Open questions in solar modeling (and lessons for other stars)

Aldo Serenelli

Institute of Space Sciences, Barcelona

Stars, Planets & Galaxies - Berlin 2018

Institute of Space Sciences

Open questions in solar modeling

Some topics related to solar models

Outline

external constraints: solar composition input physics: opacities

solar neutrinos

helio-(astero-)seismology with frequencies and frequency ratios

wishful thinking: accretion history during solar/stellar formation

(time allowing) a quick comment on solar g-modes

Not included: solar lithium, rotation, extra-mixing, etc.

Solar composition

Large CNO reduction ~20-30% Moderate refractories ~10%

~ half from 3D~ half from atomic data, NLTE, blends

fundamental difference between 3D groups related to choice of lines (good atomic data, blends) Sound speed fractional difference from helioseismic inversions

Low metals $\leftarrow \rightarrow$ low opacity

Opacity profile from solar data

Helioseismic and solar neutrino data can be used to infer the effective solar opacity profile What is the opacity profile that best reproduces the data?

 $\kappa_{\rm eff} = \kappa_{\rm ref} + \delta \kappa_{\rm comp} + \delta \kappa_{\rm func}$

 $\delta\kappa_{ ext{func}}$ modeled with a Gaussian Process – different composition priors used

Difference between best fit and AGSS09 model:

few % in core 18% base of conv. envelope

Is there a missing opacity problem in solar (stellar) models? Should we care? Consider evolutionary timescales for low mass stars

Canonical 1 M_{\odot} model

Blue – calibrated composition GS98 Z_{GS98}, Y_{GS98}

 $\label{eq:rescaled} \begin{array}{l} \mbox{Red/dashed} - \mbox{calibrated comp. AGSS09} \\ \mbox{Z}_{\mbox{AGSS09}}, \mbox{Y}_{\mbox{AGSS09}} \end{array}$

There is some cheating here:

stellar Y does not depend on our ignorance about solar Z or opacities

Is there a missing opacity problem in solar (stellar) models? Should we care? Consider evolutionary timescales for low mass stars

Canonical 1 $\rm M_{\odot}$ model

If Y is fixed (black), age differences about 10% at turn-off and 8% in RGB

Status of solar (stellar) opacities

Traditional calculations: OPAL (1996), Opacity Project (2005)

Renewed interest: OPAS (2012, 2015 – Blancard et al., Mundet et al.), Los Alamos (OPLIB; 2016 – Colgan et al.)

Status of solar (stellar) opacities Traditional calculations: OPAL (1996), Opacity Project (2005) Renewed interest: OPAS (2012, 2015 – Blancard et al., Mundet et al.), Los Alamos (OPLIB; 2016 – Colgan et al.)

Fractional opacity differences wrt Opacity Projects

Few % at base of convective envelope too low to compensate 15-18%

OPAS-OP-OPAL ok in center OPLIB (Los Alamos) up to 15% lower → core temperature too low

Institute of

Space Sciences

Experimental result for Fe opacity in quasi solar conditions

Status of solar (stellar) opacities

Fe-opacity from 1st ever experimental result close to solar conditions – base of CZ @ Sandia Lab (Bailey et al. 2015)

Fe-Rosseland mean +40%

Total Rosseland mean +7±4%

Strong discrepancy in the continuum with all available models

Other elements in the queue (O most relevant)

CN-cycle

In stars dominated by CNO

 (\mathbf{p},γ) ^{14}N β^+ **(p**,γ) 15 Ι Ο ß (\mathbf{p},γ) **(p,**α) ¹⁵N ^{12}C

Increase CN abundace

 \rightarrow increase energy release

- \rightarrow lower temperature
- \rightarrow CNO energy release self-regulated

(negative heat capacity, Scott's talk)

In stars the Sun, CNO << pp-chains

Increase CN abundace

→ increase CN energy release
→ total energy unchanged (pp)
→ linear relation between CN
abundances & CN energy/neutrinos

What determines CN v-fluxes?

- 1) Solar core temperature well determined through ⁸B flux
- 2) Nuclear rates ¹⁴N+p
- 3) C+N abundance in the core

Using ⁸B as thermometer, C+N core abundance can be extracted from CN-vs measurement to 10% plus experimental error

$$\frac{\Phi(^{15}\text{O})}{\Phi(^{15}\text{O})^{\text{SSM}}} = \left[\frac{\Phi(^{8}\text{B})}{\Phi(^{8}\text{B})^{\text{SSM}}}\right]^{0.785} x_{C}^{0.749} x_{N}^{0.212} \left[1 \pm 0.003(\text{env}) \pm 0.10(\text{nucl})\right]$$
$$\approx \left[\frac{\Phi(^{8}B)}{\Phi(^{8}B)^{\text{SSM}}}\right]^{0.785} \left[\frac{N_{\text{C}} + N_{\text{N}}}{N_{\text{C}}^{\text{SSM}} + N_{\text{N}}^{\text{SSM}}}\right] \left[1 \pm 0.003(\text{env}) \pm 0.10(\text{nucl})\right]$$

A 10% v measurement \rightarrow C+N core abundance to 15%! Test of solar composition & eventually mixing processes in the Sun

²¹⁰Bi background is the problem in measuring CN

²¹⁰Po is an easy measurement

Deviation from exponential decay is signal of ²¹⁰Bi decay \rightarrow extract background \rightarrow determination of CN- ν flux

Requirement:

²¹⁰Po comes from ²¹⁰Bi in fiducial volume

Borexino Detector

Slow convection of liquid scintillator outside fiducial volume prevents measurement

Thermal insulation used to inhibit convection

What can we learn from solar neutrinos?

