due to the implemented viscosity. This block will
only be present if it is explicitly enabled in the makefile.

12. Timesteps of particles:
float dt[N]; real*4 dt(N)

Individual particle timesteps of particles. For cosmological simulations, the values stored
here are ∆ ln(a), i.e. intervals of the natural logarithm of the expansion factor. This block
will only be present if it is explicitly enabled in the makefile.

6.2 A variant of the default file format

Whether or not a certain block is present in GADGET-2’s default fileformat depends on the type
of simulation, and the makefile options. This makes it difficult to write reasonably general I/O
routines for analysis software, capable of dealing with output produced for a variety of makefile
settings. For example, if one wants to analyse the (optional) rate of entropy production of SPH
particles, then the location of the block in the file changes if, for example, the output of the
gravitational potential is enabled or not. This problem becomes particularly acute in the full
physics version of GADGET-2, where already around 40 I/O blocks are defined.

To remedy this problem, a variant of the default fileformat was implemented in GADGET-2
(based on a suggestion by Klaus Dolag), which can be selected by setting SnapFormat=2.
Its only difference is that each block is preceeded by a small additional block which contains
an identifier in the form of a 4-character string (filled with spaces where appropriate). This
identifier is contained in the second column of Table 2. Using it, one can write more flexible

34

User’s guide for GADGET-2

I/O routines and analysis software that quickly fast forwards to blocks of interest in a simple
way, without having to know where it is expected in the snapshot file.

6.3 The HDF file format

If the hierarchical data format is selected as format for snapshot files or initial conditions files,
GADGET-2 accesses files with low level HDF5 routines. Advantages of HDF5 lie in its portabil-
ity (e.g. automatic endianness conversion) and generality (which however results in somewhat
more complicated read and write statements), and in the availability of a number of tools to
manipulate or display HDF5 files. A wealth of information about HDF5 can be found on the
website of the project.

GADGET-2 stores the snapshot file data in several data groups, which are organised as fol-
lows:

/Header

/Type0/Positions
/Type0/Velocities
/Type0/IDs
...
/Type1/Positions
/Type1/Velocities
...

The Header group only contains attributes that hold the fields of the file header in the
standard file format of GADGET-2. The names of these attributes are listed in Table 4. For
each particle type present in the snapshot file, a separate data group is defined, named Type0,
Type1, and so on. The blocks of the standard file format are then stored as datasets within
these groups. The names of these data sets are listed in Table 2.

6.4 Format of initial conditions

The possible file formats for initial conditions are the same as those for snapshot files, and are
selected with the ICFormat parameter. However, only the blocks up to and including the gas
temperature (if gas particles are included) need to be present; gas densities, SPH smoothing
lengths and all further blocks need not be provided.

In preparing initial conditions for simulations with gas particles, the temperature block can
be filled with zero values, in which case the initial gas temperature is set in the parameterfile
with the InitGasTemp parameter. However, even when this is done, the temperature block
must still be present.

Note that the field Time in the header will be ignored when GADGET-2 is reading an ini-
tial conditions file. Instead, you have to set the time of the start of the simulation with the
TimeBegin option in the parameterfile.

35

V. Springel

7 Diagnostic output files

7.1 Information file

In the file with name specified by InfoFile, you just find a list of all the timesteps. Typical
output in this file looks like this:

Begin Step 49, Time: 0.143555, Systemstep: 0.00292969

Begin Step 50, Time: 0.146484, Systemstep: 0.00292969

Begin Step 51, Time: 0.149414, Systemstep: 0.00292969

Begin Step 52, Time: 0.152344, Systemstep: 0.00292969

The first number just counts and identifies all the timesteps, the values given after ‘Time’ are
their current simulation times, and the ‘Systemstep’-values give the time difference to the pre-
ceeding step, which is equal to by how much the simulation as a whole has been advanced since
the last step. For cosmological integrations, this output is supplemented with the redshift, and
the systemstep in linear and logarithmic form:

Begin Step 636, Time: 0.487717, Redshift: 1.05037, Systemstep: 0.000724494, Dloga: 0.00148658

Begin Step 637, Time: 0.488443, Redshift: 1.04732, Systemstep: 0.000725571, Dloga: 0.00148658

Begin Step 638, Time: 0.489169, Redshift: 1.04428, Systemstep: 0.000726651, Dloga: 0.00148658

Begin Step 639, Time: 0.489897, Redshift: 1.04125, Systemstep: 0.000727732, Dloga: 0.00148658

