
Statistical mechanics of 
self-gravitating systems 



gas in a box stellar system

molecules, m ~ 10-24 g stars, m ~ 1033 g

 Avogadro’s number, N ~ 1023  N ~105 (globular clusters), 
~105-1011 (stars in galaxies)

short-range forces long-range forces (gravity)

confined in a box confined by self-gravity 

mean free path << system size mean free path >> system size

heat capacity > 0 heat capacity < 0



K  = kinetic energy
W = potential energy
E   = K+W = total energy

In a steady-state system governed by gravity 

2K + W = E + K = 0   or   E = −K. 

In an isothermal gas K=3/2 NkT so heat capacity is

C= dE/dT = −3/2 Nk

which is negative

Virial theorem



• heat capacity of isolated self-gravitating systems is 
negative…despite the common claim that “heat capacity is 
always positive” (e.g., Landau & Lifshitz, Statistical Physics)

• systems with long-range interactions
- are not additive
- are not extensive 
- cannot be treated using the canonical ensemble 
- can have negative heat capacity 
- may have no thermodynamic equilibrium state

• thermodynamic equilibrium state for self-gravitating systems 
exists only if
- they are enclosed in a box, to prevent escape, and
- the box is sufficiently small, to prevent core collapse
- the inter-particle potential is softened 



• there is no thermodynamic equilibrium state for self-gravitating 
systems unless they are enclosed in a sufficiently small box

• there is no “heat death” of the Universe



Statistical mechanics of self-gravitating systems 

1. Radial profiles of galactic disks              (Herpich, ST, & Rix 2017)

2. Multi-planet systems                            (ST 2015)

3. Nuclear star clusters                           (Kazandjian, Touma, & ST in prep)                  

4. Kinematics of the solar neighborhood   (Jeans 1928)



Statistical mechanics of self-gravitating systems 

1. Radial profiles of galactic disks                  less speculative       
2. Multi-planet systems                            
3. Nuclear star clusters                                more speculative            
4. Kinematics of the solar neighborhood        wrong 



• surface-brightness profiles of galaxy disks are approximately 
exponential (Freeman 1970)

                                I(R) ~ exp(-R/h)
with h = 2-6 kpc
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Two classes of theory for formation of exponential disks:

• the disk profile is determined by the angular-momentum distribution of 
mass in the halo (Fall & Efstathiou 1980, Dalcanton + 1997, Dutton 2009, 
etc.)

• the disk profile is determined by internal dynamical processes in the disk 
after it forms (Lin & Pringle 1987, Yoshii & Sommer-Larsen 1989, Ferguson 
& Clarke 2001, Elmegreen & Struck 2013, 2016)

• surface-brightness profiles of galaxy disks are approximately 
exponential (Freeman 1970)

                                I(R) ~ exp(-R/h)
with h = 2-6 kpc
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• surface-brightness profiles of galaxy disks are approximately 
exponential (Freeman 1970)

                                I(R) ~ exp(-R/h)
with h = 2-6 kpc



Rearranging the mass 
distribution in a disk

• stars can change angular momentum 
and radius through interactions with a 
bar, spiral structure, sub-halos, giant 
molecular clouds, etc. 
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Sellwood (2010)

• interaction with a non-axisymmetric potential rotating 
with pattern speed Ωp changes energy and angular 
momentum in the relative amounts

                          dE/dj = Ωp

• interaction is strong only at three distinct radii: the inner 
Lindblad resonance (ILR), the outer Lindblad resonance 
(OLR), and the corotation resonance (CR)
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• stars can change angular momentum 
and radius through interactions with a 
bar, spiral structure, sub-halos, giant 
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Sellwood (2010)

• interaction with a non-axisymmetric potential rotating 
with pattern speed Ωp changes energy and angular 
momentum in the relative amounts

                          dE/dj = Ωp

• interaction is strong only at three distinct radii: the inner 
Lindblad resonance (ILR), the outer Lindblad resonance 
(OLR), and the corotation resonance (CR)

• interactions at the Lindblad resonances 
excite eccentricities, while interactions at 
corotation do not 



Rearranging the mass 
distribution in a disk

• stars can change angular momentum 
and radius through interactions with a 
bar, spiral structure, sub-halos, giant 
molecular clouds, etc. 