²¹⁰Po in 60 cubes (r < 3 m)

Open questions in solar modeling

Institute of

Space Sciences

Systematic difference between in data — model due to poor modeling of near-surface convection: e.g. upflows, downflows, turbulent pressure

Credit: N. Brummell

Surface effects x100-500 that frequency uncertainties for Sun x20-50 for best Kepler dwarfs (Legacy sample, Lund et al. 2017)

Helio-(astero-)seismology from frequencies: surface effects

Coupling solar models and <3D> atmospheres: reduction of systematic uncertainties

and frequencies scale as $(R^3/M)^{1/2}$

Institute of

Space Sciences

Specific frequency combinations that are immune to surface effects

Results from frequency ratios consistent with all other helioseismic probes:

good for high-Z/opacity – bad for lowZ/opacity

Institute of

Space Sciences

Solar models with the new OPLIB have WRONG freq. ratios for high-Z/opacity and GOOD freq. ratios for low-Z/opacity

Basic paradigm in stellar evolution:

stars fully convective after mass assembly is over \rightarrow initially homoegenous

100 1.0 $= \exp(-t/\tau_{disk})$ Í disk $\tau_{\rm disk}$ = 2.5 Myr 0.8 80 Fraction [%] °0.6 ™ ₩/₩ 40 ysiQ ~ timescale for disks 0.4 20 0.2 0.0 0 5 10 15 20 0 20 40 60 0 Age [Myr] Mamajek 2009 Age [Myr]

Convective envelope in young Sun

Evolution of convective envelope depends strongly on accretion history

Timescales can then be shorter ~1Myr – fully convective phase might be absent altogether (Wuchterl & Klessen 2001)

Chemically differentiated accreted matter can leave its imprint in interior structure

Assume fixed surface $(Z/X)_{\odot}$ (or [Fe/H] for other stars)

Later differentiated accretion – larger metallicity contrasts produced

Accretion might shorten or even prevent fully convective phase If differentiated composition then structural differences in structure to be expected

Institute of

Space Sciences

XO-2 S: M sini = $0.26M_J - P = 18d$ & Msini = $1.37M_J - P = 121d$ XO-2 N: M = $0.60M_J - P = 2.62 d$

0.08 dex difference for refractories0.025 dex for volatilesRelation to planets?

What is the accretion history and internal (composition) structure of such stars?

Institute of

Space Sciences

Solar opacity profile determined from current data with few % precision

Current opacity calculations not compatible with low-Z solar composition Experimental result in right direction Theoretical calculations have problems

Solar neutrinos (CN) could provide a determination of core C+N in near future: composition, mixing

Helio/asteroseismology: individual frequencies require large and uncertain surface corrections frequency ratios might be deceiving (not consistent helioseismic results)

Early phases of formation/pre-MS evolution seem to challenge fully convective picture accretion history – rates and composition – would be great to have

TESS LAUNCH TODAY!!

Bonus: solar g-modes Space Sciences

g-modes probe inner regions – but strongly damped in the surface – tiny amplitudes & high background

direct searches for g-modes have failed (despite claims in Garcia et al. 2007)

Fossat et al. 2017 use new method: long term modulations in p-mode spectrum

Claim detections of more than 200 g-modes of angular degree I = 1, 2

Institute of

Bonus: solar g-modes

Two important claims in Fossat et al. 2017

1) Asymptotic period spacings for I= 1, 2

$$\Pi_{\ell} = \frac{2\pi^2}{\sqrt{\ell(\ell+1)}} \left[\int_0^{R_{CZ}} N \frac{dr}{r} \right]^{-1} \qquad \qquad N = g \left(\frac{1}{\Gamma_1} \frac{d\log p}{dr} - \frac{d\log \rho}{dr} \right)$$

Fossat et al.
$$P_1 = 1443.1 \pm 0.5s - P_2 = 832.8 \pm 0.7s$$

GS98 SSMs: $P_1 = 1525 - 1540 s - P_2 = 880 - 890 s$
AGSS09 SSMs: $P_1 = 1535 - 1560 s - P_2 = 886 - 900 s$

Rotational splitting -- > solar core rotation ~ x3 faster than intermediate regions
Maybe some impact for chemical mixing in the core – but in direction of lowering N-fluxes

Two important claims in Fossat et al. 2017

1) Asymptotic period spacings for I= 1, 2

 $2\pi^2 \left[R_{CZ} d_{r} \right]^{-1}$

 $(1 d \log n d \log n)$

From Appourchaux et al. 2010 review

and data-analysis perspectives – to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.

2)

Maybe some impact for chemical mixing in the core – but in direction of lowering N-fluxes

The End