Begin Step 640, Time: 0.490626, Redshift: 1.03821, Systemstep: 0.000728814, Dloga: 0.00148658

7.2 Performance statistics of the gravitational tree

In the file specified by TimingsFile, you get some statistics about the performance of the
gravitational force computation by the tree algorithm, which is usually (but not always) the
main sink of computational time in a simulation. A typical output may look like this:

Step= 482 t= 1.29199 dt= 0.00292969
Nf= 10992 total-Nf= 0016981370
work-load balance: 1.10997 max=0.618782 avg=0.557475 PE0=0.618782
particle-load balance: 1.02133
max. nodes: 15202, filled: 0.422278
part/sec=9858.74 | 8881.96 ia/part=1004.71 (0)

Step= 483 t= 1.29492 dt= 0.00292969
Nf= 60000 total-Nf= 0017041370
work-load balance: 1.01677 max=2.51368 avg=2.47221 PE0=2.43074
particle-load balance: 1.02133
max. nodes: 15202, filled: 0.422278
part/sec=12134.9 | 11934.7 ia/part=805.744 (0)

36

User’s guide for GADGET-2

The first line of the block generated for each step informs you about the number of the current
timestep, the current simulation time, and the system timestep itself (i.e. the time difference to
the last force computation). Nf gives the number of particles that receive a force computation in
the current timestep, while total-Nf gives the total number of force computations since the
simulation was started. work-load balance gives the work-load balance in the actual tree
walk, i.e. the largest required time of all the processors divided by the average time. The number
given by max is the maximum time (in seconds) among the processors spent for the tree walk,
while avg gives the average, and PE0 the time for processor 0. particle-load balance
gives the maximum number of particles per processor divided by the average number, i.e. it
measures the memory imbalance. An upper bound for this number is PartAllocFactor.
However, for technical reasons, the domain decomposition always leaves room for a few par-
ticles, hence this upper bound is never exactly reached. max.nodes informs about the maxi-
mum number of internal tree nodes that are used among the group of processors, and the number
behind filled gives this quantity normalised to the total number of allocated tree nodes, it
hence gives the fraction to which the tree storage is filled. Finally, part/sec measures the
raw force speed in terms of tree-force computations per processor per second. The first num-
ber gives the speed that would be achieved for perfect work-load balance. Due to work-load
imbalance, the actually achieved average effective force speed will always be lower in practice,
and this number is given after the vertical line. ia/part gives the average number of particle-
node interactions required to compute the force for each of the active particles. The number in
parenthesis is only non-zero if the Ewald correction is used to obtain periodic boundaries. It
then gives the average number of Ewald correction-forces evaluated per particle.

7.3 CPU-time statistics

In the file specified by CpuFile, you get some statistics about the total CPU consumption
measured in various parts of the code while it is running. A typical output looks like this:

Step 13121, Time: 0.168501, CPUs: 2
44000.01 32984.59 6496.83 52.40 1318.17 2744.38 ...

Step 13122, Time: 0.168504, CPUs: 2
44001.11 32985.30 6497.01 52.40 1318.17 2744.59 ...

For each timestep, there are two lines. The first line gives the current time step, corresponding
simulation time, and number of CPUs used. In the second line, the first number informs you
about the total cumulative CPU consumption of the code up to this point (in seconds), while
the other numbers measure the time spent in various parts of the code. The numbers give
measurements for the following parts (in that sequence):

1. Total consumption.

2. Gravitational force computation (including tree walks, construction, communication).

3. Hydrodynamics (including neighbour search, density determination, and SPH communi-
cation).

37

V. Springel

4. Domain decomposition.

5. Potential energy computation (for the energy statistics).

6. Drifting the particle set.

7. Timestep determination and ‘kicking’ of particles.

8. Writing of snapshot files.

9. Pure time for tree walks (this is a sub-part of 1).

10. Tree construction (this is a sub-part of 1).

11. Communication and summation (this tries to measure the time spent in communication
and summation of force components in the gravitational tree part).

12. Imbalance of gravitational tree (this measures work-load imbalance losses directly).

13. SPH computations (finding of neighbours and evaluating SPH-sums with them).

14. Communication and summation in the SPH routines.

15. Losses due to work-load imbalance in the SPH part.

16. Neighbour adjustment (measures the time needed to readjust SPH smoothing lengths if
the number of neighbours obtained for the next guess smoothing length falls outside the
desired range).