• transient spiral patterns can (i) 
change angular momenta of stars over 
a wide range of radii, while (ii) not 
exciting the stellar eccentricities 

⇒ stellar migration (Sellwood & 
Binney 2002)

• there is strong circumstantial 
evidence for stellar migration in the 
Milky Way:
-  spread in metallicity of stars in solar 

neighborhood increases with age
-  solar metallicity is similar to present 

metallicity of interstellar gas
- very low metallicities of some nearby 

giant molecular clouds
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Rearranging the mass distribution in a disk

What is the final state of the disk after migration?

• since the orbits remain circular the phase space has only one degree of freedom, 
described by canonical coordinates which are the orbital phase φ and the angular 
momentum j.

• the only conserved quantity is the total angular momentum J.

• the equilibrium distribution function is such that the distribution of stars on the 
surface of constant total angular momentum in 2N-dimensional phase space is 
uniform (like the microcanonical ensemble, but for angular momentum, not 
energy)

• this occurs when

                                     f(φ, j) ~ exp(-βj)

     i.e.,  mass of stars per unit j is an exponential function of j



Freeman disk

surface brightness is an exponential 
function of radius 

 I(R)  exp(-R/h)
Comparison to data needs photometry
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Maximum-entropy disk

mass per unit j is an exponential function of j
dm/dj  exp(-βj)

Comparison to data needs photometry and 
rotation curve and assumption M/L = constant
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Statistical mechanics of planetary systems

There are many bad examples of attempts to explain the spacing and 
other properties of planetary orbits from first principles

Nevertheless there are reasons to try again:
• Kepler has provided a large statistical sample of multi-planet systems 

• N-body integrations can routinely follow the evolution of systems for 100 Myr 

• there are hints of interesting behavior from studies of the solar system:

- the orbits of the planets in the solar system are chaotic, with Liapunov (e-folding) 
times of ~107 yr (Sussman & Wisdom 1988, 1992, Laskar 1989, Hayes 2008)

- there is a 1% chance that Mercury will be lost from the solar system before the 
end of the Sun’s life in ~ 7 Gyr

These suggest that some properties of planetary systems might be determined by the 
statistical mechanics of orbital chaos 



Mullally et al. (2015)

Multi-planet systems
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The last stages of terrestrial planet formation

• the accretion of planetesimals leads to a few dozen “planetary 
embryos” of similar size

•eccentricities of the embryos remain small because they are 
damped by dynamical friction from residual population of small 
planetesimals

• eventually the small planetesimals disappear

• surviving embryos gradually excite one another's eccentricities 
until their orbits cross and they collide

• through collisions, the number of surviving bodies slowly 
declines until we are left with a small number of planets on well-
separated, stable orbits (the giant-impact phase)

•maybe the giant-impact phase tends to produce an ensemble of 
planetary systems with statistically similar properties 



Statistical mechanics of planetary systems

The range of strong interactions from a planet of mass m orbiting a star of mass M 
in a circular orbit of radius a is the Hill radius

Numerical integrations show that planets of mass m, m′ with semi-major axes a, a’, 
a < a’ are stable for N orbital periods if closest approach exceeds k Hill radii, or 

typically k(1010) ≃ 11 ± 1

Pu & Wu (2014)



A model system
 

1.  Use the sheared sheet approximation, 
which replaces usual Keplerian disk by a 
rectangular box with shear (not essential, 
but eliminates spatial gradients and other 
complications)

2.   Since the number of planets per system 
is small, work with the grand canonical 
ensemble, i.e., assume each planetary system 
is a subsystem with variable number of 
planets

3.   Ansatz:  planetary systems fill uniformly 
the region of phase space allowed by stability 
(~ ergodic approximation)

image credit: P.-Y. Longaretti 



Statistical mechanics of planetary systems

1.  use the sheared sheet approximation

2.   work with the grand canonical ensemble
3.   assume planetary systems fill the region of phase space allowed by stability

Leads to an N-planet distribution function

For comparison the distribution function for a one-dimensional gas of hard rods of 
length L (Tonks 1936) is 

