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Some	topics	related	to	solar	models	
	

	external	constraints:	solar	composition	
	input	physics:	opacities	

	
	solar	neutrinos	

	
	helio-(astero-)seismology	with	frequencies	and	frequency	ratios	

	
	wishful	thinking:	accretion	history	during	solar/stellar	formation	

	
	(time	allowing)	a	quick	comment	on	solar	g-modes	

	
Not	included:	solar	lithium,	rotation,	extra-mixing,	etc.	
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Impact	of	metals	through	opacity	in	radiative	interior	 rrad / 
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Helioseismic	and	solar	neutrino	data	can	be	used	to	infer	the	effective	solar	opacity	profile	
What	is	the	opacity	profile	that	best	reproduces	the	data?	

δκfunc	modeled	with	a	Gaussian	Process	–	different	composition	priors	used	

e↵ = ref + �comp + �func

Difference	between	best	fit	and	AGSS09	model:	
	
few	%	in	core	
18%	base	of	conv.	envelope	

Song	et	al.	2018	

Opacity	profile	from	solar	data	
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Is	there	a	missing	opacity	problem	in	solar	(stellar)	models?	Should	we	care?	
Consider	evolutionary	timescales	for	low	mass	stars	

Canonical	1	M8	model	
	
Blue	–	calibrated	composition	GS98	
ZGS98,YGS98	
	
Red/dashed	–	calibrated	comp.	AGSS09	
ZAGSS09,YAGSS09	
	
There	is	some	cheating	here:	
	
stellar	Y	does	not	depend	on	our	
ignorance	about	solar	Z	or		opacities	0 2 4 6 8 10 12 14
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Is	there	a	missing	opacity	problem	in	solar	(stellar)	models?	Should	we	care?	
Consider	evolutionary	timescales	for	low	mass	stars	

Canonical	1	M8	model	
	
If	Y	is	fixed	(black),	age	differences	
about	10%	at	turn-off	and	8%	in	RGB	
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Status	of	solar	(stellar)	opacities	
Traditional	calculations:	OPAL	(1996),	Opacity	Project	(2005)	
Renewed	interest:	OPAS	(2012,	2015	– Blancard	et	al.,	Mundet	et	al.),	Los	Alamos	(OPLIB;	2016	– Colgan	et	al.)	

Current	status	of	opacity	calculations	
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Status	of	solar	(stellar)	opacities	
Traditional	calculations:	OPAL	(1996),	Opacity	Project	(2005)	
Renewed	interest:	OPAS	(2012,	2015	– Blancard	et	al.,	Mundet	et	al.),	Los	Alamos	(OPLIB;	2016	– Colgan	et	al.)	

Fractional	opacity	differences	
wrt	Opacity	Projects	
	
Few	%	at	base	of	convective	envelope	
too	low	to	compensate	15-18%	
	
OPAS-OP-OPAL	ok	in	center	
OPLIB	(Los	Alamos)	up	to	15%	lower	
à	core	temperature	too	low	

Current	status	of	opacity	calculations	
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Status	of	solar	(stellar)	opacities	
	

Fe-opacity	from	1st	ever	
experimental	result	close		
to	solar	conditions	–	base	of	CZ	
@	Sandia	Lab	(Bailey	et	al.	2015)	

Fe-Rosseland	mean	+40%	
	
Total	Rosseland	mean	+7±4%	
	
Strong	discrepancy	in	the	continuum	
with	all	available	models	
	
Other	elements	in	the	queue	(O	most	
relevant)	

Experimental	result	for	Fe	opacity	in	quasi	solar	conditions	



Open	questions	in	solar	modeling	

Institute of  
Space Sciences What	can	we	learn	from	solar	neutrinos?	