17. Time for PM computation.

18. Time needed to establish Peano-Hilbert order.

19. Time spent in cooling and star formation routines. (Not present in the public version of
GADGET-2.)

All these times are wallclock times, provided WALLCLOCK is set in the makefile, which is
the recommended setting. Otherwise, they correspond to CPU cycles (expressed in seconds)
consumed on average per processor. The latter way of measuring things is more meaningful
if GADGET-2 has not exclusive access to all of the CPUs (i.e. other processes consume a non-
negligible fraction of the available CPU processes), but instead needs to share them with other
processes to a significant degree.

38

User’s guide for GADGET-2

7.4 Energy statistics

In the file specified by EnergyFile, the code gives some statistics about the total energy
of the system. In regular intervals (specified by TimeBetStatistics), the code com-
putes the total kinetic, thermal and potential energy of the system, and it then adds one line
to EnergyFile.

Each of these lines contains 28 numbers, which you may process by some analysis script.
The first number in the line is the output time, followed by the total internal energy of the
system (will be 0 if no gas physics is included), the total potential energy, and the total kinetic
energy.

The next 18 numbers are the internal energy, potential energy, and kinetic energy of the
six particle types Gas to Bndry. Finally, the last six numbers give the total mass in these
components.

While the meaning of kinetic and potential energy in non-cosmological simulations is straight-
forward (and also the test for conservation of total energy), this is more problematic in cosmo-
logical integrations.

For cosmological integrations, the kinetic energy you obtain in this file will be

T =
1

2

∑

i

miw
2, (1)

where w is the peculiar velocity divided by
√

a (see paper). The potential energy will be
computed as

U =
1

2

∑

i

miΦ(xi), (2)

where Φ(xi) is the peculiar potential when periodic boundaries are used.
If vacuum boundaries are used, and no cosmological integration is done, Φ(xi) is simply the

Newtonian potential. However, for comoving integration with vacuum boundaries the potential
is computed as

Φ(xi) = −G
∑

k

mk g (|xk − xi|) −
1

2
Ω0H

2
0x

2
i (3)

Frequent outputs of the energy quantities allow a check of energy conservation. While this
is straightforward for Newtonian dynamics, it is more difficult for cosmological integrations,
where the Layzer-Irvine equation is needed. (Note that the softening needs to be fixed in co-
moving coordinates for it.) We remark that it is in practice not easy to obtain a precise value
of the peculiar potential energy at high redshift (should be exactly zero for a homogeneous
particle distribution). Also, the cosmic energy integration is a differential equation, so a test of
conservation of energy in an expanding cosmos is less straightforward that one may think, to
the point that it is nearly useless for testing code accuracy.

Also note that for vacuum boundary conditions in cosmological integrations, the zero-point
of the potential will not be the one of the ordinary peculiar potential. Therefore, the potential
energy will be orders of magnitude larger than the kinetic energy, and the kinetic energy will
be dominated by the outer shell of the simulation volume in this case.

39

V. Springel

8 Differences between GADGET-1 and GADGET-2

8.1 Architectural changes

There have been many major changes in the internal workings between GADGET-1 and GADGET-
2, affecting nearly all parts of the code. In fact, basically all parts of the code have been com-
pletely rewritten, or were revised substantially. These modifications were done to improve the
accuracy and the performance of the code, to reduce its memory consumption, and to make it
applicable to a wider range of types of simulations. Detailed explanations of the reasoning be-
hind each of these modifications is beyond the scope of this short set of notes. This information
can be found in the code paper on GADGET-2. However, below, I give a very brief summary of
some of the most important changes in code design.

1. The internal organisation of the time integration has been changed substantially. The
timestep of a particle is now usually restricted (again) to be a power of 2 subdivision
of the total time span that is simulated. (It is however also possible to run the code
with a more flexible timestep hierarchy.) The integration proceeds then as an alternation
between ‘drift’ and ‘kick’ operations, with the leapfrog being a kick-drift-kick scheme
now, instead of a drift-kick-drift. There is no explicit prediction step any more, since this
part has been absorbed into the drift operation.

2. The quadrupole moments in the gravitational tree have been dropped, i.e. the new tree has
only monopole moments. To achieve the same force accuracy, this generally means that
more cell-particle interactions have to be evaluated. However, because each interaction
is relatively simple, this effect is largely offset by the increased performance of the tree-
walk in terms of interactions per second. This has become possible because the monopole
interactions are ‘simpler’ than the quadrupole ones, and in addition, the cache utilisation
in the tree walk has been improved. The net result is that the new gravitational code
is faster than the old one at the same accuracy. The ultimate reason for dropping the
quadrupole moments has however been that this simplifies the dynamic update (‘drift’)
of the tree. This is now done fully consistently, i.e. the tree accuracy does not degrade
when the tree has not been updated for a while. (In the old code, the change of the
quadrupole moments had been neglected. Also, in the Ewald correction their contribution
was neglected.)