}

phase-space volume
apocenter and pericenter must 
be separated by k Hill radii

step function



compare to N-body simulations of planet growth by Hansen & Murray (2013)

distribution of eccentricities distribution of separations of 
nearest neighbors

one free parameter for two fits 

unstable



Kepler planets, using Weiss & Marcy 
(2014) mass-radius relation:Hansen & Murray (2013) simulations

unstableunstable



Kepler planets, using Weiss & Marcy 
(2014) mass-radius relation:Hansen & Murray (2013) simulations

unstableunstable

convolve theoretical distribution with the scatter 
in the estimate of the Hill radii using Weiss & 

Marcy (2014) mass-radius relation



Kepler planets, using Weiss & Marcy 
(2014) mass-radius relation 

corrected for scatterHansen & Murray (2013) simulations

unstable

}

missing planets?
each fit has one free parameter 



• statistical model predicts <e>=0.06
• <e>≃ 0.02 - 0.03 (Hadden & Lithwick 2014)

• <e>≃ 0.03 (Fabrycky + 2014)

• <e>≃ 0.05 - 0.08 (van Eylen & Albrecht 2015) 

• <e> < 0.07 (Xie + 2016) 

• <e>≃ 0.07 (Shabram + 2015) 

• <e>≃ a few percent or less (Hadden & Lithwick 2017)

• statistical model predicts no correlation between mass and 
eccentricity in a given system 



• black holes in the centers of galaxies are surrounded by 
dense nuclear star clusters in which the relaxation time can 
be as short as ~ 1 Gyr on scales ~ 1 pc

• what is the nature of thermodynamic equilibrium in this 
region?

• in potential Φ ~ - GM/r the equilibrium density is

• this doesn’t apply because stars 
are eaten by the black hole

• must instead find constant-flux 
solution with absorbing boundary 
conditions at r=0. For a single 
stellar mass (Peebles 1972, Bahcall 
& Wolf 1974)

ρ ~ r-7/4 ρ ~ r-7/4



• in the central ~ 1 pc gravitational potential is dominated by the 
central black hole

• on timescales much longer than the orbital period, time-averaged 
density of each orbit looks like an eccentric wire

• each wire exerts a torque on the others which leads to relaxation 
of angular momentum (but not energy)

• phase-space distribution becomes uniform on each energy surface 
but there is no mixing between different energies (“resonant 
relaxation”)

• resonant relaxation is faster than relaxation due to two-body 
encounters by O(Mbh/Mstars)

Resonant relaxation



• nuclear star clusters in which the gravitational potential is dominated by the 
central black hole are dynamically stable and thermodynamically stable under 
resonant relaxation (Tremaine 2005)

• resonant relaxation can be simulated using a wire-wire code (Touma + 2009)
• simulations show a robust lopsided instability that develops on the relaxation 

time (Touma + 2018); verified by MCMC simulations 
• could affect star cluster shape, tidal disruption event rate, black hole feeding, 

LISA rates, etc. 

Resonant relaxation
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the solar neighborhood:

tcross ≃ 108 yr 
trelax ≃ 1013 yr 

10 pc

stars in the solar neighborhood have randomly 
directed velocities of  5-50 km/s in addition to a 

common rotational velocity of ~220 km/s



} }

• stars in the solar neighborhood have randomly directed velocities of  5-50 
km/s in addition to a common rotational velocity of ~220 km/s

• more massive stars have smaller random velocities, consistent with 
equipartition

• Jeans (1928): timescale required to reach equipartition due to gravitational 
encounters between stars is ~1013 yr  ⇒ universe must be at least this old



• stars in the solar neighborhood have randomly directed velocities of  5-50 
km/s in addition to a common rotational velocity of ~220 km/s

• more massive stars have smaller random velocities, consistent with 
equipartition

• Jeans (1928): timescale required to reach equipartition due to gravitational 
encounters between stars is ~1013 yr  ⇒ universe must be at least this old 

• in fact random velocities arise from gravitational interactions with 
interstellar clouds and spiral arms, and more massive stars have smaller 
velocities because they are younger



“All models are wrong, but some are useful”
Box & Draper (1987)