SuperK,	SNO	
Borexino	

Gallex/GNO	-	SAGE	
Homestake	

8B	measured	@	2%	(SNO,	SuperK)	
	
7Be	measured	@	4%	(Borexino)	

How	does	the	Sun	shine?	
Purely	experimental	result	

Bergstrom	et	al.	2016	
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CN-cycle	 In	stars	dominated	by	CNO	
	
Increase	CN	abundace	 	à	increase	energy	release		

	 	 	 	 	à	lower	temperature	
	 	 	 	 	à	CNO	energy	release	self-regulated				
	 	 	 			(negative	heat	capacity,	Scott’s	talk)	

In	stars	the	Sun,	CNO	<<	pp-chains	
	
Increase	CN	abundace	 	à	increase	CN	energy	release		

	 	 	 	 	à	total	energy	unchanged	(pp)	
	 	 	 	 	à	linear	relation	between	CN	
	 	 	 	 	abundances	&	CN	energy/neutrinos	
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�(15O)

�(15O)SSM
=


�(8B)

�(8B)SSM

�0.785
x0.749
C x0.212

N [1± 0.003(env)± 0.10(nucl)]

�


�(8B)

�(8B)SSM

�0.785 
NC +NN

NSSM
C +NSSM

N

�
[1± 0.003(env)± 0.10(nucl)]

What	determines	CN	ν-fluxes?	
	
1)  Solar	core	temperature	–	well	determined	through	8B	flux	
2)  Nuclear	rates	– 14N+p	
3)  C+N	abundance	in	the	core	

Using	8B	as	thermometer,	C+N	core	abundance	can	be	extracted	
from	CN-νs	measurement	to	10%	plus	experimental	error		

A	10%	ν	measurement	à	C+N	core	abundance	to	15%!	
Test	of	solar	composition	&	eventually	mixing	processes	in	the	Sun	
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210Bi �!210 Po + e� + ⇥̄e
210Po �!206 Pb + �

210Bi	background	is	the	problem	in	measuring	CN	

210Po	is	an	easy	measurement	
	
Deviation	from	exponential	decay	is		
signal	of	210Bi	decay	à		
extract	background	à		
determination	of	CN-ν	flux	
	
Requirement:	
	
210Po	comes	from	210Bi	in		
fiducial	volume	
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Slow	convection	of	liquid	scintillator	
outside	fiducial	volume	prevents	

measurement	
	

Thermal	insulation	used	to	inhibit	
convection	
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Asymptotic	concentration	à	210Bi	
	
Currently	measuring	210Bi	levels	
	
Expected	2-3s	(maybe	better)	
CN	measurement	by	end	2018!	

What	can	we	learn	from	solar	neutrinos?	

N.	Rossi		
@	Neutrino	
2016	
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Systematic	difference	between	
in	data	– model	due	to	poor	
modeling	of	near-surface	convection:		
e.g.	upflows,	downflows,	turbulent	
pressure	
	

Credit:	N.	Brummell	

Rosenthal	et	al.	1999	

Surface	effects	x100-500	that	frequency	uncertainties	for	Sun	
	x20-50	for	best	Kepler	dwarfs	(Legacy	sample,	Lund	et	al.	2017)	

Helio-(astero-)seismology	from	frequencies:	surface	effects	
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The	Sun	offers	best	possible	test	because	M	and	R	are	known	
and	frequencies	scale	as	(R3/M)1/2		
	

Coupling	solar	models	and	<3D>	atmospheres:	reduction	of	systematic	uncertainties	

Rosenthal	et	al.	1999	

GARSTEC+	<3D>	models	(x3)	

Joergensen	et	al.	2017	

Helio-(astero-)seismology	from	frequencies:	surface	effects	
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Specific	frequency	combinations	that	are	immune	to	surface	effects	

Roxburgh	&	Vorontsov	2003	
Basu	et	al.	2007	

Frequency	ratios:	a	way	around	using	individual	frequencies?	
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Results	from	frequency	ratios	consistent	with	all	other	helioseismic	probes:		
	

good	for	high-Z/opacity	– bad	for	lowZ/opacity	

Frequency	ratios:	a	way	around	using	individual	frequencies?	
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Solar	models	with	the	new	OPLIB	have	WRONG	freq.	ratios	for	high-Z/opacity	
and	GOOD	freq.	ratios	for	low-Z/opacity		

But…	solar	models	with	new	Los	Alamos	(OPLIB)	
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Ratios	 ✗	 ✓	

Sound	speed	 ✓	 ✗	

Surface	helium	 ✓	 ✗	

Depth	conv.env.	 ✓	 ✗	

Fitting	the	frequency	ratios	might	lead	to	not	optimal	models	
	
Modeling	based	on	individual	frequencies	required	for	asteroseismology	(eventually)	
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Basic	paradigm	in	stellar	evolution:		
	stars	fully	convective	after	mass	assembly	is	over	à	initially	homoegenous	

Was	the	initial	Sun	well	mixed?	