3. For cosmological integrations, the integration variables have been changed: The velocity
variable is now taken to be u = a2ẋ, and not w =

√
aẋ as before. This was adopted

because then the equation of motion for u does not depend on u any more, and only
then can the leapfrog be formulated in a symplectic way, which allows the Hamiltonian
structure of the system to be preserved. (Note however that the velocities in the snapshot
and initial conditions files are still in terms of w in order to have backwards compatability
with GADGET-1.)

4. SPH is implemented using the conservative ‘entropy formulation’ by default.

40

User’s guide for GADGET-2

5. The code may now be run optionally as a Tree-PM hybrid code, where the long-range
gravitational force is computed with discrete Fourier transforms. A parallel FFT is used
to this end. Both periodic and non-periodic boundary conditions are supported. Further-
more, an extension of the PM algorithm is available that is designed for “zoom” simula-
tions, where a small volume is sampled with very many high-resolution particles. Here,
the code can be instructed to place a second PM mesh on the high-res region, such that the
full force for the high-res particles is composed of three components, a long-range PM
force, an intermediate-range PM force, and a short range tree force. The time integration
between short-range and long-range forces is decoupled such that the PM timestep may
be larger than the short-range step. Nevertheless the integration scheme in principle still
preserves its symplectic character (in an exact fashion only if the short-range steps do not
change and are all equal, and if force errors are negligible).

8.2 Notes on migrating from GADGET-1 to GADGET-2

If you have used the earlier version GADGET-1 before, you will be familiar with all the prac-
ticalities of running GADGET-2 already. This is because nothing has really changed here. In
particular, the default initial conditions file format has not changed (apart from some exten-
sions), and the mechanisms for starting, interrupting, and resuming a simulation are still the
same.

However, as described above, there have been a number of changes in the parameterfile
that controls each simulation, and there are more compilation options in the makefile of the
code. If you want to reuse an old parameterfile with GADGET-2, you therefore have to make a
few modifications of it. If you simply start the new code with the old parameterfile, you will
get error messages that complain about obsolete or missing parameters. Delete or add these
parameters as needed (see also the information below). Note in particular that the meaning of
the parameter MaxSizeTimestep has changed.

As a result of the different time integration scheme used in the new version of the code,
considerably smaller steps are done by the code at high redshift than it used to be the case. This
is necessary because even in the fully linear regime, the timestep may not exceed a certain small
fraction of the Hubble time in the new time integration scheme, otherwise the integration of the
linear evolution would become compromised. The old code was able to avoid this problem
by a trick – its integration step essentially mimicked the Zeldovich approximation, allowing it
to traverse linear evolution with pretty large steps. However, this integration scheme was not
symplectic, while the new one is. The advantages brought about by the new integration scheme
far outweigh the additional cost of having to do a few more steps at high redshift.

Note that one should also carefully review which makefile options are appropriate for a given
simulation. For many types of simulations, there are now different possibilities for running a
simulation, e.g. with or without TreePM algorithm, with single or double-precision, etc.

41

V. Springel

8.3 Dropped makefile options

In case you wonder, GADGET-1 contained a number of makefile options that are not present any
more. The following table lists them, and briefly explains the reason why they were dropped.

-DVELDISP The timestep criterion based on an estimate of the
local velocity dispersion has been dropped because,
disappointingly, it did not do significantly better
than simpler timestep criteria based on the velocity
alone.

-DBMAX Something equivalent to BMAX is always enforced in
the new tree walk.

-DRECTREECONS The monopole moments of the tree are always con-
structed recursively in the new code.

-DINLINE The routines that could have benefitted from inlining
have been inlined manually, or have been replaced
by macros.

-DDIAG Timing diagnostics are now always collected by the
code.

8.4 List of source files of GADGET-2

In Table 5, you can find an updated list of the source files of GADGET-2. The source code is
commented and reasonably readable I hope. As an additional help to browse the sources, they
can be accessed via a cross-references hypertext documentation that can be found in the html
subdirectory (open the file index.html in your favourite browser). This documentation has
been generated directly from the annotated source code with the doygen tool. If you change
the sources and want to regenerate the sources, you can do so by executing the command
doygen in the source directory of GADGET-2. This will only work if doygen has been
installed on your system, of course.

8.5 Notes on memory consumption of GADGET-2

Let Ntot be the total number of particles, and Np the number of processors. Then the average
particle load per processor is N = Ntot/Np. The code will allocate about

M1 = PartAllocFactor× N × (68 + TreeAllocFactor× 64) (4)

bytes for particle storage, for the gravity/neighbour tree, and for the time integration scheme,
on each processor. For typical values like
TreeAllocFactor ' 0.65 − 0.7, this implies a memory cost of ∼110 bytes per particle. For
SPH particles, additional memory of

M2 = PartAllocFactor× Nsph × 84 (5)

bytes will be required. For an equal mixture of SPH and collisionless particles, the average
memory consumption per particle is therefore going to be about 152 byte/particle.

42

User’s guide for GADGET-2

accel.c Driver routine to carry out force computation
allocate.c Routines for allocating particle and tree storage
allvars.c Provides instances of all global variables
begrun.c Initial set-up of a simulation run
density.c SPH density computation and smoothing length determination
domain.c Code for domain decomposition
driftfac.c Computes look-up tables for prefactors in cosmological integrations
endrun.c Terminates run upon severe errors
forcetree.c Gravitational tree code
global.c Global energy computation
gravtree.c Main driver routines for gravitational (short-range) force computation
gravtree forcetest.c Routines for direct summation forces
hydra.c Computation of SPH forces and rate of entropy generation
init.c Code for initialisation of a simulation from initial conditions
io.c Routines for producing a snapshot file on disk
longrange.c Driver routines for computation of long-range gravitational PM force
main.c Start of the program
ngb.c Neighbour search by means of the tree
peano.c Routines to compute a Peano-Hilbert order
pm nonperiodic.c Code for non-periodic FFT to compute long-range PM force
pm periodic.c Routines for periodic PM-force computation
potential.c Computation of the gravitational potential of particles
predict.c Drift particles by a small time interval
read ic.c Read initial conditions in one of the supported file formats
restart.c Code for reading and writing restart files
run.c Iterates over timesteps, main loop
system.c Miscellaneous routines, e.g. elapsed time measurements
timestep.c Routines for ‘kicking’ particles and assigning new timesteps

allvars.h Declares global variables
proto.h This file contains all function prototypes of the code
tags.h Declares various tags for labelling MPI messages

Table 5: List of source files of GADGET-2.

43

V. Springel

Note however that it is not advisable to fill all the available memory of the machine. For the
sake of performance one should leave room for memory-imbalance, i.e. PartAllocFactor
needs to be chosen larger than 1.0. In practice, values below 1.2 can lead to serious work-
imbalance, depending on the amount of clustering and on how many processors are involved.

Certain code options will also increase the amount of memory allocated per particle. Ob-
viously, selecting DOUBLEPRECISION can increase the storage requirement substantially,
almost doubling it. Also, simulations with cooling and star formation require slightly more
memory to allow the storage of additional quantities like ionisation fraction, metallicity, etc.

In practice, it is thus best to pay attention to the screen output that is produced in the log-file
when GADGET-2 starts. The code will report the sizes of all major chunks of memory that are
allocated. Note that these numbers refer to the allocation done by each individual processor. To
obtain the total amount of memory needed by the code, one needs to multiply the sum of these
numbers by the number of processors that are used.

The communication buffers requires

M3 = BufferSize× 10242 (6)

bytes, but this number is independent of the particle load.
Note that the TreePM algorithm can require substantial amounts of additional memory, de-

pending on the choice of PMGRID, and the type of TreePM simulation done. In the simplest
case, a periodic box, the allocated amount of memory, summed over all processors, is about

M4 = PMGRID
3 × 12 − 16 (7)

bytes, provided single precision is used. For double precision, twice this amount is needed. If
the mesh is made a factor of 2 finer than the mean particle spacing in each dimension, then the
required storage for the PM algorithm roughly matches that needed for the particle data and the
tree, i.e. then the memory requirement of the code essentially doubles.

If the TreePM algorithm with non-periodic boundaries is selected instead, the memory re-
quirements are substantially larger. They are then roughly

M5 = (2 ∗ PMGRID)3 × 16 (8)

bytes. If a two level zoom simulation in a periodic volume is selected, then M4 and M5 are
both allocated. If the zoom is done in a simulation with vacuum boundaries, then only M5 is
allocated, but the number 16 is replaced by 20.