Convective	envelope	in	young	Sun	

~	timescale	for	disks	

Mamajek	2009	
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Evolution	of	convective	envelope	depends	strongly	on	accretion	history	
	

Timescales	can	then	be	shorter	~1Myr	–	fully	convective	phase	might	be	absent	altogether	
(Wuchterl	&	Klessen	2001)	

Was	the	initial	Sun	well	mixed?	

Baraffe	et	al.	2010	
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Chemically	differentiated	accreted	matter	can	leave	its	imprint	in	interior	structure	
	

Assume	fixed	surface	(Z/X)8	(or	[Fe/H]	for	other	stars)	

Was	the	initial	Sun	well	mixed?	

Macc	=	0.05M8 

Z	profile	in	solar	models	today	
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Later	differentiated	accretion	–	larger	metallicity	contrasts	produced	

Was	the	initial	Sun	well	mixed?	

Macc	=	0.05M8 

Accretion	might	shorten	or	even	prevent	fully	convective	phase	
If	differentiated	composition	then	structural	differences	in	structure	to	be	expected	
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XO-2	S:	M	sini	=	0.26MJ	–	P	=	18d		&	Msini	=	1.37MJ	–	P	=	121d	
XO-2	N:	M	=	0.60MJ	–	P	=	2.62	d	

0.08	dex	difference	for	refractories	
	
0.025	dex	for	volatiles	
	
Relation	to	planets?	
	
What	is	the	accretion	history	and	
internal	(composition)	structure	of	
such	stars?	
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Solar	opacity	profile	determined	from	current	data	with	few	%	precision	
	
Current	opacity	calculations	not	compatible	with	low-Z	solar	composition	

	Experimental	result	in	right	direction	
	Theoretical	calculations	have	problems	

	
Solar	neutrinos	(CN)	could	provide	a	determination	of	core	C+N	in	near	future:		

	composition,	mixing	
	
Helio/asteroseismology:	individual	frequencies	require	large	and	uncertain	surface	corrections	

	 	 	 						frequency	ratios	might	be	deceiving	(not	consistent	helioseismic	results)	
	
Early	phases	of	formation/pre-MS	evolution	seem	to	challenge	fully	convective	picture	

	 	accretion	history	–	rates	and	composition	–	would	be	great	to	have	
	
TESS	LAUNCH	TODAY!! 		
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g-modes probe inner regions – but strongly damped in the surface – tiny amplitudes & high background 

direct searches for g-modes have failed (despite claims in Garcia et al. 2007) 
 
Fossat et al. 2017 use new method: long term modulations in p-mode spectrum 
 
Claim detections of more than 200 g-modes of angular degree l = 1 , 2  

Bonus:	solar	g-modes	
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Two important claims in Fossat et al. 2017 
 
1)  Asymptotic period spacings for l= 1 , 2 
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Fossat et al.  P1 = 1443.1 ± 0.5s  - P2 = 832.8 ± 0.7s 
 
GS98 SSMs:  P1 = 1525 – 1540 s  - P2 = 880 – 890 s 
 
AGSS09 SSMs:  P1 = 1535 – 1560 s  - P2 = 886 – 900 s  

2)  Rotational splitting -- > solar core rotation ~ x3 faster than intermediate regions 
       Maybe some impact for chemical mixing in the core – but in direction of lowering n-fluxes 

Bonus:	solar	g-modes	

3%	-	6%	difference		
with	solar	models	
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Two important claims in Fossat et al. 2017 
 
1)  Asymptotic period spacings for l= 1 , 2 
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Fossat et al.  P1 = 1443.1 ± 0.5s  - P2 = 832.8 ± 0.7s 
 
GS98 SSMs:  P1 = 1525-1540 s  - P2 = 880 – 890 s 
 
AGSS09 SSMs:  P1 = 1535-1560 s  - P2 = 886-900 s  

2)  Rotational splitting -- > solar core rotation ~ x3 faster than intermediate regions 
       Maybe some impact for chemical mixing in the core – but in direction of lowering n-fluxes 

From Appourchaux et al. 2010 review 

Bonus:	solar	g-modes	
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The	End	