9 Examples

To get some idea of the usage of the code, you may try a few of the simple examples I provide
with the code distribution (these are the same ones as in GADGET-1). The parameterfiles for
these examples can be found in the parameterfiles-subdirectory of the code-directory.
The first thing you have to do before you can run any of the examples is to edit the correspond-
ing parameterfile and adjust the path of the output directory, and the filename of the initial

44

User’s guide for GADGET-2

conditions file. Initial conditions (and snapshot files) of GADGET-2 are in binary format, so
its important to know the byte order of your system. Intel, AMD, and some Alpha machines
(not the T3E, though) use little endian as opposed to big endian, which is the standard on most
other RISC machines (IBM, Sun). For each IC-File, I have prepared a corresponding file for
little endian machines, designated by an extension ‘.intel’. These files are in the ‘ICs’
directory. (Note that you can reverse byte-order easily by writing a little C-routine yourself.)
The different examples are explained further below.

9.1 Galaxy collision

This purely collisionless simulation runs two disk galaxies into each other, leading to a merger
between the galaxies. Each galaxy consists of a stellar disk, and a massive and extended dark
matter halo. This example uses plain Newtonian physics, with 20000 disk and 40000 halo
particles in total.

To allow you to get a first idea whether the examples have worked, I include a few IDL scripts
that read snapshot files and diagnostics output. These files are in the directory ‘Analysis’.
You can use ‘energy galaxy.pro’ to plot the evolution of kinetic and potential energy, and
the variation of the total energy in the galaxy example. You may use the script ‘show galaxy.pro’
to load the snapshot files of the galaxy collision one after the other and display the disk particles
of the galaxies.

9.2 Adiabatic collapse of a gas sphere

This simulation considers the gravitational collapse of a self-gravitating sphere of gas which
initially has a 1/r density profile at a low temperature. The gas falls under its own weight to the
centre, where a bounce-back with a strong shock wave develops. This common test problem of
SPH codes has first been described by Gus Evrard.

The simulation uses Newtonian physics in a natural system of units (G = 1). You can use
‘energy gassphere.pro’ to display the evolution of thermal, kinetic and potential energy
for the collapsing gassphere. Note that this is a very tiny simulation of just 1472 particles.

9.3 Cosmological formation of a cluster of galaxies

This problem uses collisionless dynamics in an expanding universe. It is a small cluster simu-
lation that has been set-up with Bepi Tormen’s initial conditions generator ZIC using vacuum
boundaries and a multi-mass technique. The simulation has a total of 276498 particles. In a
central high-resolution zone there are 140005 particles, surrounded by a boundary region with
two layers of different softening, the inner one containing 39616 particles, and the outer one
96877 particles. The IDL-script ‘show cluster.pro’ is an example for reading one of the
snapshots of the cluster simulation and showing the high resolution region.

45

V. Springel

9.4 Large-scale structure formation including gas

This problem consists of 323 dark matter, and 323 gas particles, following structure formation
in a periodic box of size (50 h−1Mpc)3 in a ΛCDM universe. Only adiabatic gas physics is
included, and the minimum temperature of the gas is set to 1000 K. This simple example uses
grid initial conditions, where gas particles are put at the centres of the grid outlined by the dark
matter particles. The simulation starts at z = 10, and the code will produce snapshot files at
redshifts 5, 3, 2, 1, and 0.

You can use ‘show gas.pro’ to read a snapshot file of this simulation, to extract the gas
particles from it, and to plot their spatial distribution. You may use ‘plot hotgas.pro’ to
show the gas with temperature higher than 106 K at the present time.

10 Disclaimer

It is important to note that the performance and accuracy of the code is a sensitive function of
some of the code parameters. Let me also stress that GADGET-2 comes without any warranty,
and without any guarantee that it produces correct results. If in doubt about something, reading
(and potentially improving) the source code is always the best strategy to understand what is
going on.

Please also note the following: The numerical parameter values used in the examples
contained in the code distribution do not represent a specific recommendation by the author!
In particular, I do not endorse these parameter settings in any way, nor do I claim that they will
provide fully converged results for the example problems, or for more general initial conditions.
I think that it is extremely difficult to make general statements about how convergence can be
obtained, especially when one desires to achieve it with the smallest possible computational
effort. For this reason I refrain from making such recommendations. I encourage every sim-
ulator to find out for herself/himself what integration settings are needed to achieve sufficient
accuracy for the system under study. I strongly recommend to make convergence and resolution
studies to establish the range of validity and the uncertainty of any numerical result obtained
with GADGET-2.

Volker Springel
Munich, April 2005

46

